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TORSION EFFECTS IN ELASTIC COMPOSITES WITH HIGH

CONTRAST

MICHEL BELLIEUD ∗

Abstract. We establish a homogenization result and a corrector result for a vibration problem
of elasticity. We assume that the data depend in a periodic way on a small parameter ε. We assume
also that the Lamé coefficients take possibly high values in a periodical set of disconnected inclusions
and take values of the order ε

2 elsewhere. In the fibered case, torsional vibrations take place at an
infinitesimal scale and give rise to non-local effects.

Key words. homogenization, elasticity, non-local effects

AMS subject classifications. 35B27, 35B40, 74B05, 74Q10

1. Introduction . In this paper, we analyze the behavior of solutions to initial
boundary value problems describing vibrations of periodic elastic composites with
rapidly varying elastic properties. More specifically, we analyze a two-phase medium
whereby a set of ”stiff” unbounded fibers or bounded inclusions is embedded in a
”soft” matrix, i.e. what is often referred to as the ”high contrast case”. This task is
set in the context of linearized elasticity.

Problems of a high-contrast type have been studied extensively over the last
decades. Nowadays, there are two main trends in asymptotic methods: the asymptotic
expansions and the two-scale convergence. The first approach [14], [25], [26], [29], [30]
gives often stronger results including all asymptotic information about the solution
and error estimates of higher order with respect to small parameters. It also contains
the formulation of strong rigorous theories, but requires sufficiently regular data and
boundaries. Let us mention in particular the detailed paper [28] of G. Sandrakov,
yielding full proofs of the convergence and the error estimates for various high contrast
asymptotic and geometric regimes in hyperbolic elastic problems. Let us mention also
a most recent work [5] on the application of the asymptotic approach to some scalar
spectral problems with high contrasts in both ”stiffness” and ”density”, with rigorous
convergence results and error bound obtained. The second approach [2], [4], [7], [9],
[11], [13], [31] , employed in our paper, also yields the convergence to an asymptotic
solution and a first order corrector result. It requires much less smoothness of the data
but it does not allow to obtain any error estimates with respect to small parameters.
Notice that the papers [13] and [14] apply the asymptotic expansions and the two-
scale convergence respectively to the same problem: as a result, [13] ends with stronger
results but for more regular boundaries.

We are aiming at complementing this extensive material. From the point of view
of what is already available on the subject in the litterature, the most challenging
case is that of a set of disconnected parallel fibers with elastic moduli of order 1
embedded in a ”soft” matrix with moduli of order ε2, where ε is the period of the
medium in the plane transverse to the fibers. We will focuse on the vibratory case.
However, we emphasize that our analysis goes through in the same way in the case
of equilibrium equations. The results obtained in this way are relevant to Example II
and to Example III of the paper [9] by the author with G. Bouchitté, where fibered
structures with elastic moduli respectively of order 1 and of order 1

ε2
embedded in a

∗ Département de Mathématiques, Université de Perpignan, 52 Av. Paul Alduy, 66860 Perpignan
Cedex, France.(bellieud@univ-perp.fr).

1



2 M. BELLIEUD

”soft” matrix were considered. We agree with the result obtained in Example III and
we find that the result obtained in Example II is false. Indeed, the effective energy
functional obtained in [9], Th. 2.4 turns out to be only a lower bound of the actual
effective energy functional. We prove that the latter functional includes additional
terms describing torsional stored energy (see Section 5). The study of the torsion
effects is, essentially, the main new contribution our manuscript aims to target.

We turn now to a more detailed introduction of the paper. For a given bounded
smooth open subset Ω of R

3, we consider the vibration problem

(1.1)






ρε
∂2uε

∂t2
− div(σε(uε)) = ρεf in Ω×(0, T ), (f ∈ L2(0, T ;L2(Ω,R3))),

σε(uε) = λε tr(e(uε))I + 2µεe(uε), e(uε) =
1

2
(∇uε + ∇

Tuε),

uε ∈ C(0, T ; H1
0 (Ω,R3)) ∩ C1(0, T ; L2(Ω,R3)),

uε(0) = a0,
∂uε

∂t
(0) = b0, (a0, b0) ∈ H1

0 (Ω,R3) × L2(Ω,R3).

We assume that the Lamé coefficients λε, µε take values of order 1 in an ε-periodic
subset Bε of Ω consisting of parallel disjoint cylinders of Lebesgue measure of order
1 and take values of order ε2 in the surrounding matrix. Heuristically, the norm of
the gradient of the solution uε of (1.1) is expected to take high values, of the order
1
ε
, in the parts of the body where the coefficients are small. So, a gap between the

mean displacement of the different constituent parts of the composite may take place,
originating the non-local nature of the effective problem (see Remark 2.2 (i)). A
commonly-used method consists in expressing the homogenized problem under the
guise of a system of equations involving, besides the limit u0 of the sequence (uε),
the limit v of an auxiliary sequence (vε) (see (2.16)) designed to characterize the
average displacement in the inclusions. It turns out (see Theorem 2.1) that torsional
vibrations take place at a microscopic scale in the fibers constituting the composite
material. They are described in terms of the limit θ of the sequence (θε) defined by
(2.16), which characterizes the effective rescaled angle of torsion of the fibers (see
Remark 2.2 (iv)). The functions v and θ are defined on Ω×(0, T ) and take values
respectively in R

3 and R. The function u0 : Ω×(0, T )×(− 1
2 ,

1
2 )3 → R

3 is the two-scale
limit of (uε) (see [2], [23]). The effective displacement in the cylinders is governed by
the coupled system of equations in Ω×(0, T )

(1.2)






Jρ
∂2θ

∂t2
− kJ

∂2θ

∂x2
3

= ρ1

(
(yG − yB) ∧

(
f − ∂2v

∂t2

))
.e3 +m(u0).e3,

ρ1

∂2v

∂t2
−k|B|3l + 2

l + 1

∂2v3

∂x2
3

e3 =ρ1f + g(u0) − ρ1

∂2θ

∂t2
e3 ∧ (yG − yB),

associated with the boundary and initial conditions given in (2.19), the constants k,
Jρ, J, yG, yB , ρ1 being defined by (2.2), (2.9), (2.12). The first equation of (1.2),
regarding θ, displays the torsional vibrations. The third component of the second
equation shows extensional vibrations with regard to the longitudinal displacement
v3 (see [20], p. 428-429). The coupling with the matrix is marked by the fields g(u0)
and m(u0). They represent respectively the sum of the surface forces applied on each
fiber by the surrounding medium and their total moment with respect to the center
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of gravity of the geometric fiber. They are defined by (2.3), (2.4) in terms of the
restriction to Ω×(0, T )×(Y \B) of u0, which characterizes the effective displacement
in the matrix. The letters Y and B symbolize respectively the unit cell and the
rescaled fiber. The effective displacement in the matrix is governed by the equation

(1.3) ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω×(0, T )×(Y \B),

coupled with the variables v, θ by the relation u0 = v + θe3 ∧ (y − yB) in B, where
ρ stands for the strong two-scale limit of the mass density (ρε) and σ0y is defined
by (2.3). The weak limit in L2 of (uε) satisfies the non-explicit equation u(x, t) =∫
Y
u0(x, t, y)dy. We obtain corrector results (see (2.25) and Remark 2.2 (iv)).

When the order of magnitude of the elasticity coefficients in the fibers is larger
(namely when k := limε→0 µ1ε = +∞), the functions θ and v3 are equal to zero
and the effective displacement in the fibers is governed by the system of equations of
v1, v2 given, in terms of the order of magnitude of the parameter κ := limε→0 ε

2µ1ε, by
(2.20), (2.21) or (2.22). In the most interesting case 0<κ<+∞, already investigated
in the context of elliptic equations for fibers with a circular cross-section (see [9], Th.
2.5), this system involves the 4th derivative of v1, v2 with respect to x3, revealing
bending effects (see [20], p. 430 ) similar to those studied in [10], [27]. Otherwise, the
fibers display the behavior of a collection of unstretchable strings that do not twist if
κ = 0 and k = +∞ and that of fixed bodies if κ = ∞.

If Bε consists of totally disconnected particles, the particles behave asymptotically
like rigid bodies regardless of the order of magnitude (≥ 1) of their stiffness. Their
effective displacement is governed by the system of equations (3.6), where the field r,
obtained as the limit of the sequence (rε) defined by (3.3), describes their effective
rotation vector (in the fibered case, r = θe3). The displacement in the matrix is
governed by the equation (1.3) coupled with v, r by the equation u0 =v+r∧(y−yB)
in Ω×(0, T )×B. Grain-like inclusions have been also considered by G. P. Panasenko
[26] and G. V. Sandrakov [28] by using the asymptotic approach.

We can extend these results to the case of a multiphase medium comprising a finite
collection B1

ε ,.., B
m
ε of non-intersecting ε-periodic families of grain-like inclusions or

of fibers of various shapes and stiffness embedded in a ”soft” matrix, each family
of fibers being for simplicity parallel to one of the coordinate axes. The effective
displacement in Biε is described in terms of a couple (vi, ri) and governed by a system
Phom i similar, up to a rotation of the coordinate axes, to one of the systems (1.2),
(2.20), (2.21), (2.22), (3.6) depending on the shape and on the order of magnitude of
the elastic moduli in the specified inclusions (see Section 4). The displacement in the
matrix is governed by the equation (1.3), where B = B1 ∪ ... ∪ Bm. The coupling of
Phom i with the matrix is marked by the equation u0 =vi+ri ∧(y−yBi) in Bi and
by the presence of fields gi(u0) and mi(u0) in Phom i (see Section 4). Multiphase
homogenized models have been also considered in [25], [26], [28], [29], [30].

The two-phase models of composites obtained theoretically by our process of
homogenization turn out to be unsufficiently reinforced, in general, to resist to some
specific body forces. More precisely, in the elliptic case, the boundedness in L2(Ω; R3)
of the solutions may fail to hold depending on f and, in the corresponding hyperbolic
case, the effective equations may describe a motion of collapse. From a physical point
of view, finding conditions ensuring the obtention of an effective elastic composite
sufficiently reinforced to resist to body forces is an important task. We show (see
Proposition 5.2) that the last mentioned boundedness is guaranteed for any choice
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of the field of body forces f ∈ L2(Ω; R3), if and only if a multiphase composite is
considered whereby the set of inclusions comprises either one family of parallel fibers
with elastic moduli of order 1

ε2
, or three families of parallel fibers with elastic moduli

of order 1 distributed in three independent directions. Hence, although two-phase
media offer the convenient setting for the mathematical study of torsion effects, only
multiphase media are likely to provide a physically satisfactory model of an elastic
composite exhibiting torsion effects.

The paper is organised as follows: the notations and the results relating to the
fibered case are displayed in Section 2, those concerning grain-like inclusions are stated
in Section 3. The case of multiphase media and of equilibrium equations are discussed
respectively in Section 4 and in Section 5. Section 6 is devoted mainly to a priori
estimates in the fibered case. The proofs of the main Theorem 2.1 (fibered case) and
Theorem 3.1 (case of grain-like inclusions) and a sketch of the proof of Proposition
5.2 are presented respectively in Section 7, Section 8 and Section 9.

2. Fibered case. In the sequel, {e1, e2, e3} stands for the canonical basis of
R

3. Vectors and vector-valued functions are represented by symbols beginning by a
boldface lower case letter (examples: u, f , g, div(σ),...). For any vector u ∈ R

3,

we denote by ui or (u)i its components (that is u =
∑3
i=1 uiei =

∑3
i=1(u)iei).

We do not use the repeated index convention for summation. We denote by (εijk)

the orientation tensor and by u ∧ v =
∑3
i,j,k=1 εijkujvkei the exterior product in

R
3. Matrices and matrix-valued functions are represented by symbols beginning by a

boldface upper case letter with the following exceptions: ∇u (displacement gradient),
e(u) (linearized strain tensor), σ(u) (linearized stress tensor). We denote by A :B =∑3
i,j=1AijBij the inner product of two matrices. We denote by C different constants

whose precise values may vary. Fixing a non-empty connected open set D⊂R
2 with

a Lipschitz boundary, we set

(2.1) ρD ⊂
(
−1

2
,
1

2

)2

, B := D ×
(
−1

2
,
1

2

)
, Y :=

(
−1

2
,
1

2

)3

, y :=

3∑

i=1

yiei,

(2.2)

|B| :=
∫

B

dy, yB :=
1

|B|

∫

B

ydy, J :=

∫

B

|e3∧(y−yB)|2dy,

Jαβ :=

∫

B

(y − yB)α(y − yB)βdy.

Denoting by S
3 the set of all real symmetric matrices of order 3, we introduce the

operators ey,σ0y :H1(Y ; R3)→L2(Y ; S3), g :H→R
3, m :H→R

3 defined by

(2.3)

(ey(w))ij =
1

2

(
∂wi

∂yj
+
∂wj

∂yi

)
, σ0y(w) := λ0 tr(ey(w))I + 2µ0ey(w),

g(w) :=

∫

∂B∩Y

σ0y(w).nBdH2(y),

m(w) :=

∫

∂B∩Y

(y−yB) ∧ (σ0y(w).nB) dH2(y),

where nB stands for the outward pointing normal to ∂B, λ0, µ0 are positive reals,
and
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(2.4) H :=
{
w ∈ H1(Y \B; R3), div(σ0y(w)) ∈ (H1(Y \B; R3))′

}
,

the symbol E′ indicating the continuous dual of a Banach space E. We denote by
C∞
♯ (Y ) (resp. C♯(Y )) the set of Y -periodic functions of C∞

(
R

3
)

(resp. C(R3)),
by C∞

♯ (Y \ B) the set of the restrictions of the elements of C∞
♯ (Y ) to Y \ B, by

H1
♯ (Y ) (resp. H1

♯ (Y \B)) the completion of C∞
♯ (Y ) (resp. C∞

♯ (Y \B)) with respect

to the norm w →
(∫
Y

(|w|2 + |∇w|2)dy
) 1

2

(
resp. w →

(∫
Y \B

(|w|2 + |∇w|2)dy
) 1

2

)
.

Our proofs are based on the two-scale convergence method of G. Allaire [2] and G.
Nguetseng [23] . A sequence (fε) in L2(0, T ;L2(Ω)) is said to be two-scale convergent
to f0 ∈ L2(0, T ;L2(Ω × Y )) with respect to x (notation: fε ⇀⇀ f0) if for each
ϕ0 ∈ D(Ω×(0, T ), C∞

♯ (Y )), there holds

(2.5) lim
ε→0

∫

Ω×(0,T )

fε(x, t)ϕ0

(
x, t,

x

ε

)
dxdt =

∫

Ω×(0,T )×Y

f0ϕ0dxdtdy.

A sequence (ϕε) ⊂ L2(0, T ;L2(Ω)) is said to be two-scale strongly convergent to
ϕ0 ∈ L2(0, T ;L2(Ω × Y )) (notation ϕε −→−→ ϕ0) if

(2.6) ϕε ⇀⇀ ϕ0 and lim
ε→0

||ϕε||L2(0,T ;L2(Ω)) = ||ϕ0||L2(0,T ;L2(Ω×Y )).

The symbols ⇀⇀ and −→−→ will be used also to denote the two-scale convergence
and the strong two-scale convergence of sequences (fε) in L2(Ω) independent of t or
functions of x only by formally regarding those as constant in t.
We consider the vibration problem (1.1), where Ω := ω× 0, L, ω is a bounded regular
domain of R

2 and Bε is the ε-periodic set of parallel cylinders defined by (see fig. 1)

(2.7) Bε := Ω ∩ ε
⋃

i∈Z3

({i} +B).

We assume that the Lamé coefficients satisfy

(2.8)

µε(x) = µ1ε1Bε
(x) + ε2µ01Ω\Bε

(x), λε(x) = λ1ε1Bε
(x) + ε2λ01Ω\Bε

(x),

µ1ε ≥ c > 0, lε :=
λ1ε

µ1ε
, lim

ε→0
lε = l ∈ 0,+∞.
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We set

(2.9) k := lim
ε→0

µ1ε, κ := lim
ε→0

ε2µ1ε.

Under (2.8), the relative compactness of the sequence (uε) of the solutions of (1.1) in
the ⋆-weak topology of L∞(0, T ;L2(Ω; R3)) is ensured by

(2.10)
a0 = 0 if µ1ε >> 1, 0 ≤ ρε ≤ C < +∞ if {b0 6= 0} or {f 6= 0},
inf
Bε

ρε > c > 0 or inf
Ω\Bε

ρε > c > 0, if κ = 0.

