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| dentification of a Visco-Elastic Model for PET Near T,
Based on Uni and Biaxial Results

Yun Mei Luo, Luc Chevalier, Eric Monteiro

Université Paris-Est, Laboratoire Modélisation em@lation Multi Echelle, MSME UMR 8208 CNRS, 5 bd
Descartes, 77545 Marne-la-Vallée, France

Abstract. The mechanical response of Polyethylene TerephthdRET) in elongation is strongly dependent on
temperature, strain and strain rate. Near the dlassition temperature Tg, the stress-strain cymesents a strain
softening effect vs strain rate but a strain hargeffect vs strain under conditions of large defations. The main goal
of this work is to propose a viscoelastic modgbtedict the PET behaviour when subjected to laeferchations and to
determine the material properties from the expeamntaledata. The viscoelastic model is written inemhov like way and
the variational formulation is carried out for themerical simulation using this model. To represtat non-linear
effects, an elastic part depending on the elasfidvalent strain and a non-Newtonian viscous papetiding on both
viscous equivalent strain rate and cumulated viscgitain are tested. The model parameters canbibemccurately
obtained through the comparison with the experialamiaxial and biaxial tests.

Keywords: Identification, viscoelastic, nonlinear behaviowsxperimental uniaxial and biaxial tests, numerical
simulation.

INTRODUCTION

Polyethylene terephthalate (PET) under conditiohkuge deformations, during high strain rate ektngn at
temperature near the glass transition Tg, exh@iggonounced nonlinear behaviour where non linégarous and
elastic effects appear. Both hyperelastic [1] aisdoplastic [2] approaches fail to show this regmorin addition,
classical viscoelastic models such as the Upperv&idad Maxwell model [3] or the Giesekus model da n
adequately demonstrate this reaction. Inspired kielF and Buckley [4], the assumption of an additiv
decomposition of elastic and viscous velocity geatl(D = D_ + D, ) is adopted to describe the kinematic structure

of the constitutive models. This choice, togeth@hwhe assumption of zero viscous spin, leadsh& lteonov
equation [5]. The numerical implementation is présd and compared with analytical solution of urdband
biaxial elongation in the linear case (i.e. consiatues of shear modulus G and viscosifyIn order to represent
the experimental uniaxial and biaxial tests [6]fpened on PET, nonlinear forms of elastic and wuisco

characteristics Gf) andn(é&,,é&,) are proposed. This model may be implemented ruilsite the stretch blow
moulding process for example.

AN INCOMPRESSIBLE LARGE STRAIN VISCOELASTIC MODEL

Figiel and Buckley [3] suggest to build a viscoétasnodel adapted to highly elastic polymers asz®nsion
of the hyper elastic approach used for rubber tila@erials coupled with a viscous part. In theirpmsition the
viscous part is supposed to be incompressibleydheme variation under pressure is assumed to belypalastic.
In the following, considering the difficulty to prme data to identify the volume variation, we diffslightly
considering both parts as incompressible. In thesli case, both relations can be written:

g= 2Ge, - pe:I
og=21D,-p,l

(1)



ois the Cauchy stress tensDy,is the symmetric part of the viscous velocity gead and the double underscore
means it's a second order tenséy. is the elastic part of the Eulerian strain measiafined by:
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where B, is the elastic part of the left Cauchy-Green tenggrand p, are pressures associated with the

incompresgble conditions of both parts:
detB, =1, diw, =traceD, =0 3)

Where\7v is the viscous velocity.
Combining Eqgs.1 and the elastic and viscous suaties in the Oldroyd derivation of the elastic I€#uchy-

Green tensor, one can obtain the Leonov like Eq.4:

OB,
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where@is the relaxation time, ratio of the viscosityand elastic shear modulGs The subscript “” denotes the

B,=0 @)

deviatoric part of the tensor.
VARIATIONAL FORMULATION FOR NUMERICAL SIMULATION

Using the Eq.1, the weak form of the problem leadan ill-conditioned problem, so we use a Zener tnodel
by adding a Newtonian branch. We choose a smallevaf the viscosity;y in the Newtonian branch so the
behaviour law can be written:

GB,
= and g=27,D+5-pl (5)
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We assume that the body and gravitational forces & neglected. In the plane stress cases of whi an
equibiaxial elongations, considering the incomplely, the pressure is given by Eq.6:
G 2
T T Bll - Bzz

BB, B,

03, =0= p:_2,7N(D11+D22) 3 (6)

Therefore, the searched solution is a mixed vefogiandB, formulation. Considering the Egs.4 to 6, the weak

form over the entire volum&is given by:
2’7N IQ 2* :EdQ + GIQQ* ZECIQ + 2,7N .Lz tr (2* )(Dll + D22 )dQ

