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Abstract. The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly dependent on 
temperature, strain and strain rate. Near the glass transition temperature Tg, the stress-strain curve presents a strain 
softening effect vs strain rate but a strain hardening effect vs strain under conditions of large deformations. The main goal 
of this work is to propose a viscoelastic model to predict the PET behaviour when subjected to large deformations and to 
determine the material properties from the experimental data. The viscoelastic model is written in a Leonov like way and 
the variational formulation is carried out for the numerical simulation using this model. To represent the non–linear 
effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous part depending on both 
viscous equivalent strain rate and cumulated viscous strain are tested. The model parameters can then be accurately 
obtained through the comparison with the experimental uniaxial and biaxial tests.  

Keywords: Identification, viscoelastic, nonlinear behaviour, experimental uniaxial and biaxial tests, numerical 
simulation. 

INTRODUCTION 

Polyethylene terephthalate (PET) under conditions of large deformations, during high strain rate elongation at 
temperature near the glass transition Tg, exhibits a pronounced nonlinear behaviour where non linear viscous and 
elastic effects appear. Both hyperelastic [1] and viscoplastic [2] approaches fail to show this response. In addition, 
classical viscoelastic models such as the Upper Convected Maxwell model [3] or the Giesekus model do not 
adequately demonstrate this reaction. Inspired by Figiel and Buckley [4], the assumption of an additive 
decomposition of elastic and viscous velocity gradient (

ve DDD += ) is adopted to describe the kinematic structure 

of the constitutive models. This choice, together with the assumption of zero viscous spin, leads to the Leonov 
equation [5]. The numerical implementation is presented and compared with analytical solution of uniaxial and 
biaxial elongation in the linear case (i.e. constant values of shear modulus G and viscosity η). In order to represent 
the experimental uniaxial and biaxial tests [6] performed on PET, nonlinear forms of elastic and viscous 

characteristics G(εe) and η( v v,ε ε� ) are proposed. This model may be implemented to simulate the stretch blow 

moulding process for example. 

AN INCOMPRESSIBLE LARGE STRAIN VISCOELASTIC MODEL 

Figiel and Buckley [3] suggest to build a viscoelastic model adapted to highly elastic polymers as an extension 
of the hyper elastic approach used for rubber like materials coupled with a viscous part. In their proposition the 
viscous part is supposed to be incompressible, the volume variation under pressure is assumed to be purely elastic. 
In the following, considering the difficulty to provide data to identify the volume variation, we differ slightly 
considering both parts as incompressible. In the linear case, both relations can be written: 
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σ is the Cauchy stress tensor, Dv is the symmetric part of the viscous velocity gradient and the double underscore 

means it’s a second order tensor. eε  is the elastic part of the Eulerian strain measure defined by: 
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where 
eB  is the elastic part of the left Cauchy-Green tensor. pe and pv are pressures associated with the 

incompressible conditions of both parts: 
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where vV
�

 is the viscous velocity. 

Combining Eqs.1 and the elastic and viscous strain rates in the Oldroyd derivation of the elastic left Cauchy-
Green tensor, one can obtain the Leonov like Eq.4: 
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where θ is the relaxation time, ratio of the viscosity η and elastic shear modulus G. The subscript “^” denotes the 
deviatoric part of the tensor. 

VARIATIONAL FORMULATION FOR NUMERICAL SIMULATION  

Using the Eq.1, the weak form of the problem leads to an ill-conditioned problem, so we use a Zener like model 
by adding a Newtonian branch. We choose a small value of the viscosity �N  in the Newtonian branch so the 
behaviour law can be written: 
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We assume that the body and gravitational forces can be neglected. In the plane stress cases of uni and 
equibiaxial elongations, considering the incompressibility, the pressure p is given by Eq.6: 
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Therefore, the searched solution is a mixed velocity V and Be formulation. Considering the Eqs.4 to 6, the weak 
form over the entire volume Ω is given by: 
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RESULTS 

In the cases of homogeneous and plane stress uniaxial and equibiaxial elongations, the Cauchy stress tensor σ 
and the strain rate tensor D, writes: 
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One can solve Eq.4 and then, substituting in Eq.5, can obtain the elongation uniaxial and biaxial stresses, 

respectively σU and σB versus time or global elongation. For uniaxial and biaxial elongations, the related elastic 
elongations λe are given from the differential relations: 
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whereε�  is the global strain rate. The related stresses are then: 
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TABLE (1).  Material parameters used  

Property Value 
Viscosity � 16.5 MPa.s 
Viscosity �N 200  Pa.s 
Shear modulus G 3.29 MPa 

 
From Table 1, the relaxation time � is 5 s. Uni and biaxial elongations at constant extension rate ε�  are 

considered. Figure 1 shows the results of the analytical and numerical solutions are equal, for both elongation cases 
(uniaxial and biaxial) at a strain rate 8 s-1. Furthermore, it shows that the stress-strain curves for PET are strongly 
dependent on the strain rate. As the strain rate increases, the whole stress level is found to increase. Even if the 
modelling for uniaxial and biaxial elongations does not highlight any singularity, the comparison with experimental 
results of similar tests managed on PET at a temperature slightly over Tg, is not satisfactory. First, the experimental 
data presents a strain hardening effect (stress increases); second, double the strain rate does not double the 
asymptotic stress (viscosity presents a softening effect with strain rate); last, at the same value of the elongation λ, 
biaxial stress is not twice the uniaxial stress. For all these reasons, a non linear version of this model is necessary 
and discussed in the following. 
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FIGURE 1.  Uniaxial (a) and biaxial (b) responses of the linear form of the viscoelastic model; Analytical results VS 
numerical results at a strain rate 8 s-1. 