We suppose that

(2.11) ρε −→−→ ρ,

for some ρ ∈ L2(Ω × Y ). The effective mass, the positions of the principal axes, the
positions of the geometric principal axes and the moments of inertia with respect to
the last mentioned axes of the fibers are characterized respectively by the constants
ρ1, yG, yB , Jρ defined by (2.2) and

ρ1 :=

∫

B

ρdy, ρ1yG :=

∫

B

ρydy, (yG=yB if ρ1 =0),

(2.12)

Jρ :=

∫

B

ρ|e3 ∧ (y − yB)|2dy.

We assume that (see Remark 2.2 (iii))

(2.13) D =

{
(y1, y2) ∈ R

2,

√
y2
1 + y2

2 < R

}
if lim inf

ε→0
εµ1ε < +∞,

for some R ∈
]
0, 1

2

[
. For simplicity the main result is stated under the additional

hypotheses (see Remark 2.2 (v))

(2.14) ρε ≥ c > 0,

(2.15) ρε ≤ C < +∞.

Representing by Int(s) the integer part of a real s, we set

vε(x, t) :=
1

|B|uε(x, t)1Bε
(x),

θε(x, t) :=
1

J
uε(x, t).

(
e3 ∧

([x
ε

]
− yB

))
1Bε

(x),(2.16)

[x
ε

]
:=

3∑

i=1

[xi
ε

]
ei,

[xi
ε

]
:=
xi

ε
−
(

Int

(
xi

ε
+

1

2

))
.
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Under these assumptions, we show that (uε,vε,θε) converges, in the sense defined
below, to (u0,v, θ) (a geometrical interpretation of θ is given in Remark 2.2 (iv)) of

(2.17)

{
(Phommatrix),

(Phomfibers(k, κ)),

where, setting r := θe3 and denoting by n the outward pointing normal to ∂Y ,

(2.18) (Phommatrix) :






ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω×(0, T )×(Y \B),

u0 = v + r ∧ (y − yB) in Ω×(0, T )×B,
σ0y(u0).n(y) = −σ0y(u0).n(−y) on Ω×(0, T ) × ∂Y,

u0 ∈ C([0, T ];L2(Ω, H1
♯ (Y ; R3))) ∩ C1([0, T ];L2(Ω × Y ; R3)),

u0(0)1Y \B = a01Y \B ,
∂u0

∂t
(0)1Y \B = b01Y \B ,

and (Phomfibers(k, κ)) is given, in terms of the order of magnitude of the coefficients k, κ,
by

(2.19)
(Phomfibers(k, 0)) :

(0 < k < +∞)






Jρ
∂2θ

∂t2
− kJ

∂2θ

∂x2
3

= ρ1

(
(yG − yB) ∧

(
f − ∂2v

∂t2

))
.e3 +m(u0).e3

in Ω×(0, T ),

ρ1

∂2v

∂t2
− k|B|3l + 2

l + 1

∂2v3

∂x2
3

e3

= ρ1f + g(u0) − ρ1

∂2θ

∂t2
e3 ∧ (yG − yB) in Ω×(0, T ),

v3, θ ∈ C([0, T ];L2(ω;H1
0 (0, L))) ∩ C1([0, T ];L2(Ω)),

v ∈ C1([0, T ];L2(Ω; R3)),

θ(0) = 0,
∂θ

∂t
(0) = 0, v(0) = a0,

∂v

∂t
(0) = b0,

(2.20) (Phomfibers(+∞, 0)) :






ρ1

∂2vα

∂t2
= ρ1fα + (g(u0))α α ∈ {1, 2} in Ω×(0, T ),

v ∈ C1([0, T ], L2(Ω; R3)),

vα(0) = 0,
∂vα

∂t
(0) = (b0)α, α ∈ {1, 2}, v3 = θ = 0,

(2.21)
(Phomfibers(+∞, κ)) :

(0 < κ < +∞)






ρ1

∂2vα

∂t2
+

2∑

β=1

κ
3l + 2

l + 1
Jαβ

∂4vβ

∂x4
3

= ρ1fα + gα(u0), α ∈ {1, 2} in Ω × (0, T ),

v∈C([0, T ];L2(ω,H2
0 (0, L; R3)))∩C1([0, T ];L2(Ω; R3)),

vα(0) = 0,
∂vα

∂t
(0) = (b0)α, α ∈ {1, 2}, v3 = θ = 0,
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(2.22) (Phomfibers(+∞,+∞)) : v = 0, θ = 0.

We establish the corrector result (2.25) under the assumption (see Remark 2.2 (iv))

(2.23) a0 = 0, u0

(
x, t,

x

ε

)
−→−→ u0.

Theorem 2.1. Assume (2.1), (2.7), (2.8), (2.10), (2.11), (2.13), (2.14), (2.15),
let (uε) be the sequence of the solutions of (1.1) and let (vε), (θε) be defined by (2.16).
Then (uε) two-scale converges to u0 with respect to x and (uε,vε, θε) converges star-
weakly in (L∞(0, T ;L2(Ω,R3)))2 × L∞(0, T ;L2(Ω)) to (u,v, θ), where

u :=

∫

Y

u0(., y)dy, v =

∫
−
B

u0(., y)dy,

(2.24)

θ =
1

J

∫

B

u0(., y).(e3 ∧ (y − yB))dy.

The triple (u0,v, θ) is the unique solution of (2.17). Moreover, (uε(τ)) two-scale
converges to u0(τ) with respect to x, for each τ ∈ 0, T . Assume in addition (2.23),
then (uε) two-scale converges strongly to u0 and

(2.25) lim
ε→0

∣∣∣
∣∣∣uε − u0

(
x, t,

x

ε

)∣∣∣
∣∣∣
L2(Ω×(0,T );R3)

= 0.

Remark 2.2. (i) If 0< k < +∞, the variable θ satisfies the vibrating string equation
∂2θ
∂t2

− c2 ∂
2θ
∂x2

3
= h, θ(0) = ∂θ

∂t
(0) = 0, θ(x′, 0, t) = θ(x′, L, t) = 0, where c :=

√
kJ
Jρ ,

h := 1
Jρ

(
ρ1 ((yG − yB) ∧ f) .e3 + m(u0).e3 − ρ1

(
(yG − yB) ∧ ∂2v

∂t2

)
.e3

)
, hence is

given by

(2.26)

θ(x, t) =

+∞∑

n=1

L

cnπ

(∫ t

0

sin
(cnπ
L

(t− τ)
)
γn(x1, x2, τ)dτ

)√
2

L
sin
(nπ
L
x3

)
,

γn(x1, x2, t) =

∫ L

0

h(x1, x2, x3, t)

√
2

L
sin
(nπ
L
x3

)
dx3.

The substitution of (2.26) in (2.18), (2.19) reveals the presence of memory terms in
the limit problem. Memory effects induced by homogenization are studied also in [1],
[3], [21], [32]. More generally, non-local effects are likely to come about in composites
with high contrast [2], [4]-[7], [9]-[11], [13], [14], [17], [25], [28]-[31]. In the case
of scalar linear elliptic equations, they can be interpreted in the context of Dirichlet
forms [22]. This approach breaks down in the framework of linear elasticity, any
non-negative lower-semicontinuous quadratic form on L2(Ω; R3) being theoretically the
limit of a suitable sequence of linear elasticity functionals on H1(Ω; R3) [12]. Passing
from stationary to evolution equations, memory effects can add further to the possible
non-local effects attendant on the elliptic case, even though the homogenization of the
corresponding equilibrium equations leads to a classical local problem [10], Remark
3.2; [7], Remark 2.2 (v).
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(ii) If the fibers have a vanishing measure (i.e. rε << ε, where rε stands for their
diameter) and if the elastic moduli are of order 1 in the matrix, a similar effective

behavior is obtained in the inclusions, conditioned by k̃ := limε→0
r2ε
ε2
µ1ε and κ̃ :=

limε→0
r4ε
ε2
µ1ε, provided 0 < limε→0

1
ε2| log(rε)| < +∞. However, no torsional vibrations

take place when 0 < k̃ < +∞ [10] , Theorem 3.1.
(iii) If limε→0 εµ1ε = 0, the attempt to extend our result to the case of fibers with non
circular cross sections leads to a technical complication (see Lemma 6.5).
(iv) Assumption (2.23) is verified for instance when u0 is continuous in at least one
of the variables (x, t) or y (see [2], Section 5 ), which takes place provided b0, f , ρ
are sufficiently regular. Under (2.23), the corrector result (2.25), combined with the
second line of (2.18), indicates that the field v(x, t) + θ(x, t)e3 ∧

([x
ε

]
− yB

)
approx-

imates the displacement in the fibers. Hence the function θ
ε

is a local approximation
of the microscopic rotation angle of the fibers. We can deduce also from (2.25) (the
details are omitted) that the sequences (vε) and (θε) obtained by averaging vε and θε
on each periodicity cell, namely

vε(x, t) :=
∑

i∈Iε

(∫
−
Y i

ε

vε(s, t)ds

)
1Y i

ε
(x),

θε(x, t) :=
∑

i∈Iε

(∫
−
Y i

ε

θε(s, t)ds

)
1Y i

ε
(x),

Y iε := ε(i+ Y ), Iε := {i ∈ Z3, Y iε ⊂ Ω},

converge respectively strongly to v in L2(0, T ;L2(Ω; R3)) and strongly to θ in L2(0, T ;
L2(Ω)).
(v) If (2.15) fails to hold, the effective displacement is stationary in the parts of the
body where ρε>> 1 (see (6.49)). If (2.14) is not satisfied, some modifications of the
data related to time in (2.17) are possibly required.

3. Case of grain-like inclusions . In this section, we assume that Ω and B

are regular domains of R
3, and that (see fig. 2)

(3.1) B ⊂ Y :=

(
−1

2
,
1

2

)3

.

The relative compactness of the sequence of the solutions of (1.1) in the ⋆-weak topol-
ogy of L∞(0, T ;L2(Ω; R3)) is ensured by the assumptions (2.8), (2.10) and
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(3.2) inf
Bε

ρε > c > 0 or inf
Ω\Bε

ρε > c > 0.

We introduce the inertia matrices Jρ, J and the sequence (rε) given by

J
ρ
ij := −

∫

B

ρ(y − yB)i(y − yB)jdy, if i 6= j,

Jij := −
∫

B

(y − yB)i(y− yB)jdy, if i 6= j,

(3.3)

J
ρ
ii :=

∑

j 6=i

∫

B

ρ|(y−yB)j |2dy, Jii :=
∑

j 6=i

∫

B

|(y−yB)j|2dy,

rε :=J
−1
(([x

ε

]
−yB

)
∧uε

)
1Bε

.

Theorem 3.1. Assume (2.8), (2.10), (2.11), (2.14), (2.15), (3.1), (3.2), let (uε)
be the sequence of the solutions of (1.1) and let (vε), (rε) be defined by (2.16), (3.3).
Then the sequence (uε) two-scale converges to u0 with respect to x and the sequence
(uε,vε, rε) converges star-weakly in (L∞(0, T ;L2(Ω,R3)))3 to the triple (u,v, r) given
by (2.24) and

(3.4) r=J−1

(∫

B

(y − yB) ∧ u0(., y)dy

)
.

The triple (u0,v, r) is the unique solution of the system

(3.5)

{
(Phommatrix),

(Phominclusions),

where (Phommatrix) is given by (2.18) and

(3.6) (Phominclusions) :






ρ1

(
∂2v

∂t2
+
∂2r

∂t2
∧ (yG − yB)

)

= ρ1f + g(u0) in Ω×(0, T ),

Jρ.
∂2r

∂t2
+ ρ1(yG − yB) ∧ ∂2v

∂t2

= ρ1(yG − yB) ∧ f +m(u0) in Ω×(0, T ),

v, r ∈ C1(0, T ;L2(Ω; R3)),

v(0) =a0,
∂v

∂t
(0) =b0, r(0) =

∂r

∂t
(0) = 0.

Moreover, (uε(τ)) two-scale converges to u0(τ) for each τ ∈ [0, T ]. Assume in ad-
dition (2.23), then (uε) two-scale converges strongly to u0 and the corrector result
(2.25) holds.
Remark 3.2. (i) Grain-like inclusions are concerned as well with Remark 2.2 (i), (iv),
(v). Regarding (ii), memory effects are obtained with particles of high mass density
and diameter rε << ε, provided 0 < limε→0

rε

ε3
< +∞ (see [7], [8]).
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(ii) In the fibered case, the sequence (rε) defined by (3.3) converges to θe3 (see Remark
8.1).

4. Multiphase media. We can extend our results easily to the case of a multi-
phase medium whereby m ε-periodic disconnected families B1

ε , ..., Bmε of fibers which
are (for simplicity) assumed parallel to one of the coordinate axes or of grain-like
inclusions are embedded in a soft matrix. The sets B1

ε , ..., Bmε are described in terms
of m subsets B1,..,Bm of Y , connected in R

3 and with disjoint closures, by setting

Bε :=
⋃m
i=1B

i
ε, Biε := ε

(⋃
j∈Z3 j +Bi

)
∩ Ω, B :=

⋃m
i=1B

i (see fig. 3). In the

fibered case, Bi is a cylinder whose axis is perpendicular to some face of the cube Y
(see fig. 3).

We suppose that the elastic moduli take the value µi1ε and λi1ε on each set Biε (i ∈
{1, ...,m}) and take the value ε2µ0 and ε2λ0 in the matrix Ω \ Bε. By repeating the
argument of the proof of Theorem 3.1 and Theorem 3.2, we find that the sequence
(uε) of the solutions of (1.1) two-scale converges to the unique solution u0 of the
following equivalent variational problem

(4.1)

∫ T

0

(a(u0(t),w0)η(t) + (u0(t),w0)Hη
′′(t))dt+ (a0,w0)Hη

′(0)

− (b0,w0)Hη(0) =

∫ T

0

(f ,w0)Hη(t)dt, ∀ w0 ∈ V, ∀ η ∈ D(−∞, T ),

v, r ∈ C1(0, T ;L2(Ω; R3)),

u0∈L2(0, T ;V ), u′
0∈L2(0, T ;H).

The Hilbert space H is the set of all w0 ∈ L2(Ω;L2
♯ (Y ; R3)) such that for each i ∈

{1, , ...,m}, there exists a couple (ψ[i], r[i]) ∈ (L2(Ω; R3))2 such that w0 = ψ[i] +r[i]∧
(y−yB[i]) in Ω×B[i]. Moreover, if B

[i]
ε is a set of fibers parallel to e

[i]
3 , then r[i] = ϕ[i]e

[i]
3

for some ϕ[i] ∈ L2(Ω) and if in addition µ
[i]
1ε → +∞, then (ψ[i].e

[i]
3 ) = ϕ[i] = 0. The

space H is equipped with the inner product (w0, w̃0)H :=
∫
Ω×Y

ρw0.w̃0dxdy. The
Hilbert space V is the closure of D(Ω;C∞

♯ (Y )) ∩ H with respect to the norm ||.||V
defined by

(4.2) |w0|2V := |w0|2H +

m∑

i=1

a[i]((ψ[i], r[i]), (ψ[i], r[i])) +

∫

Ω×(Y \B)

|∇yw0|2dxdy.
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The set V is continuously embedded in H. The bilinear form a[i] identical, up to
a rotation of the coordinate axes, to one of the forms a, a(2), a(3), a(4) defined,
depending on the order of magnitude of the elastic moduli and of the shape of the

specified inclusions, by (7.22), (7.39), (7.45), (8.6) (if
µi

1ε

ε2
→ +∞, then a[i] = 0). The

symmetric bilinear form a on V is defined by

(4.3) a(w0,w0) :=

∫

Ω×Y

ey(w0) : σ0y(w0)dxdy +

m∑

i=1

a[i]((ψ[i], r[i]), (ψ[i], r[i])).

The Euler-Lagrange equations associated with (4.1) consist of a system of the type

(4.4)






(Phom, multimatrix ),

(Phom 1),

...

(Phom m),

of variables v[i], r[i], u0. The fields v[i] and r[i] characterize respectively the average

effective displacement and the rescaled effective rotation vector in the inclusions B
[i]
ε .