G * 2
-—| triD | —-B,-B,, [dQ=0;
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B {—=+=B.B, [d2=0 (7)
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RESULTS

In the cases of homogeneous and plane stress aingaxd equibiaxial elongations, the Cauchy stressdra
and the strain rate tensor writes:

g, 00 £ 0 0 g, 0 0 £0 0
o=/ 0 0 0|landD=|0 -£/2 0 |'g=|0 o, 0landD=|0 & © (8)
0 00 0 0 -¢/2 0 0 0 0 0 -2

One can solve Eqg.4 and then, substituting in Egaby obtain the elongation uniaxial and biaxial stes,
respectivelygy and gz versus time or global elongation. For uniaxial dmalxial elongations, the related elastic
elongationsi, are given from the differential relations:

AfAc+ (A -VA, )30 =¢ 1 /2, + (A2 -1t )60 = ¢ ©
wheref is the global strain rate. The related stresseshan:
o, =37,6+G2 -1A,) oy =6n,¢+GI2-V) (10)
TABLE (1). Material parameters used
Property Value
Viscosityy 16.5 MPa.s
Viscosityny 200 Pa.s
Shear modulu®& 3.29 MPa

From Table 1, the relaxation tim¢ is 5 s. Uni and biaxial elongations at constartemsion rate€ are
considered. Figure 1 shows the results of the &naly\and numericasolutions are equal, for both elongation cases
(uniaxial and biaxial) at a strain rate & $urthermore, it shows that the stress-strainesifor PET are strongly
dependent on the strain rate. As the strain ratee@ses, the whole stress level is found to inerefasen if the
modelling for uniaxial and biaxial elongations dawsd highlight any singularity, the comparison witkperimental
results of similar tests managed on PET at a teatyper slightly over §; is not satisfactory. First, the experimental
data presents a strain hardening effect (stresedses); second, double the strain rate does nableldhe
asymptotic stress (viscosity presents a softenffegtewith strain rate); last, at the same valuehef elongatiori,
biaxial stress is not twice the uniaxial stress. &lbthese reasons, a non linear version of theslehis necessary
and discussed in the following.
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FIGURE 1. Uniaxial (a) and biaxial (b) responses of the linear form of the viscoelastic model; Analytical results VS
numerical results at a strain rate 8 s™.



TOWARD A NON-LINEAR VISCOELASTIC MODELLING

Beyond the linear case, the structure of the visstie model allows to test all non linear behaviofithe form:

=26, (). ~p.l
- — (11)
g = 2/709(“:}v"‘3‘v)Dv - pv|=

whereg_ is respectively the equivalent elastic strain,is the equivalent viscous strain rate and the nt
e \

viscous straing, . In order to model the strain hardening effecstfian hyperelastic model is chosen for the elastic

part. The Yeoh model, for example, can be usedhsutesults of simulations show that using the lear elastic
part do not lead to a strain hardening effect. Thiguite natural since the global strain ratedsstant, when the
viscous part reaches a constant value, the sttepsirecreasing and elastic strain rate becomes audn if the
hyperelastic shows an increasing evolution, thasdwt impact the viscoelastic model.

Consequently, we focus on the non-linear viscous gfethe model chosen as in Cosson and Chevadjahht
identified a non linear incompressible viscoplastiodel, which represents macroscopically the strardening
effect observed during tension for high strain. ¥eose the same form of the viscous model:

—_— m-1

n=nh(e,) ;V (12)

ref

The hardening effect is related to théunction which increase continuously wi#f) that can be obtained by

comparison with the experimental tests. Menetryal. [6] recently provided experimental tests at difar strain
rates for TF9 grade PET under equibiaxial deforomatit temperature 80. In order to identify thé function, we
propose the following way:

- For each strain rate, the stress-strain curnthegquibiaxial test, the evolution of the relagtabtic elongations
Ae can be obtain from Eq.10:

o, =G(12-12)=2° —/1;‘(%}—1: 0

/3 25?
:>/162:§+l(108+883+121/81+1253)l + -
3 6 3 3 3
3l108+8S° +12,/81+12S
where: S =Gi/G.

- Then, for each strain rate and for different eatd the exponent, theh function can be computed from the
equation following:

(13)

h(;): G, (/ﬁ _]//]2) (14)

677, [ ; J o,
£

ref

whereD, = £ — /16_,//1e in the case of equibiaxial test. Eq.14 giveshtevolution versus the equivalent viscous

strain £, for each strain rate condition. The equibiaxiatsdsave been carried out for five global straiesafl, 2,
4,8, 16 8).
- Each tension speed gives a different functiorersus€, for each value of exponent. When we fixed the

parametem, we can sum the differences between dachuirve from each strain rate. The minimal dispersg
obtained form equal to 0.25 as shown in figure 2.



