Emmanuel Creusé 
email: emmanuel.creuse@math.univ-lille1.fr
  
Serge Nicaise 
email: serge.nicaise@univ-valenciennes.fr
  
Emmanuel Verhille 
email: emmanuel.verhille@math.univ-lille1.fr
  
Robust residual a posteriori error estimators for the Reissner-Mindlin eigenvalues system

Keywords: Reissner-Mindlin plate, finite elements, a posteriori error estimators, eigenvalues AMS (MOS) subject classification 74K20, 65M60, 65M15, 65M50

We consider a conforming finite element approximation of the Reissner-Mindlin eigenvalue system, for which a robust a posteriori error estimator for the eigenvector and the eigenvalue errors is proposed. For that purpose, we first perform a robust a priori error analysis without strong regularity assumption. Upper and lower bounds are then obtained up to higher order terms that are superconvergent, provided that the eigenvalue is simple. The convergence rate of the proposed estimator is confirmed by a numerical test.

Introduction

Nowadays, a posteriori error estimators have become an indispensable tool in the context of finite element methods. They are now widely used in order to control the numerical error, as well as to drive the adaptive mesh refinement processes. Many works have been devoted to this topic (see e.g. [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Babuška | The finite element method and its reliability[END_REF][START_REF] Neittaanmäki | Reliable methods for computer simulation[END_REF][START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] for general monographies). Considering the Reissner-Mindlin system, several kind of suitable finite elements exist, and a well known task to overcome is to avoid the so-called "shear locking effect", by using properly defined operators at the discrete level. In the literature, if a lot of papers have already been devoted to the a priori error analysis of this system, far less references can be found on its a posteriori error analysis (see e.g. [START_REF] Beirão Da Veiga | A-priori and a-posteriori error analysis for a family of Reissner-Mindlin plate elements[END_REF][START_REF] Carstensen | Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element[END_REF][START_REF] Carstensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF][START_REF] Carstensen | Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method[END_REF][START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF][START_REF] Hu | A posteriori error analysis of finite element methods for Reissner-Mindlin plates[END_REF][START_REF] Liberman | A posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate[END_REF][START_REF] Lovadina | A posteriori error analysis of the linked interpolation technique for plate bending problems[END_REF]).

In this work, we are specifically interested in the Reissner-Mindlin eigenvalues system, corresponding to the modeling of a vibration plate problem. Our goal is to derive an a posteriori estimator which is robust with respect to the plate thickness parameter t, efficient and also explicitly computable. To our best knowledge, only the a priori analysis of this eigenvalue problem in a regular context is up to now available (see [START_REF] Durán | Error estimates for low-order isoparametric quadrilateral finite elements for plates[END_REF][START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF][START_REF] Durán | Finite element analysis of the vibration problem of a plate coupled with a fluid[END_REF][START_REF] Gómez | On the vibrations of a plate with a concentrated mass and very small thickness[END_REF][START_REF] Hernández | Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements[END_REF][START_REF] Lovadina | Approximation of the buckling problem for Reissner-Mindlin plates[END_REF] for an overview on this topic). We have here in mind to extend it to the non regular context, and, with these results in hand, to provide a relevant a posteriori error estimator. For similar results for the Laplace equation, we refer to [START_REF] Larson | A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems[END_REF][START_REF] Durán | A posteriori error estimates for the finite element approximation of eigenvalue problems[END_REF].

The outline of the paper is as follows : In Section 1, we recall the Reissner-Mindlin eigenvalues system and its discretization. Section 2 gives an a priori error analysis whithout strong regularity assumptions, that constitutes its originality. Section 3 is devoted to some preliminary results in order to prove the upper bound of the a posteriori estimator. This one directly follows and is detailed in section 4. We then give an a posteriori estimate for the eigenvalues error in section 5. The lower bound is developped in section 6 and leads to the efficiency of our estimator. Finally, some numerical tests are presented in section 7, that confirm its requested behavior.

The boundary value problem and its discretization

Let Ω be a bounded open domain of R 2 with a Lipschitz boundary that we suppose to be polygonal. Assuming that the plate is clamped, its free vibration modes are solutions of the following problem (called Reissner-Mindlin eigenvalue problem) : Given t a fixed positive real number that represents the thickness of the plate, find a non-trivial solution (ω, φ) ∈ H 1 0 ( Ω) × H 1 0 ( Ω) 2 and νt > 0 such that for all (ṽ, ψ) ∈ H 1 0 ( Ω) × H 1 0 ( Ω) 2 we have :

t 3 ã( φ, ψ) + ζ t Ω( ∇ω -φ) • ( ∇ṽ -ψ) dx = ν 2 t t Ω ρ ω ṽ dx + t 3 12 Ω ρ φ • ψ dx , ( 1 
)
where νt is the angular vibration frequency, ρ is the density of the plate and ã( φ, ψ) = Ω C ε( φ) : ε( ψ)dx.

Here, the operator : denotes the term-by term tensor product and

ε( φ) = 1 2 ( ∇ φ + ( ∇ φ) T ),
where ∇ denotes the usual gradient operator over Ω. C is the elasticity tensor given by

C ε( φ) = E 12(1 + ν) ε( φ) + E ν 12(1 -ν 2 )
tr(ε( φ)) I,

where E and ν are respectively the Young modulus and the the Poisson coefficient of the material. We also define

ζ = E k 2(1 + ν) ,
where k is the shear correction factor usually equal to 5/6 [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF]. Now, in order to perform an a posteriori error analysis that do not depend on the chosen unit of length problem [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF] has to be given in its dimensionless formulation. To do it, we introduce a density as well as a length scale of reference, respectively denoted by ρ and L (the latest being in the order of the diameter of the domain Ω). We consequently define the dimensionless variables and unknowns x, ρ, φ and ω by :

x = L x, ρ = ρ ρ, φ = φ and ω = L ω.

Considering the case of the constant density (ρ ≡ ρ so that ρ ≡ 1), problem [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF] in which the eigenvector is normalized is now equivalent to find a non-trivial (ω, φ) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω) and α t > 0 such that for all (v, ψ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 we have :

           a(φ, ψ) + Ω γ • (∇v -ψ) dx = α t Ω ω v dx + t 2 12 Ω φ • ψ dx , Ω ω 2 dx + t 2 12 Ω φ • φ dx = 1, (2) 
where we note : a(φ, ψ) = Ω Cε(φ) : ε(ψ)dx, Cε(φ) = 2µ ε(φ) + λ tr(ε(φ)) I,

with µ = 1 24(1 + ν) , λ = ν 12(1 -ν 2 )
, and ε(φ) = 1 2 (∇φ + (∇φ) T ).