They are obtained as the weak-star limit in L∞(0, T ;L2(Ω; R3)) of the sequences v
[i]
ε

and r
[i]
ε defined by substituting B[i] for B in (2.16), (3.3). The effective displacement

in the matrix is governed by (Phom, multimatrix ). The system (Phom, multimatrix ) differs from
(2.18) only by its second line, namely

u0 = v[i] + r[i] ∧ (y − yB[i]) in Ω×(0, T ) ×B[i], i ∈ {1, ...,m}.

The system (Phom [i]) governs the behavior of the effective displacement in B
[i]
ε . In

the case of grain-like inclusions (Phom [i]) is given by (3.6), being understood that all
quantities defined in terms of B (that is v, r, g, m, yG, yB , etc..) are now defined in

terms of B[i] and labelled with the index [i]. If B
[i]
ε consists of fibers parallel to e

[i]
3 ,

then r[i] = θ[i]e
[i]
3 and (Phom [i]) is a system of equations of (v[i], θ[i]) given in any

orthonormal basis (e
[i]
1 , e

[i]
2 , e

[i]
3 ) by a system of the type (2.19), (2.20), (2.21), (2.22),

according to the order of magnitude of µ
[i]
1ε.

5. Case of equilibrium equations.. In this section we complete and correct in
the linear case the results obtained by the author with G. Bouchitté in [9] . The main
novelty of our results in the elliptic case, compared to the results already available in
[9] , concerns the case of fibers with elastic moduli of order 1. Let uε be the solution
of

(5.1) −div(σε(uε)) = ρεf in Ω, uε ∈ H1
0 (Ω,R3), f ∈ L2(Ω,R3).

Let V and H be the Hilbert spaces and let a be the positive symmetric bilinear form
defined in Section 4. By repeating the argument of the proofs of Theorem 2.1 and
Theorem 3.1, we obtain:
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Corollary 5.1. Assume that uε two-scale converges, up to a subsequence, to
some u0 ∈ L2(Ω × Y ; R3). Then

(5.2) u0 ∈ V and a(u0,w0) = (f ,w0)H , ∀w0 ∈ V.

When two-phase composites are considered, the effective problem (5.2) is in general
ill-posed. More precisely, we show in the next proposition that in the two-phase case,
unless very stiff fibers with elastic moduli of order greater than or equal to 1

ε2
are con-

sidered, the bilinear form a fails to be coercive on V . Then, the problem (5.2) has no
solution if f is not parallel to the fibers a.e., and has infinitely many solutions other-
wise. In the former case, it follows from Corollary 5.1 that limε→0 |uε|L2(Ω;R3) = +∞.
Heuristically, this means that the effective composite can not ”resist” to transverse
body forces. In all likelihood, in the corresponding hyperbolic case, there holds
limT→+∞ |u(T )|L2(Ω;R3) = +∞ for the same choice of f independent of t (see Re-
mark 5.3 (v)). This means that the effective composite ”collapses”. Hence both the
elliptic model and the hyperbolic model seem to be unsatisfactory on a physical point
of view when the bilinear form a is not coercive on V and when the body forces are
not parallel a.e. to the fibers (see Remark 5.3 (iii)). In the following proposition,
we state several necessary and sufficient conditions ensuring the coercivity of a on V .
The multiphase media satisfying these conditions (see Proposition 5.2 (v)) are likely
to provide a physically relevant model of composite exhibiting torsion effects.

Proposition 5.2. a) The following assertions are equivalent:
(i) The form a is coercive on V .
(ii) The problem (5.2) has a unique solution for all f ∈ L2(Ω; R3).
(iii) The following estimate is satisfied:

(5.3)

∫

Ω

|w|2dx ≤ CFε(w), ∀w ∈ H1
0 (Ω; R3); Fε(w) :=

1

2

∫

Ω

e(w) : σε(w)dx.

(iv) For every f ∈ L2(Ω; R3), the sequence (uε) has a bounded subsequence in L2(Ω;
R

3).
(v) One of the following conditions (a) or (b) is verified:

(a) the set of inclusions contains an ε-periodic distribution of parallel fibers with
elastic moduli of order greater than or equal to 1

ε2
,

(b) the set of inclusions contains three disconnected ε-periodic distributions of
parallel fibers with elastic moduli of order greater than or equal to 1, distributed in
three independent directions.
(vi) For every f ∈ L2(Ω; R3), the sequence (uε) two-scale converges to the unique
solution of (5.2).
b) If a is not coercive and if f does not belong a.e. to the subspace spanned by the
directions of the fibers, then (5.2) has no solution.

Let us revisit now the example studied in [9] (Example 2) by G. Bouchitté and the
author, who considered the case of a union of three non intersecting families of parallel

fibers Bε = B
[1]
ε ∪ B

[2]
ε ∪ B

[3]
ε , the fibers constituting B

[i]
ε being parallel to ei and

having elastic moduli µ
[i]
ε of order 1 (that is µ

[i]
ε → k[i] ∈]0,+∞[). Notice that the

assertion (v) of Proposition 5.2 is satisfied, hence, by (vi), the sequence (uε) two-
scale converges to the unique solution u0 of the problem (5.2). The Hilbert space H,
equipped with the inner product (w0, w̃0)H :=

∫
Ω×Y

ρw0.w̃0dxdy, is the subset of

L2(Ω;L2
♯ (Y ; R3)) consisting of those w0 such that for each i ∈ {1, 2, 3} there exists a
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couple (ψ[i], ϕ[i]) ∈ L2(Ω; R3) × L2(Ω) such that w0 = ψ[i] + ϕ[i]ei ∧ (y − yB[i]) in
Ω ×B[i]. The set V is the closure of D(Ω;C∞

♯ (Y ; R3)) ∩H with respect to the norm
|.|V defined by (4.2). The effective energy is defined on V × V by

(5.4)

1

2
a(w0,w0) :=

1

2

∫

Ω×Y

ey(w0) : σ0y(w0)dxdy +
1

2

3∑

i=1

a[i](w0,w0),

a[i](w0,w0) := k[i]

∫

Ω

|B[i]|3l + 2

l + 1

∣∣∣∣∣
∂ψ

[i]
i

∂xi

∣∣∣∣∣

2

dx+

3∑

i=1

k[i]

∫

Ω

J [i]

∣∣∣∣
∂ϕ[i]

∂xi

∣∣∣∣
2

dx.

The second term of the right-hand side of the equation in the second line of (5.4)
characterizes the torsional energy stored in the fibers. Formula (5.4) corrects in the
linear case Formula (2.25) of [9], where the torsional terms are missing. As already
said, the result stated in Theorem 2.4 of [9] is false. In fact, the crucial part of the
proof of Theorem 2.4 of [9] was undone (see Remark 5.3 (iv)).

Remark 5.3. (i) Under the assumptions of Corollary 5.1 and the notations of Section

4, the sequence (v
[i]
ε , r

[i]
ε ) converges weakly in (L2(Ω; R3))2 to (v[i], r[i]) for each i ∈

{1, ...,m}. The field u0 and the fields v[i], r[i] are solution of the system deduced
formally from ( 4.4) by replacing the symbols of the type

∫
A×(0,T )

..dmdt, Lp(0, T ;X),

Ω × (0, T ), w(τ), w(0), ∂w
∂t

, a0, b0... by
∫
A
..dm, X, Ω, w, 0, 0, 0, 0.... If (

5.3) takes place and if the sequence (u0

(
x, x

ε

)
) two-scale converges strongly to the

solution u0 of the effective elliptic problem (see Remark 2.2 (iv)), then the corrector
result lim

ε→0

∣∣∣∣uε − u0

(
x, x

ε

)∣∣∣∣
L2(Ω;R3)

= 0 can be proved in similar manner as in the

hyperbolic case.

(ii) In the elliptic case, the variable u0 can be eliminated in the effective problem: by

the system of equations deduced from (Phom, multimatrix ) as described in (i) and by Formula
u =

∫
Y
u0(., y)dy, we have, in the basis (e1, e2, e3),

1

2
a(w0,w0) :=

1

2

∫

Ω×Y

ey(w0) : σ0y(w0)dxdy +
1

2

3∑

i=1

a[i](w0,w0),

(5.5)

u=

∫

Y

γ0dy+
m∑

i=1

3∑

j=1

v
[i]
j

∫

Y

ξ
j[i]
0 dy+r

[i]
j

∫

Y

η
j[i]
0 dy,

where ξ
j[i]
0 ,η

j[i]
0 ,γ0(x, .) are the unique solution of

(5.6)

− divy(σ0y(ξ
j[i]
0 ))=0 in Y \B, ξj[i]0 = ej in B[i], ξ

j[i]
0 = 0 in B \B[i],

− divy(σ0y(η
j[i]
0 ))=0 in Y \B,

η
j[i]
0 = ej ∧ (y−yB[i]) in B[i], η

j[i]
0 = 0 in B \B[i],

− divy(σ0y(γ0)) = ρf in Ω×(Y \B), γ0 = 0 in Ω ×B,

σ0y(ζ0).n(y)=−σ0y(ζ0).n(−y) on ∂Y, ζ0 ∈ H1
♯ (Y ; R3),

ζ0 ∈
{
ξ
j[i]
0 ,η

j[i]
0 ,γ0(x, .)

}
.
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In the case of a two-phase composite (that is m = 1, B = B[1]), by (2.3), (5.6) and
the Gauss-Green’s Theorem there holds

ξ
j
0 = ej , g(ξj0) = m(ξj0) = g(ηj0) = m(ηj0) = 0,

g(u0) = g(γ0) =

(∫

Y \B

ρdy

)
f ,(5.7)

m(u0) = m(γ0) =

(∫

Y \B

ρ(y − yB)dy

)
∧ f .

A similar computation can be done in the case of hyperbolic equations, when the mass
density is supposed to vanish in the matrix, namely when ρ1Y \B = 0. Then the

fields u0 and u are given in terms of the fields v[i] and r[i] (i ∈ {1, ...,m}) simply
by substituting 0 for γ0 in (5.5). Under the same assumption, similar problems are
tackled in [25] in the fibered case and in [26] in the case of grain-like inclusions, by
using asymptotic expansions.
(iii) The case where a is not coercive on V and where f belongs a.e. to the subspace
spanned by the directions of the fibers may have some interest on a physical level.
However it seems difficult to find out in this case whether the sequence of the solutions
of (5.1) is bounded in L2(Ω; R3) or not.
(iv) In [9] , we have employed the Γ-convergence method, which is convenient for
elliptic problems but not for hyperbolic problems, and which consists in establishing the
convergence of the sequence of energy functionals (Fε) (see (5.3)), in some sense, to
the effective energy F (u) := inf

{
1
2a(w0,w0), w0 ∈ V,

∫
Y
w0dy = u

}
. This approach

allowed us to state our results in Example I and in Example III in the context of a
simplified model of small deformation nonlinear elasticity. The crucial step in the Γ-
convergence method is the so-called ”upper bound” (see for intance [15] for all details
relative to this notion of convergence). Our omission in Example II is that we did not
check properly the proof of the ”upper bound” and announced that this proof was the
same as in Example I up to minor modifications (see [9], p.178,l.(-7) ), which is not
true. Indeed, we have only established in Example II a lower bound for the effective
energy.
(v) If a is coercive on V and if f is independent of t, then it can be shown that the
sequence (u(T ))T>0 is bounded in L2(Ω; R2).

6. Preliminary results and a priori estimates.. The following section is
devoted to the study, in the fibered case, of the asymptotic behavior of the sequence
(uε) of the solutions of (1.1) and of the sequences (vε) and (θε) defined by (2.16) (cf.
Proposition 6.4). It includes also a technical lemma (Lemma 6.1) concerning the two-
scale convergence and a theorem (Theorem 6.2) gathering some classical theoretical
results about hyperbolic equations that will be employed to establish the well-posed
nature of Problem (2.17) and the corrector result (2.25).

A fundamental property of the two-scale convergence (defined by (2.5)) is that
any sequence bounded in L2(0, T ;L2(Ω)) admits a two-scale convergent subsequence.
A sequence (ϕε) ⊂ L2(0, T ;L2(Ω)) is said to be admissible if it two-scale converges to
some ϕ0 ∈ L2(0, T ;L2(Ω × Y )) and if, for every two-scale convergent sequence (fε),
there holds

(6.1) lim
ε→0

∫

Ω×(0,T )

fεϕεdxdt =

∫

Ω×(0,T )×Y

f0ϕ0dxdtdy.
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It turns out that the set of all admissible sequences is equal to the set of all sequences
(ϕε) ⊂ L2(0, T ;L2(Ω)) satisfying (2.6) for some ϕ0 ∈ L2(0, T ;L2(Ω × Y )) (that is the
set of all two-scale strongly convergent sequences). Indeed, the following implication
is proved in [[2], Theorem 1.8]

fε ⇀⇀ f0 and ϕε−→−→ϕ0 ⇒
(6.2)

lim
ε→0

∫

Ω×(0,T )

fεϕεdxdt =

∫

Ω×(0,T )×Y

f0ϕ0dxdtdy.

Conversely, if (ϕε) is admissible, one sees by substituting ϕε for fε in (6.1) that (ϕε)
is two-scale strongly convergent.

Lemma 6.1. (i) Let h0 ∈ L∞(0, T ;L∞(Ω, C♯(Y )))∪L∞
♯ (Y,C(Ω×(0, T ))) and let

hε(x, t) := h0

(
x, t, x

ε

)
. Then for every sequence (χε) ⊂ L2(0, T ;L2(Ω)) the following

implications hold:

(6.3) χε −→−→ χ0 =⇒ χεhε −→−→ χ0h0,

(6.4) χε ⇀⇀ χ0 =⇒ χεhε ⇀⇀ χ0h0.

(ii) If (fε) is bounded in L∞(0, T ;L2(Ω)) and two-scale converges to f0, then f0 ∈
L∞(0, T ;L2(Ω × Y )). If in addition (fε) is bounded in W 1,∞(0, T ;L2(Ω)), then f0 ∈
W 1,∞(0, T ;L2(Ω × Y )) and

(
∂fε

∂t

)
two-scale converges to ∂f0

∂t
. Besides, if fε(0) ⇀⇀ a0,

then a0 = f0(0) and (fε(τ)) ⇀⇀ f0(τ), ∀τ ∈ [0, T ]. Moreover, if
(
∂fε

∂t

)
−→−→∂f0

∂t
and

fε(0)−→−→a0, then (fε(τ))−→−→f0(τ), ∀τ ∈ [0, T ].
Proof. (i) Assuming (χε)−→−→χ0, we fix a sequence (fε) bounded in L2(0, T ;

L2(Ω)), a positive real η > 0 and a function ψ0 ∈ C(Ω×(0, T ), C♯(Y )) such that

(6.5) fε ⇀⇀ f0, ||χ0 − ψ0||L2(0,T ;L2(Ω×Y )) < η.

