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TORSION EFFECTS IN ELASTIC COMPOSITES WITH HIGH
CONTRAST

MICHEL BELLIEUD *

Abstract. We establish a homogenization result and a corrector result for a vibration problem
of elasticity. We assume that the data depend in a periodic way on a small parameter e. We assume
also that the Lamé coefficients take possibly high values in a periodical set of disconnected inclusions
and take values of the order 2 elsewhere. In the fibered case, torsional vibrations take place at an
infinitesimal scale and give rise to non-local effects.

Key words. homogenization, elasticity, non-local effects

AMS subject classifications. 35B27, 35B40, 74B05, 74Q10

1. Introduction . In this paper, we analyze the behavior of solutions to initial
boundary value problems describing vibrations of periodic elastic composites with
rapidly varying elastic properties. More specifically, we analyze a two-phase medium
whereby a set of ”stiff” unbounded fibers or bounded inclusions is embedded in a
”soft” matrix, i.e. what is often referred to as the "high contrast case”. This task is
set in the context of linearized elasticity.

Problems of a high-contrast type have been studied extensively over the last
decades. Nowadays, there are two main trends in asymptotic methods: the asymptotic
expansions and the two-scale convergence. The first approach [14], [25], [26], [29], [30]
gives often stronger results including all asymptotic information about the solution
and error estimates of higher order with respect to small parameters. It also contains
the formulation of strong rigorous theories, but requires sufficiently regular data and
boundaries. Let us mention in particular the detailed paper [28] of G. Sandrakov,
yielding full proofs of the convergence and the error estimates for various high contrast
asymptotic and geometric regimes in hyperbolic elastic problems. Let us mention also
a most recent work [5] on the application of the asymptotic approach to some scalar
spectral problems with high contrasts in both ”stiffness” and ”density”, with rigorous
convergence results and error bound obtained. The second approach [2], [4], [7], [9],
[11], [13], [31] , employed in our paper, also yields the convergence to an asymptotic
solution and a first order corrector result. It requires much less smoothness of the data
but it does not allow to obtain any error estimates with respect to small parameters.
Notice that the papers [13] and [14] apply the asymptotic expansions and the two-
scale convergence respectively to the same problem: as a result, [13] ends with stronger
results but for more regular boundaries.

We are aiming at complementing this extensive material. From the point of view
of what is already available on the subject in the litterature, the most challenging
case is that of a set of disconnected parallel fibers with elastic moduli of order 1
embedded in a ”soft” matrix with moduli of order 2, where ¢ is the period of the
medium in the plane transverse to the fibers. We will focuse on the vibratory case.
However, we emphasize that our analysis goes through in the same way in the case
of equilibrium equations. The results obtained in this way are relevant to Example II
and to Example IIT of the paper [9] by the author with G. Bouchitté, where fibered
structures with elastic moduli respectively of order 1 and of order E% embedded in a
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2 M. BELLIEUD

”soft” matrix were considered. We agree with the result obtained in Example IIT and
we find that the result obtained in Example II is false. Indeed, the effective energy
functional obtained in [9], Th. 2.4 turns out to be only a lower bound of the actual
effective energy functional. We prove that the latter functional includes additional
terms describing torsional stored energy (see Section 5). The study of the torsion
effects is, essentially, the main new contribution our manuscript aims to target.

We turn now to a more detailed introduction of the paper. For a given bounded
smooth open subset 2 of R3, we consider the vibration problem

p£%¥_dWWJ%»:PJ’m&bqaﬂ7UeL%QTJ%QR%»
o(u:) = A tr(e(u))I + 2uce(u:), e(u.) = %(Vug +vTu,),

u. € C(0, T; Hy(Q,R?)) N CH0, T; L*(Q,R?)),
ou,
ot

u:(0) = ayp,

(0) = bo, (ao,bo) € Hy(,R?) x L*(Q,R?).

We assume that the Lamé coefficients A\., p. take values of order 1 in an e-periodic
subset B, of € consisting of parallel disjoint cylinders of Lebesgue measure of order
1 and take values of order €2 in the surrounding matrix. Heuristically, the norm of
the gradient of the solution u. of (1.1) is expected to take high values, of the order
%, in the parts of the body where the coefficients are small. So, a gap between the
mean displacement of the different constituent parts of the composite may take place,
originating the non-local nature of the effective problem (see Remark 2.2 (i)). A
commonly-used method consists in expressing the homogenized problem under the
guise of a system of equations involving, besides the limit uy of the sequence (u.),
the limit v of an auxiliary sequence (v.) (see (2.16)) designed to characterize the
average displacement in the inclusions. It turns out (see Theorem 2.1) that torsional
vibrations take place at a microscopic scale in the fibers constituting the composite
material. They are described in terms of the limit 6 of the sequence (6.) defined by
(2.16), which characterizes the effective rescaled angle of torsion of the fibers (see
Remark 2.2 (iv)). The functions v and 6 are defined on 2x(0,7) and take values
respectively in R® and R. The function ug : 2x(0,7) x (-1, 3)* — R? is the two-scale
limit of (u.) (see [2], [23]). The effective displacement in the cylinders is governed by
the coupled system of equations in Qx (0,7)

%6 0%6 0%v
12) Jp@ - kJa?g =P ((yc —yYp) A (f - 8t2>> .e3 +m(up).es,
’ _ 0% 31+ 2 0%vs _ _ 0%
P1ﬁ_ ‘ ‘7l+1 8x§ €3 :P1f+9(u0)—1)1@63/\(’90—%3)7

associated with the boundary and initial conditions given in (2.19), the constants k,
J? J, ya, yg, pp being defined by (2.2), (2.9), (2.12). The first equation of (1.2),
regarding 6, displays the torsional vibrations. The third component of the second
equation shows extensional vibrations with regard to the longitudinal displacement
vz (see [20], p. 428-429). The coupling with the matrix is marked by the fields g(uo)
and m(ug). They represent respectively the sum of the surface forces applied on each
fiber by the surrounding medium and their total moment with respect to the center
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of gravity of the geometric fiber. They are defined by (2.3), (2.4) in terms of the
restriction to 2x (0,7) x (Y \ B) of ug, which characterizes the effective displacement
in the matrix. The letters Y and B symbolize respectively the unit cell and the
rescaled fiber. The effective displacement in the matrix is governed by the equation

2
(1.3) paa;“ — div, (oo, (ue)) = pf  in Qx(0,T)x (Y \ B),

coupled with the variables v, 6 by the relation ug = v + fes A (y — yg) in B, where
p stands for the strong two-scale limit of the mass density (p.) and o, is defined
by (2.3). The weak limit in L? of (u.) satisfies the non-explicit equation w(z,t) =
Jy wo(z,t,y)dy. We obtain corrector results (see (2.25) and Remark 2.2 (iv)).

When the order of magnitude of the elasticity coefficients in the fibers is larger
(namely when k := lime_p1e = +00), the functions 6 and vs are equal to zero
and the effective displacement in the fibers is governed by the system of equations of
v1, V2 given, in terms of the order of magnitude of the parameter & := lim._,¢ €21, by
(2.20), (2.21) or (2.22). In the most interesting case 0 < k < 400, already investigated
in the context of elliptic equations for fibers with a circular cross-section (see [9], Th.
2.5), this system involves the 4" derivative of vy, vy with respect to x3, revealing
bending effects (see [20], p. 430 ) similar to those studied in [10], [27]. Otherwise, the
fibers display the behavior of a collection of unstretchable strings that do not twist if
k =0 and k = +o00 and that of fixed bodies if k = co.

If B. consists of totally disconnected particles, the particles behave asymptotically
like rigid bodies regardless of the order of magnitude (> 1) of their stiffness. Their
effective displacement is governed by the system of equations (3.6), where the field r,
obtained as the limit of the sequence (r.) defined by (3.3), describes their effective
rotation vector (in the fibered case, r = fes). The displacement in the matrix is
governed by the equation (1.3) coupled with v, r by the equation ug=v+r A(y—yg)
in % (0,T)x B. Grain-like inclusions have been also considered by G. P. Panasenko
[26] and G. V. Sandrakov [28] by using the asymptotic approach.

We can extend these results to the case of a multiphase medium comprising a finite
collection B!l,.., B™ of non-intersecting e-periodic families of grain-like inclusions or
of fibers of various shapes and stiffness embedded in a ”soft” matrix, each family
of fibers being for simplicity parallel to one of the coordinate axes. The effective
displacement in B! is described in terms of a couple (v?, %) and governed by a system
Phom i gimilar, up to a rotation of the coordinate axes, to one of the systems (1.2),
(2.20), (2.21), (2.22), (3.6) depending on the shape and on the order of magnitude of
the elastic moduli in the specified inclusions (see Section 4). The displacement in the
matrix is governed by the equation (1.3), where B = B U... U B™. The coupling of
Phom @ with the matrix is marked by the equation ug=v'+7r! A(y—yg:) in B* and
by the presence of fields g'(ug) and m®(ug) in P"*™ ¢ (see Section 4). Multiphase
homogenized models have been also considered in [25], [26], [28], [29], [30].

The two-phase models of composites obtained theoretically by our process of
homogenization turn out to be unsufficiently reinforced, in general, to resist to some
specific body forces. More precisely, in the elliptic case, the boundedness in L?(2; R?)
of the solutions may fail to hold depending on f and, in the corresponding hyperbolic
case, the effective equations may describe a motion of collapse. From a physical point
of view, finding conditions ensuring the obtention of an effective elastic composite
sufficiently reinforced to resist to body forces is an important task. We show (see
Proposition 5.2) that the last mentioned boundedness is guaranteed for any choice
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of the field of body forces f € L?(€;R?), if and only if a multiphase composite is
considered whereby the set of inclusions comprises either one family of parallel fibers
with elastic moduli of order 6%7 or three families of parallel fibers with elastic moduli
of order 1 distributed in three independent directions. Hence, although two-phase
media offer the convenient setting for the mathematical study of torsion effects, only
multiphase media are likely to provide a physically satisfactory model of an elastic
composite exhibiting torsion effects.

The paper is organised as follows: the notations and the results relating to the
fibered case are displayed in Section 2, those concerning grain-like inclusions are stated
in Section 3. The case of multiphase media and of equilibrium equations are discussed
respectively in Section 4 and in Section 5. Section 6 is devoted mainly to a priori
estimates in the fibered case. The proofs of the main Theorem 2.1 (fibered case) and
Theorem 3.1 (case of grain-like inclusions) and a sketch of the proof of Proposition
5.2 are presented respectively in Section 7, Section 8 and Section 9.

2. Fibered case. In the sequel, {e1, ez, e3} stands for the canonical basis of
R3. Vectors and vector-valued functions are represented by symbols beginning by a
boldface lower case letter (examples: u, f, g, div(o),...). For any vector u € R3,
we denote by wu; or (u); its components (that is u = Zleuiei = Zle(u)iei).
We do not use the repeated index convention for summation. We denote by (e;;x)
the orientation tensor and by u A v = Z?,j,k:l €ijkU;jVr€; the exterior product in
R3. Matrices and matrix-valued functions are represented by symbols beginning by a
boldface upper case letter with the following exceptions: Vu (displacement gradient),
e(u) (linearized strain tensor), o (u) (linearized stress tensor). We denote by A: B =
Zf’ j=1 AijBij the inner product of two matrices. We denote by C' different constants
whose precise values may vary. Fixing a non-empty connected open set D C R? with
a Lipschitz boundary, we set

2 3 3
— 11 11 11
(21) pD C <_2, 2> s B: =D x <—2, 2) s Y = <—2, 2> , Y= i:E - Yi€i,

1
|B|r=/dy, yB:Zf/ydy, Jtz/legA(y—yB)IQdy,
B |B| /g B

(2.2)
Jupim /B (W — ¥5)ay — vp)sdy.

Denoting by S? the set of all real symmetric matrices of order 3, we introduce the
operators ey, oo, H' (Y;R3) — L3(V;S?), g:H—R3, m:H—R3 defined by

(ey(w))ys = 5 (g;” " %’;) | oy (w) 1= Ao tr(ey (w)I + 2pge, (w),

(23)  glw) = /a o w)npdr()

m(w) = / (U—y5) A (Toy(w) 1) dH2(y),
OBNY

where np stands for the outward pointing normal to 0B, Ag, pg are positive reals,
and
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(2.4) H:={we H (Y \B;R?), div(og(w)) € (H' (Y \ B;R?)'},

the symbol E’ indicating the continuous dual of a Banach space E. We denote by
Cgo(Y) (resp. Cy(Y)) the set of Y-periodic functions of C* (R?) (resp. C(R?)),
by Cg°(Y \ B) the set of the restrictions of the elements of C°(Y) to Y\ B, by
Hﬁ1 (Y) (resp. Hﬁ1 (Y'\ B)) the completion of C3°(Y') (resp. C¢°(Y \ B)) with respect

to the norm w — (- (Jw|* + |Vw|2)dy)% (resp. w — (fy\B(|w\2 + |Vw\2)dy)E

Our proofs are based on the two-scale convergence method of G. Allaire [2] and G.
Nguetseng [23] . A sequence (f) in L?(0,T; L?(£)) is said to be two-scale convergent
to fo € L*(0,T;L*(2 x Y)) with respect to z (notation: f. — fy) if for each
@0 € D(2x(0,T),C¢°(Y)), there holds

(2.5) lim fe(z, t)po (1’, t, E) dxdt = / Jowodxzdtdy.
=0 Jax(0,1) € Qx(0,T)xY’

A sequence (¢.) C L2(0,T;L*(Q)) is said to be two-scale strongly convergent to
o € L?(0,T; L*(Q x Y)) (notation ¢. — () if

(2.6) e = o and glﬂ% leellz20,7:02(2)) = ll#ollL2(0.1:2(2xv))-

The symbols — and — will be used also to denote the two-scale convergence
and the strong two-scale convergence of sequences (f.) in L?(Q) independent of ¢ or
functions of = only by formally regarding those as constant in .