Defining ζ = ζ/E, the dimensionless variables and parameters arising in [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF] are given by :

t = t/L, γ = ζ t 2 (∇ω -φ) and α t = ρ ν 2 t L 2 E t 2 .
From now on, the parameter t is supposed to be in the interval (0, t max ] with t max > 0 fixed. In the following, (• , •) D stands for the usual inner product in (any power of) L 2 (D). For shortness the L 2 (D)-norm is denoted by • D . For s ≥ 0, the usual norm and seminorm of H s (D) are respectively denoted by • s,D and | • | s,D and the usual norm on

H -s (D) = (H s 0 (Ω)) ′ is denoted • -s,D .
For all these notations, in the case D = Ω, the index Ω is dropped. The usual Poincaré-Friedrichs constant in Ω is the smallest positive constant c F such that ||φ|| ≤ c F |φ| 1 ∀φ ∈ H 1 0 (Ω) 2 . By Korn's inequality [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF], a is an inner product on H 1 0 (Ω) 2 equivalent to the usual one. Indeed, defining the energy norm || • || C by

ψ 2 C = a(ψ, ψ) ∀ ψ ∈ H 1 0 (Ω) 2 ,
it can be shown (see [START_REF] Creusé | Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system[END_REF]) that

|ψ| 2 1 ≤ 1 µ ψ 2 C ∀ ψ ∈ H 1 0 (Ω) 2 . ( 3 
)
Let us now consider a discretization of (2) based on a conforming triangulation T h of Ω composed of triangles. We assume that this triangulation is regular, i.e., for any element T ∈ T h , the ratio h T /ρ T is bounded by a constant σ > 0 independent of T and of the mesh size h = max

T ∈T h h T
, where h T is the diameter of T and ρ T the diameter of its largest inscribed ball. We consider on this triangulation classical conforming finite element spaces

W h × Θ h such that W h ⊂ W ℓ,h := v h ∈ C 0 ( Ω); v h = 0 on ∂Ω and v h|T ∈ P ℓ (T ) ∀ T ∈ T h ⊂ H 1 0 (Ω), Θ h ⊂ W ℓ,h × W ℓ,h ⊂ H 1 0 (Ω) × H 1 0 (Ω)
, for some positive integer ℓ, where P ℓ (T ) is the space of polynomials of degree at most l defined on T . The discrete formulation of the Reissner-Mindlin eigenvalue problem is now to find (ω h , φ h ) ∈ W h × Θ h and α t,h > 0 such that

     a(φ h , ψ h ) + (γ h , ∇v h -R h ψ h ) = α t,h (ω h , v h ) + t 2 12 (φ h , ψ h ) , ∀ (v h , ψ h ) ∈ W h × Θ h , ω h 2 + t 2 12 φ h 2 = 1, (4) with γ h = ζt -2 (∇ω h -R h φ h ). (5) 
Here, R h denotes the reduction integration operator in the context of shear-locking with values in the so-called discrete shear force space Γ h which depends on the involved finite element [START_REF] Bathe | A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation[END_REF][START_REF] Brezzi | Mixed-interpolated elements for Reissner-Mindlin plates[END_REF][START_REF] Durán | Error estimates for low-order isoparametric quadrilateral finite elements for plates[END_REF][START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF][START_REF] Stenberg | An hp error analysis of MITC plate elements[END_REF]. We assume moreover that

R h ψ h ∈ H 0 (rot, Ω) ∀ψ h ∈ Θ h , where H 0 (rot, Ω) = {v ∈ L 2 (Ω) 2 ; rot v ∈ L 2 (Ω) and v • τ = 0 on ∂Ω}, equipped with the norm v 2 H(rot,Ω) = v 2 + rot v 2 .
Here, for any

v = (v 1 , v 2 ) T ∈ L 2 (Ω) 2 , rot v = ∂v 2 /∂x -∂v 1 /
∂y and τ is the unit tangent vector along ∂Ω. In this work, R h is defined as the interpolation operator from Θ h on the H 0 (rot, Ω) conforming lower-order Nedelec finite element space [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF].

In this paper, we consider the lowest order MITC element (also called the Duran Liberman element) for which W h and Θ h are defined by

W h = v h ∈ C 0 ( Ω); v h = 0 on ∂Ω and v h|T ∈ P 1 (T ) ∀ T ∈ T h , Θ h = W 2 h ⊕ B h
, where B h is the edge bubble space (see [START_REF] Carstensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF][START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF] for more details). In that case, Γ h is chosen as the lowest order Nédélec finite element space, namely

Γ h = σ ∈ H 0 (rot, Ω); σ |T ∈ P 0 (T ) 2 ⊕ P 0 (T )(x 2 , -x 1 ) ⊤ ∀ T ∈ T h ,
and the reduction operator R h is the associated interpolation operator that is characterized as follows: for any

ψ ∈ H 0 (rot, Ω), R h ψ is the unique element in Γ h satisfying E (R h ψ -ψ) • τ E ds = 0,
for all edges E of T and any T ∈ T h . The advantage of this element is that it is locking free (see [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF] for a robust a priori estimate). Other examples are also possible, we refer to Table 1 of [START_REF] Carstensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF] for a comprehensive list. In that case, our a posteriori error analysis is valid, but the robust a priori error analysis remains open for some of these elements (for instance, the MITC3 element).