Since h0ψ0 ∈ L2(0, T ;L2(Ω, C∞
♯ (Y ))) ∪ L2

♯ (Y,C(Ω×(0, T ))), the sequence (hεψε)
(ψε(x, t) := ψ0(x, t,

x
ε
)) is admissible with respect to the two-scale convergence (see [2],

Lemma 5.2, Corollary 5.4). Thanks to (6.5) and to the strong two-scale convergence
of (χε − ψε) to χ0 − ψ0 we infer

lim sup
ε→0

∣∣∣∣∣

∫

Ω×(0,T )

χεhεfεdxdt−
∫

Ω×(0,T )×Y

χ0h0f0dxdtdy

∣∣∣∣∣

≤ lim sup
ε→0

∣∣∣∣∣

∫

Ω×(0,T )

hε (χε − ψε) fεdxdt

∣∣∣∣∣

+ lim sup
ε→0

∣∣∣∣∣

∫

Ω×(0,T )

hεψεfεdxdt−
∫

Ω×(0,T )×Y

χ0h0f0dxdtdy

∣∣∣∣∣

≤ lim sup
ε→0

||hε||L∞ ||χε − ψε||L2 ||fε||L2 +

∣∣∣∣∣

∫

Ω×(0,T )×Y

h0(ψ0 − χ0)f0dxdtdy

∣∣∣∣∣

≤ Cη,
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hence χεhε −→−→ χ0h0. Supposing now (χε) ⇀⇀ χ0, fixing a sequence (ϕε) such that

(ϕε)−→−→ϕ0, we deduce from (6.3) that (ϕεhε)−→−→ϕ0h0, thus lim
ε→0

∫

Ω×(0,T )

χεhεϕεdxdt =
∫

Ω×(0,T )×Y

χ0h0ϕ0dxdtdy. (ii) If (fε) is bounded in L∞(0, T ;L2(Ω)) and two-scale converges

to f0, fixing ϕ0 ∈ C(Ω×(0, T ), C♯(Y )) and setting ϕε(x, t) := ϕ0

(
x, t, x

ε

)
, noticing

that

(6.6)

∫

Ω×(0,T )

fεϕεdxdt ≤
∫ T

0

||fε(., t)||L2(Ω)||ϕε(., t)||L2(Ω)dt

≤ C

∫ T

0

||ϕε(., t)||L2(Ω)dt,

and that limε→0 ||ϕε(., t)||L2(Ω) = ||ϕ0(., t)||L2(Ω×Y ), ∀ t ∈ (0, T ), by passing to the
limit as ε → 0 in (6.6) in accordance with (6.2) and the Dominated Convergence
Theorem we infer

(6.7)

∫

Ω×(0,T )×Y

f0ϕ0dxdtdy ≤ C||ϕ0||L1(0,T,L2(Ω×Y )), ∀ ϕ0 ∈ C(Ω×(0, T ), C♯(Y )),

hence f0 ∈L∞(0, T ;L2(Ω×Y )). If in addition (∂fε

∂t
) is bounded in L∞(0, T ;L2(Ω)),

by the same argument (∂fε

∂t
) two-scale converges up to a subsequence to some ξ0 ∈

L∞(0, T ;L2(Ω × Y )), thus

∫

Ω×(0,T )×Y

ξ0ψ0dxdtdy= lim
ε→0

∫

Ω×(0,T )

∂fε

∂t
ψ0

(
x, t,

x

ε

)
dxdt

= − lim
ε→0

∫

Ω×(0,T )

fε
∂ψ0

∂t

(
x, t,

x

ε

)
dxdt

= −
∫

Ω×(0,T )×Y

f0
∂ψ0

∂t
dxdtdy, ∀ ψ0 ∈ D(Ω×(0, T );C∞

♯ (Y )).

Hence ∂f0
∂t

= ξ0, f0 ∈W 1,∞(0, T ;L2(Ω×Y )), and the convergence holds for the whole
sequence. If fε(0) ⇀⇀ a0, fixing τ ∈ [0, T ] and an admissible sequence (ϕε) ⊂ L2(Ω)
such that (ϕε) −→−→ ϕ0 ∈ L2(Ω × Y ) and applying (6.4) with h0(x, t, y) := 1[0,τ ](t),
we obtain

lim
ε→0

∫

Ω

fε(τ)ϕεdx= lim
ε→0

∫

Ω

(∫ T

0

∂fε

∂t
1[0,τ ](t)dt+ fε(0)

)
ϕεdx

=

∫

Ω×(0,T )×Y

∂f0

∂t
(t)1[0,τ ](t)ϕ0dxdtdy+

∫

Ω×Y

a0ϕ0dxdy(6.8)

=

∫

Ω×Y

(f0(τ)−f0(0)+a0)ϕ0dxdy,

hence fε(τ) ⇀⇀ f0(τ) − f0(0) + a0, ∀τ ∈ [0, T ]. Fixing ϕ0 ∈ D(Ω×(0, T );C∞
♯ (Y ))),

setting ϕε(x, t) := ϕ0

(
x, t, x

ε

)
and applying the Dominated Convergence Theorem, we
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infer

∫

Ω×(0,T )×Y

f0ϕ0dxdydt = lim
ε→0

∫

Ω×(0,T )

fεϕεdxdt =

∫ T

0

lim
ε→0

(∫

Ω

fε(τ)ϕε(τ)dx

)
dt

=

∫

Ω×(0,T )×Y

(f0 − f0(0) + a0)ϕ0dxdtdy, ∀ ϕ0 ∈ D(Ω×(0, T );C∞
♯ (Y ))),

hence f0(0)=a0. If fε(0)−→−→a0 and ∂fε

∂t
−→−→∂f0

∂t
, we deduce from the previous reason-

ing that f0(0)=a0 and notice that (6.8) holds for any two-scale converging sequence
(ϕε).

The abstract results collected in the next theorem are proved in [19] (see Theorem
8.1 p. 287, Theorem 8.2 and Lemma 8.3 p. 298), [16] (see Formula (5.20) p. 667,
and Theorem 1 p. 670), [18] (see Remark 1.3 p. 155). Henceforth, the derivatives
in D′(0, T ;H) are identified with the time derivatives in D′(Ω × (0, T ) × Y ) and are
denoted both by ∂ζ

∂t
or by ζ ′.

Theorem 6.2. Let V and H be separable Hilbert spaces such that V ⊂ H =
H ′ ⊂ V ′, with continuous and dense imbeddings. Let ||.||V , |.|H , ((., .))V , (., .)H
denote their respective norm and inner product. Let a : V × V → R be a con-
tinuous bilinear symmetric form on V . Let A ∈ L(V, V ′) be defined by a(ξ, ξ̃) =
(Aξ, ξ̃)(V ′,V ), ∀ (ξ, ξ̃) ∈ V 2. Assume that

(6.9) ∃(λ, α) ∈ R+ × R
∗
+, a(ξ, ξ) + λ|ξ|2H ≥ α||ξ||2V , ∀ ξ ∈ V.

Let h ∈ L2(0, T ;H), ξ0 ∈ V , ξ1 ∈ H. Then there exists a unique solution ξ of

(6.10)
Aξ(t) + ξ′′(t) = h(t), ξ ∈ L2(0, T ;V ),

ξ′ ∈ L2(0, T ;H), ξ(0) = ξ0, ξ′(0) = ξ1,

where ξ′ = ∂ξ
∂t
, ξ′′ = ∂2ξ

∂t2
. What is more,

(6.11) ξ ∈ C([0, T ];V ) ∩ C1([0, T ];H), ξ′ ∈ L2(0, T ;V ), ξ′′ ∈ L2(0, T ;V ′).

Besides, setting e(τ) := 1
2 [(ξ′(τ), ξ′(τ))H+ a(ξ(τ), ξ(τ))] , ∀ τ ∈ [0, T ], there holds

(6.12) e(τ) = e(0) +

∫ τ

0

(h, ξ′)H dt, ∀ τ ∈ [0, T ].

Moreover, Problem (6.10) is equivalent to

(6.13)

∫ T

0

(
a(ξ(t), ξ̃)η(t) + (ξ(t), ξ̃)Hη

′′(t)
)
dt+ (ξ0, ξ̃)Hη

′(0)

− (ξ1, ξ̃)Hη(0) =

∫ T

0

(h, ξ̃)Hη(t)dt,

∀ ξ̃ ∈ V, ∀ η ∈ D(] −∞, T [); ξ∈L2(0, T ;V ), ξ′∈L2(0, T ;H).

The next lemma concerns both the fibered case and the case of grain-like particles.
The estimate (6.14) will be employed in the demonstration of Proposition 6.4 as a
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means to prove the boundedness of the sequence (uε) of the solutions of (1.1) and
also in Section 7, in order to establish the corrector result (2.25).

Lemma 6.3. Under the assumptions (2.7) and either (2.1) or (3.1), there holds

(6.14)

if inf
Bε

ρε > c > 0 or inf
Ω\Bε

ρε > c > 0, then

∫

Ω

|w|2(τ)dx ≤ C

∫

Ω×(0,T )

ρε

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dxdt

+ C

∫

Ω

ε2|e(w)|2(τ)dx+ C

∫

Ω

|w|2(0)dx,

∀τ ∈ [0, T ], ∀ w ∈ C([0, T ];H1
0 (Ω; R3)) ∩ C1([0, T ];L2(Ω; R3)).

Proof. For each w ∈ L2(Ω) we define, setting w = 0 in Ω \ R
3,

(6.15) ŵε(x) :=
∑

i∈Jε

(∫
−
Bi

ε

wds

)
1Y i

ε
(x), Jε := {i ∈ Z

3, Y iε ∩ Ω 6= ∅}.

By making suitable changes of variables in the Poincaré-Wirtinger inequality
∫
Y
|w

−
(∫
−
B
wds

)
|2dx ≤ C

∫
Y
|∇w|2dx, ∀w ∈ H1(Y ), we infer that

∫
Ω
|w − ŵε|2 dx ≤

C
∫
Ω
ε2|∇(w)|2dx, ∀w ∈ H1(Ω; R3). Therefore, by Korn’s inequality in H1

0 (Ω; R3)
we have

(6.16)

∫

Ω

|w − ŵε|2 dx ≤ C

∫

Ω

ε2|e(w)|2dx, ∀ w ∈ H1
0 (Ω,R3).

By (6.15) there holds
∫
Ω
|ŵε|2dx ≤ C

∫
Bε

|w|2dx, ∀w ∈ L2(Ω; R3), hence we infer

from (6.16)

(6.17)

∫

Ω

|w|2dx ≤ Cε2
∫

Ω

|e(w)|2dx+ C

∫

Bε

|w|2dx, ∀ w ∈ H1
0 (Ω,R3).

If infBε
ρε > c > 0, then

(6.18)

∫

Bε

|w|2(τ)dx =

∫

Bε

∣∣∣∣
∫ τ

0

∂w

∂t
(s)ds+w(0)

∣∣∣∣
2

dx

≤ C

∫

Ω×(0,T )

ρε

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dxdt+ C

∫

Ω

|w|2(0)dx,

∀w ∈ C([0, T ];H1
0 (Ω; R3)) ∩ C1([0, T ];L2(Ω; R3)).

Assertion (6.14) follows then from (6.17) and (6.18). Otherwise, if infΩ\Bε
ρε > c > 0,

we repeat the same argument, substituting Y \B for Y .

The following proposition specifies, in the fibered case, the asymptotic behavior of
several sequences associated to the sequence (uε) of the solutions of (1.1).

Proposition 6.4. There exists a unique solution uε of (1.1). Moreover,
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(6.19)
∂uε

∂t
∈ L2(0, T ;H1

0 (Ω; R3)),
∂2uε

∂t2
∈ L2(0, T ;H−1(Ω; R3)).

Under (2.8), (2.10), there exists a constant C > 0 such that

(6.20)

∫

Ω\Bε

ε2|e(uε)(τ)|2dx+

∫

Ω

(
ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

+ |uε|2 + |vε|2 + |θε|2
)

(τ)dx≤C,

∀τ ∈ [0, T ],
∫

Bε

|e(uε)(τ)|2 dx+

∫

Ω

∣∣∣∣
∂vε3

∂x3
(τ)

∣∣∣∣
2

dx ≤ C

µ1ε
, ∀τ ∈ [0, T ],

∫

Ω

|vε1(τ)|2 + |vε2(τ)|2 +
∣∣∣
vε3

ε
(τ)
∣∣∣
2

dx ≤ C

ε2 µ1ε
, ∀τ ∈ [0, T ],

and fields u0 ∈ L∞(0, T ;L2(Ω × Y ; R3)), u,v ∈ L∞(0, T ;L2(Ω; R3)), θ ∈ L∞(0, T ;
L2(Ω)), Ξm, Ξf ∈ L∞(0, T ;L2(Ω × Y ; S3)), such that, up to a subsequence,

(6.21)

uε ⇀⇀ u0, εe(uε)1Ω\Bε
⇀⇀ Ξm, e(uε)1Bε

⇀⇀ Ξf ,

uε
⋆
⇀ u, vε

⋆
⇀ v, θε

⋆
⇀ θ,

∂vε3

∂x3

⋆
⇀

∂v3

∂x3
star-weakly in L∞(0, T ;L2).

Besides the next relations are satisfied

(6.22)

u0 ∈ L∞(0, T ;L2(Ω;H1
♯ (Y ; R3))), v3 ∈ L∞(0, T ;L2(ω;H1

0 (0, L))),

u0 = v + θe3∧(y − yB) in Ω×(0, T ) ×B, u =

∫

Y

u0(., y)dy ,

v =

∫
−
B

u0(., y)dy, θ =
1

J

∫

B

u0(., y).(e3 ∧ (y − yB))dy,

Ξm=ey(u0), Ξf =0 in Ω×(0, T ) × Y \B,
∂v3

∂x3
=

∫ 1
2

− 1
2

Ξf33dy3 in Ω×(0, T ) ×B,

∂θ

∂x3
=

2

J

(∫

B

Ξf .(e3 ∧ (y − yB))dy

)

3

in Ω×(0, T ),

θ ∈ L∞(0, T ;L2(ω;H1
0 (0, L))),

the last two lines of (6.22) being obtained under the additional assumption (2.13).
Moreover,

(6.23) θ = v3 = 0 if k = +∞, v = 0 if κ = +∞.

If κ ∈]0,+∞], there exists ζ0 ∈ L∞(0, T ;L2(ω × Y ;H1
0 (0, L))), Ξb ∈ L∞(0, T ;

L2(Ω × Y ; S3)), ξ ∈ L∞(0, T ;L2(ω;H1
0 (0, L))) such that up to a subsequence,

(6.24)
uε3

ε
1Bε

⇀⇀ ζ0,
1

ε
e(uε)1Bε

⇀⇀ Ξb,
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and

(6.25)

v1, v2 ∈ L∞(0, T ;L2(ω;H2
0 (0, L))),

ζ0 =ξ−
2∑

α=1

∂vα

∂x3
(y−yB)α in Ω×(0, T )×B,

∫ 1
2

− 1
2

Ξb33dy3 =
∂ζ0

∂x3
=

∂ξ

∂x3
−

2∑

α=1

∂2vα

∂x2
3

(y−yB)α in Ω×(0, T )×B.

Under the additional hypothesis (2.14), we have for any k ∈]0,+∞],

(6.26)
u0 ∈W 1,∞(0, T ;L2(Ω × Y ; R3)),

∂uε

∂t
⇀⇀

∂u0

∂t
, uε(τ) ⇀⇀ u0(τ), ∀ τ ∈ [0, T ].

Proof. The problem (1.1) is equivalent to (6.13), whereH := L2(Ω; R3), (ξ, ξ̃)H :=∫
Ω
ρεξ.ξ̃dx, V := H1

0 (Ω; R3) (V ′ = H−1(Ω; R3)), a(ξ, ξ̃) :=
∫
Ω
σε(ξ) : e(ξ̃)dx,

(ξ0, ξ1,h) = (a0, b0,f). By (2.14) and (2.15), H is a Hilbert space and the as-
sumptions of Theorem 6.2 are satisfied. Therefore (1.1) has a unique solution and
(6.19) follows from (6.11). By (6.12) we have, for all τ ∈ [0, T ],

1

2

∫

Ω

(
ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

+ σε(uε) : e(uε)

)
(τ)dx

=
1

2

∫

Ω

(
ρε |b0|2 + σε(a0) : e(a0)

)
dx+

∫

Ω×(0,τ)

ρεf .
∂uε

∂t
dxdt.(6.27)

By (2.10) there holds
∫
Ω

(
ρε|b0|2+σε(a0) :e(a0)

)
dx+

∫
Ω×(0,T )

ρε |f |2dxdt ≤ C, hence

∫

Ω

(
ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

dx+ σε(uε) : e(uε)

)
(τ)dx

≤ C



1 +

√∫

Ω×(0,T )

ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

dxdt



 , ∀τ ∈ [0, T ].(6.28)

By integrating (6.28) with respect to τ over (0, T ), we deduce that
∫
Ω×(0,T )

ρε
∣∣∂uε

∂t

∣∣2

dxdt ≤ C and then, coming back to (6.28), that

(6.29)

∫

Ω

ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

(τ)dx+

∫

Ω

σε(uε) : e(uε)(τ)dx ≤ C, ∀τ ∈ [0, T ].