We consider the vibration problem (1.1), where  := w x 0, L, w is a bounded regular
domain of R? and B is the e-periodic set of parallel cylinders defined by (see fig. 1)

(2.7) B.:=Qne | J{i}+B).

110"

£2 1= wx(0,L)

Fig. 1

We assume that the Lamé coefficients satisfy

pre(z) = pelp, (z) + 2polayp. (),  Ae(x) = Melp, () + X0l s, (7),

2.8 A
( ) NJ1€20>07 ls:: 17
Hie

liml. =1 € 0,+o0.
e—0
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We set

(2.9) k= lim p., K = lim % ..
e—0 e—0

Under (2.8), the relative compactness of the sequence (u.) of the solutions of (1.1) in
the x-weak topology of L®(0,T; L%(2;R?)) is ensured by

ap=0 if p.>>1, 0<p. <C<+o0 if {bg#0} or {f #0},

(2.10) infp. >c>0 or inf p. >c¢>0, if k=0.
Bs Q\BE

We suppose that

for some p € L?(Q x Y). The effective mass, the positions of the principal axes, the
positions of the geometric principal axes and the moments of inertia with respect to

the last mentioned axes of the fibers are characterized respectively by the constants
P1s Yo, Y, J° defined by (2.2) and

121 :=/ pdy, ﬁlyc;::/ pydy, (yg=yp if p;=0),
(2.12) 5 B
Po= /B ples A (y — yp) 2dy.

We assume that (see Remark 2.2 (iii))

(2.13) D= {(yl,yg) eR \/yi+y3 < R} if limi(r)lfs,uls < 400,
E—

for some R € ]0, %[ For simplicity the main result is stated under the additional
hypotheses (see Remark 2.2 (v))

(2.14) pe >¢>0,

(2.15) pe < C < +o0.

Representing by Int(s) the integer part of a real s, we set
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Under these assumptions, we show that (u.,v.,0.) converges, in the sense defined
below, to (ug,v,0) (a geometrical interpretation of € is given in Remark 2.2 (iv)) of

rPhom
(2.17) { ( ’:jg”)
(Pfibers(k’ K“))7

where, setting r := fe3 and denoting by n the outward pointing normal to 9Y,

0%uy
P o
u=v+rA(y—yg) in Qx(0,T)xB,
(2.18) (Phom ) ooy (uo)nly) = —ooy(we)m(—y)  on Qx(0,T) x Y,
wo € C((0,T); (9, HE(Y; R®) N CH([0, T); T2(Q x Y3 RY)),

ou
uo(0)1y\ p = aoly\ B, 87;(0)11/\3 = boly\ B,

—divy(ooy(uo)) = pf in Ox(0,T)x(Y \ B),

and (Ppge,. (k, k) is given, in terms of the order of magnitude of the coefficients , &,
by

020 020
P _
T ot? k‘]axg
_ 0%v
=0 (g —yp) N F— 92 ) )€ +m(ug).e3
in Qx (0,7),
2 82
(Phom (k,0)) : | 5 070 g3t 2070s
(2.19) I P MBI T g e

(0 <k < 400) 2

= uF +g(w0) 1 gpes A (g —p) i Ox(0,T),
v3, 0 € C([O,T]7L2( 7HO (0,L)))N Cl([O7T]§L2(Q))7
v e CH([0,T]; L*(%;R?)),

00 ov
3t (0) = 0, ’U(O) = Qop, E(O) = b()7

6(0) = 0,

vy _ ]
P = Pulat (g(uo)e @€ {12} in Qx(0.7),
(2:20) (Pifes(+00,0)) 1 ¢ v e CH([0,T], L* (% RY)),

v (0) = 0, %&(O) = (bo)a, @€ {1,2}, v3=10=0,

2
31+2 1)5
pl 8t2 ZKz+1 T

=P1fa + ga(uo), a € {1,2} in Q x (0,7,
weC([0, T); L*(w, HA(0, L; RE)ACH([0, T); LA (5 R%),
Ovgy
ot

(Pfiens (+00,K)) -

(2.21) (0 < Kk < 40)

v4(0) =0, (0) = (bg)a, @ € {1,2}, v3=0=0,
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(2:22)  (Pifea(+oo,+00)): v=0, 6#=0.

We establish the corrector result (2.25) under the assumption (see Remark 2.2 (iv))

(2.23) ao=0, g (:U,t, f) s .
1)

THEOREM 2.1. Assume (2.1), (2.7), (2.8), (2.10), (2.11), (2.13), (2.14), (2.15),
let (u.) be the sequence of the solutions of (1.1) and let (v.), (6:) be defined by (2.16).
Then (u.) two-scale converges to ug with respect to x and (ue, v, 0:) converges star-

weakly in (L>=(0,T; L?(Q,R3)))2 x L>(0,T; L?(Q)) to (u,v,0), where

uzz/yuo(-,y)dy, vz][Bw(-,y)dy,
(2.24)

0:j/Buo(-,y)(eaA(yfyB))dy.

The triple (ug,v,0) is the unique solution of (2.17). Moreover, (u.(7)) two-scale
converges to ug(T) with respect to x, for each T € 0,T. Assume in addition (2.23),
then (u.) two-scale converges strongly to wy and

T
Ues — U ($7ta 7)‘
£

Remark2.2. (i) If 0< k < +00, the variable 0 satisfies the vibrating string equation

g%ﬁ - 022%2 =h, 0(0) = %(0) =0, 6(2/,0,t) = 0(a',L,t) = 0, where ¢ := (/%2

. _ 2 .
h = 5 (P1 ((yg —yp) AN f) .es+ m(ug).es — py ((yG —yp)A %TE) .e3>, hence is
given by

0(z,t) = io % (/Ot sin (C”T”(t - 7)) %(xlwg,T)dT) \/zsin (”%mg) ,

(2.26) n=1

L
2
Yo (1, 22,1) :/0 h(ml,xg,xg,t)\lisin <%x3) dxs.

The substitution of (2.26) in (2.18), (2.19) reveals the presence of memory terms in
the limit problem. Memory effects induced by homogenization are studied also in [1],
[3], [21], [32]. More generally, non-local effects are likely to come about in composites
with high contrast [2], [4]-[7], [9]-[11], [13], [14], [17], [25], [28]-[31]. In the case
of scalar linear elliptic equations, they can be interpreted in the context of Dirichlet
forms [22]. This approach breaks down in the framework of linear elasticity, any
non-negative lower-semicontinuous quadratic form on L*(£; R®) being theoretically the
limit of a suitable sequence of linear elasticity functionals on H(2;R3) [12]. Passing
from stationary to evolution equations, memory effects can add further to the possible
non-local effects attendant on the elliptic case, even though the homogenization of the
corresponding equilibrium equations leads to a classical local problem [10], Remark
3.2; [7], Remark 2.2 (v).

(2.25) lim

e—0

=0.
L2(Qx(0,T);R3)
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(i) If the fibers have a vanishing measure (i.e. r. << &, where . stands for their
diameter) and if the elastic moduli are of order 1 in the matriz, a similar effective

~ 2
behavior is obtained in the inclusions, conditioned by k := lim._,q Z—g,ule and K =
4
lim._,q Z—gule, provided 0 < lim._q m < 4+o00. However, no torsional vibrations

take place when 0 < k < +o0o [10] , Theorem 3.1.

(iii) If lim. g ep1e. = 0, the attempt to extend our result to the case of fibers with non
circular cross sections leads to a technical complication (see Lemma 6.5).

(iv) Assumption (2.23) is verified for instance when ug is continuous in at least one
of the variables (x,t) ory (see [2], Section 5 ), which takes place provided by, f, p
are sufficiently regular. Under (2.23), the corrector result (2.25), combined with the
second line of (2.18), indicates that the field v(z,t) + 0(z,t)es A ([£] — yp) approz-
imates the displacement in the fibers. Hence the function g s a local approximation
of the microscopic rotation angle of the fibers. We can deduce also from (2.25) (the
details are omitted) that the sequences (V.) and (.) obtained by averaging v. and 0.
on each periodicity cell, namely

CACRIEEDY) (fwvs(s,t)ds> ly:(x),

i€l

ag(a:,t):zz ( Yi@(s,t)ds) ly:i (),

iel.
Yi=e(i+Y), L:={icZ® Y'cQ},
converge respectively strongly to v in L2(0,T; L?(;R3)) and strongly to 0 in L?(0, T
12(0)).
(v) If (2.15) fails to hold, the effective displacement is stationary in the parts of the
body where p. >>1 (see (6.49)). If (2.14) is not satisfied, some modifications of the
data related to time in (2.17) are possibly required.

3. Case of grain-like inclusions . In this section, we assume that 2 and B
are regular domains of R3, and that (see fig. 2)

(3.1) BCY := <—1 1>3.

The relative compactness of the sequence of the solutions of (1.1) in the x-weak topol-
ogy of L>=(0,T; L?>(Q;R3)) is ensured by the assumptions (2.8), (2.10) and
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(3.2) igEf pe >c>0 or Qi{lgi pe >c> 0.

We introduce the inertia matrices J”, J and the sequence (7.) given by

Jij ¢=—/Bp(y—yB)i(y—yB)jdy, it i,

Jij :=—/(y—y3)i(y—y3)jdy, if %7,
(3.3) B
=3 [olw-yo)Pas. =Y [Iw-ys) P
i#i’ P i#i’ P

e (v

THEOREM 3.1. Assume (2.8), (2.10), (2.11), (2.14), (2.15), (3.1), (3.2), let (u.)
be the sequence of the solutions of (1.1) and let (v.), (r.) be defined by (2.16), (3.5).
Then the sequence (ue) two-scale converges to ug with respect to x and the sequence
(ue,v., 1) converges star-weakly in (L°°(0,T; L*(Q,R?)))? to the triple (u,v,r) given
by (2.24) and

(3.4 r=J*(@y—ywAUqu@>-

The triple (ug,v,r) is the unique solution of the system

hom
(35) { (Pmatriw)7

( hom )
inclusions/?

where (Phom

mat'ri:c)

is given by (2.18) and

_ [(0%*v O
P1 (&g + e ANy — yB))
=pf+glug) in Qx(0,7),
2 2
56) (PLn) - | g8 710G~ ) 1
=01(Ye —yp) NF+m(ug) in Qx(0,7),
v,r € CH0,T; L* (4 R?)),

v r
o) =ap,  L0)=by, 0=
Moreover, (u.(7)) two-scale converges to uo(7) for each 7 € [0,T]. Assume in ad-
dition (2.23), then (u.) two-scale converges strongly to wy and the corrector result
(2.25) holds.
Remark 3.2. (i) Grain-like inclusions are concerned as well with Remark 2.2 (i), (iv),
(v). Regarding (ii), memory effects are obtained with particles of high mass density
and diameter r. << e, provided 0 < lim. o 5§ < +o0 (see [7], [§]).

(0) = 0.
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(i) In the fibered case, the sequence (r.) defined by (3.3) converges to fes (see Remark
8.1).

4. Multiphase media. We can extend our results easily to the case of a multi-
phase medium whereby m e-periodic disconnected families Bl, ..., B™ of fibers which
are (for simplicity) assumed parallel to one of the coordinate axes or of grain-like
inclusions are embedded in a soft matrix. The sets Bl, ..., B™ are described in terms
of m subsets B',...B™ of Y, connected in R?® and with disjoint closures, by setting

B i= ULy B, Bii=e(Ujews i+ B') N0 Bi= ULy BY (see fig. 3). In the
fibered case, B’ is a cylinder whose axis is perpendicular to some face of the cube Y
(see fig. 3).