The figure 2(a) illustrates the influence of thegmaeterm on the dispersion between thdunctions. With the
optimal value ofn, we obtain a similar evolution for the 5 curveidér each strain rate as shown in figure 2(b).

- We obtain a master curve farwhich highlights an asymptotic value for the elint viscous straii€, at

about 2.1. This leads to an important increasé@fviscosity and a zero viscous strain rate wheinsteaches this
asymptotic value.

- The last step of the identification is to prop@model to represent the curve of the fundiishown in figure
2(b). We can choose tiefunction which varies exponentially with the visisostraire,:

h(e,) = explag? +be? +ce, +d) (15)

Dispersion on h (%)

Parameter m Strain viscous
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FIGURE 2. (a) Minimization of differences betweem/ifunction. An optimal value is obtained for m 28, (b) The h
evolution versus the equivalent viscous stréjnwhen m=0.25.

With the exponential model, even if the steep pathe curve is not perfectly represented, a gepidasentation
of theh data can be obtained. Therefore, the charactarigtithe PET for this model are:

m=0.25,a=7.355b=-10.958¢c = 5.168,d = -3.727.

In the following, we implemented this set of paréeng into the stress-strain curve. Figure 3 shdwas tising
the viscoelastic model with a non linear viscoud,p@e can obtain a substantially good represenmtatf the strain
hardening effect for different strain rate. The madifference between experimental data and moddiiagial
behaviour is the beginning of the stress-strailve@when the strain is lower than 0.3): the experital data initial
slope seems to increase when the strain rateingestradiction with the results of the viscoeiashodel.

This may be corrected by working on the elastid pat since the initial strain is entirely elastiod the stress
obtained from this part is not dependent on theirstiate, the goal will not be easy to reach.

1Y i . T e e T

r i 1 T T i i
+  Experimental__1/s I I I I I I Model__Us I I I I I I I
1all Experimental_2/s |_ _ | _ _ 1 _ | _ L #+ 1 _ | 14H Model_2/s | _ 1 _ _ 1 _ _ 1 __L__| A
-+ Experimental _4/s : : : : ot Jr: : Model__4/s : : : : ‘ : :
+  Experimental__8/s | | | + o+ 7"‘ | 12 Model__8/s | 0 n | |
120+ Expeiimental_16/s | T T T 7 F T HEERT T Model__16/s | | | | | | |
| | | | [ 1t +\j | | | | | | | T ) | |
g10777\777\777\77477i77¢7;t+,¢;7\77,\ F10F - = - =+ e — - — -
s | | | I+ J\r++\+ [ | | s | | | | | | | |
- | | P+ T \+++ﬁ gl | | e | | | | | | |
] e el == ﬁ*——k;—k——\———\ g 8 ——I-— -1 Rl s - —r [l |
3 [ +#+++ | | 1 | | | & | ! | I | | |
o | [T I I+ | | | @ | | I | | | |
2 5***#**\14?;\**1*17{#***r**r**\***\ g 61 [ = ety S I e
Iy pﬁ gt T | | | | | | 1 i T | | | | |
A +17 | | | | | I | a g R B R A B
A’IJj T e e T | i 1 T T i I i
g | | | | | | | | | | | | | | | | | |
2,*Et‘,,,L,J,,J,,J,,L,,L,,L,,L,J 2 A N
H# | | | | | ] I | | | | | | | | | I | |
} | | | | | | | | | | | | | | | | | | | |
o I I I I I I I I I | 0 I I I I I I I I I |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Nominal Strain Nominal Strain
@ (b)

FIGURE 3. (a) The data experimental [6]; (b) The results of the viscoelastic model.



The differences between the experimental datalandetsults of this model are shown in the table 2.

TABLE (2). Errors between the experimental and the resfittseamodel

Strain Rate (/s) Absolute Error (%)
1 8.8
2 9.9
4 8.4
8 7.1
16 12.8

CONCLUSIONS

A basic viscoelastic model is presented in the fiert of the paper by introducing both an elaptict and a
viscous part that lead to a Leonov like equatioecdddly, the weak form of the problem is proposed the
numerical simulation: simulations fit with analyaicsolution for uniaxial and biaxial tension tesibis viscoelastic
model doesn't highlight singularities in the unixor biaxial elongations for high strain rate dedd to a stale
numerical scheme.

Considering the behaviour of PET neg €khibits a strain hardening effect, we choose rlm®ar viscous
model for the viscous part in order to represeis tion-linear behaviour. An identification proceelus proposed
and leads to a good representation of the expetaheata’s of biaxial elongation tests.

In further work, we intend to simulate the strebdbw moulding process together with an improvenanthe
behaviour law where the viscosity could be relatethicroscopic variables like crystallization ratio shape factor
of the microstructure. We can also model and identie temperature effect on PET behaviour. Fomgla, a
WLF-like correction is possible to take into accbtire influence of temperature.
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