We infer from (1.1), (2.8), (2.16), (6.29) that

∫

Ω

ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

(τ) + ε2|e(uε)|2(τ)dx ≤ C,

∫

Bε

|e(uε)|2(τ)dx+

∫

Ω

∣∣∣∣
∂vε3

∂x3

∣∣∣∣
2

(τ)dx ≤ C

µ1ε
.(6.30)
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By (6.17) and by the inequality (see [9], Formula (4.32))

∫

Bε

(
|w1|2 + |w2|2 +

∣∣∣
w3

ε

∣∣∣
2
)
dx ≤ C

ε2

∫

Bε

|e(w)|2 dx, ∀ w ∈ H1
0 (Ω; R3),(6.31)

deduced by making appropriate changes of variables in the Korn’s inequality
∫
B
|w|2dx

≤ C
∫
B
|e(w)|2dx, ∀w ∈ {ξ ∈ H1(B; R3), ξ(y1, y2,− 1

2 ) = 0}, we have

∫

Ω

|w|2dx ≤ Cε2
∫

Ω

|e(w)|2dx+
C

ε2

∫

Bε

|e(w)|2dx, ∀ w ∈ H1
0 (Ω; R3).(6.32)

If κ > 0, then by (2.9), (6.29) and (6.32) there holds
∫
Ω
|uε(τ)|2dx ≤ C

∫
Ω
σε(uε) :

e(uε)(τ)dx ≤ C. Otherwise, if κ = 0, then by (2.10), (6.14) and (6.29) we have

∫

Ω

|uε(τ)|2(τ)dx≤ C

∫

Ω×(0,T )

ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

dxdt+ C

∫

Ω

σε(uε) : e(uε)(τ)dx+ C

∫

Ω

|a0|2dx

≤ C.

The estimate

(6.33)

∫

Ω

|uε(τ)|2dx ≤ C, ∀τ ∈ [0, T ],

is proved. We deduce from (2.16) and (6.33) that

(6.34)

∫

Ω

|vε|2(τ) + |θε|2(τ)dx ≤ C, ∀τ ∈ [0, T ].

By substituting uε(τ) for w in (6.31), taking (2.16) and (6.30) into account we infer

∫

Ω

|vε1(τ)|2 + |vε2(τ)|2 +
∣∣∣
vε3

ε
(τ)
∣∣∣
2

dx≤ C

ε2

∫

Ω

|e(uε)|2(τ)dx

≤ C

ε2µ1ε
, ∀τ ∈ [0, T ],

which, joined with (6.30), (6.33), (6.34) completes the proof of (6.20). Taking Lemma
6.1 into account, we deduce that the convergences (6.21), (6.26) take place, up to a sub-
sequence, for suitable u0 ∈ L∞(0, T ;L2(Ω × Y ; R3)), (Ξm,Ξf )∈(L∞(0, T ;L2(Ω × Y ;
S)))2, (u,v) ∈ (L∞(0, T ;L2(Ω; R3)))2, θ ∈ L∞(0, T ;L2(Ω)). In order to establish the
identification relations (6.22), we test the convergences (6.21) with appropriate fields.
Choosing first Ψ ∈ D(Ω×(0, T );C∞

♯ (Y ; S)) and passing to the limit as ε → 0 in the
equation
∫

Ω×(0,T )

εe(uε) : Ψ
(
x, t,

x

ε

)
dxdt =

−ε
∫

Ω×(0,T )

uε.divxΨ
(
x, t,

x

ε

)
dxdt−

∫

Ω×(0,T )

uε.divyΨ
(
x, t,

x

ε

)
dxdt,

we find
∫
Ω×(0,T )×Y

Ξm : Ψdxdtdy = −
∫
Ω×(0,T )×Y

u0.divyΨdxdtdy and deduce by the

arbitrary choice of Ψ that u0 ∈ L∞(0, T ;L2(Ω;H1
♯ (Y ))) and ey(u0) = Ξm. By

(6.20), the sequence (εe(uε)1Bε
) converges strongly to 0 in L2. Choosing Ψ ∈
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D(Ω×(0, T );D♯(B; S)) we deduce
∫
Ω×(0,T )×Y

Ξm : Ψdxdtdy = 0. We infer that

ey(u0) = 0 in Ω×(0, T )×B. Therefore, for a. e. (x, t) ∈ Ω×(0, T ), the restric-
tion of u0(x, t, .) to B is a rigid displacement. By the periodicity of u0 there holds
u0(x, t, y1, y2,− 1

2 ) = u0(x, t, y1, y2,
1
2 ), hence

(6.35) u0 = a+ be3 ∧ (y − yB), in Ω×(0, T )×B,
for a suitable (a, b)∈L∞(0, T ;L2(Ω; R3))×L∞(0, T ;L2(Ω)). Fixing ϕ∈D(Ω×(0, T );

R
3), taking (2.2), (2.16), (6.35), the convergences vε

∗
⇀ v and uε ⇀⇀ u0 and Lemma

6.1 (i) into account, we get
∫

Ω×(0,T )

v.ϕdxdt=
1

|B| lim
ε→0

∫

Ω×(0,T )

uε.ϕ(x, t)1B

([x
ε

])
dxdt

=
1

|B|

∫

Ω×(0,T )×B

u0.ϕ(x, t)1B(y)dxdtdy =

∫

Ω×(0,T )

a.ϕdxdt,(6.36)

hence a = v =
∫
−
B
u0(., y)dy. By testing the convergences θε

∗
⇀ θ, uε ⇀⇀ u0 with a

function ϕ ∈ D(Ω×(0, T )) and with the sequence (ϕε) given by ϕε(x, t) := ϕ(x, t)(e3∧([x
ε

]
− yB

)
)1B

([
x
ε

])
((ϕε) is admissible by Lemma 6.1 (i)), thanks to (2.2), (2.16),

(6.35) we find
∫

Ω×(0,T )

θϕdxdt= lim
ε→0

∫

Ω×(0,T )

θεϕdxdt

= lim
ε→0

1

J

∫

Bε×(0,T )

uε.
(
e3 ∧

([x
ε

]
− yB

))
ϕdxdt

=
1

J

∫

Ω×(0,T )×B

u0.(e3 ∧ (y−yB))ϕdxdtdy

=
1

J

∫

Ω×(0,T )×B

(v+be3∧(y−yB)).(e3∧(y−yB))ϕdxdtdy

=
1

J

∫

Ω×(0,T )×B

b|e3∧(y−yB)|2ϕdxdtdy =

∫

Ω×(0,T )

bϕdxdt,

hence θ = b = 1
J

∫
B
u0(., y).(e3∧(y−yB))dy. By (1.1), (2.16) and (6.20), the sequence

(vε3) is bounded in L∞(0, T ;L2(ω;H1
0 (0, L))), thus v3 ∈ L∞(0, T ;L2(ω;H1

0 (0, L))).
Choosing ϕ ∈ D(Ω×(0, T ); C∞

♯ (Y )) such that ∂ϕ
∂y3

= 0 and ϕ = 0 in Ω×(0, T ) ×
(Y \B) and passing to the limit as ε→ 0 in the equation

∫
Ω×(0,T )

∂uε3

∂x3
ϕ
(
x, t, x

ε

)
dx =

−
∫
Ω×(0,T )

uε3
∂ϕ
∂x3

(
x, t, x

ε

)
dxdt, we obtain

∫

Ω×(0,T )×B

Ξf33ϕdxdtdy= −
∫

Ω×(0,T )×B

(v + θe3 ∧ (y − yB))3
∂ϕ

∂x3
dxdtdy

= −
∫

Ω×(0,T )×B

v3
∂ϕ

∂x3
dxdtdy.

We infer from the arbitrary choice of ϕ that
∫ 1

2

− 1
2

Ξf33(x, t, y1, y2, s)ds = ∂v3
∂x3

a.e. in

Ω×(0, T )×D. The proof of (6.22) is achieved provided we establish that under (2.13),
there holds

(6.37)

θ ∈ L∞(0, T ;L2(ω;H1
0 (0, L))),

∂θ

∂x3
=

2

J

∫

B

(−(y − yB)2Ξ
f
13 + (y − yB)1Ξ

f
23)dy.
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To that aim, we fix ϕ ∈ C∞(Ω×(0, T )), set ϕ = 0 on R
3×(0, T )\Ω×(0, T ) and define

(6.38)

ϕε(x, t) :=
∑

i∈Iε

(∫
−
Di

ε

ϕ(s1, s2, x3, t)ds1ds2

)
1P i

ε
(x1, x2),

P iε := ε ({i} + P ) , P :=

(
−1

2
,
1

2

)2

,

Di
ε := ε({i} +D), Iε := {i ∈ Z

2, P iε ∩ ω 6= ∅},

(6.39)

M ε(x, t) :=



0 0 −(

[
x2

ε

]
− (yB)2)ϕε

0 0 (
[
x1

ε

]
− (yB)1)ϕε

−(
[
x2

ε

]
− (yB)2)ϕε (

[
x1

ε

]
− (yB)1)ϕε 0



 1Bε
(x).

Denoting by n the outward pointing normal to ∂Bε, noticing that ∂ϕε

∂x1
= ∂ϕε

∂x2
= 0 in

Bε and that n3 = 0 on ∂Bε ∩ Ω, by integration by parts we get, for all τ ∈ [0, T ],

(6.40)

∫

Bε

e(uε) : M ε(τ)dx =

−
∫

Bε

(
−uε1

([x2

ε

]
−(yB)2

)
+ uε2

([x1

ε

]
−(yB)1

)) ∂ϕε
∂x3

(τ)dx

+

∫

∂Bε

(
−
([x2

ε

]
− (yB)2

)
n1 +

([x1

ε

]
− (yB)1

)
n2

)
uε3ϕε(τ)dH2(x).

If lim infε→0 εµ1ε < +∞, then under (2.13) the set D is a disk of center 0, hence by
(2.1), (2.7) we have yB = 0, n1∂Bε∩Ω = 1

R

([
x1

ε

]
e1 +

[
x2

ε

]
e2

)
1∂Bε∩Ω, therefore the

term of the second line of (6.40) is equal to zero. Otherwise, if limε→0 εµ1ε = +∞,
then by (6.44) the term of the second line of (6.40) is negligible. Taking (2.16) into
account, we infer

(6.41)

∫

Bε

e(uε) : M ε(τ)dx = −J
∫

Ω

θε
∂ϕε
∂x3

(τ)dx+ o(1).

By (6.38), we have

(6.42) ||ϕ−ϕε||L∞ ≤ Cε ||∇ϕ||L∞ ,

∣∣∣∣

∣∣∣∣
∂(ϕ− ϕε)

∂x3

∣∣∣∣

∣∣∣∣
L∞

≤ Cε
∣∣∣∣∇2ϕ

∣∣∣∣
L∞

.)

By (6.42) and (6.3) (applied with h0 = 1B , χ0(x, y) := ϕ(x)(y − yB)α, χε(x) :=
χ0(x,

[
x
ε

]
), α ∈ {1, 2}), there holds

M ε −→−→




0 0 −(y − yB)2ϕ
0 0 (y − yB)1ϕ

−(y − yB)2ϕ (y − yB)1ϕ 0



 1B(y).

By passing to the limit as ε→ 0 in (6.41), in accordance with (6.2), (6.21), (6.42), we
obtain

2

∫

Ω×(0,T )×B

(
−(y − yB)2Ξ

f
13 + (y − yB)1Ξ

f
23

)
ϕdxdydt =

−J
∫

Ω×(0,T )

θ
∂ϕ

∂x3
dxdt.(6.43)
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As (6.43) takes place for all ϕ ∈ C∞(Ω×(0, T )), we deduce (6.37). The proof of (6.22)
is achieved. If k = +∞, we infer from (2.9), (6.20), (6.21) that v3 = 0 and Ξf = 0,
then from (6.37) that θ= 0. If κ= +∞, then by (2.9), (6.20), (6.21) we have v= 0.
Assertion (6.23) is proved. If κ > 0, Assertion (6.24) results from (2.9) and (6.20).
The relations stated in (6.25) are obtained by fitting the argument developed in [9]
(see Proposition 3.8 and the argumentation p.180). If (2.14) is verified, then by (6.20)
the sequence (uε) is bounded in W 1,∞(0, T ;L2(Ω; R3)). Assertion (6.26) follows then
from Lemma 6.1 (ii).

The estimate established in the next lemma is used in the proof of (6.37).
Lemma 6.5. Assume (2.1), (2.7), (2.8). Let (uε) be the sequence of the solutions

of (1.1) and let n denote the outward pointing normal to Bε. Let ϕ ∈ C(Ω×(0, T ))
and let ϕε be defined by (6.38). Then the following estimate holds

(6.44)

∣∣∣∣
∫

∂Bε

(
−
([x2

ε

]
− (yB)2

)
n1 +

([x1

ε

]
− (yB)1

)
n2

)
uε3ϕε(τ)dH2

∣∣∣∣ ≤
C

εµ1ε
.

Proof. By the inequality (proved below)

(6.45)

∫

∂D

∣∣∣∣w −
∫
−
D

wdL2

∣∣∣∣
2

dH1 ≤ C

∫

D

|∇w|2dy, ∀ w ∈ H1(D),

we have
∫

∂D×]0,L[

|w −w|2 dH2 ≤ C

∫

D×(0,L)

|∇w|2dx, ∀ w ∈ H1(D × (0, L); R3),

where w(x) :=
∫
−
D
w(s1, s2, x3)ds1ds2. Since W := H1(D×(0, L); R3)∩L2(D;H1

0 (0, L;
R

3)) contains no non-vanishing rigid displacement, we infer from Korn’s inequality
(see [24], Theorem 2.5 p.19) that

(6.46)

∫

∂D×]0,L[

|w −w|2 dH2 ≤ C

∫

D×(0,L)

|e(w)|2dx, ∀ w ∈W.

Fixing i = (i1, i2) ∈ Z
2, setting wα(y1, y2, y3) := uεα(ε(y1−i1), ε(y2−i2), y3), w3(y) :=

1
ε
uε3(ε(y1 − i1), ε(y2 − i2), y3), by making suitable changes of variables in (6.46) and

by summation over i ∈ Iε, where Iε is defined by (6.38), taking (6.20) into account
we deduce

(6.47)

∫

∂Bε∩Ω

|uε3 − uε3|2 dH2 ≤ C

ε

∫

Bε

|e(uε)|2 dx ≤ C

εµ1ε
.

On the other hand, noticing that by (6.38) there holds ∂gε

∂xα
= 0 in Bε for all α ∈ {1, 2}

and g ∈ H1(Ω), we infer from the Gauss-Green’s Theorem that

(6.48)

∫

∂Bε

(
−
([x2

ε

]
− (yB)2

)
n1 +

([x1

ε

]
− (yB)1

)
n2

)
uε3ϕε(τ)dH2(x) = 0.

Assertion (6.44) follows from (6.47) and (6.48).
Proof of (6.45). If (6.45) is false, there exists a sequence (wn) in H1(D) such that∫
−
D
wndL2 = 0,

∫
∂D

|wn|2 dH1 = 1, limn→+∞

∫
D
|∇wn|2dy = 0. By the Poincaré-

Wirtinger’s inequality
∫
D

∣∣w−
∫
−
D
wdL2

∣∣2dy ≤ C
∫
D
|∇w|2dy, there holds wn → 0 in
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H1(D), hence, by the continuity of the trace application from H1(D) to L2(∂D),∫
∂D

|wn|2dH1 → 0. This contradiction establishes (6.45).
Justification of Remark 2.2 (v). Assume that ρε>>1 on some ε-periodic subset Gε

of Ω
(
that is 1Gε

=1G
(
x
ε

)
for some G⊂Y

)
. Then by (6.20) the sequence (∂uε

∂t
1Gε

)

two-scale converges to 0. Noticing that by (6.3) there holds (uε1Gε
) ⇀⇀ u01G and

(uε(0)1Gε
) ⇀⇀ a01G, we deduce from Lemma 6.1 (ii) that ∂u0

∂t
1G=0, hence

(6.49) u0(τ)1G = u0(0)1G = a01G, ∀ τ ∈ [0, T ].

7. Proof of Theorem 2.1. Our proof, which combines the energy method of
Tartar [33] with the two-scale convergence method of Allaire and Nguetseng [2], [23],
relies on the appropriate choice of an admissible sequence of oscillating test fields (φε).
We will multiply (1.1) by (φε) and, by passing to the limit as ε→ 0 in accordance with
the convergences (6.21) established in Proposition 6.4, we will obtain the variational
problem satisfied by the triple (u0,v, θ) given, according to the order of magnitude
of k and κ, by (7.21), (7.38) or (7.44). Then, noticing that this variational problem
is equivalent to (6.13) for a suitable choice of H,V, a, h, ξ0, ξ1, we will deduce from
Theorem 6.2 the existence, the uniqueness and the regularity of its solution and the
initial-boundary conditions. Consequently, the convergences established in (6.21) for
subsequences of (uε), (vε), (θε), take place for the complete sequences. Then, we will
prove that this variational problem is equivalent to (2.17). Finally, we will establish
the corrector result (2.25). We set

(7.1)

H :=

{
(w0,ψ, ϕ)∈L2(Ω×Y;R3)×L2(Ω; R3)×L2(Ω),

w0 =ψ+ϕe3∧(y−yB) in Ω×B
}
,

((w0,ψ, ϕ), (w̃0, ψ̃, ϕ̃))H :=

∫

Ω×Y

ρw0.w̃0dxdy.