Fig.3

We suppose that the elastic moduli take the value pi. and i, on each set B! (i €
{1,...,m}) and take the value €y and €2} in the matrix Q \ B.. By repeating the
argument of the proof of Theorem 3.1 and Theorem 3.2, we find that the sequence
(ue) of the solutions of (1.1) two-scale converges to the unique solution ug of the
following equivalent variational problem

T
/O (a(uo(t), wo)n(t) + (uwo(t), wo) mn” () dt + (@0, wo) ' (0)

T
41— (bowo)un(0) = /0 (Fowo)an(t)dr, ¥woeV, ¥neD(—o0,T),

v,r € C'(0,T; L* (% R?)),
uo € L2(0,T; V), up € L*(0,T; H).
The Hilbert space H is the set of all wo € L*(Q; L(Y;R?)) such that for each i €

{1,,...,m}, there exists a couple (1, 7[11) € (L2(Q2; R?))2 such that wq = ! + rlIA
(y—y gia) in Qx Bl Moreover, if Bl is a set of fibers parallel to egi], then il = ol eg]
for some ¢} € L2(Q) and if in addition ,u[fl — +o00, then (w[i].eg]) = ¢ll = 0. The
space H is equipped with the inner product (wq,wo)g := foY pwo.-wodzdy. The
Hilbert space V' is the closure of D(Q2; C{°(Y)) N H with respect to the norm |[.[|y
defined by

m
(42)  Jwol} = lwolF + > @ (!, rl), (!, rl1)) + / |V wo|*dady.
=1 Qx(Y'\B)
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The set V' is continuously embedded in H. The bilinear form @l identical, up to
a rotation of the coordinate axes, to one of the forms @, a®, a®, a® defined,
depending on the order of magnitude of the elastic moduli and of the shape of the
specified inclusions, by (7.22), (7.39), (7.45), (8.6) (if % — +00, then @l = 0). The
symmetric bilinear form a on V' is defined by

(4.3)  a(wo, wo) 11/9 Yey(wo):UOy(wo)dfcdy+ZEM((UJ“],TM),(wm,rm))

=1

The Euler-Lagrange equations associated with (4.1) consist of a system of the type

hom, multi
(Prnatria )

(Phom 1)’
(4.4)

(Phom m)’

of variables vl 7l uy. The fields v[? and rl? characterize respectively the average
effective displacement and the rescaled effective rotation vector in the inclusions Bg].
They are obtained as the weak-star limit in L°°(0, T’; L?(2; R3)) of the sequences vl
and 7Y defined by substituting Bl for B in (2.16), (3.3). The effective displacement
in the matrix is governed by (P MUl " The system (P07 ™) differs from

matrix ) . matriz

(2.18) only by its second line, namely

wo = vl + 7l A (y —ypw) in Qx(0,7) x B, ie{1,..,m}.
The system (P"°™ 1) governs the behavior of the effective displacement in B n
the case of grain-like inclusions (P"*™ [ is given by (3.6), being understood that all
quantities defined in terms of B (that is v, r, g, m, Yo, yp, etc..) are now defined in
terms of Bl and labelled with the index [i]. If Bg} consists of fibers parallel to e:[;],
then rll = H[i]eg] and (P"o™ [1) is a system of equations of (vl A1) given in any

orthonormal basis (e[li],e[;],eg]) by a system of the type (2.19), (2.20), (2.21), (2.22),
according to the order of magnitude of uﬂ.

5. Case of equilibrium equations.. In this section we complete and correct in
the linear case the results obtained by the author with G. Bouchitté in [9] . The main
novelty of our results in the elliptic case, compared to the results already available in
[9] , concerns the case of fibers with elastic moduli of order 1. Let u. be the solution
of

(5.1) —div(o.(u.)) =p-f in Q u.€ H}(QR?), fecL*QR3.

Let V and H be the Hilbert spaces and let a be the positive symmetric bilinear form
defined in Section 4. By repeating the argument of the proofs of Theorem 2.1 and
Theorem 3.1, we obtain:
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COROLLARY 5.1. Assume that u. two-scale converges, up to a subsequence, to
some ug € L2(2 x Y;R?). Then

(5.2) ug €V and a(uo,wo) = (f,’U.JQ)H, Ywg € V.

When two-phase composites are considered, the effective problem (5.2) is in general
ill-posed. More precisely, we show in the next proposition that in the two-phase case,
unless very stiff fibers with elastic moduli of order greater than or equal to E% are con-
sidered, the bilinear form a fails to be coercive on V. Then, the problem (5.2) has no
solution if f is not parallel to the fibers a.e., and has infinitely many solutions other-
wise. In the former case, it follows from Corollary 5.1 that lim. g [.|z2(ors) = +00.
Heuristically, this means that the effective composite can not "resist” to transverse
body forces. In all likelihood, in the corresponding hyperbolic case, there holds
lim7 . oo |u(T')|p2(qur3) = +o0 for the same choice of f independent of ¢ (see Re-
mark 5.3 (v)). This means that the effective composite ”collapses”. Hence both the
elliptic model and the hyperbolic model seem to be unsatisfactory on a physical point
of view when the bilinear form a is not coercive on V' and when the body forces are
not parallel a.e. to the fibers (see Remark 5.3 (iii)). In the following proposition,
we state several necessary and sufficient conditions ensuring the coercivity of a on V.
The multiphase media satisfying these conditions (see Proposition 5.2 (v)) are likely
to provide a physically relevant model of composite exhibiting torsion effects.
PROPOSITION 5.2. a) The following assertions are equivalent:
(i) The form a is coercive on V.
(ii) The problem (5.2) has a unique solution for all f € L?(2;R?).
(iii) The following estimate is satisfied:

(5.3) /Q|w|2dx§C’FE(w), v € HA(Q:R®);  F.(w) = %/Qe(w):as('w)da:.

(iv) For every f € L*(Q;R3), the sequence (ue) has a bounded subsequence in L*(€;
R3).
(v) One of the following conditions (a) or (b) is verified:

(a) the set of inclusions contains an e-periodic distribution of parallel fibers with
elastic moduli of order greater than or equal to E%,

(b) the set of inclusions contains three disconnected e-periodic distributions of
parallel fibers with elastic moduli of order greater than or equal to 1, distributed in
three independent directions.

(vi) For every f € L?(Q;R3), the sequence (u.) two-scale converges to the unique
solution of (5.2).

b) If a is not coercive and if f does not belong a.e. to the subspace spanned by the
directions of the fibers, then (5.2) has no solution.

Let us revisit now the example studied in [9] (Example 2) by G. Bouchitté and the
author, who considered the case of a union of three non intersecting families of parallel
fibers B, = BE] U BE] U Bgﬂ, the fibers constituting Bg] being parallel to e; and
having elastic moduli u[g] of order 1 (that is ;L[Ei] — Kl €]0, +o00[). Notice that the
assertion (v) of Proposition 5.2 is satisfied, hence, by (vi), the sequence (u.) two-
scale converges to the unique solution ug of the problem (5.2). The Hilbert space H,
equipped with the inner product (wq,wo)m = foY pwo.wodzxdy, is the subset of

L2(; L3 (Y;R?)) consisting of those wg such that for each i € {1,2,3} there exists a



14 M. BELLIEUD

couple (91, ll) € L2(Q;R3) x L2(Q) such that wo = ! + plile; A (y — ypu) in
Q x Bl The set V' is the closure of D(Q; C7°(Y; R?)) N H with respect to the norm
|.|v defined by (4.2). The effective energy is defined on V' x V by

3
1 1 1 .
—a(wg, wp) = f/ e, (wo) : oo, (wo)dzdy + = § :am (wo, wo),
2 2 Jaxy 2 &
(5.4) .
3142 aw’ aga[l
il _ [i 2L T 4 | 9% Z [i]

The second term of the right-hand side of the equation in the second line of (5.4)
characterizes the torsional energy stored in the fibers. Formula (5.4) corrects in the
linear case Formula (2.25) of [9], where the torsional terms are missing. As already
said, the result stated in Theorem 2.4 of [9] is false. In fact, the crucial part of the
proof of Theorem 2.4 of [9] was undone (see Remark 5.3 (iv)).

Remark 5.3. (i) Under the assumptions of Corollary 5.1 and the notations of Section
4, the sequence (v[;],r[;]) converges weakly in (L?(Q;R3))? to (v, 7)) for each i €
{1,...,m}. The field ug and the fields vl vl are solution of the system deduced

formally from ( 4.4) by replacing the symbols of the type fo(o 7) ~dmdt, LP(0,T; X),
Q x (0,7), w(r), w(0), 88—7;), ag, by... by [,..dm, X, Q, w, 0,0, 0, 0.... If (
5.8) takes place and if the sequence (ug (x, f)) two-scale converges strongly to the
solution ug of the effective elliptic problem (see Remark 2.2 (iv)), then the corrector
result lim__,q H'u,E — ug (x, f) ‘ ‘LQ(Q;RB) =0 can be proved in similar manner as in the
hyperbolic case.

(ii) In the elliptic case, the variable ug can be eliminated in the effective problem: by
the system of equations deduced from (P! ™) a5 described in (i) and by Formula
u = [, uo(.,y)dy, we have, in the basis (e, ey, e3),

3
1 1 1 .
sa(wo, wo) = */ ey(wo) : ooy (wo)drdy + 5 Zam (wo, wo),
2 2 Jaxy 2~
(5.5)
/VOdy+ZZ /ﬁj ]dy+7”]/ ) dy,
i=175=1
where H,no[ ],70( .) are the unique solution of
—divy (o0, (&)")=0 in Y\ B, &'=e; in BY & =0inB\BY,
- divy(aoy(ng[i])) =04 Y \ B,
(5 6) n%[i]: €j A (y_yBM) in Bm? né[i] =0 B \ B[i]’

—divy(ooy(v9)) =pf mQAxY\B), ~v,=0 in Qx B,
a0y(Co)-n(y) =—00y(Co) n(—y) on Y, ¢, € H&(Y'RS)
Co € { ,no”rro( )}
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In the case of a two-phase composite (that is m =1, B = BM), by (2.8), (5.6) and
the Gauss-Green’s Theorem there holds

¢ = ey, ) = g(n}) =m(n}) =0,

(&) = m(&
(5.7) g(uo) = g(vo) = (/ pdy> I,
Y\B

m(ug) = m(y,) = (/Y\B p(y — yB)dy> AT

A similar computation can be done in the case of hyperbolic equations, when the mass
density is supposed to vanish in the matriz, namely when ply\p = 0. Then the
fields wo and w are given in terms of the fields v1" and v (i € {1,...,m}) simply
by substituting 0 for vy in (5.5). Under the same assumption, similar problems are
tackled in [25] in the fibered case and in [26] in the case of grain-like inclusions, by
using asymptotic expansions.

(iii) The case where a is not coercive on V. and where f belongs a.e. to the subspace
spanned by the directions of the fibers may have some interest on a physical level.
However it seems difficult to find out in this case whether the sequence of the solutions
of (5.1) is bounded in L*(Q;R3) or not.

(iv) In [9] , we have employed the T'-convergence method, which is convenient for
elliptic problems but not for hyperbolic problems, and which consists in establishing the
convergence of the sequence of energy functionals (Fy) (see (5.3)), in some sense, to
the effective energy F(u) := inf {%a(wo, wg), wo €V, fY wody = u} This approach
allowed us to state our results in FExample I and in Example III in the context of a
simplified model of small deformation nonlinear elasticity. The crucial step in the I'-
convergence method is the so-called "upper bound” (see for intance [15] for all details
relative to this notion of convergence). Our omission in Example II is that we did not
check properly the proof of the "upper bound” and announced that this proof was the
same as in Example I up to minor modifications (see [9], p.178,1.(-7) ), which is not
true. Indeed, we have only established in Example II a lower bound for the effective
energy.

(v) If a is coercive on 'V and if f is independent of t, then it can be shown that the
sequence (w(T))r>o is bounded in L?(Q2;R?).

6. Preliminary results and a priori estimates..  The following section is
devoted to the study, in the fibered case, of the asymptotic behavior of the sequence
(ue) of the solutions of (1.1) and of the sequences (v.) and (6,) defined by (2.16) (cf.
Proposition 6.4). It includes also a technical lemma (Lemma 6.1) concerning the two-
scale convergence and a theorem (Theorem 6.2) gathering some classical theoretical
results about hyperbolic equations that will be employed to establish the well-posed
nature of Problem (2.17) and the corrector result (2.25).

A fundamental property of the two-scale convergence (defined by (2.5)) is that
any sequence bounded in L?(0,T; L*()) admits a two-scale convergent subsequence.
A sequence (p.) C L?(0,T; L*(Q)) is said to be admissible if it two-scale converges to
some ¢ € L?(0,T; L*(Q x Y)) and if, for every two-scale convergent sequence (f.),
there holds

(6.1) lim fggagdxdt:/ fowodxdtdy.
=0 Jax(o,1) Qx(0,T)xY’
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It turns out that the set of all admissible sequences is equal to the set of all sequences
(pe) C L2(0,T; L*(Q2)) satisfying (2.6) for some ¢g € L%(0,T; L?(2 x Y)) (that is the
set of all two-scale strongly convergent sequences). Indeed, the following implication
is proved in [[2], Theorem 1.8]

fe=fo and @e—>py =

lim fepedxdt = / fopodxdtdy.
=0 Jax(0,1) Qx(0,T)xXY

(6.2)

Conversely, if (p.) is admissible, one sees by substituting ¢. for f. in (6.1) that (p.)
is two-scale strongly convergent.