TOWARD A NON-LINEAR VISCOELASTIC MODELLING 

Beyond the linear case, the structure of the viscoelastic model allows to test all non linear behaviour of the form: 
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where 
eε   is respectively the equivalent elastic strain, 

vε�  is the equivalent viscous strain rate and the equivalent 

viscous strain vε . In order to model the strain hardening effect, first, an hyperelastic model is chosen for the elastic 

part. The Yeoh model, for example, can be used but the results of simulations show that using the non-linear elastic 
part do not lead to a strain hardening effect. This is quite natural since the global strain rate is constant, when the 
viscous part reaches a constant value, the stress stop increasing and elastic strain rate becomes null: even if the 
hyperelastic shows an increasing evolution, that does not impact the viscoelastic model.   

Consequently, we focus on the non-linear viscous part of the model chosen as in Cosson and Chevalier [2] that 
identified a non linear incompressible viscoplastic model, which represents macroscopically the strain hardening 
effect observed during tension for high strain. We choose the same form of the viscous model: 
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The hardening effect is related to the h function which increase continuously with vε  that can be obtained by 

comparison with the experimental tests. Menary et al. [6] recently provided experimental tests at different strain 
rates for TF9 grade PET under equibiaxial deformation at temperature 90oC. In order to identify the h function, we 
propose the following way: 

- For each strain rate, the stress-strain curve of the equibiaxial test, the evolution of the related elastic elongations 
λe can be obtain from Eq.10: 
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where: S = σB/G.  
- Then, for each strain rate and for different value of the exponent m, the h function can be computed from the 

equation following: 
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where Dv = ee λλε �� − in the case of equibiaxial test. Eq.14 gives the h evolution versus the equivalent viscous 

strain vε  for each strain rate condition. The equibiaxial tests have been carried out for five global strain rates (1, 2, 

4, 8, 16 s-1).  

- Each tension speed gives a different function h versus vε  for each value of exponent m. When we fixed the 

parameter m, we can sum the differences between each h curve from each strain rate. The minimal dispersion is 
obtained for m equal to 0.25 as shown in figure 2. 



The figure 2(a) illustrates the influence of the parameter m on the dispersion between the h functions. With the 
optimal value of m, we obtain a similar evolution for the 5 curves of h for each strain rate as shown in figure 2(b). 

- We obtain a master curve for h which highlights an asymptotic value for the equivalent viscous strain vε  at 

about 2.1. This leads to an important increase of the viscosity and a zero viscous strain rate when strain reaches this 
asymptotic value.  

- The last step of  the identification is to propose a model to represent the curve of the function h shown in figure 
2(b). We can choose the h function which varies exponentially with the viscous strain �v: 
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FIGURE 2.  (a) Minimization of differences between h(�v) function. An optimal value is obtained for m = 0.25; (b) The h 

evolution versus the equivalent viscous strain vε  when m=0.25. 

With the exponential model, even if the steep part of the curve is not perfectly represented, a good representation 
of the h data can be obtained. Therefore, the characteristics of the PET for this model are:  

m = 0.25, a = 7.355, b = -10.958, c = 5.168, d = -3.727. 

In the following, we implemented this set of parameters into the stress-strain curve. Figure 3 shows that using 
the viscoelastic model with a non linear viscous part, we can obtain a substantially good representation of the strain 
hardening effect for different strain rate. The main difference between experimental data and modelled biaxial 
behaviour is the beginning of the stress-strain curve (when the strain is lower than 0.3): the experimental data initial 
slope seems to increase when the strain rate rises in contradiction with the results of the viscoelastic model. 

This may be corrected by working on the elastic part but since the initial strain is entirely elastic and the stress 
obtained from this part is not dependent on the strain rate, the goal will not be easy to reach. 
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FIGURE 3.  (a) The data experimental [6]; (b) The results of the viscoelastic model. 



The differences between the experimental data and the results of this model are shown in the table 2. 
 

TABLE (2).  Errors between the experimental and the results of the model  
Strain Rate (/s) Absolute Error (%) 
1 8.8 
2 9.9 
4 8.4 
8 7.1 
16 12.8 

 

CONCLUSIONS  

A basic viscoelastic model is presented in the first part of the paper by introducing both an elastic part and a 
viscous part that lead to a Leonov like equation. Secondly, the weak form of the problem is proposed for the 
numerical simulation: simulations fit with analytical solution for uniaxial and biaxial tension tests. This viscoelastic 
model doesn’t highlight singularities in the uniaxial or biaxial elongations for high strain rate and lead to a stale 
numerical scheme.  

Considering the behaviour of PET near Tg exhibits a strain hardening effect, we choose a non-linear viscous 
model for the viscous part in order to represent this non-linear behaviour. An identification procedure is proposed 
and leads to a good representation of the experimental data’s of biaxial elongation tests.  

In further work, we intend to simulate the stretch-blow moulding process together with an improvement of the 
behaviour law where the viscosity could be related to microscopic variables like crystallization ratio or shape factor 
of the microstructure. We can also model and identify the temperature effect on PET behaviour. For example, a 
WLF-like correction is possible to take into account the influence of temperature. 
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