By the usual Helmholtz decomposition of any H 0 (rot, Ω) vector field [8, p. 299], for any

φ h ∈ Θ h there exist z ∈ H 1 0 (Ω) and β ∈ H 1 0 (Ω) 2 such that, (R h -I)φ h = ∇z -β, (6) 
as well as a constant C > 0 such that

z 2 1 + β 2 1 ≤ C (R h -I)φ h 2 H(rot,Ω) . (7) 
More precisely, if we introduce the constant c R such that

|β| 1 ≤ c R rot(R h -I)φ h , then we have C = (1 + c 2 F )(1 + c 2 R + c 2 R c 2 F ).
If (ω, φ) is the solution of ( 2) and (ω h , φ h ) the one of (4), the usual error e ev h is defined as

(e ev h ) 2 = |ω -ω h | 2 1 + |φ -φ h | 2 1 + ζ -1 t 2 γ -γ h 2 + ζ -2 t 4 rot(γ -γ h ) 2 + γ -γ h 2 -1 . (8) 
The residuals are defined as follows :

Res 1 (v) = (α t,h ω h , v) -(γ h , ∇v) for any v ∈ H 1 0 (Ω), (9) 
Res 2 (ψ) = -a(φ h , ψ) + (γ h , ψ) + t 2 12 (α t,h φ h , ψ) for any ψ ∈ H 1 0 (Ω) 2 . ( 10 
)
We finally need to introduce the following mesh-dependent norm. For all (ψ, v) ∈

H 1 0 (Ω) × H 1 0 (Ω) 2 , we define | (ψ, v)| 2 1,h = ∇ψ 2 + T ∈T h 1 t 2 + h 2 T ∇v -ψ 2 T . (11) 
For any functional F defined on H 1 0 (Ω) × H 1 0 (Ω) 2 , the dual norm associated with ( 11) is classically defined by

| F | -1,h = sup (ψ,v)∈H 1 0 (Ω)×H 1 0 (Ω) 2 \{0} F (ψ, v) | (ψ, v)| 1,h . (12) 
In the following, the notation a b and a ∼ b mean the existence of positive constants c 1 and c 2 , which are independent of the mesh size, of the plate thickness parameter t, of the quantities a and b under consideration and of the coefficients of the operators such that a c 2 b and c 1 b a c 2 b, respectively. The constants may in particular depend on the aspect ratio σ of the mesh. We denote by ω T the union of elements T ′ ∈ T h that share at least a node with T and by ω E the union of elements having in common the edge E.

Finally, E h denote the set of interiors edges in T h and, for any edge E ∈ E h , we define by h E its length and by n E a fixed unit normal vector to E.

Robust a priori estimations

This section is devoted to an a priori error analysis of the Reissner-Mindlin eigenvalue problem. This subject is the origin of a lot of works (see e.g. [START_REF] Durán | Error estimates for low-order isoparametric quadrilateral finite elements for plates[END_REF], [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF], [START_REF] Durán | Finite element analysis of the vibration problem of a plate coupled with a fluid[END_REF], [START_REF] Gómez | On the vibrations of a plate with a concentrated mass and very small thickness[END_REF], [START_REF] Hernández | Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements[END_REF], [START_REF] Lovadina | Approximation of the buckling problem for Reissner-Mindlin plates[END_REF]) in the smooth case, in the sense that the domain is supposed to have a smooth boundary or to be a convex polygon. Here we want to perform a similar analysis without the convexity assumption. This requires to revisit the whole results with less regular solutions. We first start with robust a priori estimates for the Reissner-Mindlin system with data in L 2 (Ω) and then give their consequence to the eigenvalue problem.

Robust a priori estimates for the Reissner-Mindlin system

As suggested before, we need to determine the regularity properties and to give uniform estimates of the solution of the Reissner-Mindlin system with L 2 right-hand side. For this purpose, let us consider the following problem : Given g ∈ L 2 (Ω) and ϕ ∈ L 2 (Ω) 2 , find

(β t , w t ) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω) such that for all (η, v) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω)    a(β t , η) + (τ t , ∇v -η) = (g, v) + t 2 12 (ϕ, η), τ t = ζt -2 (∇w t -β t ). ( 13 
)
This problem has a unique solution in H 1 0 (Ω) 2 × H 1 0 (Ω) since the bilinear form

((β, w), (η, v)) → a(β, η) + ζt -2 (∇w -β, ∇v -η), is coercive in H 1 0 (Ω) 2 × H 1 0 (Ω).
For such a problem we have the following regularity result with robust a priori estimates (in the regular case, see Theorem 7.1 of [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF]).

Theorem 2.1 There exists ε 0 ∈ (0, 1 2 ] such that for all ε ∈ (0, ε 0 ], (β t , w t ) ∈ H 3/2+ε (Ω) 2 × H 3/2+ε (Ω) with

β t 3/2+ε + w t 3/2+ε + τ t -1/2+ε + t τ t 1/2+ε g + t 2 ϕ . (14) 
Proof: As in [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF], we see that

(β t , w t ) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω) is the unique solution of (13) if and only if (r, β t , p t , w t ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 × Ĥ1 (Ω) × H 1 0 (Ω) is solution of the triangular system        ζ(∇r, ∇µ) = (g, µ), ∀µ ∈ H 1 0 (Ω), a(β t , ψ) -ζ(curl p t , ψ) = ζ(∇r, ψ) + t 2
12 (ϕ, ψ), ∀ψ ∈ H 1 0 (Ω) 2 , -(β t , curl q) -t 2 (curl p t , curl q) = 0, ∀q ∈ Ĥ1 (Ω), (∇w t , ∇s) = (β t + t 2 ∇r t , ∇s), ∀s ∈ H 1 0 (Ω), [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF] with the relation t -2 (∇w t -β t ) = ∇r + curl p t , and the notation

Ĥ1 (Ω) = H 1 (Ω) ∩ L2 (Ω), L2 (Ω) = {q ∈ L 2 (Ω) : Ω q(x) dx = 0}.
Now we divide the proof is different steps:

1) The first problem in ( 15) is a Dirichlet problem in Ω with a L 2 (Ω) datum, therefore by [START_REF] Grisvard | Singularities in boundary value problems[END_REF]Corollary 2.4.4], there exists ε ∆ ∈ (0, 1 2 ] such that r ∈ H 3/2+ε (Ω), for all ε ∈ (0, ε ∆ ] and r 3/2+ε g .

2) We now look at the system in (β t , p t ) that by taking the difference between the second and the third line of (15) (multiplied by ζ) takes the form

a(β t , ψ)-ζ(curl p t , ψ)+ζ(β t , curl q)+ζt 2 (curl p t , curl q) = F, ψ , ∀(ψ, q) ∈ H 1 0 (Ω) 2 × Ĥ1 (Ω), (17) 
where here F := ζ∇r+ t 2 12 ϕ. Again this problem has a unique solution for any F ∈ H -1 (Ω) 2 since the left-hand side is coercive in H 1 0 (Ω) 2 × Ĥ1 (Ω). By taking (ψ, q) = (β t , p t ) and using Korn's inequality, we get

β t 2 1 + t 2 curl p t 2 F -1 β t 1 ,
and therefore

β t 1 + t curl p t F -1 . (18) 
But by taking ψ = 0 in [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF], we get

(β t , curl q) + t 2 (curl p t , curl q) = 0, ∀q ∈ H 1 (Ω), (19) 
since the curl of a constant function is zero. By integration by parts, we get equivalently (curl β t , q) = -t 2 (curl p t , curl q), ∀q ∈ H 1 (Ω).