LEMMA 6.1. (i) Let ho € L>(0,T; L>=(Q2,C4(Y))) U L(Y, C(Q2x(0,T))) and let
he(z,t) := ho (z,t,2). Then for every sequence (x.) C L*(0,T; L*(Q)) the following
implications hold:

(6.3) Xe — X0 = Xche — Xoho,

(6.4) Xe = Xo = Xehe = Xoho.
(ii) If (f.) is bounded in L>(0,T;L?*(Q)) and two-scale converges to fo, then fo €
L>(0,T; L2 x Y)). If in addition (f) is bounded in W1>°(0,T; L?(2)), then fo €

W0, T; L2(Q2 x Y)) and (ag;ﬁ) two-scale converges to %. Besides, if f-(0)—ay,

then ag = fo(0) and (fo(7))—= fo(7), Y7 € [0,T]. Moreover, if (%) —»% and

fe(0)—>aq, then (f-(17))—>fo(7), VT € [0,T].
Proof. (i) Assuming (x.)—X0, we fix a sequence (f.) bounded in L?(0,T;
L?(9)), a positive real n > 0 and a function 1y € C(Q2x(0,T),Cy(Y)) such that

(6.5) fe = fo, l[Xo — %ollz2(0,m522(2xy)) <1

Since hothy € L*(0,T;L*(Q,C5°(Y))) U L3(Y,C(2x(0,T))), the sequence (hei).)
(Ve (x,t) := o(x,t, £)) is admissible with respect to the two-scale convergence (see [2],
Lemma 5.2, Corollary 5.4). Thanks to (6.5) and to the strong two-scale convergence
of (xe — ¥e) to xo — ¥ we infer

lim sup
e—0

./ M%kMﬁ—/ Yohofodadtdy
Qx(0,7) Qx(0,T)xXY

< limsup / he (Xe — ) fedxdt
e—0 Qx(0,T)
4+ lim sup / hetpe fodadt — / Xoho fodzdtdy
e—0 Qx(0,T) Qx(0,T)xXY

< limsup [[he||zoe [[xe = tell 2 [Ifell2 +

e—0

< Chn,

/ hoWo — vo) fodedtdy
Qx(0,T)xY
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hence xche —» xoho. Supposing now (x.)—*Xo, fixing a sequence () such that

(¢pe)—> 0, we deduce from (6.3) that (pche)—>poho, thus hm A ()(E;L)E%da:dt
=0 Jax(o

/ Xohopodzdtdy. (i) If (f.) is bounded in L>(0,T; L*(2)) and two-scale converges
Qx(0,T)xY

to fo, fixing o € C(Q2x(0,T),C4(Y)) and setting ¢ (z,t) := @q (z,¢, %), noticing
that

T
/ fesoadwdté/ 1S (D2 e (5 D) L2y dt
(6.6) Qx(0,T) 0

T
< C/ e (- )2 (o dt
0

and that lim._o ||pc(., t)HLz(Q) = |loo(-, )|lz2(axyy, Yt € (0,T), by passing to the
limit as ¢ — 0 in (6.6) in accordance with (6.2) and the Dominated Convergence
Theorem we infer

(67) / fo(pod:l)dtdy S C‘ |(p0| |L1(07T)L2(Q><y))7 v ®o S C(Q X (O, T), Oﬁ (Y)),
Qx(0,T)xY

hence fo € L>®(0,T; L*(Q2xY)). If in addition (%) is bounded in L>®(0,T; L*(12)),
by the same argument (6f z
L>(0,T; L*(2 x Y)), thus

) two-scale converges up to a subsequence to some & €

/ fowodl‘dtdy— hm 6f€
%)

%(0,T)xY =0 Joxo,r) Ot

— lim [ %% (m%) dedt

=0 Jou0,1)0t

- —/ fo wodwdtdy, V 4y € D(Qx (0,T); C5°(Y)).
Qx(0,T)xY ot

Yo (Jc,t, g) dxdt

Hence 8f° = &o, fo € WH(0,T; L*(2 x Y)), and the convergence holds for the whole
sequence If f.(0)— ay, fixing 7 € [0,7] and an admissible sequence (p.) C L?(12)
such that (¢.) — o € L*(2 x Y) and applying (6.4) with ho(z,t,y) := 1j.-(t),
we obtain

. e dfe
ilg%)/ﬂfe(ﬂ%dx— gg%/g < o — 1ot )dt+fa(0)> ped

0
(68) [ g @pededudy+ | agpodedy
Qx(0,T)xY’ axy

:/Q (fo(T) = fo(0)+ao)podzdy,

XY

hence f.(7) = fo(7) — fo(0) + a0, V7 € [0,T]. Fixing o € D(2x(0,T);C°(Y))),
setting we (z,t) := o (;m t, g) and applying the Dominated Convergence Theorem, we
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infer

T
/ fopodxdydt = lim fepedxdt = / lim (/ fE(T)QDE(T)dLL') dt
Qx(0,T)xY 0 Q

£=0 Jax(0,1) e—0

- / (fo — fo(0) + ao)podadidy, Y po € DX (0,T); C*(Y))),
Qx(0,T)xY

hence fo(0)=ag. If f:(0)—>ap and agf —»%, we deduce from the previous reason-

ing that fo(0)=ao and notice that (6.8) holds for any two-scale converging sequence
(be). D

The abstract results collected in the next theorem are proved in [19] (see Theorem
8.1 p. 287, Theorem 8.2 and Lemma 8.3 p. 298), [16] (see Formula (5.20) p. 667,
and Theorem 1 p. 670), [18] (see Remark 1.3 p. 155). Henceforth, the derivatives
in D'(0,T; H) are identified with the time derivatives in D’'(2 x (0,7) x Y') and are
denoted both by 25 or by ¢'.

THEOREM 6.2. Let V and H be separable Hilbert spaces such that V. C H =
H' c V', with continuous and dense imbeddings. Let ||.||v, |-|la, (v )v, (. )m
denote their respective morm and inner product. Let a : V XV — R be a con-
tinuous bilinear symmetric form on V. Let A € L(V,V') be defined by a(§,§) =
(A€7£)(V’,V)a v (5,5) € V2. Assume that

(6.9) AN a) €RL xR, al§,€) +MEly > allgl[i, VEEV.
Let h € L*(0,T;H), & € V, & € H. Then there exists a unique solution & of

AE(t) + &7 (t) = h(t), €€ L*0,T;V),
(6.10) R /

2
where £ = %, &= %, What is more,

(6.11) e C([0,T;V)NnCY[0,T]; H), & € L*0,T;V), ¢ < L*0,T;V").

Besides, setting e(7) := 5 [(£'(7), € (7)) g+ a(&(7),&(7))], ¥ 7 € [0,T), there holds

(6.12) e(r) =e(0) + /OT (h,&) g dt, vV 1 e[0,T].

Moreover, Problem (6.10) is equivalent to

T
| (atet®) mte) + €0 &' @)) dt + (€0, ' 0)
T

(€. O mn(0) = / (h €y n(t)dt,

0
VEEV, VneD(-oo,T)); £€L?(0,T;V), £ €L?(0,T; H).

(6.13)

The next lemma concerns both the fibered case and the case of grain-like particles.
The estimate (6.14) will be employed in the demonstration of Proposition 6.4 as a
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means to prove the boundedness of the sequence (u.) of the solutions of (1.1) and
also in Section 7, in order to establish the corrector result (2.25).
LEMMA 6.3. Under the assumptions (2.7) and either (2.1) or (3.1), there holds

f infp.>c>0 inf p. >¢c>0, th
if %15 Pe > C or QI\HBE Pe > C en

2

0w\ Jedt

wl|?(r)dz < C Pe
/ﬂ| 2(r) N -

(0,T)

(6.14)
+c/ €2|e(w)\2(r)dx+0/ lw[2(0)da,
Q )
¥r € [0,7], ¥ w e C([0,T); Hy (% R?)) N CH([0, T); L* (4 R?)).
Proof. For each w € L?(2) we define, setting w = 0 in Q\ R3,

i
€

(6.15) De(z) = <][vad5> lyi(z), Jo={ieZ Y/NQ#0}

i€Je
By making suitable changes of variables in the Poincaré-Wirtinger inequality fY |w
— (fywds) Pdz < C [, |[Vw|?dz, Yw € H'(Y), we infer that [, |w —@.|*dz <
C [,V (w)|*dz, Vw € H'(Q;R?). Therefore, by Korn’s inequality in Hj(Q;R?)
we have

(6.16) / w — @.|* dz < c/ 2le(w)|2dz, ¥ w € HL(Q,R?).
Q Q

By (6.15) there holds [, |w.|*dz < C [, |w|*dz, Yw € L*(Q;R?), hence we infer
from (6.16)

(6.17) /|w\2dx§C€2/ |e('w)|2dx+C/ |w|?dz, ¥V w € H}(Q,R?).
Q Q B.

If infp, p- > ¢ > 0, then

/| Jwl*(r)de = / E

Jw
<C / Pe
axo,1) | Ot

vw € C([0,T]; Hy (% R?)) n CH([0, T]; L* (% R?)).

2

ow I

; E(s)ds + w(0)

6.18 2
(6.18) dxdt+C’/ |w|?(0)dx,
Q

Assertion (6.14) follows then from (6.17) and (6.18). Otherwise, if info\p_p. > ¢ >0,
we repeat the same argument, substituting Y\ B for Y. 0

The following proposition specifies, in the fibered case, the asymptotic behavior of
several sequences associated to the sequence (u.) of the solutions of (1.1).
PROPOSITION 6.4. There exists a unique solution u. of (1.1). Moreover,
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0%u,
Bt ot?
Under (2.8), (2.10), there exists a constant C > 0 such that

/Q\szewa(r)zdu /Q <p5 du

(6.19)

(0,7 Hy (% R?)), (0,75 H™H(;R?)).

€

+ [uel? + o] + 9el2> (1)dz <C,

ot
vr e [0,T],
(6.20) 9 2
2 Ve3 C
e(ug)(7 dx—i—/ 7)| da < , V1 €10,T],
[ et as s [ | ) e < 2 0.7
[P + (o) + [ L) do < vr € [0.7]
0 e1\T e2\T c T 782#15’ T ) )

and fields ug € L>(0,T; L?(Q x Y;R3)), w,v € L>(0,T; L*(;R3)), 6 € L>=(0,T;
L2(Q)), E™, &) € L°(0,T; L*(Q x Y;S?)), such that, up to a subsequence,

Uy — U, Ee(u5>1Q\B NN Em, e(us)lBE — Efa
6.21 dveg + 0

(6.21) 8 8 T star-weakly in L0, T; L),
Oxs Oz

*

N > 9 *
Ue u, ve v, Ue

497

Besides the next relations are satisfied
ug € L>(0,T; L*(Q; HY (Y;R?))),  ws € L™(0,T; L*(w; Hy (0, L)),
wo= v+ sy~ yp) i Ox(O.T)x B, u= [ uol.y)dy
Y

”:][ ol y)dy, J/ uo(-,y)-(es A (Y — yp))dy,
B
6.22) E"=ey(ug), E'=0 in Qx(0,T)x Y\B,

%:/i =l.dys in Qx(0,T) x B,

00 2 / =f ) .

— == (es A (y— d i 2x(0,7T),
00s 7 (es A (y—ygp))dy . (0,T)

6 € L>(0,T; L*(w; Hy (0, L))),

the last two lines of (6.22) being obtained under the additional assumption (2.13).
Moreover,

(6.23) 0=vs=0 if k=400, v=0 if Kk=+o0.
If & €]0,400], there exists (s € L®(0,T;L*(w x Y;H$(0,L))), B> € L>*(0,T;
L2(Q xY;S?)), € € L>=(0,T; L*(w; H (0, L)) such that up to a subsequence,

U 1
(6.24) %313 - (o, ge(us)lgg NG

[

?
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and
V1,9 € L°°(O T; L*(w; H3(0, L)),

0 o ,
(6.25) Co=¢&— Z Y y Ygpla in Qx(0,T)xB,

P, 06 08 P v .

T2

Under the additional hypothesis (2.14), we have for any k €]0, 4+00],

ug € WH(0,T; L*(Q x YV;R?)),
(6.26) Ou,. N %
ot ot ’

u (1) = uo(r), V7 €0,T].