By (2.14), (2.15) there holds 0<c≤ ρ ≤C <+∞, hence the application (., .)H is an

inner product on H and the associated norm is equivalent to (
∫
Ω×Y

|w0|2dxdy)
1
2 =

(
∫
Ω×(Y \B)

|w0|2dxdy+|B|
∫
Ω
|ψ|2dx+J

∫
Ω
|ϕ|2dx) 1

2 (see (2.2)). If ((w0n,ψn, ϕn)) is a

Cauchy sequence in H, then the sequences (w0n), (ψn), (ϕn) converge strongly in L2

and, up to a subsequence, almost everywhere respectively to some w0, ψ, ϕ. Since
w0n=ψn+ϕne3 ∧ (y− yB) in Ω ×B, ∀n ∈ N, there holds w0 =ψ+ϕe3 ∧ (y−yB) in
Ω ×B, thus (w0,ψ, ϕ) ∈ H. We infer that H is a Hilbert space. In order to define
(φε), we choose (w0,ψ, ϕ) ∈ L2(0, T ;H) satisfying

(7.2) w0 ∈ C∞([0, T ];D(Ω;C∞
♯ (Y ; R3))),

(7.3) w0(T ) =
∂w0

∂t
(T ) = 0,

set

Bε := {y∈Y, dist(y, B) < ε}, Bε♯ :=
⋃

i∈Z3

{i}+Bε, Bεε = Ω ∩ εBε♯ ,(7.4)
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(Bεε denotes the ε2-neighborhood of Bε in Ω), fix ηε ∈ C∞
♯ (Y ) such that

0 ≤ ηε ≤ 1, ηε = 1 in B, ηε = 0 in Y \Bε, |∇ηε| <
C

ε
,(7.5)

and introduce the field χε given, according to the order of magnitude of k and κ by
(7.17), (7.42) or (7.46). Notice that there holds

(7.6) ηε

(x
ε

)(
|χε| +

∣∣∣∣
∂χε
∂t

∣∣∣∣+
∣∣∣∣
∂2χε
∂t2

∣∣∣∣

)(
x, t,

x

ε

)
≤ Cε,

∣∣∣e
(
χε

(
x, t,

x

ε

))∣∣∣ ≤ C,

and that, due to (7.2), we have χε = 0 on ∂Ω×]0, T ] for small epsilons. Then we set

(7.7) φε(x, t) := ηε

(x
ε

)
χε

(
x, t,

x

ε

)
+w0

(
x, t,

x

ε

)
.

By multiplying (1.1) by φε, after integrations by parts we obtain

(7.8)

∫

Ω×(0,T )

ρεuε.
∂2φε
∂t2

dxdt+

∫

Ω

ρεa0.
∂φε
∂t

(0)dx−
∫

Ω

ρεb0.φε(0)dx

+

∫

Ω×(0,T )

e(uε) : σε(φε)dxdt =

∫

Ω×(0,T )

ρεf .φεdxdt.

By (7.6) and (7.7) there holds

∣∣∣φε −w0

(
x, t,

x

ε

)∣∣∣+
∣∣∣∣
∂nφε
∂tn

− ∂nw0

∂tn

(
x, t,

x

ε

)∣∣∣∣ ≤ Cε, (n ∈ {1, 2}).(7.9)

We deduce from (2.11), (7.9), (6.3) (applied to χε = ρε, h0 ∈ {w0,
∂2w0

∂t2
,w0(0),

∂2w0

∂t2
(0)}) that

(7.10)
ρεφε −→−→ ρw0, ρε

∂nφε
∂tn

−→−→ ρ
∂nw0

∂tn
, (n ∈ {1, 2}),

ρεφε(0) −→−→ ρw0(0), ρε
∂φε
∂t

(0) −→−→ ρ
∂w0

∂t
(0).

Since by (6.2), (6.21), (7.10), we have

(7.11)

lim
ε→0

∫

Ω×(0,T )

ρεuε.
∂2φε
∂t2

dxdt+

∫

Ω

ρεa0.
∂φε
∂t

(0)dx−
∫

Ω

ρεb0.φε(0)dx =

∫

Ω×(0,T )×Y

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×Y

ρa0.
∂w0

∂t
(0)dxdy −

∫

Ω×Y

ρb0.w0(0)dxdy,

lim
ε→0

∫

Ω×(0,T )

ρεf .φεdxdt =

∫

Ω×(0,T )×Y

ρf .w0dxdtdy,

we only have to evaluate the limit of
(∫

Ω×(0,T )
e(uε) : σε(φε)dxdt

)
. To that aim, we
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set

(7.12)

∫

Ω×(0,T )

e(uε) : σε(φε)dxdt = I1ε + I2ε + I3ε;

I1ε :=

∫

Ω\Bε
ε×(0,T )

e(uε) : σε(φε)dxdt,

I2ε :=

∫

Bε
ε\Bε×(0,T )

e(uε) : σε(φε)dxdt,

I3ε :=

∫

Bε×(0,T )

e(uε) : σε(φε)dxdt.

By (7.5), (7.7) there holds φε1Ω\Bε
ε

= w0

(
x, t, x

ε

)
1Ω\Bε

ε
, | 1
ε
σε (φε)−σ0y(w0)

(
x, t, x

ε

)
|

1Ω\Bε
ε
≤ Cε, hence by (6.3) applied with h0 := σ0y(w0) and χε = 1Ω\Bε

ε
, we have

1

ε
σε (φε) 1Ω\Bε

ε
−→−→ σ0y(w0)1Y \B(y),(7.13)

yielding, thanks to the convergence εe(uε) ⇀⇀ ey(u0) (see (6.21), (6.22)),

lim
ε→0

I1ε =

∫

Ω×(0,T )×Y \B

ey(u0) : σ0y(w0)dxdtdy.(7.14)

By (7.4), (7.5), (7.6), (7.7) there holds
∣∣ 1
ε
σε(φε)1Bε

ε\Bε

∣∣ ≤ C and L3(Bεε \Bε) ≤ Cε,
therefore

(7.15)
1

ε
σε(φε)1Bε

ε\Bε
−→−→ 0,

and

lim
ε→0

I2ε = 0.(7.16)

We distinguish then several cases:

Case 0 < k < +∞. We set

(7.17)
χε (x, t, y) :=

ψε (x, t)+ ϕε(x, t)e3 ∧ (y − yB) −w0 (x, t, y) + εw1ε (x, t, y) ,

where yB is given by (2.2), ψε, ϕε by (6.38) and w1ε ∈ L2
♯ (Y ;L2(Ω×(0, T ); R3)) by

w1ε(x, t, y) :=





− lε
2(lε+1)

∂ψε3

∂x3
(y − yB)1

− lε
2(lε+1)

∂ψε3

∂x3
(y − yB)2

−∂ψε1

∂x3
(y − yB)1 − ∂ψε2

∂x3
(y − yB)2



 , ∀ y ∈ Y.

By (7.7) and (7.17) we have φε=ψε (x, t)+ϕε(x, t)e3∧([x
ε
]−yB) + εw1ε

(
x, t, [x

ε
]
)

in
Bε, hence

(7.18)

σε(φε)1Bε
=

µ1ε




0 0 − ∂ϕε

∂x3

([
x2

ε

]
−(yB)2

)

0 0 ∂ϕε

∂x3

([
x1

ε

]
−(yB)1

)

− ∂ϕε

∂x3

([
x2

ε

]
−(yB)2

) ∂ϕε

∂x3

([
x1

ε

]
−(yB)1

)
3lε+2
lε+1

∂ψε3

∂x3



1Bε

+ ε
(
λ1ε tr ex(w1ε)

(
x, t,

x

ε

)
I + 2µ1εex(w1ε)

(
x, t,

x

ε

))
1Bε

.
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We deduce from (2.8), (2.9), (6.3), (6.42) that

(7.19)

σε(φε)1Bε
−→−→

k




0 0 − ∂ϕ

∂x3
(y − yB)2

0 0 ∂ϕ
∂x3

(y − yB)1
− ∂ϕ
∂x3

(y − yB)2
∂ϕ
∂x3

(y − yB)1
3l+2
l+1

∂ψ3

∂x3



 1B(y),

and then, taking the convergence e(uε)1Bε
⇀⇀ Ξf (see (6.21)) and (6.22) into account,

infer

(7.20)

lim
ε→0

I3ε

= k

∫

Ω×(0,T )×B

(Ξf33
3l+2

l+1

∂ψ3

∂x3
− 2Ξf13

∂ϕ

∂x3
(y−yB)2 + 2Ξf23

∂ϕ

∂x3
(y−yB)1)dxdtdy

= k|B|3l + 2

l + 1

∫

Ω×(0,T )

∂v3

∂x3

∂ψ3

∂x3
dxdt+ kJ

∫

Ω×(0,T )

∂θ

∂x3

∂ϕ

∂x3
dxdt.

Passing to the limit as ε → 0 in (7.8), thanks to (7.11), (7.12), (7.14), (7.16), (7.20),
we obtain

(7.21)

∫

Ω×(0,T )×Y

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×Y

ρa0.
∂w0

∂t
(0)dxdy

−
∫

Ω×Y

ρb0.w0(0)dxdy +

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0y(w0)dxdtdy

+ k|B|3l + 2

l + 1

∫

Ω×(0,T )

∂v3

∂x3

∂ψ3

∂x3
dxdt+ kJ

∫

Ω×(0,T )

∂θ

∂x3

∂ϕ

∂x3
dxdt

=

∫

Ω×(0,T )×Y

ρf .w0dxdtdy,

for all (w0,ψ, ϕ) ∈ L2(0, T ;H) satisfying (7.2), (7.3). We set

(7.22)

ξ = (u0,v, θ), ξ0 = (a0,a0, 0), ξ1 = (b0, b0, 0), h = (f ,f , 0),

V :=
{
(w0,ψ, ϕ) ∈ H, ψ3, ϕ ∈ L2(ω;H1

0 (0, L)), w0 ∈ L2(Ω;H1
♯ (Y ; R3))

}
,

a((v, θ), (ψ, ϕ)) := k|B|3l + 2

l + 1

∫

Ω

∂v3

∂x3

∂ψ3

∂x3
dx+ kJ

∫

Ω

∂θ

∂x3

∂ϕ

∂x3
dx,

a((u0,v, θ), (w0,ψ, ϕ)) :=

∫

Ω×(Y \B)

ey(u0) : σy(w0)dxdy + a((v, θ), (ψ, ϕ)),

(((u0,v, θ), (w0,ψ, ϕ)))V := ((u0,v, θ), (w0,ψ, ϕ))H + a((v, θ), (ψ, ϕ))

+

∫

Ω×(Y \B)

∇yu0.∇yw0dxdy.

By (6.22) and (6.26) there holds ξ∈L2(0, T ;V ), ∂ξ
∂t

∈L2(0, T ;H), hence by a density
argument the variational formulation (7.21) is equivalent to (6.13). By (7.1), (7.22)
and the second Korn’s inequality in H1(Ω×(Y \B); R3) (see [24], p. 14), for all
ξ̃ = (w0,ψ, ϕ) ∈ V we have

(7.23)

||ξ̃||2V ≤ C||w0||2H1(Ω×(Y \B);R3) + Ca(ξ̃, ξ̃)

≤ C||w0||2L2(Ω×(Y \B);R3)+C||e(w0)||2L2(Ω×(Y \B);R3)+Ca(ξ̃, ξ̃)

≤ C|ξ̃|2H + Ca(ξ̃, ξ̃),
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yielding (6.9). Applying Theorem 6.2, we deduce that ξ = (u0,v, θ) is the unique
solution of (7.21) and, taking (6.10), (6.11), (7.22) into account, that

(7.24) ξ ∈ C([0, T ];V ) ∩ C1([0, T ];H), ξ(0) = (a0,a0, 0),
∂ξ

∂t
(0) = (b0, b0, 0).

We infer from (7.24), from the following inequalities (deduced from (7.1), (7.22))

(7.25)

||w0||L2(Ω;H1
♯
(Y ;R3)) + ||ψ||L2(Ω;R3) + ||ψ3||L2(ω;H1

0 (0,L))

+ ||ϕ||L2(ω;H1
0 (0,L)) ≤ C||(w0,ψ, ϕ)||V , ∀ (w0,ψ, ϕ) ∈ V,

||w0||L2(Ω×Y ;R3) + ||ψ||L2(Ω;R3) + ||ϕ||L2(Ω) ≤ C|(w0,ψ, ϕ)|H ,
∀ (w0,ψ, ϕ) ∈ H,

and from the next elementary implication (verified by any pair of normed linear spaces
(E1, E2)

Υ∈Ck([0, T ];E1) and L∈L(E1, E2) ⇒
[
L ◦ Υ∈Ck([0, T ];E2) and

ds

dts
(L ◦ Υ) = L ◦ ds

dts
Υ (s ≤ k)

]
,

applied to Υ = ξ = (u0,v, θ), E1 ∈ {H,V }, E2 ∈ {L2(Ω;H1
♯ (Y ; R3)), L2(Ω; R3), L2(ω;

H1
0 (0, L)), L2(Ω × Y ; R3), L2(Ω)} and L chosen among the seven continuous linear

operators characterized by (7.25), that

(7.26)

u0∈C([0, T ];L2(Ω;H1
♯ (Y ; R3)))∩C1([0, T ];L2(Ω × Y ; R3)),

u0(0) = a0,
∂u0

∂t
(0) = b0,

v ∈ C1([0, T ];L2(Ω; R3)), v(0) = a0,
∂v

∂t
(0) = b0,

v3, θ∈C([0, T ];L2(ω;H1
0 (0, L)))∩C1([0, T ];L2(Ω)),

θ(0) = 0,
∂θ

∂t
(0) = 0.

In order to prove that the variational problem (7.21) is equivalent to (2.17), we
integrate (7.21) with respect to y over B. Since u0 = v + θe3 ∧ (y − yB) and
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w0 = ψ + ϕe3 ∧ (y − yB) in Ω×(0, T )×B, taking (2.12) into account, we obtain

(7.27)

∫

Ω×(0,T )×(Y \B)

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×(Y \B)

ρa0.
∂w0

∂t
(0)dxdy

−
∫

Ω×(Y \B)

ρb0.w0(0)dxdy +

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0y(w0)dxdtdy

+

∫

Ω×(0,T )

ρ1 (v + θe3 ∧ (yG − yB)) .
∂2ψ

∂t2
dxdt+

∫

Ω

ρ1a0.
∂ψ

∂t
(0)dx

−
∫

Ω

ρ1b0.ψ(0)dx+ k|B|3l + 2

l + 1

∫

Ω×(0,T )

∂v3

∂x3

∂ψ3

∂x3
dxdt

+

∫

Ω×(0,T )

(Jρθ + ρ1((yG − yB) ∧ v).e3)
∂2ϕ

∂t2
dxdt

+

∫

Ω

ρ1((yG − yB) ∧ a0).e3
∂ϕ

∂t
(0)dx−

∫

Ω

ρ1((yG − yB) ∧ b0).e3ϕ(0)dx

+ kJ

∫

Ω×(0,T )

∂θ

∂x3

∂ϕ

∂x3
dxdt =

∫

Ω×(0,T )×(Y \B)

ρf .w0dxdtdy

+

∫

Ω×(0,T )

ρ1f .ψdxdt+

∫

Ω×(0,T )

ρ1((yG − yB) ∧ f).e3ϕdxdt.

Choosing

(7.28) ψ = 0, ϕ = 0,

noticing that ey(u0) : σ0y(w0) = σ0y(u0) : ∇y(w0), we find

(7.29)

∫

Ω×(0,T )×(Y \B)

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×(Y \B)

ρa0.
∂w0

∂t
(0)dxdy

−
∫

Ω×(Y \B)

ρb0.w0(0)dxdy +

∫

Ω×(0,T )×(Y \B)

σ0y(u0) : ∇y(w0)dxdtdy

=

∫

Ω×(0,T )×(Y \B)

ρf .w0dxdtdy,

and, letting w0 vary over D(Ω×(0, T )×(Y \B); R3), deduce

(7.30) ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω×(0, T )×(Y \B).