By Cauchy-Schwarz's inequality in the right-hand side, we obtain

curl β t -1 = sup q∈H 1 0 (Ω),q =0 |(curl β t , q)| q 1 t 2 curl p t ,
and by ( 18) we arrive at curl

β t -1 t F -1 . (20) 
We now look at an estimate of the L 2 -norm of p t . For that purpose, we notice that by Corollary I.2.4 of [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF] there exists φ 0 ∈ H 1 0 (Ω) 2 such that div φ 0 = p t in Ω, and φ 0 1 p t .

Therefore the function ψ 0 = (-φ 0 2 , φ 0 1 ) belongs to H 1 0 (Ω) 2 and satisfies

curl ψ 0 = div φ 0 = p t in Ω, (21) 
as well as

ψ 0 1 p t . ( 22 
)
Using as test function in [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] the pair (ψ 0 , 0), we get

ζ(curl p t , ψ 0 ) = a(β t , ψ 0 ) -F, ψ 0 .
Using ( 21) and Green's formula, we obtain

ζ p t 2 = ζ(p t , curl ψ 0 ) = ζ(curl p t , ψ 0 ) = a(β t , ψ 0 ) -F, ψ 0 .
Using Cauchy-Schwarz's inequality, ( 18) and ( 22), we arrive at

p t F -1 . (23) 
Let us now introduce the mapping A 0 as follows

A 0 : H -1 (Ω) 2 → H 1 0 (Ω) 2 × L2 (Ω) : F → (β 0 , p 0 ), where (β 0 , p 0 ) ∈ H 1 0 (Ω) 2 × L2 (Ω)
is the unique solution of the Stokes like system (that formally corresponds to [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] 

with t = 0) a(β 0 , ψ) -ζ(p 0 , curl ψ) = F, ψ , ∀ψ ∈ H 1 0 (Ω) 2 , (curl β 0 , q) = 0, ∀q ∈ L2 (Ω). ( 24 
)
Clearly (see [2, p. 1288]) A 0 is an isomorphism and consequently for all t ∈ (0, t max ] we can consider the mapping

B t : H 1 0 (Ω) 2 × L2 (Ω) → L2 (Ω) × H -1 (Ω) : (β 0 , p 0 ) → (p t , curl β t )
where (β t , p t ) is the unique solution of ( 17) with right-hand side F = A -1 0 (β 0 , p 0 ). First we notice that the estimates ( 20) and [START_REF] Grisvard | Singularité en elasticité[END_REF] imply that B t is uniformly (in t) bounded in the sense that

p t + t -1 curl β t -1 β 0 1 + p 0 .
On the other hand the proof of Theorem 7.1 of [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF] shows that B t is also uniformly bounded from

H 2 (Ω) 2 ∩ H 1 0 (Ω) 2 × Ĥ1 (Ω) to Ĥ1 (Ω) × L 2 (Ω) in the sense that p 1 + t -1 curl β t 0 β 0 2 + p 0 1 ,
reminding that curl β 0 = 0. Therefore by interpolation, the mapping B t is uniformly bounded from

H 1+s (Ω) 2 ∩ H 1 0 (Ω) 2 × Ĥs (Ω) to Ĥs (Ω) × H s-1 (Ω), for all s ∈ [0, 1], s = 1/2 (for s = 1/2,
the statement is also valid but the target space should be changed into Ĥ1/2 (Ω) × ( H1/2 (Ω)) ′ ) with the estimate

p s + t -1 curl β t s-1 β 0 1+s + p 0 s . (25) 
Let us show that this implies that there exists ε 0 ∈ (0, 1 2 ] such that for all ε ∈ (0, ε 0 ] (β t , p t ) belongs to H 3/2+ε (Ω) 2 × H 3/2+ε (Ω) with the estimate

β t 3/2+ε + p t 1/2+ε + t p 3/2+ε F -1/2+ε . (26) 
Indeed by [START_REF] Grisvard | Singularities in boundary value problems[END_REF]Theorem 6.2.3] and [34, section 6.2], there exists ε S ∈ (0, 1 2 ] such that for all ε ∈ (0,

ε S ], A 0 is an isomorphism from H -1/2+ε (Ω) into H 3/2+ε (Ω) 2 ∩ H 1 0 (Ω) 2 × H 1/2+ε (Ω) ∩ L2 (Ω).
Hence by the property (25) of B t with s = 1/2 + ε, we get

p t 1/2+ε + t -1 curl β t -1/2+ε F -1/2+ε . (27) 
At this stage, we can look at β t ∈ H 1 0 (Ω) 2 solution of the elasticity system

a(β t , ψ) = F + ζ curl p t , ψ ∀ψ ∈ H 1 0 (Ω) 2 ,
and using [23, Thm 6.1] and [34, section 6.1], there exists ε L ∈ (0, 1 2 ] such that for all ε ∈ (0, ε L ], 2 with the estimate

β t ∈ H 3/2+ε (Ω) 2 if F + ζ curl p t ∈ H -1/2+ε (Ω)
β t 3/2+ε F + ζ curl p t -1/2+ε . (28) 
In a second step, as [START_REF] Durán | A posteriori error estimates for the finite element approximation of eigenvalue problems[END_REF] means that

p t ∈ Ĥ1 (Ω) is the unique solution of the Neumann problem ∆p t = t -2 curl β t in Ω, ∂ n p t = 0 on ∂Ω.
Hence if ε ∈ (0, ε ∆ ] by [13, ?], we find that p t belongs to H 3/2+ε (Ω) with the estimate

p t 3/2+ε t -2 curl β t -1/2+ε .
Consequently for ε 0 ≤ min{ε ∆ , ε S }, by ( 27), we get

t p t 3/2+ε F -1/2+ε . (29) 
The estimate [START_REF] Hu | A posteriori error analysis of finite element methods for Reissner-Mindlin plates[END_REF] then follows from ( 27), ( 28) and ( 29) by choosing ε 0 = min{ε S , ε L , ε ∆ }.