Proof. The problem (1.1) is equivalent to (6.13), where H := LQ(Q RS) (&&=
Jopeb&dr, V = Hi(QR?) (V! = H ' (QRY)), a(€,€) = [,0:(€) : e()dz,
(&o,€1,h) = (a@o,bo, f). By (2.14) and (2.15), H is a Hllbert space and the as-

sumptions of Theorem 6.2 are satisfied. Therefore (1.1) has a unique solution and
(6.19) follows from (6.11). By (6.12) we have, for all 7 € [0, 7],
ot

)
) o Pe
1
(6.27) = 5/ (ps \bo|2 +o.(ap) : e(ao)) dx +/ Pe
Q Qx(0,7)

By (2.10) there holds fQ<pg|bo|2+0'6(ao):e(ao)) dx + fo(O T)Pe |f|’dzdt < C, hence

[
(6.28) <cC (1 + \//QX(O o’

By integrating (6.28) with respect to 7 over (0,7, we deduce that fm(o ) Pe ‘%%F
dzdt < C' and then, coming back to (6.28), that
ou, 2

6.29 / Pe
(6.29) Nalwr
We infer from (1.1), (2.8), (2.16), (6.29) that

8u5

+o(ue): e(u€)> (1)dx

ou,
"ot

2
U

ot

dr + o-(u;) : e(u5)> (1)dx

5‘u5

d;z:dt) , VT e [0,T).

(T)dz + /Q o-(u.):e(u)(r)dz < C, vr € 10,T).

2
/m@EWHﬁM%Wmmsa
.|t
81}32 C
6.30 e(u.)|? d+/ = dzr < .
(6:30) [t e+ [ 55 (e <
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By (6.17) and by the inequality (see [9], Formula (4.32))

2 C
(6.31)/3 <w12+|w2|2+‘u§" )d == le(w)de, YV w € HE(Q;R?),

deduced by making appropriate changes of variables in the Korn’s inequality [, |w |2dx
< C [, le(w)dz, Vw € {¢€ € H(B;R®), £(y1,12, —3) = 0}, we have

(6.32) /|w|2da:§052/ |e(w)|2dx+€g2/ le(w)2dz, ¥ w e HL(Q:R).
Q Q

BE

If k> 0, then by (2.9), (6.29) and (6.32) there holds [, |uc(7)|?dz < C [, o-(u.) :
e(u.)(7)dzr < C. Otherwise, if K = 0, then by (2.10), (6.14) and (6.29) we have

2
[upse [, e | vt 1 © [ oetweturds+ € [ jaofds
Q ax(0,T) ot Q Q
<C.
The estimate
(6.33) / lue(1)|?dz < C, VT €[0,T],
Q

is proved. We deduce from (2.16) and (6.33) that
(6.34) /\v5| (1) +10.]2(r)dz < €, ¥r € [0,T].
Q
By substituting u.(7) for w in (6.31), taking (2.16) and (6.30) into account we infer

v
637 d<—/|eu€
€

) VT € [0,T],

/ [oer (1) 2 + [oza(r)? +
Q

o 52/-1/15

which, joined with (6.30), (6.33), (6.34) completes the proof of (6.20). Taking Lemma
6.1 into account, we deduce that the convergences (6.21), (6.26) take place, up to a sub-
sequence, for suitable uy € L>®(0,T; L2(Q x Y;R3)), (E™, &) e (L>=(0,T; L*(Q x Y;
SN)?, (u,v) € (L>=(0,T; L*(£; R‘g))) , 0 € L>(0,T; L?(2)). In order to establish the
identification relations (6.22), we test the convergences (6.21) with appropriate fields.
Choosing first ¥ € D(2x (0,7); C3°(Y;8S)) and passing to the limit as ¢ — 0 in the
equation

/ ce(u.) : ¥ (w,t, E) dxdt =
Ox(0,T) €

75/ u..div, ¥ (:c,t, f) dadt — / u..div, ¥ (:c,t, f) dedt,
Qx(0,T') € Qx(0,T") €

we find fo(o Tyy =M Wdrdtdy = — fo(o Ty ug.div, Wdzdtdy and deduce by the
arbitrary choice of W that ug € L>°(0,T;L*(Q; H;(Y))) and e,(ug) = E™. By
(6.20), the sequence (ce(u.)lp.) converges strongly to 0 in L?. Choosing ¥ €
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D(Qx(0,T); Dy(B;S)) we deduce fQX(U,T)xY E™ : Wdzdidy = 0. We infer that
e,(up) = 0in Qx(0,T)xB. Therefore, for a. e. (z,t) € Qx(0,T), the restric-
tion of ug(x,t,.) to B is a rigid displacement. By the periodicity of uy there holds
uo(xat7y17y25 7%) = ’U’O(Ivt Y1,Y2, 7) hence

(6.35) uo=a+besA(y—yp), inQx(0,T)xB,
for a suitable (a,b) € L>(0,T; L2(;R3)) x L>°(0,T; L*(2)). Fixing o € D(Qx (0,7T);

R3), taking (2.2), (2.16), (6.35), the convergences v. — v and u.—>uy and Lemma
6.1 (i) into account, we get

x
v.pdrdt= — hm ue.p(z,t)1 =) dxdt
/Q><(O,T) |B| e—0 x(0,T) € B ([&J)
1

(6.36) =
|B| Qx(0,T)xB

uo.p(z, t)1p(y)dadtdy = / a.pdxdt,
Qx(0,7T)

hence a = v = fBuo(.,y)dy. By testing the convergences 0, — 0, u.—>ug with a

function ¢ € D(2x(0,T)) and with the sequence (¢.) given by . (x,t) := ¢(x,t)(esA

([Z] —ys))1s ([%]) ((¢e) is admissible by Lemma 6.1 (i)), thanks to (2.2), (2.16),

(6.35) we find

/ Opdxdt= hm 0. pdadt
x(0,T) Qx(0,T)

i [ (o ([2] )

== / (5 A (y~y ) pdrdrdy
Qx(0,T)xB

=5 (v+besN(y—yg))-(esN(y—yp))pdrdtdy
Qx(0,T)xB

1
J Qx(0,T)xB
hence § = b= 1 [Lug(.,y).(esA(y—yp))dy. By (1.1), (2.16) and (6.20), the sequence
(ve3) is bounded in L%°(0,T; L?(w; HE(0,L))), thus vz € L*(0,T; L?(w; HE(0, L))).
Choosing ¢ € D(2x(0,T); C5°(Y)) such that £2 = 0 and ¢ = 0 in Qx(0,7) x
. - . . Hue . o
(Y'\ B) and passing to the limit as ¢ — 0 in the equation fo(O,T) %33@ (x, t, g) dx =

blesA(y—yp)|*pdrdtdy = / bodxdt,
Qx(0,7")

a .
- fo(O,T) Ues 5 (z,t, %) dxdt, we obtain

0
/ =l pdrdtdy= — / (v+0es A (y — yB))g—(pdxdtdy
ax(0,T) Ox(0,T)xB Oz
Op
= —/ vs—dxdtdy
ax(0,7)xB  0T3
1
We infer from the arbitrary choice of ¢ that [?2, 53{3(m,t,y1,y2,s)ds = %2 a.e. in

2

Q2% (0,T) x D. The proof of (6.22) is achieved provided we establish that under (2.13),
there holds
0 € L>(0,T; L*(w; Hy (0, L))),

(6.37) 20 2 _ _
-2 /B(—(y —yp)2Els + (y — yp)iEh)dy.
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To that aim, we fix p € C°(Qx(0,T)), set ¢ = 0 on R3 x (0,T)\2x (0, T) and define

Pat)i= Y ( f

@(81,827x3,t)d81d82> 1pi(21,22),
i€l €

(6.38) ‘ 1 1\2

e +r), Pim(-53)

Di:=¢e({i}+ D), I.:={i€Z? P'Nnw# 0},

M_(z,t) =
(6.39) 0 0 —([2] ~ (wp))P.
0 o ([Z]-wsh 7. | 15 (@)
—([2] - ez ([2] - (wp))e. 0

Denoting by n the outward pointing normal to 0B, noticing that 6% = gfe =0in

B, and that ng = 0 on 0B, N (2, by integration by parts we get, for all TE [0 7],

[ etws)s Mo =

e

(6.40) N /BE (_ufl ([%] _(yB)2) + Ue2 ([%} —(y3)1)) gf; (r)dx

i /33 <_ ([%} a (yB)z) mt ({%} - (yB)l) nz) uesp. (T)dH? ().

If liminf. o ep1e < 400, then under (2.13) the set D is a disk of center 0, hence by
(2.1), (2.7) we have yz = 0, nlop.ne = 5 ([2] e1 + [22] €2) 1op.nq, therefore the
term of the second line of (6.40) is equal to zero. Otherw1se if lime_,gep1e = 400,
then by (6.44) the term of the second line of (6.40) is negligible. Taking (2.16) into
account, we infer

(6.41) / e(u.) : M. (r)dz = fJ/ 0. %%= (1) + o(1).
- Q 6.’1}3
By (6.38), we have
_ 0 Y — @5
640 o=l <CellVelln, || 2EB <o v,
3 oo

By (6.42) and (6.3) (applied with ho = 1p,x0(z,¥) := @(2)(¥ — Yp)a, X=(2) =
xo(z, [£]), a € {1,2}), there holds

0 0 —(y —yp)y
M, —» 0 0 (y—yphe | 1B(y).
—(y—ypley (Y—yphe 0

By passing to the limit as € — 0 in (6.41), in accordance with (6.2), (6.21), (6.42), we
obtain

2 [ (- wp)aEl+ (v - ypnEh)dudydt =
Qx(0,T)xB

(6.43) —J/ 022 it
x(0,T) Oz3
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As (6.43) takes place for all ¢ € C*(Q2x(0,T)), we deduce (6.37). The proof of (6.22)
is achieved. If k =400, we infer from (2.9), (6.20), (6.21) that vs =0 and &/ =0,
then from (6.37) that § =0. If x =+o00, then by (2.9), (6.20), (6.21) we have v =0.
Assertion (6.23) is proved. If k>0, Assertion (6.24) results from (2.9) and (6.20).
The relations stated in (6.25) are obtained by fitting the argument developed in [9]
(see Proposition 3.8 and the argumentation p.180). If (2.14) is verified, then by (6.20)
the sequence (u.) is bounded in W1°°(0,T; L?(Q;R?)). Assertion (6.26) follows then
from Lemma 6.1 (ii).
|

The estimate established in the next lemma is used in the proof of (6.37).

LEMMA 6.5. Assume (2.1), (2.7), (2.8). Let (u.) be the sequence of the solutions
of (1.1) and let n denote the outward pointing normal to B.. Let p € C(Qx(0,T))
and let B, be defined by (6.38). Then the following estimate holds

[ C 2] - @) ([2] - o) ) e

Proof. By the inequality (proved below)

(6.45) /8 e ][Dwd£2

we have
/ lw —w|* dH? < C |Vw|?dz, ¥ w € H' (D x (0,L); R?),
8D x]0,L[ Dx(0,L)

C

6.44 :
(6.44) oo

<

2

dH* < c/ |Vw|*dy, ¥V w e HY(D),
D

where W(z) :=Ff jw(s1, s2, x3)ds1dsz. Since W := H'(D x (0, L); R*)NL*(D; H} (0, L;
R3)) contains no non-vanishing rigid displacement, we infer from Korn’s inequality
(see [24], Theorem 2.5 p.19) that

(6.46) / lw —w|” dH? < c/ le(w)|?dz, ¥V w e W.
8D x]0,L[ Dx(0,L)

Fixing ¢ = (i1,42) € Z?, setting wa (y1, Y2, y3) = tea(e(yr—i1), e(y2—i2), ys), ws(y) :=
Lucs(e(yr — i1),e(y2 — i2), y3), by making suitable changes of variables in (6.46) and
by summation over ¢ € I, where I, is defined by (6.38), taking (6.20) into account
we deduce

(6.47) / lies — Tios|? dH? < 9/ le(u.)|? dz <
dB.NQ € JB.

el
On the other hand, noticing that by (6.38) there holds gg% =0in B, for all o € {1,2}
and g € H'(2), we infer from the Gauss-Green’s Theorem that

04) [ (= ([2] - o) m o+ ([2] - @) me) wepa(riart @) .

3 9

Assertion (6.44) follows from (6.47) and (6.48).

Proof of (6.45). If (6.45) is false, there exists a sequence (w,) in H(D) such that
S pwndl? =0, [, [wa|*dH' = 1, lim, 4o [, |[Vw,|?dy = 0. By the Poincaré-
Wirtinger’s inequality fD‘w—wad£2|2dy < C [p|Vw]?dy, there holds w, — 0 in
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HY(D), hence, by the continuity of the trace application from H(D) to L?(dD),
fc,“:)|wn|2d7'{1 — 0. This contradiction establishes (6.45). |
Justification of Remark 2.2 (v).  Assume that p. >>1 on some e-periodic subset G

of (that is 1g. =1¢ (%) for some GCY). Then by (6.20) the sequence (2%=1¢.)

ot
two-scale converges to 0. Noticing that by (6.3) there holds (u.lg,.) = uolg and
(u:(0)1g,) —~aplg, we deduce from Lemma 6.1 (ii) that %1(;20, hence
(6.49) uo(7)1g = uo(0)1g = aplg, V 7 € [0,T).