By integrating (7.29) by parts for an arbitrary w0 satisfying (7.2), (7.3), (7.28), we
infer from (7.30) that

∫
Ω×(0,T )×∂Y

σ0y(u0).n.w0dxdtdH1(y) = 0 (n := outward point-

ing normal to ∂Y ). Noticing that by (6.22) there holds σ0y(u0).n = 0 on ∂Y ∩B, we
deduce

(7.31) σ0y(u0).n(x, t, y) = −σ0y(u0).n(x, t,−y) on Ω×(0, T ) × ∂Y.

Fixing (w0,ψ, ϕ) ∈ L2(0, T ;H) satisfying (7.2), (7.3), we infer from (2.3), (7.1), (7.31)
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(n = −nB) that

(7.32)

−
∫

Ω×(0,T )×∂(Y \B)

σ0y(u0).n.w0dxdtdH1(y)

=

∫

Ω×(0,T )×∂B

σ0y(u0).nB .(ψ+ϕe3 ∧ (y−yB))dxdtdH1(y)

=

∫

Ω×(0,T )

(g(u0).ψ +m(u0).e3ϕ)dxdt.

By multiplying (7.30) by w0 and by integrating it by parts over Ω×(0, T )×(Y \B),
thanks to (7.26), (7.31), (7.32) we obtain

(7.33)

∫

Ω×(0,T )×(Y \B)

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×(Y \B)

ρa0.
∂w0

∂t
(0)dxdy

−
∫

Ω×(Y \B)

ρ b0.w0(0)dxdy +

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0y(w0)dxdtdy

+

∫

Ω×(0,T )

(g(u0)ψ+m(u0).e3ϕ)dxdt=

∫

Ω×(0,T )×(Y \B)

ρf .w0dxdtdy.

By subtracting (7.33) from (7.27), we find
∫

Ω×(0,T )

ρ1 (v+θe3 ∧ (yG−yB)).
∂2ψ

∂t2
dxdt

−
∫

Ω×(0,T )

g(u0).ψdxdt+ k|B|
∫

Ω×(0,T )

3l + 2

l + 1

∂v3

∂x3

∂ψ3

∂x3
dxdt

+

∫

Ω×(0,T )

(Jρθ + ρ1((yG − yB) ∧ v).e3)
∂2ϕ

∂t2
dxdt−

∫

Ω×(0,T )

m(u0).e3ϕdxdt

+ kJ

∫

Ω×(0,T )

∂θ

∂x3

∂ϕ

∂x3
dxdt+

∫

Ω

ρ1a0.
∂ψ

∂t
(0)dx−

∫

Ω

ρ1b0.ψ(0)dx

−
∫

Ω

ρ1((yG − yB) ∧ b0).e3ϕ(0)dx+

∫

Ω

ρ1((yG − yB) ∧ a0).e3
∂ϕ

∂t
(0)dx

=

∫

Ω×(0,T )

ρ1f .ψdxdt+

∫

Ω×(0,T )

ρ1((yG − yB)∧f).e3ϕdxdt.

Making (ψ, ϕ) vary in D(Ω×(0, T ); R3) ×D(Ω×(0, T )), we infer

(7.34)

ρ1

∂2v

∂t2
+ ρ1

∂2θ

∂t2
e3 ∧ (yG − yB) − k|B|3l + 2

l + 1

∂2v3

∂x2
3

e3 =

ρ1f + g(u0) in Ω×(0, T ),

ρ1

(
(yG − yB) ∧ ∂2v

∂t2

)
.e3 + Jρ

∂2θ

∂t2
− kJ

∂2θ

∂x2
3

=

ρ1 ((yG − yB) ∧ f) .e3 +m(u0).e3 in Ω×(0, T ).

By (6.22), (7.26), (7.30), (7.31), (7.34), the triple (u0,v, θ) is a solution of (2.17),
(2.19). Conversely, any solution of (2.17), (2.19) satisfies (7.21).

Case k = +∞, κ = 0. By (2.9), (2.10) we have

lim
ε→0

µ1ε = +∞, lim
ε→0

ε2µ1ε = 0, a0 = 0.(7.35)
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We consider again the sequence (χε) defined by (7.17), and assume now that

ϕ = 0, ψ3 = 0,(7.36)

yielding by (7.18), |σε(φε)1Bε
| ≤ Cµ1εε. Taking (7.12), (7.35) and the estimate∫

Bε×(0,T )
|e(uε)|2 dxdt ≤ C

µ1ε
(see (6.20)) into account, we deduce

(7.37)
lim sup
ε→0

I3ε ≤ C lim sup
ε→0

µ1εε

√∫

Bε×(0,T )

|e(uε)|2dxdt

≤ C lim sup
ε→0

ε
√
µ1ε = 0.

By (7.11), (7.12), (7.14), (7.16), (7.35), (7.37), passing to the limit as ε → 0 in (7.8)
we obtain

(7.38)

∫

Ω×(0,T )×Y

ρu0.
∂2w0

∂t2
dxdtdy−

∫

Ω×Y

ρb0.w0(0)dxdy

+

∫

Ω×(0,T )×(Y \B)

ey(u0):σ0y(w0)dxdtdy =

∫

Ω×(0,T )×Y

ρf .w0dxdtdy.

This variational problem is equivalent to (6.10), where (notice that by (6.22), (6.23),
(6.26), ξ = (u0,v, θ) ∈ L2(0, T ;V (2)), ξ′ ∈ L2(0, T ;H(2)))

(7.39)

H(2) := {(w0,ψ, θ) ∈ H, ψ3 = θ = 0} ,
(., .)H(2) := (., .)H , V (2) := V ∩H(2), ((., .))V (2) := ((., .))V ,

h(2) :=
(
f1Y \B+ (f1e1+ f2e2) 1B , f1e1+ f2e2, 0

)
,

a(2) := 0, a(2) := a, ξ
(2)
0 := 0,

ξ
(2)
1 := (b01Y \B+ ((b0)1e1+ (b0)2e2)1B , (b0)1e1+ (b0)2e2, 0),

the spaces H and V being given by (7.1), (7.22). By (7.23), (7.39), the estimate (6.9)
is satisfied. We deduce from Theorem 6.2 that ξ = (u0,v, θ) is the unique solution of

(7.38) and that ξ ∈ C([0, T ];V (2)) ∩ C1([0, T ];H(2)), ξ(0) = 0, ∂ξ
∂t

(0) = ξ
(2)
1 , yielding

by (7.25), (7.39) the initial-boundary conditions and regularity properties stated in
(2.18), (2.20). By integrating (7.38) with respect to y over B, we get

(7.40)

∫

Ω×(0,T )×(Y \B)

ρu0.
∂2w0

∂t2
dxdtdy −

∫

Ω×(Y \B)

ρb0.w0(0)dxdy

+

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0y(w0)dxdtdy +

∫

Ω×(0,T )

ρ1

(
v1
∂2ψ1

∂t2
+ v2

∂2ψ2

∂t2

)
dxdt

−
∫

Ω

ρ1 ((b0)1ψ1(0) + (b0)2ψ2(0)) dx

=

∫

Ω×(0,T )×(Y \B)

ρf .w0dxdtdy +

∫

Ω×(0,T )

ρ1(f1ψ1 + f2ψ2)dxdt.

Setting ψ1 = ψ2 = 0 in (7.40), we find (7.29) and deduce (7.30), (7.31), (7.32), (7.33)
(substituting 0 for a0, ψ3, ϕ). Then, substracting (7.33) from (7.40), we find
∫

Ω×(0,T )

ρ1

(
v1
∂2ψ1

∂t2
+ v2

∂2ψ2

∂t2

)
dxdt−

∫

Ω

ρ1((b0)1ψ1(x, 0) + (b0)2ψ2(x, 0)) dx

=

∫

Ω×(0,T )

((g(u0))1ψ1 + (g(u0))2ψ2)dxdt+

∫

Ω×(0,T )

ρ1(f1ψ1 + f2ψ2)dxdt.
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Making ψ1, ψ2 vary in D(Ω×(0, T )), we deduce that

(7.41)
ρ1

∂2v1

∂t2
= ρ1f1 + (g(u0))1 in Ω×(0, T ),

ρ1

∂2v2

∂t2
= ρ1f2 + (g(u0))2 in Ω×(0, T ),

hence (u0,v, θ) is solution of (2.17), (2.20).
Case 0 < κ < +∞. We assume (7.36), and consider the sequence (χε) defined by

(7.42) χε(x, t, y) := ψε (x, t) −ψ(x, t) + εw1ε (x, t, y) + ε2w2ε (x, t, y) ,

where ψε is given by (6.38) and

w1ε (x, t, y) :=

(
−∂ψε1
∂x3

(y − yB)1 −
∂ψε2
∂x3

(y − yB)2

)
e3,

w2ε (x, t, y) :=
lε

2(lε + 1)





∂2ψε1

∂x2
3

(y−y
B

)21−(y−y
B

)22
2 + ∂2ψε2

∂x2
3

(y − yB)1(y − yB)2
∂2ψε2

∂x2
3

(y−y
B

)22−(y−y
B

)21
2 + ∂2ψε1

∂x2
3

(y − yB)1(y − yB)2

0



 .

By (7.7) and (7.42) we have φε=ψε (x, t)+ εw1ε

(
x, t, [x

ε
]
)

+ ε2w2ε

(
x, t, [x

ε
]
)

in Bε.
We deduce

εσε(φε)1Bε
= −ε2µ1ε

3lε + 2

lε + 1

(
2∑

α=1

∂2ψεα
∂x2

3

([xα
ε

]
− (yB)α

))
e3 ⊗ e31Bε

+ ε3µ1ε

(
lε trey (w2ε)

(
x, t,

x

ε

)
I + 2ey (w2ε)

(
x, t,

x

ε

))
1Bε

,

−→−→− κ
3l + 2

l + 1

(
2∑

α=1

∂2ψα

∂x2
3

(y− yB)α

)
1B(y)e3 ⊗ e3,

and infer from (2.2), (6.24), (6.25), (7.12) that

(7.43)

lim
ε→0

I3ε=−κ3l+2

l+1

∫

Ω×(0,T )×B

(
∂ξ

∂x3
−

2∑

α=1

∂2vα

∂x2
3

(y−yB)α

)

(
2∑

α=1

∂2ψα

∂x2
3

(y−yB)α

)
dxdtdy1dy2

=
2∑

α,β=1

κ
3l + 2

l + 1
Jαβ

∫

Ω×(0,T )

∂2ψα

∂x2
3

∂2vβ

∂x2
3

dxdt.

Passing to the limit in (7.8), by (2.10), (7.11), (7.12), (7.14), (7.16), (7.36), (7.43), we
get

(7.44)

∫

Ω×(0,T )×Y

ρu0.
∂2w0

∂t2
dxdtdy

−
∫

Ω×Y

ρb0.w0(0)dxdy +

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0(w0)dxdtdy

+

2∑

α,β=1

κ
3l + 2

l + 1
Jαβ

∫

Ω×(0,T )

∂2ψα

∂x2
3

∂2vβ

∂x2
3

dxdt =

∫

Ω×(0,T )×Y

ρf .w0dxdtdy,
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for all (w0,ψ, ϕ) ∈ L2(0, T ;H) satisfying (7.2), (7.3), (7.36). We set (see (7.22),
(7.39))

(7.45)

H(3) := H(2), V (3) :=
{

(w0,ψ, ϕ) ∈ V (2), ψ1, ψ2 ∈ L2(ω;H2
0 (0, L))

}
,

(((u0,v, θ), (w0,ψ, ϕ)))V (3) := (((u0,v, θ), (w0,ψ, ϕ)))V

+

∫

Ω

(
∂2v1

∂x2
3

∂2ψ1

∂x2
3

+
∂2v2

∂x2
3

∂2ψ2

∂x2
3

)
dx,

a(3)((v, θ), (ψ, ϕ)) :=

2∑

α,β=1

κ
3l + 2

l + 1
Jαβ

∫

Ω

∂2ψα

∂x2
3

∂2vβ

∂x2
3

dx,

a(3)((u0,v, θ), (w0,ψ, ϕ)) :=

∫

Ω×(Y \B)

ey(u0) : σy(w0)dxdy

+ a(3)((v, θ), (ψ, ϕ)),

(ξ
(3)
0 , ξ

(3)
1 , h(3)) := (ξ

(2)
0 , ξ

(2)
1 , h(2)).

By (6.22), (6.23), (6.25), (6.26), there holds ξ = (u0,v, θ) ∈ L2(0, T ;V (3)), ξ′ ∈
L2(0, T ;H(3)), therefore the variational formulation (7.44) is equivalent to (6.10). We
check that the eigenvalues of the 2× 2 symmetric matrix of (α, β)th entries Jαβ given

by (2.2) are positive, and deduce that
∑2
α,β=1 Jαβsαsβ ≥ c|s|2

R2 , ∀s ∈ R
2, for a

suitable c>0. Taking (7.22), (7.23) and (7.45) into account, we infer

||ξ̃||2V (3)≤ ||ξ̃||2V + Ca(3)((ψ, ϕ), (ψ, ϕ))

≤ C(|ξ̃|H + a(ξ̃, ξ̃) + a(3)((ψ, ϕ), (ψ, ϕ)))

≤ C(|ξ̃|H(3) + a(3)(ξ̃, ξ̃)),

that is (6.9). We deduce from Theorem 6.2 that ξ=(u0,v, θ) is the unique solution of

(7.44) and that ξ ∈ C([0, T ];V (3))∩C1([0, T ];H(3)), ξ(0) = 0, ∂ξ
∂t

(0) = ξ
(3)
1 , yielding by

(7.25) and the inequality
∑2
α=1 ||ψα||L2(ω;H2

0 (0,L))≤C||(w0,ψ, ϕ)||V (3) ,∀ (w0,ψ, ϕ)∈
V (3), the initial-boundary conditions and regularity properties stated in (2.18), (2.21).
Repeating the argument of the case 0 < k < +∞, we integrate (7.44) with respect to
y over B, set ψ1 = ψ2 = 0, find (7.29), deduce (7.30), (7.31), (7.32), (7.33), subtract
(7.33) from (7.44), get

∫

Ω×(0,T )

ρ1v.
∂2ψ

∂t2
dxdt+

∫

Ω

ρ1b0.ψ(0)dx−
∫

Ω×(0,T )

g(u0).ψdxdt

+

2∑

α,β=1

κ
3l + 2

l + 1
Jαβ

∫

Ω×(0,T )

∂2ψα

∂x2
3

∂2vβ

∂x2
3

dxdt =

∫

Ω×(0,T )

ρ1f .ψdxdt,

then, making ψ1, ψ2 vary in D(Ω×(0, T )), infer ρ1
∂2vα

∂t2
(x, t) +

∑2
β=1 κ

3l+2
l+1 Jαβ

∂4vβ

∂x4
3

=

ρ1fα+(g(u0))α, in Ω×(0, T ) for α ∈ {1, 2}, and deduce that (u0,v, θ) satisfies (2.17),
(2.21).
Case κ = +∞. We set

(7.46) χε = 0, ψ = 0, ϕ = 0.

By (7.7), (7.12), we have I3ε = 0. By passing to the limit as ε→ 0 in (7.8), we obtain
the variational problem (7.29) and deduce that (u0,v, θ) satisfies (2.17), (2.22).
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Proof of the corrector result (2.25). We consider the fibered case, when 0<k<+∞
(the other cases are similar). Setting (7.22), we introduce the continuous symmetric
bilinear form on W 1,2(0, T ;V,H) := {ζ ∈ L2(0, T ;V ), ζ ′ ∈ L2(0, T ;H)} defined by

ã(ζ, ζ̃) :=

∫ T

0

((
ζ ′, ζ̃ ′

)

H
+a
(
ζ, ζ̃
))
dt, ∀ (ζ, ζ̃) ∈ (W 1,2(0, T ;V,H))2.(7.47)

We fix ξ̃ := (w0,ψ, ϕ) ∈ W 1,2(0, T ;V,H) satisfying (7.2) (not (7.3)) and set (7.7).
There holds φε ∈ C([0, T ];H1

0 (Ω; R3)) ∩ C1([0, T ];L2(Ω; R3)) for small epsilons. By
applying (6.14) to w = uε − φε and by integrating it over (0, T ), taking (2.23) into
account, we infer

(7.48)

∫

Ω×(0,T )

|uε − φε|2dxdt ≤ C (J1ε − 2J2ε + J3ε) + C

∫

Ω×(0,T )

|φε(0)|2 dxdt,

J1ε :=

∫

Ω×(0,T )

ρε

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

+ e(uε) : σε(uε)dxdt,

J2ε :=

∫

Ω×(0,T )

ρε
∂uε

∂t
.
∂φε
∂t

+ e(uε) : σε(φε)dxdt,

J3ε :=

∫

Ω×(0,T )

ρε

∣∣∣∣
∂φε
∂t

∣∣∣∣
2

+ e(φε) : σε(φε)dxdt.