Coming back to problem [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF], the right-hand side of ( 17) is given by F := ζ∇r + t 2 12 ϕ. Hence by ( 16) and ( 26), for all ε ∈ (0, ε f ], (β t , p t ) belongs to H 3/2+ε (Ω) 2 × H 3/2+ε (Ω) with the estimate

β t 3/2+ε + p t 1/2+ε + t p 3/2+ε g + t 2 ϕ . (30) 
3) The last identity in [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF] means that w t ∈ H 1 0 (Ω) can be seen as the unique solution of (∇w t , ∇s) = (β t + t 2 ∇r t , ∇s), ∀s ∈ H 1 0 (Ω),

Hence for all ε ∈ (0, ε f ], w t belongs to H 3/2+ε (Ω) with the estimate

w t 3/2+ε β t + t 2 ∇r t -1/2+ε .
Combined with ( 16) and [START_REF] Liberman | A posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate[END_REF] we have obtained

w t 3/2+ε g + t 2 ϕ . (31) 
Finally recalling that τ t = ζt -2 (∇w t -β t ) = ζ(∇r + curl p t ), the estimate ( 14) is a simple consequence of ( 16), ( 30) and (31).

Robust a priori error estimates for the eigenvalue problem

In order to perform the error analysis between the exact eigenvalues of (2) and their approximation (eigenvalues of ( 4)), it is convenient to introduce the operator

T t : L 2 (Ω) 2 × L 2 (Ω) → L 2 (Ω) 2 × L 2 (Ω) : (ϕ, g) → T t (ϕ, g) = (β t , w t ), where (β t , w t ) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω)
is the unique solution of (13) with datum (ϕ, g). As the bilinear form a introduced before is symmetric, T t is a selfadjoint and compact operator from L 2 (Ω) 2 × L 2 (Ω) into itself equipped with the natural inner product and norm

|(ϕ, g)| 2 t = t 2 12 ϕ 2 + g 2 .
Furthermore α t is an eigenvalue of (2) if and only if 1 αt is an eigenvalue of T t . As t → 0 (cfr. [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]), the solution (β t , w t ) of ( 13) converges to (β 0 , w 0 ) ∈ H 1 0 (Ω) 2 ×H 1 0 (Ω), where (β 0 , p 0 ) is the unique solution of [START_REF] Grisvard | Singularities in boundary value problems[END_REF],

w 0 ∈ H 2 0 (Ω) is the unique solution of 1 12(1 + ν) ∆ 2 w 0 = f in Ω. Setting τ 0 = ζ(∇r + curl p 0 ) (that belongs to H 0 (curl, Ω) ′ ), it holds a(β 0 , ψ) + τ 0 , ∇v -ψ = (g, v), ∀(η, v) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω), β 0 = ∇w 0 . (32) 
Let us notice that the regularity results from Theorem 2.1 only yield τ 0 ∈ H -1/2+ε (Ω) for some ε ∈ (0, 1/2].

As before we define the operator T 0 by

T 0 : L 2 (Ω) 2 × L 2 (Ω) → L 2 (Ω) 2 × L 2 (Ω) : (ϕ, g) → T 0 (ϕ, g) = (β 0 , w 0 ).
The first aim is to prove that T t tends to T 0 as t goes to zero even in the non-convex case (see Lemma 3.1 of [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] in the convex case):

Lemma 2.2 For all (ϕ, g) ∈ L 2 (Ω) 2 × L 2 (Ω), it holds (T t -T 0 )(ϕ, g) H 1 0 (Ω) 2 ×H 1 0 (Ω) √ t|(ϕ, g)| t .
Proof: Subtracting (32) to [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF] we have

a(β t -β 0 , ψ) + τ t -τ 0 , ∇v -ψ = t 2 12 (ϕ, η), ∀(η, v) ∈ H 1 0 (Ω) 2 × H 1 0 (Ω).
Hence taking η = β t -β 0 and v = w t -w 0 , we find

a(β t -β 0 , β t -β 0 ) = t 2 12 (ϕ, β t -β 0 ) - t 2 ζ τ t -τ 0 , τ t .
Using the (uniform) coerciveness of a, Cauchy-Schwarz's inequality and the a priori estimate ( 14), we get

β t -β 0 2 1 ≤ t 2 12 ϕ β t -β 0 + t 2 ζ τ t -τ 0 -1/2+ε τ t 1/2-ε t|(ϕ, g)| t β t -β 0 1 + t|(ϕ, g)| 2
t . Hence Young's inequality leads to

β t -β 0 1 √ t|(ϕ, g)| t . (33) 
Observing that

∇(w t -w 0 ) = β t -β 0 + t 2 ζ τ t ,
we get

∇(w t -w 0 ) ≤ β t -β 0 + t 2 ζ τ t β t -β 0 + t 2 τ t 1/2+ε .
The conclusion then follows from the previous estimate ( 33) and ( 14).

Once such a convergence result is obtained by standard perturbation arguments (see for instance [START_REF] Kato | Perturbation theory for linear operators[END_REF] and [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] for its application to the Reissner-Mindlin system), we obtain the next result. Lemma 2.3 Let µ 0 > 0 be a fixed eigenvalue of T 0 of algebraic multiplicity m and let D be a open disc of the complex plane centred at µ 0 that contains no other element of the spectrum of T 0 . Then there exists t 0 > 0 (depending on µ 0 ) such that for all t ∈ (0, t 0 ], T t contains exactly m eigenvalues in D (repeated according to their algebraic multiplicities). In particular µ 0 is the limit of eigenvalues of T t . Furthermore if µ 0 is a simple eigenvalue of T 0 , then T t has a simple eigenvalue µ t in D for all t ≤ t 0 and the distance of µ t to the remainder of the spectrum of T t remains uniformly bounded from below.