7. Proof of Theorem 2.1. Our proof, which combines the energy method of
Tartar [33] with the two-scale convergence method of Allaire and Nguetseng [2], [23],
relies on the appropriate choice of an admissible sequence of oscillating test fields (¢, ).
We will multiply (1.1) by (¢.) and, by passing to the limit as ¢ — 0 in accordance with
the convergences (6.21) established in Proposition 6.4, we will obtain the variational
problem satisfied by the triple (ug,v,0) given, according to the order of magnitude
of k and &, by (7.21), (7.38) or (7.44). Then, noticing that this variational problem
is equivalent to (6.13) for a suitable choice of H,V, a,h,&y, &1, we will deduce from
Theorem 6.2 the existence, the uniqueness and the regularity of its solution and the
initial-boundary conditions. Consequently, the convergences established in (6.21) for
subsequences of (u.), (v:), (6:), take place for the complete sequences. Then, we will
prove that this variational problem is equivalent to (2.17). Finally, we will establish
the corrector result (2.25). We set

H:= {(w0,1p, @) € LA (QxY;R?) x L*(Q; R?) x L*(Q),

(7.1) wo=tvY+pesN(y—yp) in QXB},

((w07¢7@)7(’a}07{pa¢>)1‘1 = / pr’[bOdmdy
QxY
By (2.14), (2.15) there holds 0 <¢<p < <400, hence the application (.,.)y is an
inner product on H and the associated norm is equivalent to ([q. lwo|2dzdy)z =

Sy, lwol?dady+| B [, [ [2dz+J [ |?da)? (see (2.2)). TF ((won, %, pn)) is &

Cauchy sequence in H, then the sequences (wo,), (¥,,), (¢n) converge strongly in L?
and, up to a subsequence, almost everywhere respectively to some wg, 1, ¢. Since
Won =V, +eones A (y —yg) in Q x B, Vn € N, there holds wo=v+yes A (y—ypg) in
Q x B, thus (wq, 1, ) € H. We infer that H is a Hilbert space. In order to define
(¢.), we choose (wo, v, ¢) € L*(0,T; H) satisfying

(7.2) wy € C([0, T]; D(Q; C°(Y;R?))),
(79 wo(T) = 20 1) =0,
set

(74) B :={yeY, dist(y,B) <e}, Bj:= |J{i}+B°, B =QneB;,
1€Z3
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(BZ denotes the e*neighborhood of By in ), fix 7. € C{°(Y') such that

C
(7.5) 0<n. <1, ne=1 in B, ne=0 in Y\ B, \Vn5|<;,

and introduce the field x, given, according to the order of magnitude of k and x by
(7.17), (7.42) or (7.46). Notice that there holds

@6 (%) (el + | )(E)scs fe(x (e t)) <c

and that, due to (7.2), we have x, = 0 on 9Qx]0, T] for small epsilons. Then we set

I*x.
o2

"

(7.7) ¢ (x,t) == (%) X (z,t, §> + wg (x,t, g) )

By multiplying (1.1) by ¢,, after integrations by parts we obtain

/ u 2¢Edmdt+/ a 8¢E(O)dm—/ bo.ob.(0)dx
x(0,7) Pt o T o0

+/ e(u.): o.(¢.)dxdt = / pef-d_dxdt.
Ox(0,T) Qx(0,T)

(7.8)

By (7.6) and (7.7) there holds

(7.9) ‘qbs — wy (3371?, g)‘ + ‘8(;::5 — 8;;50 (x,t, Z)‘ < Ce, (n €{1,2}).

We deduce from (2.11), (7.9), (6.3) (applied to xc = pe, ho € {wo,%,wo(O),
92
9 Wa (())}) that

ot2
a" a"
p=p. —> pwo, pe qﬁg — 00 (ne{1,2)),
Y¥e 0

Since by (6.2), (6.21), (7.10), we have

02 0
I e 222 v 0. 222 (0)dz — [ pobo.d.(0)dx =
B foom o +/Qpao 5 (0)dz /Qp 0-¢:(0)dx
0w dwg
(7.11) PUO-— 5 =Y dadtdy + pao. —2(0)dxdy — pbo.wo (0)dzdy,
axo,r)xy Ot axy Ot axy
lim pef.qbadxdt:/ pf wodxdtdy,
=0 Jax(0,1) Qx(0,T)xY

we only have to evaluate the limit of (fo(O ) e(u) : Ug(qbg)dxdt). To that aim, we
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set

/ B(UE) : Us(d)s)dxdt = Ile + 125 + I3e§
Qx(0,T)

I = / e(u.) : o (¢, )dxdt,
(7.12) Q\Be % (0,T)

b | e(u.) : o.(¢.)ddt,
Be\B. x(0,T)
Is. ::/ e(u.) : o (¢, )dxdt.
% (0,T)

By (7.5), (7.7) there holds ¢_.1q\ g = wo ( Jt, E) Loy s, | o (qﬁs)—aoy(wo)(x,t, 5)|
loyp:e < Ce, hence by (6.3) applied with hg := o7y (wo) and Xe = lo\B:, we have

(7.13) S0 (6:) Lovs: — o0,(w0) 1y 5 (0).

yielding, thanks to the convergence ce(u.)—>e,(uo) (see (6.21), (6.22)),
(7.14) lim I, = / ey (ug) : ooy (wo)dzdtdy.
€—0 Qx(0,T)xY \ B

By (7.4), (7.5), (7.6), (7.7) there holds |%0'5(¢5)135\le < C and L3(B:\ B:) < Ck,
therefore

1
(7.15) gﬂa(%)lBg\BE — 0,
and
(7.16) lim J5. = 0.
e—0

We distinguish then several cases:
Case 0 < k < +o00. We set
Xe (2,1, y):=
Y. (2,0)+P.(z,t)es A (y — yp) —wo (2,,y) + cwie (x,1,y)
where y is given by (2.2), ¥, 5. by (6.38) and wi. € LF(Y; L?(2x(0,T); R?)) by

(7.17)

ls
T 2(.+1) aa;g (Y —yph
I
T3LFD 3903 “(Y —Yp) ’

wic(z,t,y) = Vyey.

9P, 9%

aﬁz (Y —yp) — 5. 2(Y —Ygp)

By (7.7) and (7.17) we have ¢ =1, (x,t)—l—@s(x,t)eg/\([?]—yB) +ewi, (m,t, [%]) in
B., hence

UE(¢5)135:
0 0 ~ 5= ([2] - (p)2)
(7.18) e 0 0 = (2] (yph) |15
—5e=([22]—(yp)2) 2= ([2]—(yp)) Y2 S

x
+e ()\15 tre,(wie) |, t, g> I+2p.e,(wie) (x,t, g>> 1p..



TORSION EFFECTS IN ELASTIC COMPOSITES 29

We deduce from (2.8), (2.9), (6.3), (6.42) that

UE(¢E)1BE _—

(7.19) 0 0 —(57?;(1/ —Ygp)2
k ) 0 , 0 a—iB(lyz—aggh 15(y),
—ﬁ(y—ylg)z Té(y*yB)l l-:rl 873

and then, taking the convergence e(u.)1p.—E' (see (6.21)) and (6.22) into account,
infer

limlgg
e—0

—r 3l+2 03 —f dy —f dp
=k 2L T228 _omf Y (y— + 22, —(y— dxdtd
(7.20) ~/Q><(0,T)(><B33 I+1 Oz 13 9 (Y—yp)2 23 95 (y—yp)1) Y

1+2 9
— kB i/ 93 0%s 1 + kJ/ 90 9% 4.
I+ 1 Joxo,r) 0r3 O3 ax(o,1) 013 03

Passing to the limit as ¢ — 0 in (7.8), thanks to (7.11), (7.12), (7.14), (7.16), (7.20),
we obtain

8wy Owg
U .7dxdtdy+/ pag.—— (0)dzdy
/Qx(o,T)xY oo axy ot ©

—/ pbo.w(0)dzdy —|—/ ey (ug) : ooy(wo)dzdtdy
(7 21) QxY Qx(0,T)x(Y\B)
' 3l + 2 8’03 81/}3

+ k|B|—— — —dxdt+ kJ — ——dxdt
| ‘ [+1 »/QX(O,T) Oxs Ox3 v ~/Q><(O,T) Oxs O3 *

= / pf wodxdtdy,
Qx(0,T)xY

for all (wo, 1, p) € L?(0,T; H) satisfying (7.2), (7.3). We set

€:(u0av70)7 50:(0‘0704070)7 51 :(bOab07O)a h:(.fvao)v
V= {(’UJO,'Ip,(P) € Ha ¢3a(p € LQ(W7H01(O7L))7 wp € L2(Q7H111(Y3R3))}7
— L 3l + 2 81}3 8w3 00 &p
a((v,0), (¥, ) == k|B|H_71 ; 87:13387:1736156 + k‘J/Q %dex’
T2 g, 0,0 (wo ) 1= [ eyfun) s o woldody + a((0,6), (4.0),
Ox(Y\B)

(((uo’v70)7 (’UJ(),’lp,QO)))V = ((’U,O,’v,e), (w07¢a§0))H + a((va9)7 ("pv(p))

+ / VyuOVy'woda:dy
Qx(Y'\B)

By (6.22) and (6.26) there holds &€ L2(0,T; V), % € L?(0,T; H), hence by a density
argument the variational formulation (7.21) is equivalent to (6.13). By (7.1), (7.22)
and the second Korn’s inequality in H'(Qx (Y \ B);R?) (see [24], p. 14), for all
& = (wo, Y, ) € V we have
€113 < CHwOH%Il(QX(Y\B);R?’) +Ca(g,§)
(7.23) < Cllwo |72 (v Byrs) +Cll€(w0) |72 (x(3\ 3)ms) +Calé; €)
< Clelfr + Cal§, ),
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yielding (6.9). Applying Theorem 6.2, we deduce that £ = (ug,v,6) is the unique
solution of (7.21) and, taking (6.10), (6.11), (7.22) into account, that

¢

(7.24) €€ C(0,T);V)nCH([0,T]; H), £(0) = (ao, ao, 0), 9

(O) = (b07 bOa 0)

We infer from (7.24), from the following inequalities (deduced from (7.1), (7.22))

|lwollp2smp (virey) + [1¥lle2 @rs) + 195l L2 (wimg 0,0
+ ||(pHL2(w;H01(O,L)) < O||(w07¢a<p)||‘/7 v (wo,'gb,gp) € ‘/7

|2y + llollz2 @) < Clwo, ¥, ¢)|m,
V (w03¢790) S H7

(7.25)

llwol L2 x v rs) + |9

and from the next elementary implication (verified by any pair of normed linear spaces
(E17 EQ)

TeC*([0,T]; E,) and LEL(E;, Ey) =
dS

LoXeCH(0.7): B) and S (LoX) = Lo Sx (s< k)|,

a'pplled toT = f = (’U,()”U, 9)7 E, € {H7 V}v Ey € {Lz(Qv Hﬁl (Y;Rg))7 L2(Q;R3)v LQ(W;
HY0,L)), L2(Q2 x Y;R3), L2(Q)} and L chosen among the seven continuous linear
operators characterized by (7.25), that

uo € C([0, T[;L*(; Hy (Y;R?)NCH ([0, T]; L2 (2 x Y3 R?)),

ug(0) = ao, %(0) = bo,

(126) v e C(0.T)LH2RY), v(0) = an, So(0) = by,
03, 0€ C([0,T); I(w; HH(0, 1))NCH(0, T); T2(2),
8(0) = 0, %(0) — 0.

In order to prove that the variational problem (7.21) is equivalent to (2.17), we
integrate (7.21) with respect to y over B. Since ug = v + fes A (y — yp) and
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wo =Y+ ez Ay —ypg) in Qx(0,T)x B, taking (2.12) into account, we obtain

6 0]
/ 220 dwdtdy + / pao. 220 (0)dwdy
ax(0, T)><(Y\B ot ay\B) Ot
—/ pbo.wo(())dxdy—i-/ ey (ug) : ooy (wo)dzdtdy
Ox(Y\B) Ox(0,T) x (Y \ B)

0? 0
+ / pr(v+0esA(ys—yg))- ;pdxdt + / ﬁlao.—ip(())dx
Ox(0,T) ot ot

—/ﬁlbo.w( )dm+k\B\3l+2/ 9vs 0%s oy
Q [+1 Qx(0,T) 8.’173 81’3
(7.27) b
[P (ye — ) A v)es) G duds
Qx(0,7T")
_ 0 _
+ /Q P1((Ye —yp) A ao)~€36*f(0)d$ - /901((7!(; —yp) A bo).e3p(0)dx
+kJ / 09 0% 1vdt — / of awodzdtdy
Qx(0,T) 3353 0x3 Qx(0,T)x(Y\B)
+ / prfapdadt + / 11((ye —yp) A f)-espdadt.
Qx(0,T) Qx(0,T)
Choosing
(7.28) P =0, ©=0,

noticing that e, (ug) : ooy (wo) = ooy (o) : Vy(wy), we find

2

0 ow
puo.Tu;dedtdy + / payg.