In order to compute the limit of (J1ε), we notice that by (2.23) and (6.27) we have
a0 = 0 and

J1ε =

∫

Ω×(0,T )

ρε|b0|2dxdt+ 2

∫ T

0

(∫

Ω×(0,t)

ρεf .
∂uε

∂t
dxds

)
dt.(7.49)

Since ρε1Ω×(0,t)−→−→ρ1(0,t) for all t ∈ (0, T ) and since, by (6.20),
∣∣∣
∫
Ω×(0,t)

ρεf .
∂uε

∂t

dxds
∣∣∣ ≤ C, we deduce from (6.26), (7.22) and from the Dominated Convergence

Theorem that

lim
ε→0

J1ε=

∫

Ω×(0,T )×Y

ρ |b0|2 dxdydt+ 2

∫ T

0

(∫

Ω×(0,t)×Y

ρf .
∂u0

∂t
dxdsdy

)
dt

=

∫ T

0

(
(ξ1, ξ1)H + 2

∫ t

0

(h, ξ′)H ds

)
dt

= 2

∫ T

0

(
e(0) +

∫ t

0

(h, ξ′)H ds

)
dt.

Applying the energy equation (6.12), taking (7.47) into account, we infer

lim
ε→0

J1ε = 2

∫ T

0

e(t)dt =

∫ T

0

((ξ′, ξ′)H + a(ξ, ξ)) dt = ã(ξ, ξ).(7.50)

By (6.26), (7.10), (7.12), (7.14), (7.16), (7.20), (7.22) we have limε→0

∫
Ω×(0,T )

e(uε) :

σε(φε)dxdt =
∫ T
0
a(ξ, ξ̃)dt, and limε→0

∫
Ω×(0,T )

ρε
∂uε

∂t
.
∂φε

∂t
=
∫
Ω×(0,T )×Y

ρ∂u0

∂t
.∂w0

∂t

dxdtdy =
∫ T
0

(
ξ′, ξ̃′

)

H
dt, hence

lim
ε→0

J2ε = ã(ξ, ξ̃).(7.51)
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The convergences deduced by substituting 1 for ρε and ρ in (7.10) hold true, hence

lim
ε→0

∫

Ω×(0,T )

ρε

∣∣∣∣
∂φε
∂t

∣∣∣∣
2

dxdt=

∫

Ω×(0,T )×Y

ρ

∣∣∣∣
∂w0

∂t

∣∣∣∣
2

dxdtdy

=

∫ T

0

(
ξ̃′, ξ̃′

)

H
dt.(7.52)

We deduce from an explicit computation that

εe(φε)1Ω\Bε
−→−→ ey(w0)1Y \B ,

e(φε)1Bε
−→−→





−l
2(l+1)

∂ψ3

∂x3
0 − 1

2
∂ϕ
∂x3

(y − yB)2

0 −l
2(l+1)

∂ψ3

∂x3

1
2
∂ϕ
∂x3

(y − yB)1

− 1
2
∂ϕ
∂x3

(y − yB)2
1
2
∂ϕ
∂x3

(y − yB)1
∂ψ3

∂x3



 1B(y),

yielding, in accordance with (7.13), (7.15), (7.19), (7.22), (7.52)

(7.53) lim
ε→0

J3ε = ã(ξ̃, ξ̃).

Joining (7.48), (7.50), (7.51), (7.53), and taking the strong two-scale convergence of
(u0

(
x, t, x

ε

)
− φε) to u0 −w0 into account (cf. (2.23)), we infer

lim sup
ε→0

∣∣∣
∣∣∣u0

(
x, t,

x

ε

)
− uε

∣∣∣
∣∣∣
2

L2

≤ C lim sup
ε→0

∫

Ω×(0,T )

∣∣∣u0

(
x, t,

x

ε

)
− φε

∣∣∣
2

+ |uε − φε|2dxdt

≤ C

∫ T

0

|ξ − ξ̃|2Hdt+ Cã(ξ − ξ̃, ξ − ξ̃) + C
∣∣∣(ξ − ξ̃)(0)

∣∣∣
2

H
.

By the arbitrary choice of ξ̃ ∈ C∞([0, T ];W ) (W := {(w0,ψ, ϕ) ∈ V, w0 ∈ D(Ω;
C∞
♯ (Y ; R3))}), the density of C∞([0,T ];W ) in W 1,2(0, T ;V,H)and the continuity of

the application ζ →
∫ T
0
|ζ|2Hdt + ã(ζ, ζ) +

∫
Ω×Y

|ζ(0)|2 dxdy on W 1,2(0, T ;V,H), the
corrector result (2.25) is proved. The convergence uε−→−→u0 follows then from (2.23).

Remark 7.1. If uε−→−→u0, then by Fatou’s Lemma

∫

Ω×(0,T )×Y

|u0|2dxdτdy = lim
ε→0

∫ T

0

∫

Ω

|uε(τ)|2dxdτ ≥
∫ T

0

(
lim inf
ε→0

∫

Ω

|uε(τ)|2dx
)
dt.

On the other hand, as for all τ there holds uε(τ) ⇀⇀ u0(τ), we have (see [2], Theorem
0.2)

lim inf
ε→0

∫

Ω

|uε(τ)|2dx ≥
∫

Ω×Y

|u0(τ)|2dxdy, ∀ τ ∈ [0, T ],

thus lim infε→0

∫
Ω
|uε(τ)|2dx=

∫
Ω×Y

|u0(τ)|2dxdy, for a.e. τ ∈ [0, T ]. Hence for a.e.
τ ∈ [0, T ], the sequence (uε(τ)) two-scale converges strongly, up to a subsequence, to
u0(τ).



38 M. BELLIEUD

8. Proof of Theorem 3.1. The first step consists in the study of the asymp-
totic behavior of some sequences associated with the sequence (uε) of the solu-
tions of (1.1). Repeating the argument of the proof of Proposition 6.4, we obtain
∫
Ω

(
ρε
∣∣∂uε

∂t

∣∣2+ ε2|e(uε)|2+µ1ε|e(uε)|21Bε

)
(τ)dx ≤ C, ∀τ ∈ [0, T ], and applying

(6.14) to w = uε, get
∫
Ω
|uε|2(τ)dx ≤ C and then

∫
Ω
(|vε|2 + |rε|2)(τ)dx ≤ C (see

(2.16), (3.3)). We infer that, up to a subsequence, there holds

(8.1)
uε ⇀⇀ u0,

∂uε

∂t
⇀⇀
∂u0

∂t
, εe(uε)1Ω ⇀⇀ Ξm, εe(uε)1Bε

⇀⇀ 0,

uε
⋆
⇀ u, vε

⋆
⇀ v, rε

⋆
⇀ r star-weakly in L∞(0, T ;L2).

We identify Ξm = ey(u0), deduce that u0 ∈ L∞(0, T ;L2(Ω;H1
♯ (Y ; R3))) and that

ey(u0) = 0 in Ω×(0, T )×B, hence u0 = a + b ∧ (y − yB) for a suitable (a, b) ∈
(L∞(0,T ;L2(Ω; R3)))2. We find a = v (see (6.36)), then fixing γ ∈D(Ω×(0, T ); R3),
deduce from (3.3), (8.1) that

(8.2)

∫

Ω×(0,T )

r.γdxdt = lim
ε→0

∫

Bε×(0,T )

J−1
(([x

ε

]
− yB

)
∧ uε

)
.γdxdt

=

∫

Ω×(0,T )×B

J−1 ((y − yB) ∧ u0) .γdxdtdy

=

∫

Ω×(0,T )

J−1

(∫

B

(y − yB) ∧ (b ∧ (y − yB))dy

)
.γdxdt

=

∫

Ω×(0,T )

(J−1Jb).γdxdt =

∫

Ω×(0,T )

b.γdxdt,

thus b = r. The next step consists in the choice of a suitable sequence of test fields.
We define

(8.3)

H(4) :=
{
(w0,ψ,γ) ∈ L2(Ω × Y ; R3) × (L2(Ω; R3))2,

w0(x, y) = ψ + γ ∧ (y − yB) in Ω ×B
}
,

((w0,ψ,γ), (w̃0, ψ̃, γ̃))H(4) :=

∫

Ω×Y

ρw0.w̃0dxdy,

choose (w0,ψ,γ) ∈L2(0, T ;H(4)) satisfying (7.2), (7.3), and set

(8.4) χε (x, t, y) := ψ̂ε (x, t) + γ̂ε(x, t) ∧ (y − yB) −w0 (x, t, y) ,

where ψ̂ε and γ̂ε are given by (6.15). We multiply (1.1) by φε := ηε
(
x
ε

)
χε
(
x, t, x

ε

)
+

w0

(
x, t, x

ε

)
, where ηε is defined by (7.5) and get (7.8). We obtain (7.11), set (7.12),

find (7.14), (7.16) and I3ε = 0 and, passing to the limit as ε→ 0 in (7.8), get

(8.5)

∫

Ω×(0,T )×Y

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×Y

ρa0.
∂w0

∂t
(0)dxdy −

∫

Ω×Y

ρb0.w0(0)dxdy

+

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0y(w0)dxdtdy =

∫

Ω×(0,T )×Y

ρf .w0dxdtdy.
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We set

(8.6)

V (4) :=
{
ξ̃ = (w0,ψ,γ) ∈ H(4),w0 ∈ L2(Ω;H1

♯ (Y ; R3))
}
,

ξ := (u0,v, r), ξ
(4)
0 := (a0,a0, 0), ξ

(4)
1 := (b0, b0, 0), h(4) := (f ,f , 0),

((ξ, ξ̃))V (4) :=(ξ, ξ̃)H(4) +

∫

Ω×Y \B

∇yu0.∇yw0dxdy,

a(4)((u0,v, r), (w0,ψ,γ)) :=

∫

Ω×(Y \B)

ey(u0) : σy(w0)dxdy, a(4) := 0.

Since there holds ξ ∈ L2(0, T ;V (4)), ξ′ ∈ L2(0, T ;H(4)), the variational formulation
(8.5) is equivalent to (6.10). By Korn’s inequality we have ||ξ̃||2

V (4) ≤ C(|ξ̃|2
H(4) +

a(4)(ξ̃, ξ̃)), yielding (6.9). We deduce from Theorem 6.2 that (u0,v,r) is the unique
solution of (6.10) and satisfies the properties of continuity and the initial boundary
conditions stated in (3.5). By integrating (8.5) with respect to y over B, thanks to
(2.12), (3.3), we obtain

(8.7)

∫

Ω×(0,T )×(Y \B)

ρu0.
∂2w0

∂t2
dxdtdy +

∫

Ω×(Y \B)

ρa0.
∂w0

∂t
(0)dxdy

−
∫

Ω×(Y \B)

ρb0.w0(0)dxdy +

∫

Ω×(0,T )×(Y \B)

ey(u0) : σ0y(w0)dxdtdy

+

∫

Ω×(0,T )

(ρ1v + ρ1r ∧ (yG − yB)) .
∂2ψ

∂t2
dxdt+

∫

Ω

ρ1a0.
∂ψ

∂t
(0)dx

−
∫

Ω

ρ1b0.ψ(0)dx+

∫

Ω×(0,T )

(Jρ.r + ρ1((yG − yB) ∧ v)) .∂
2γ

∂t2
dxdt

+

∫

Ω

ρ1((yG − yB) ∧ a0).
∂γ

∂t
(0)dx−

∫

Ω

ρ1((yG − yB) ∧ b0).γ(0)dx

=

∫

Ω×(0,T )×(Y \B)

ρf .w0dxdtdy +

∫

Ω×(0,T )

ρ1f .ψdxdt

+

∫

Ω×(0,T )

ρ1((yG − yB) ∧ f).γdxdt.

Choosing ψ = γ = 0 in (8.7) we deduce (7.30), (7.31) and find the equation obtained
by replacing m(u0).e3ϕ by m(u0).γ in (7.33). Subtracting it from (8.7), we get
∫

Ω×(0,T )

(ρ1v + ρ1r ∧ (yG − yB)) .
∂2ψ

∂t2
dxdt+

∫

Ω

ρ1a0.
∂ψ

∂t
(0)dx

−
∫

Ω

ρ1b0.ψ(0)dx+

∫

Ω×(0,T )

(Jρr + ρ1((yG − yB) ∧ v)) ∂
2γ

∂t2
dxdt

+

∫

Ω

ρ1((yG − yB) ∧ a0).
∂γ

∂t
(0)dx−

∫

Ω

ρ1((yG − yB) ∧ b0).γ(0)dx

=

∫

Ω×(0,T )

(ρ1f+g(u0)).ψdxdt+

∫

Ω×(0,T )

(ρ1((yG−yB)∧ f)+m(u0)).γdxdt,

yielding the equations satisfied by (v, r) set forth in (3.5). The corrector result is
obtained by fitting the argument of the fibered case.
Remark 8.1. In the fibered case, by substituting θe3 for b in (8.2), we find that the
sequence (rε) converges star-weakly in L∞(0, T ;L2(Ω : R

3) to r := θe3.
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9. Sketch of the proof of Proposition 5.2. a) (v) ⇒ (iii). If (a) (resp. (b))
is satisfied, the proof of the estimate (5.3) is similar to that of the estimate below
formula (4.32) of [9] (resp. Formula (4.3) of [9]).

(iii) ⇒ (iv). By multiplying (5.1) by uε and by integrating by parts, we infer from
(5.3) that (uε) is bounded in L2(Ω; R3).

(iv) ⇒ (v). Assume by contradiction that neither (a) nor (b) are satisfied, then the
dimension of the subspace of R

3 spanned by the directions of the fibers is lower than
or equal to 2. We can assume without loss of generality that this subspace is spanned
by (e2, e3). Fix f := e1. By (iv), (uε) admits a two-scale converging subsequence
which by Corollary 5.1 satisfies (5.2). Consider the constant field w0(x, y) := e1.
It can be checked that w0 ∈ V , a(u0,w0) = 0, (f ,w0)H 6= 0, hence (5.2) has no
solution, a contradiction.

(iii) ⇒ (i). We choose a smooth field w0 ∈ V and consider the sequence of test field
(φε) corresponding to that introduced in the proof of Theorem 2.1. Repeating the
argument of the proof of (7.53), we get limε→0 Fε(φε) = a(w0,w0). Passing to the
limit as ε→ 0 in the inequality ||φε||2L2(Ω;R3) ≤ CFε(φε), we infer ||w0||2L2(Ω×Y ;R3) ≤
Ca(w0,w0). Thanks to (4.2), (4.3) and to Korn’s inequality in H1(Y \B; R3), we get
|w0|2V ≤ Ca(w0,w0).

(i) ⇒ (ii). This results from the Lax-Milgram Theorem.

(ii) ⇒ (v). Similar to the proof of (iv) ⇒ (v).

(vi) ⇒ (iv). Obvious.

(iii) ⇒ (vi). If (iii) holds, then (uε) is bounded in L2(Ω; R3) (see the proof of
(iii) ⇒ (iv)) and that (5.2) has a unique solution u0 (because (iii) ⇒ (ii)). Hence,
by Corollary 5.1, (uε) two-scale converges to u0.

b) Assume by contradiction that (5.2) has a solution u0. Let P denote the subspace
of R

3 orthogonal to the space spanned by the directions of the fibers. Fix w ∈ D(Ω)
such that w(x) ∈ P, ∀x ∈ Ω and (f ,w)L2(Ω;R3) > 0. Set w0(x, y) := w(x). Then
w0 ∈ V and (f,w0)H > 0. On the other hand, since (v) b) is not satisfied and since
w0(x, y) ∈ P , we infer a(u0,w0) = 0, which contradicts (5.2).
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