We are now ready to prove some convergence results between exact eigenvalues and eigenvectors and discrete ones: Theorem 2.4 Let µ 0 > 0 be a simple eigenvalue of T 0 and fix t 0 small enough such that T t fulfils the properties of Lemma 2.3, in particular denote by µ t its eigenvalue that converges to µ 0 . Let α t = 1 µt that is a simple eigenvalue of problem [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF] and let (ω, φ) ∈ H 1 0 (Ω) 2 ×H 1 0 (Ω) be its corresponding normalized eigenvector, i.e., |(ω, φ)| t = 1. Then there exist h 0 > 0, and ε ∈ (0, 1 2 ] such that for all h < h 0 , the discrete problem (4) has a unique eigenvalue α t,h that converges to α t as h goes to zero. Furthermore if

(ω h , φ h ) ∈ W h × Θ h is the corresponding normalized eigenvector, i.e., |(ω h , φ h )| t = 1, then one has φ -φ h 1 + ω -ω h 1 h 1/2+ε , (34) φ -φ h + ω -ω h h 1+2ε , ( 35 
) |α t -α t,h | h 1+2ε . ( 36 
) Proof: Given (ϕ, g) ∈ L 2 (Ω) 2 × L 2 (Ω), we consider (β t,h , w t,h ) ∈ W h × Θ h solution of    a(β t,h , η h ) + (τ t,h , ∇v h -R h η h ) = (g, v h ) + t 2 12 (ϕ, η h ) , ∀ (v h , η h ) ∈ W h × Θ h τ t,h = ζt -2 (∇w t,h -R h β t,h ).
and the mapping

T t,h : L 2 (Ω) 2 × L 2 (Ω) → L 2 (Ω) 2 × L 2 (Ω) : (ϕ, g) → T t,h (ϕ, g) = (β t,h , w t,h ).
As in Lemma 3.2 of [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF], we prove that for all (ϕ, g)

∈ L 2 (Ω) 2 × L 2 (Ω), it holds (T t -T t,h )(ϕ, g) H 1 0 (Ω) 2 ×H 1 0 (Ω) h 1/2+ε |(ϕ, g)| t . (37) 
Indeed the only difference is to use the estimate

β t -β t,h 1 + t τ t -τ t,h h 1/2+ε ( β t 3/2+ε + t τ t 1/2+ε + τ t -1/2+ε ). ( 38 
)
If this estimate holds then by ( 14) we will get

β t -β t,h 1 + t τ t -τ t,h h 1/2+ε ( g + t 2 ϕ ),
and consequently

w t -w t,h 1 h 1/2+ε ( g + t 2 ϕ ), (39) 
since

∇(w t -w t,h ) = β t -R h β t,h + t 2 ζ (τ t -τ t,h ) = β t -R h β t + R h (β t -β t,h ) + t 2 ζ (τ t -τ t,h ).
Hence using standard propertries of R h we get

∇(w t -w t,h ) ≤ β t -R h β t + R h (β t -β t,h ) + t 2 ζ τ t -τ t,h h β t 1 + β t -β t,h 1 + t τ t -τ t,h ,
which yields (39) thanks to (38) and ( 14).

To prove (38) we adapt Lemma 3.1 of [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF] to our setting by proving that for any

( β, ŵ) ∈ W h × Θ h , setting τ = ζt -2 (∇ ŵ -R h β), we have β -β t,h 1 + t τ -τ t,h 1 β -β t 1 + t τ -τ t + h 1/2+ε γ t -1/2+ε (40) 
Indeed as in Lemma 3.1 of [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF], we may write

a( β -β t,h , β -β t,h ) + t 2 ζ (τ -τ t,h , τ -τ t,h ) = a( β -β t , β -β t,h ) + t 2 ζ (τ -τ t , τ -τ t,h ) + (γ t , β -β t,h -R h ( β -β t,h ).
Hence by the uniform coerciveness of a, Young's inequality and Cauchy-Schwarz's inequality we get

β -β t,h 2 
1 + t 2 τ -τ t,h 2 β -β t 2 1 + t 2 τ -τ t 2 + γ t -1/2+ε β -β t,h -R h ( β -β t,h ) 1/2-ε .
Hence using the estimate

η -R h η 1/2-ε h 1/2+ε η 1 , (41) 
again by Young's inequality we arrive at (40). This estimate (40), ( 14) and the arguments of Corollary 3.2 of [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF] lead to (38).

The estimate (37) and Theorem 7.1 of [START_REF] Babuška | Eigenvalue problems[END_REF] lead to [START_REF] Nicaise | Regularity of the solutions of elliptic systems in polyhedral domains[END_REF] due to Lemma 2.3. Since β t belongs to H 1 0 (Ω) 2 , we can use the same duality argument than the one from Lemma 3.4 of [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] thanks to Lemma 3.3 of [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] and get

β t -β t,h + w t -w t,h h 1+2ε ( g + t 2 ϕ ).
In other words, for all (ϕ, g)

∈ L 2 (Ω) 2 × L 2 (Ω), it holds (T t -T t,h )(ϕ, g) L 2 (Ω) 2 ×L 2 (Ω) h 1+2ε |(ϕ, g)| t . (42) 
and ( 35) follows as before.

In order to prove the relation [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF], we use the same argument than in Theorem 2.2 of [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF], namely applying Remark 7.5 of [START_REF] Babuška | Eigenvalue problems[END_REF], we have

|µ t -µ t,h | ≤ C(|(T t -T t,h )(β t , w t )| t + |(T t -T t,h )(β t , w t )| 2 t ),
where C is a positive constant depending on the inverse of the distance from µ t to the remainder of the spectrum of T t . Hence by Lemma 2.3 and (42) we obtain

|µ t -µ t,h | h 1+2ε . As α t = 1 µ t and α t,h = 1 µ t,h
, we arrive at (36).

Remark 2.5

If Ω is convex, then we can take ε = 1/2, and we recover standard results presented in most existing works (e.g. [START_REF] Durán | Error estimates for low-order isoparametric quadrilateral finite elements for plates[END_REF], [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF], [START_REF] Durán | Finite element analysis of the vibration problem of a plate coupled with a fluid[END_REF], [START_REF] Gómez | On the vibrations of a plate with a concentrated mass and very small thickness[END_REF], [START_REF] Hernández | Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements[END_REF], [START_REF] Lovadina | Approximation of the buckling problem for Reissner-Mindlin plates[END_REF]).

Preliminary results

The aim of this section is to prove three lemmas which will be used in the following of the paper. The proofs of Lemmas 3.2 and 3.3 are close (but non identical) to the ones of [START_REF] Carstensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF] and [START_REF] Creusé | Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system[END_REF]. Nevertheless, we give them for the sake of completeness.