0)dxdy
Ox(Y'\B) ot O

/Q><(0,T)><(Y\B)

(7.29) 7/ pbo.wo(0)dzdy Jr/ ooy (uo) : Vy(wo)dzdtdy
(Y\B) Qx(0,T) x (Y\B)

= / pf wodxdtdy,
Qx(0,T)x(Y\B)

and, letting wq vary over D(Q2x (0,7)x (Y'\ B); R?), deduce

32u0
P o

(7.30) — div, (oo, (o)) = pf in Qx(0,T)x(Y \ B).

By integrating (7.29) by parts for an arbitrary wy satisfying (7.2), (7.3), (7.28), we
infer from (7.30) that fo(O.T)xBY ooy (up).n.wodrdtdH! (y) = 0 (n := outward point-

ing normal to 9Y’). Noticing that by (6.22) there holds o, (ug).n = 0 on Y N B, we
deduce

(7.31) ooy(uo)n(z,t,y) = —ooy(ug).n(z,t,—y) on Qx(0,T) x Y.

Fixing (wo, %, ¢) € L(0,T; H) satisfying (7.2), (7.3), we infer from (2.3), (7.1), (7.31)
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(n = —np) that

- / on(uo).n.'wodmdthl (y)
Qx(0,T)xd(Y \B)

(7.32) = / ooy (uo)mp.(Y+pes A (y—yp))dedtdH (y)
Qx(0,T)xO0B

— [ (gluo) + mluo)-ex)di.
Qx(0,T)
By multiplying (7.30) by wq and by integrating it by parts over Qx (0,T)x (Y \ B),
thanks to (7.26), (7.31), (7.32) we obtain
82’1.0 0

0 ow
pu .7dxdtdy+/ pag.— (0)dzdy
/Qx(o,T)x(Y\B) o OQx(Y\B) ot ©

(7.33) - / pbo.wo(0)dxdy +
Qx(Y'\B

/ ey (ug) : ooy (wo)dzdtdy
) Ox(0,T)X(Y\B)

—|—/ (g(uo)p+m(up).esp)drdt = / pf . wodzdtdy.
Qx(0,T) Qx(0,T)x(Y'\B)

By subtracting (7.33) from (7.27), we find

82
[ miwrtenn (wo-yp). G deds
Qx

_ o0 _
J — d dt—|—/ ag.—(0)d —/ bo.y(0)d

- / 71(ye — ¥p) A bo)-exp(0)dz + / Pu(We — yi) A ao).es 2 (0)dx
Q Q

(0,7) T ot?
142
- g(uo)apdxdt + k| B S 20vs O%s iy
x(0,T) Qx(0,T) l4+1 Ox3 Oz3
82
+ (JPO+7p,(ye —yp) ANv).es) —;pdxdt - / m(ug).espdrdt
Ox(0,T) ot Ox(0,T)
90 0
+k L4

ot
:/ ﬁ1f~¢d9€dt+/ 1(yg —yp)\f)-espdudt.
Qx(0,T) Qx(0,T)
Making (1, ) vary in D(Qx (0,T); R?) x D(Qx(0,T)), we infer
_0%v _ 0% 3l + 2 0%vs
Prge T Prgaes N We —yp) —KIBIT T Graes =
o.f +g(u in Qx(0,7),
(7.34) 2 2 p1f 92( 0) (0,7)
0°v ,0°0 0°0
p1 (yG*yB)/\w .e3 +J @*kefaix%:

p1((ye —yp) AN f).es+ m(ug).es inQx(0,T).

By (6.22), (7.26), (7.30), (7.31), (7.34), the triple (ug,v,6) is a solution of (2.17),
(2.19). Conversely, any solution of (2.17), (2.19) satisfies (7.21).

Case k = 400, k =0. By (2.9), (2.10) we have

(7.35) lim g1 = 400, lim ey, = 0, ag = 0.
e—0 e—0
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We consider again the sequence (x,) defined by (7.17), and assume now that
(7.36) ¢=0, Y3 =0,

yielding by (7.18), |o.(¢.)1p.| < Cuice. Taking (7.12), (7.35) and the estimate
fBEx(O,T) le(u)|? dzdt < -C- (see (6.20)) into account, we deduce

limsup I3, < Climsup py.€ / le(ue)|?dzdt
=% (0,T)

(7.37) =0 e—0
< Climsupey/p1e = 0.
e—0

By (7.11), (7.12), (7.14), (7.16), (7.35), (7.37), passing to the limit as ¢ — 0 in (7.8)
we obtain

82’1.00
pUo.— 5 drdtdy — pbo.wo(0)dzdy
Ox(0,T)xY ot QxY

(7.38)
+/ ey(u()):aoy(wg)dzdtdy:/ pf wodzdtdy.
Qx(0,T)x(Y'\B) Qx(0,T)xY

This variational problem is equivalent to (6.10), where (notice that by (6.22), (6.23),
(6.26), £ = (ug,v,0) € L*(0,T;V®), ¢ € L?(0,T; H?))

H® = {(wo,v,0) € H, 3 =0=0},

(o me = )m V=V H® (()ve = (),
(7.39) h? = (fly\p+ (fre1+ f2e2) 1, frei+ foe2,0),

a?® = 0, a? = a, §(()2) =0,

€% := (boly\p+ ((bo)re1+ (bo)2e2) 15, (bo)ier+ (bo)zez,0),

the spaces H and V being given by (7.1), (7.22). By (7.23), (7.39), the estimate (6.9)
is satisfied. We deduce from Theorem 6.2 that £ = (ug, v, ) is the unique solution of

(7.38) and that € € C([0,T}; V@) n CL ([0, T]; H?), £(0) =0, %(0) = £, yielding
by (7.25), (7.39) the initial-boundary conditions and regularity properties stated in

(2.18), (2.20). By integrating (7.38) with respect to y over B, we get

8211]0
puo.— 5 drdtdy — pbo.wo (0)dzdy
Ox(0,T)x( ot Q

Y\B) x(Y'\ B)
02 0?
—|—/ ey(ug) : ooy(wo)dadtdy —|—/ 7 (Ul 121 + vy %2) dzdt
Qx(0,T) x (Y \B) Ox(0,T) ot ot

(7.40)
- /gm ((B0)191(0) + (B0)21(0)) d

pf wodrdtdy + / p1(f1h1 + fape)dadt.
Qx(0,T)

Setting 11 = 12 = 0 in (7.40), we find (7.29) and deduce (7.30), (7.31), (7.32), (7.33)
(substituting 0 for ag, 13, ¢). Then, substracting (7.33) from (7.40), we find

02 0?
/QX( ﬁl <’U18t1§1—|— (%] (9;[;2) dxdt —/Qﬁl((bo)ﬂ/}l (I, 0) + (bo)g’l/)g(l‘, 0)) dx

0,T)

B ~/Q><(O,T)><(Y\B)

- / (g(t0))1%; + (g(t0))2tb,)dxdt + / Pr(frn + foba)dudr.
Qx(0,T) ¢

2x(0,T)
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Making 11, 19 vary in D(2x(0,T)), we deduce that

0% '
Prg =i+ (glwe)r in Qx(0,7),
(7.41) 88;
U .
P1 8t22 =p1fa+ (g(uo))2 in Qx(0,7),

hence (ug, v, 6) is solution of (2.17), (2.20).
Case 0 < k < +00.  We assume (7.36), and consider the sequence (x,.) defined by

(742) XE(J?, t7 y) = Ea (l‘, t) - 1/’(377 t) + EWie (J?, t? y) + €2w28 (l‘, t7 y) 3
where 1, is given by (6.38) and

Oy Oy
5 7t7 = - z - = - )
wie (7,t,Y) ( Os (y —yp) Ds (Yy—yp)2|es
2 277
L 38;1 (Y- y5)1 Y-Yp)3 49 %2 (y—yp)i(y—yg)e
woe (z,t,y):= T 6%2 Y- y3>2 (y Yp)i (y Y (Y —Yg)
0

By (7.7) and (7.42) we have ¢, =%, (z,t)+ cwic (2,t, [£]) + e?wac (z,,[£]) in B-.
We deduce

o (B)15, = (fj P ben (2] - <y3>a)> es ® el
a=1

2
Oxs €

+ &3 (L tr ey (wa.) ( , g) I+ 2e, (wo) (mt, g)) 1p,,

3142 0%1q
— s — — 1
K 11 <a_1 31'3 (y yB)a) B(y)e3 ® es,
25)

, (7.12) that

and infer from (2.2), (6.24), (6.

, 342 9 = 0%v,
lim I3, =— — o
E% 3e l+ 1 /S;X(O T)XB (al’g 8$§ <y yB)

a=1

(7.43) ( E axga(y_yB)o) dxdtdy, dyz
a=1 3

2

2 2 2
Zﬁ’” / awaavﬁd .
a1 l+1 ax(0,T) (91'3 5‘:53

Passing to the limit in (7.8), by (2.10), (7.11), (7.12), (7.14), (7.16), (7.36), (7.43), we
get

8211)0
P ———dxdtdy
/Q><(O,T)><Y ot

(7.44) —/ pbo.wo (0)dzdy —|—/ e, (ug) : og(wo)dxdtdy
: Qxy Qx(0,T)x(Y\B)

2

3 2 824pe, O?
+ Y RS + / v 8 vt = / pf wodzdtdy,
af=1 Ox(0,T) 3173 5503 Qx(0,T)xY
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for all (wg,,¢) € L?(0,T; H) satisfying (7.2), (7.3), (7.36). We set (see (7.22),
(7.39))

H® = HO, v = {(wo,v,9) € VI, v1,42 € L2(w; HF(0, 1))}
(((’Ll,o, v, 9), (wOv ¢5 @)))V@) = (((’LLO, v, 9)7 (’LUO, 'l/)a @)))V
+/ (327)1 9%y n %0y 52¢2) de.,
Q

0z% 022 Ox3 0x2
i 3142 o 0?05
I+1°% ), 022 9227

o,P=

a(3)((u07'u,9), (wo, Y, ¥)) ::/ ey(uo) : oy(wo)dady
Qx(Y\B)

+a™((v,6), (4,9)),

(7.45) a®((v,0), (¥, ¢)) ==

(6", &% h®) = (687,67, h®).

By (6.22), (6.23), (6.25), (6.26), there holds ¢ = (ug,v,0) € L*(0,T;V®), ¢ ¢
L?(0,T; H®)), therefore the variational formulation (7.44) is equivalent to (6.10). We
check that the eigenvalues of the 2 x 2 symmetric matrix of (a, 3)!" entries J,5 given
by (2.2) are positive, and deduce that Zi,ﬁ:l JapSass > c|s|z, Vs € R?, for a
suitable ¢>0. Taking (7.22), (7.23) and (7.45) into account, we infer

€11 < ER + Ca® (. 9), (¥, 9))
< C([gln +al(§, &) +a? (%, ), (. 9)))
< C(Elme +a®(E,€),

that is (6.9). We deduce from Theorem 6.2 that £ = (uo, v, ) is the unique solution of
(7.44) and that ¢ € C([0, T}; VE)NC([0,T]; H®), £(0) = 0, 25(0) = £, yielding by
(725) and the inequality Zi:l ||¢a||L2(w;Hg(O,L)) < C| |(’lU0, ’lvbv QP)HV(S) ) (w07 wa SO)
V) the initial-boundary conditions and regularity properties stated in (2.18), (2.21).
Repeating the argument of the case 0 < k < 400, we integrate (7.44) with respect to
y over B, set 11 = 9 = 0, find (7.29), deduce (7.30), (7.31), (7.32), (7.33), subtract
(7.33) from (7.44), get

2
/ D1v. 9 Zjdwdt—i—/ 01bo-v(0)dx —/ g(ug).pdxdt
x(0,T) ot Q

Qx(0,T)
2

Z RILr2 / Pio 02 ”fd dt = / 7, f pdadt,
I+1 oxo.r) 073 O Qx(0,T)

then, making 91,19 vary in D(Q2x (0,T)), infer ﬁl%(x, t)+ 22:1 342 7 5 895/3 =

I+1
P1fa+(g(wo))a, in Qx(0,T) for a € {1,2}, and deduce that (ug, v, d) satisfies (2. 17)7
(2.21).
Case kK = +00. We set
(7.46) X.=0, $=0, =0

By (7.7), (7.12), we have Is. = 0. By passing to the limit as ¢ — 0 in (7.8), we obtain
the variational problem (7.29) and deduce that (ug, v, §) satisfies (2.17), (2.22).
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Proof of the corrector result (2.25). We consider the fibered case, when 0 < k < 400
(the other cases are similar). Setting (7.22), we introduce the continuous symmetric
bilinear form on W2(0,T;V, H) := {¢ € L*(0,T;V),¢’ € L*(0,T; H)} defined by

(r.47) alc. )= | () o) V6D e WOV H)

We fix € := (wo,,¢) € WH2(0,T;V, H) satisfying (7.2) (not (7.3)) and set (7.7).
There holds ¢, € C’([O,T],H (;R3)) N C([0, T); L2(%;R3)) for small epsilons. By
applying (6.14) to w = u. — ¢, and by integrating it over (0,T), taking (2.23) into
account, we infer

/ e — ¢ [Pdadt < C (Jio — 2J0e + Jo) + C b, (0) 2 e,
x(0,T) Qx(0,T)

Oou, 2
J1e ::/ Pe
Qx(0,T)

ot
Joe 1= / 8u5 8¢5 +e(ue) : o:(¢p.)dxdt,
Qx(0 T)

+ e(ue) : o-(u:)dzdt,

(7.48)

ot ot

JB ::/ ps‘ =
: x(0,T) ot

In order to compute the limit of (Ji¢), we notice that by (2.23) and (6.27) we have
ag =0 and

9 r Ou,
(7.49) Jie = pelbo|“dzdt 4 2 pef. dt.
Ox(0,T) 0 Qx(0,8) ot

Since peloyx(o,4)—pleo, for all ¢ € (0,7) and since, by (6.20),

2
+ e(d)s) : Us(d)a)difdt

Psf

dmds‘ < C, we deduce from (6.26), (7.22) and from the Dominated Convergence
Theorem that

T
0
lim Jy.= / p |bo|? dadydt + 2 / / of 220 drdsdy | dt
e—0 Qx(0,T)xY 0 Qx(0,6)xY ot

- / ' ((fl,gng 2 / t <h,5'>Hds) dt
:2/0T (e(0)+/ot (h,ﬁ’)Hds)dt

Applying the energy equation (6.12), taking (7.47) into account, we infer

T T
@50 =2 [ edt= [ (€€ +ale0)dt = alc. ).

By (6.26), (7.10), (7.12), (7.14), (7.16), (7.20), (7.22) we have lim._,q fo(o ) e(u,) :
2]
o-(¢p.)dzdt = fo a(€,€)dt, and lim._ fo(o - peagé . g;a _ fo(o T)Xypauo'augo
drdtdy = ¢) dt h
xdtdy fo ( , )H , hence

(7.51) lim Joe = a(¢, ).
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The convergences deduced by substituting 1 for p. and p in (7.10) hold true, hence

d¢. | dwy |?
lim De - dxdt= / P il dxdtdy
=0 Jaxo,1) ot axo, )<y | Ot
T
7.52 - (”, ~’) dt
(75 | (9,
We deduce from an explicit computation that
ce(9p:)la\p. — ey(wo)ly\s,
-1 )
2(1+1) 672 0 5 _%5973('!/ —Yg)2
e(¢p:)lp, —» 0 g(ljrll)a%; %Ti(y—yB 1| 18(y),
[é) e}
392 (y-yp) 3L —yph g

yielding, in accordance with (7.13), (7.15), (7.19), (7.22), (7.52)

(7.53) lim Ja. = a(¢, §).

e—0

Joining (7.48), (7.50), (7.51), (7.53), and taking the strong two-scale convergence of
(uo (z,t, %) — ¢.) to ug — wy into account (cf. (2.23)), we infer

2

. T
hmsupHuo (a:,t, f) — Ue
€

e—0 L?

< Climsup/ ’uo ( ) ¢e
e—0 Jax(0,T)

T ~ ~ ~. ~
<c [ fe-dhar+cag-ée-9+0e-0)

+ |lue — ¢ | dzdt

2

=

By the arbitrary choice of £ € C®([0,T]; W) (W := {(wo,%,p) € V, wy € D(L;
C°(Y;R?))}), the density of C°([0,T]; W) in W2(0,T;V, H)and the continuity of

the application ¢ — fOT IC13rdt + (¢, Q) + [ony ¢(0)? dzdy on W2(0,T;V, H), the
corrector result (2.25) is proved. The convergence u.—ug follows then from (2.23).
Remark 7.1. If uc.—»uyg, then by Fatou’s Lemma

T
/ |uo|?dzdrdy = lim/ /|u5(7')|2dxd7'2/ (hmlnf/ |ue (T |2dx> dt.
Qx(0,T)XY e—=0 /o Jao e—0

On the other hand, as for all T there holds u.(T)—ug(7), we have (see [2], Theorem
0.2)

liminf/ |u(7)|?dx 2/ |uo(T)|2dzdy, ¥ T € [0,T),
Q axy

e—0

thus liminf._q [, |ue(7)*dz = [,y [wo(T)|?dzdy, for a.e. T € [0,T]. Hence for a.e.
7 € [0,T], the sequence (us(7)) two-scale converges strongly, up to a subsequence, to

Uo(T).
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8. Proof of Theorem 3.1. The first step consists in the study of the asymp-
totic behavior of some sequences associated with the sequence (u.) of the solu-
tions of (1.1). Repeating the argument of the proof of Proposition 6.4, we obtain

fQ (ps a9t 2|e(u6)|2+,u15|e(u5)|2135) (r)dz < C, V7 € [0,T], and applying

(6.14) to w = ue, get [, [uc|*(r)dz < C and then [,(|vc]? + |r-[*)(7)dz < C (see
(2.16), (3.3)). We infer that, up to a subsequence, there holds

oy, Qe O
(8.1) ot ot

. > u, v, >wv, r.>r star-weakly in L>=(0,T; L?).

ce(us)lg =~ E™, ce(ue)lp, — 0,

We identify E™ = e, (ug), deduce that ug € L>(0,T; L*(Q; H, (Y;R?))) and that
ey(up) = 0in Qx((), T)x B, hence ug = a + b A (y — yp) for a suitable (a,b) €
(L°9(0,T; L2(;R3)))2. We find @ = v (see (6.36)), then fixing v € D(Qx (0,7); R?),
deduce from (3.3), (8.1) that

X
r.ydxdt = lim J! —| —yp) ANue ) ~ydxdt
forgy st =t [ (2] - w) 2 )
= / I ((y —yp) A uo) ydudtdy
Qx(0,T)xB
:/ J </ (yyB)A(bA(yyB))dy> ydadt
x(0,T) B

= / (J~1Jb).~ydzdt = / b.ydzdt,
Qx(0,T) Qx(0,T)

thus b = r. The next step consists in the choice of a suitable sequence of test fields.
We define

HW = {(wo,9,7) € L*(Q x Y;R?) x (L*(QR?))?,

(8.3) wo(z,y) = +vA(y—ygp) in Q x B},
((w0’1/’>7)a(1b0712’7’7))1{(4) 12/ pwo.wodxdy,
QxY

choose (wg, 1,v) € L?(0,T; HW) satisfying (7.2), (7.3), and set

(84) Xe ($7ta y) = '{[’s (mvt) + %E(x’t) A (y - yB) — Wo (x,t,y) )
where v,AbE and ¥, are given by (6.15). We multiply (1.1) by ¢, :=n. (£) x. (z,t, %)+
11

wy (z,t, %), where 1. is defined by (7.5) and get (7.8). We obtain (7.11), set (7 12)
find (7.14), (7.16) and I3, = 0 and, passing to the limit as ¢ — 0 in (7.8), get

0? ow
/ puo.#dxdtdy + / payg. (())dxdy / pbo.wo(0)dzdy
Ox(0,T)xY ot axy ot axy

(8.5)
+/ e, (ug) : ooy (wo)dxdtdy :/ pf wodzdtdy.
Qx(0,T)x (Y\B) Qx(0,T)xY
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We set
O {g = (wo,,~) € H® w, € LQ(Q;H;(Y;R?’))} ,
5 = (UQ,’U,’V‘), 564) = ((1070,070), 51(_4) = (b07b070)7 h(4) = (.f7f=0)7

(86) ((&, é::))V<4> =(¢, é:)H<4> +/ Vyug.Vywodrdy,

QxY\B
o (g, v, ), (wo, 1, 7)) i= / ey (ug) : oy (wo)dzdy, T :=0.
Qx(Y\B)

Since there holds ¢ € L?(0,T;V®), ¢ € L?(0,T; HW), the variational formulation
(8.5) is equivalent to (6.10). By Korn’s inequality we have |[£][3.., < C(|€[%., +
a(€,£)), yielding (6.9). We deduce from Theorem 6.2 that (ug,v,r) is the unique
solution of (6.10) and satisfies the properties of continuity and the initial boundary
conditions stated in (3.5). By integrating (8.5) with respect to y over B, thanks to
(2.12), (3.3), we obtain

2
/ puo.L’u;dedtdy + / pao.%(O)dazdy
Ox(0,T)x(Y\ B) ot Ox(Y'\B) ot

— / pbo.w(0)dzdy +/ e, (ug) : ooy (wo)dzdtdy
Qx(Y'\B) Qx(0,T)x(Y\B)

0?2 0
t [ ot e - vs) Gadedt+ [ pra G 0o
Qx(0,T) Q
2

3
(8.7) - / 7,bo-1(0)dz + / (T + 5y (Yo —yp) A V). oa dadt
Q Qx(0,T) ot

+ [ Bltwe —vs) nan). Z 0~ [ 7i((ve — ys) A bo)1(0)da

= pf wodxdtdy + / p1.fpdadt
Qx(0,T)x(Y'\B) Qx(0,T)

+ / 71 (We — yp) A F)~dadt.
Qx(0,T)

Choosing 9 = v = 0 in (8.7) we deduce (7.30), (7.31) and find the equation obtained
by replacing m(ug).es by m(ug).y in (7.33). Subtracting it from (8.7), we get

_ e _ o
/ (Prv+p1r A (Yo —yp)) -dedt + / 9100-5(0)‘1517
Qx(0,T) Q

_ _ o
- / p1bo-1(0)dx + / (I’ +01((ye —yp) Av)) aTdedt
Q Qx(0,T)

+ /Q p((Ye —yp) A ao)-%Z(O)dx —/Qﬁl((ya —ygp) Nbo).y(0)dx

[ ottt pdndts [ (p((ya-yp)n £)rm(un)dadt,
Qx(0,T) Qx(0,T)

yielding the equations satisfied by (v,r) set forth in (3.5). The corrector result is

obtained by fitting the argument of the fibered case.

Remark 8.1. In the fibered case, by substituting Oes for b in (8.2), we find that the

sequence (rc) converges star-weakly in L>(0,T; L*(2: R3) to r := fes.
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9. Sketch of the proof of Proposition 5.2. a) (v) = (i). If (a) (resp. (b))
is satisfied, the proof of the estimate (5.3) is similar to that of the estimate below
formula (4.32) of [9] (resp. Formula (4.3) of [9]).

(#i1) = (iv). By multiplying (5.1) by u. and by integrating by parts, we infer from
(5.3) that (u.) is bounded in L?(Q;R3).

(iv) = (v). Assume by contradiction that neither (a) nor (b) are satisfied, then the
dimension of the subspace of R? spanned by the directions of the fibers is lower than
or equal to 2. We can assume without loss of generality that this subspace is spanned
by (e2,e3). Fix f := e;. By (i), (u.) admits a two-scale converging subsequence
which by Corollary 5.1 satisfies (5.2). Consider the constant field wo(z,y) = e;.
It can be checked that wg € V, a(ug,wo) = 0, (f,wo)g # 0, hence (5.2) has no
solution, a contradiction.

(234) = (¢). We choose a smooth field wy € V' and consider the sequence of test field
(¢p.) corresponding to that introduced in the proof of Theorem 2.1. Repeating the
argument of the proof of (7.53), we get lim._,o F.(¢.) = a(wy, wy). Passing to the
limit as € — 0 in the inequality H¢e||2L2(Q;R3) < CF.(¢.), we infer ||w0\|2L2(QXy;R3) <
Ca(wo, wp). Thanks to (4.2), (4.3) and to Korn’s inequality in H!(Y \ B;R?), we get
lwo| < Ca(wg, wo).

(2) = (i1). This results from the Lax-Milgram Theorem.

(#4) = (v). Similar to the proof of (iv) = (v).

(vi) = (iv). Obvious.

(iii) = (vi). If (iii) holds, then (u.) is bounded in L?({;R3) (see the proof of
(#41) = (iv)) and that (5.2) has a unique solution ug (because (ii) = (ii)). Hence,
by Corollary 5.1, (u.) two-scale converges to ug.

b) Assume by contradiction that (5.2) has a solution ug. Let P denote the subspace
of R? orthogonal to the space spanned by the directions of the fibers. Fix w € D(Q)
such that w(z) € P, Vo € Q and (f,w)r2(q;rs) > 0. Set wo(x,y) := w(x). Then
wo € V and (f,wo)mg > 0. On the other hand, since (v) b) is not satisfied and since
wo(z,y) € P, we infer a(ug, wo) = 0, which contradicts (5.2).

=
=
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