Lemma 3.1 We have γ -γ h 2 -1 ≤ 6 (µ + λ) φ -φ h 2 C + 3 Res 2 2 -1 + 3 c 2 F t 2 12 α t φ -α t,h φ h 2 . ( 43 
)
Proof: First, it can be shown that for any ψ ∈ (H 1 0 (Ω)) 2 (cf [START_REF] Creusé | Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system[END_REF]),

ψ 2 C ≤ 2 (µ + λ)|ψ| 2 1 ,
hence by ( 2), ( 4) and the definition of Res 2 , we get

(γ -γ h , ψ) = a(φ, ψ) -α t t 2 12 (φ, ψ) -(γ h , ψ) = a(φ -φ h , ψ) -Res 2 (ψ) - t 2 12 (α t φ -α t,h φ h , ψ) ≤ φ -φ h C ψ C + Res 2 -1 |ψ| 1 + t 2 12 α t φ -α t,h φ h ψ ≤ (2 (µ + λ)) 1/2 φ -φ h C + Res 2 -1 + c F t 2 12 α t φ -α t,h φ h |ψ| 1 .
By the definition of the norm in H -1 (Ω), we conclude that

γ -γ h 2 -1 ≤ (2 (µ + λ)) 1/2 φ -φ h C + Res 2 -1 + c F t 2 12 α t φ -α t,h φ h 2 ≤ 6 (µ + λ) φ -φ h 2 C + 3 Res 2 2 -1 + 3 c 2 F t 2 12 α t φ -α t,h φ h 2 . Lemma 3.2 φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 = Res 1 (ω -ω h + z) + Res 2 (φ -φ h + β) -a(φ -φ h , β) +(α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β),
where z and β are the functions appearing in the Helmholtz decomposition [START_REF] Beirão Da Veiga | A-priori and a-posteriori error analysis for a family of Reissner-Mindlin plate elements[END_REF].

Proof: First, ( 2) and ( 6) lead to

(γ -γ h , (R h -I)φ h ) = (γ -γ h , ∇z -β) = (γ, ∇z -β) -(γ h , ∇z -β) = α t (ω, z) + α t t 2 12 (φ, β) -a(φ, β) -(γ h , ∇z -β) = α t (ω, z) + α t t 2 12 (φ, β) -a(φ -φ h , β) -a(φ h , β) -(γ h , ∇z -β).
As γ = ζt -2 (∇ω -φ) and γ h = ζt -2 (∇ω h -R h φ h ), we may write

φ-φ h 2 C +ζ -1 t 2 γ-γ h 2 = a(φ-φ h , φ-φ h )+(γ-γ h , (∇ω-∇ω h )-(φ-φ h ))+(γ-γ h , (R h -I)φ h ).
By the previous identity and the definition of Res 1 and Res 2 , we obtain

φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 = α t (ω, ω -ω h ) + α t t 2 12 (φ, φ -φ h ) -a(φ h , φ -φ h ) -(γ h , ∇(ω -ω h )) +(γ h , φ -φ h ) + α t (ω, z) + α t t 2 12 (φ, β) -a(φ -φ h , β) -a(φ h , β) -(γ h , ∇z -β) = Res 2 (φ -φ h + β) - t 2 12 (α t,h φ h , φ -φ h + β) -(γ h , ∇(ω -ω h + z)) -a(φ -φ h , β) +α t (ω, ω -ω h + z) + t 2 12 (α t φ, φ -φ h + β) = Res 2 (φ -φ h + β) + Res 1 (ω -ω h + z) -(α t,h ω h , ω -ω h + z) -a(φ -φ h , β) +α t (ω, ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) + α t (ω, ω -ω h + z) = Res 2 (φ -φ h + β) + Res 1 (ω -ω h + z) -a(φ -φ h , β) +(α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β).
This proves the requested identity.

Lemma 3.3 1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 ζ -1 t 2 γ -γ h 2 + 1 2 T ∈T h ζ t 2 + h 2 T ∇(ω -ω h + z) -(φ -φ h + β) 2 T ≤ (α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -φ t,h φ h , φ -φ h + β) + Res 1 (ω -ω h + z) + Res 2 (φ -φ h + β) + 1 2 β 2 C .
Proof: Because of (6), we first remark that

γ -γ h = ζt -2 (∇ω -∇ω h -φ + φ h + ∇z -β),
so that we have for all T ∈ T h

∇(ω -ω h + z) -(φ -φ h + β) 2 T ≤ ζ -2 t 4 γ -γ h 2 T .
This estimate implies that

1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 ζ -1 t 2 γ -γ h 2 + 1 2 T ∈T h ζ t 2 + h 2 T ∇(ω -ω h + z) -(φ -φ h + β) 2 T ≤ 1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 ζ -1 t 2 γ -γ h 2 + 1 2 ζ -1 t 2 T ∈T h γ -γ h 2 T ≤ ζ -1 t 2 γ -γ h 2 + 1 2 a(φ -φ h + β, φ -φ h + β) + 1 2 φ -φ h 2 C = ζ -1 t 2 γ -γ h 2 + 1 2 φ -φ h 2 C + 2a(φ -φ h , β) + β 2 C + 1 2 φ -φ h 2 C = φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 + 1 2 β 2 C + a(φ -φ h , β).
The conclusion follows from Lemma 3.2.

4 Reliability of the estimator Theorem 4.1 Let us consider 0 < ε < 1/2, as well as two parameters ν 1 > 0 and ν 2 > 0.

Moreover, let us define

B(ε) = max 3 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) + 6(µ + λ); 1 + t 2 ζ(1 -2ε) .
Then,

(e ev h ) 2 ≤ A 1 | Res 1 | 2 -1,h + A 2 Res 2 2 -1 + A 3 φ -φ h + β 2 C + A 4 φ h -R h φ h 2 H(rot,Ω) - T ∈T h A T 5 ∇(ω -ω h + z) -(φ -φ h + β) 2 T + A 6 t 2 12 α t φ -α t,h φ h 2 +A 7 (α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) , (44) 
with

A 1 = ν 1 B(ε) 2 ; A 2 = ν 2 B(ε) 2 + 3; A 3 = 1 µ 1 ν 1 + 1 ν 2 -B(ε); A 4 = max 2 ε -1 1 -2ε ; 2 + 2B(ε)(µ + λ)c 2 R ; A T 5 = ζB(ε) t 2 + h 2 T - 1 ν 1 (t 2 + h 2 T ) , ∀ T ∈ T h ; A 6 = 3 c 2 F ; A 7 = 2 B(ε).
Proof: The proof is similar to the one of [12, Theorem 1] so we only give a sketch of it. Using [12, Lemma 2], we have

(e ev h ) 2 ≤ t 2 ζ(1 -2ε) ζ -1 t 2 γ -γ h 2 - 1 -2/ε 1 -2ε φ h -R h φ h 2 - 1 -1/ε -ε 1 -2ε φ -φ h 2 +|φ -φ h | 2 1 + ζ -1 t 2 γ -γ h 2 + ζ -2 t 4 rot(γ -γ h ) 2 + γ -γ h 2 -1 ≤ 1 -c 2 F 1 -1/ε -ε 1 -2ε |φ -φ h | 2 1 + 1 + t 2 ζ(1 -2ε) ζ -1 t 2 γ -γ h 2 - 1 -2/ε 1 -2ε φ h -R h φ h 2 + ζ -2 t 4 rot(γ -γ h ) 2 + γ -γ h 2 -1 ≤ 1 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) φ -φ h 2 C + 1 + t 2 ζ(1 -2ε) ζ -1 t 2 γ -γ h 2 + 2 ε -1 1 -2ε φ h -R h φ h 2 + ζ -2 t 4 rot(γ -γ h ) 2 + γ -γ h 2 -1 .
Then, because of Lemma 3.1 as well as

ζ -2 t 4 rot(γ -γ h ) 2 ≤ 2 µ φ -φ h 2 C + 2 rot(φ h -R h φ h ) 2 ,
we obtain

(e ev h ) 2 ≤ 3 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) + 6(µ + λ) φ -φ h 2 C + 2 rot(φ h -R h φ h ) 2 + 1 + t 2 ζ(1 -2ε) ζ -1 t 2 γ -γ h 2 + 2 ε -1 1 -2ε φ h -R h φ h 2 +3 Res 2 2 -1 + 3 c 2 F t 2 12 α t φ -α t,h φ h 2 .
By the definition of B(ε) as well as Lemma 3.3, we get

(e ev h ) 2 ≤ B(ε) 2(α t ω -α t,h ω h , ω -ω h + z) + 2 t 2 12 (α t φ -φ t,h φ h , φ -φ h + β) +2 Res 1 (ω -ω h + z) + 2 Res 2 (φ -φ h + β) + β 2 C -φ -φ h + β 2 C - T ∈T h ζ t 2 + h 2 T ∇(ω -ω h + z) -(φ -φ h + β) 2 T + 3 Res 2 2 -1 + 2 ε -1 1 -2ε φ h -R h φ h 2 + 2 rot(φ h -R h φ h ) 2 +3 c 2 F t 2 12 α t φ -α t,h φ h 2 .
We notice that

Res 1 (ω -ω h + z) ≤ | Res 1 | -1,h | (ψ, ω -ω h + z)| 1,h ∀ ψ ∈ H 1 0 (Ω) 2 , Res 2 (φ -φ h + β) ≤ Res 2 -1 |φ -φ h + β| 1 .
where, here and below, with a small abuse of notation, we use the extension (by zero) of the linear operator Res 1 to the whole of H 1 0 (Ω) × H 1 0 (Ω) 2 :

Res 1 : H 1 0 (Ω) × H 1 0 (Ω) 2 -→ R : (v, ψ) -→ Res 1 (v).
Introducing now the parameters ν 1 > 0 and ν 2 > 0 and using two times Young's inequality lead to

(e ev h ) 2 ≤ ν 1 B(ε) 2 | Res 1 | 2 -1,h + 1 ν 1 | (ψ, ω -ω h + z)| 2 1,h + ν 2 B(ε) 2 Res 2 2 -1 + 1 ν 2 |φ -φ h + β| 2 1 -B(ε) φ -φ h + β 2 C + B(ε) β 2 C + 2 ε -1 1 -2ε φ h -R h φ h 2 + 3 Res 2 2 -1 + 2 rot(φ h -R h φ h ) 2 - T ∈T h ζB(ε) t 2 + h 2 T ∇(ω -ω h + z) -(φ -φ h + β) 2 T +2B(ε) (α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) +3c 2 F t 2 12 α t φ -α t,h φ h 2 .
Finally, choosing ψ = φ -φ h + β, we get

| (ψ, ω -ω h + z)| 2 1,h = ∇(φ -φ h + β) 2 + T ∈T h 1 t 2 + h 2 T ∇(ω -ω h + z) -(φ -φ h + β) 2 T ,
and the previous inequality yields (44).

Corollary 4.2 It holds

(e ev h ) 2 Res 1 | 2 -1,h + Res 2 2 -1 + φ h -R h φ h 2 H(rot,Ω) (α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) + t 4 α t φ -α t,h φ h 2 .
Proof: Assuming 1 -2ε > 0, the parameters ν 1 and ν 2 arising in the values of A 3 and A T 5 in (44) are first chosen such that A 3 ≤ 0 and A T 5 ≥ 0 for all T ∈ T h . Namely we take

ν 1 = ν 2 = 2 κ/B(ε) with κ = max 1 µ , 1 2 ζ ,
and we obtain

(e ev h ) 2 ≤ Ã1 | Res 1 | 2 -1,h + Ã2 Res 2 2 -1 + Ã4 φ h -R h φ h 2 H(rot,Ω) + Ã6 (α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) + Ã7 t 2 12 α t φ -α t,h φ h 2 , (45) 
with Ã1 = 2κB(ε);

Ã2 = 2κB(ε) + 3; Ã4 = max 2 ε -1 1 -2ε ; 2 + 2B(ε)(µ + λ)c 2 R ; Ã6 = 2B(ε); Ã7 = 3 c 2
F . We conclude by taking any ε ∈ (0, 1 2 ).

Lemma 4.3

(α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) ≤ c 2 F C 1 + c 2 F 1/2 α t ω -α t,h ω h + t 2 12 α t φ -α t,h φ h φ h -R h φ h H(rot,Ω) + α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2 .
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Proof: Clearly we have

(α t ω -α t,h ω h , ω -ω h + z) + t 2 12 (α t φ -α t,h φ h , φ -φ h + β) = (α t ω -α t,h ω h , ω -ω h ) + t 2 12 (α t φ -α t,h φ h , φ -φ h ) +(α t ω -α t,h ω h , z) + t 2 12 (α t φ -α t,h φ h , β). ( 46 
)
We can notice that for all v ∈ H 1 0 (Ω) or v ∈ H 1 0 (Ω) 2 , we have

v ≤ c 2 F 1 + c 2 F 1 2 v 1 .
Using Cauchy-Schwarz's inequality and ( 7), we have :

(α t ω -α t,h ω h , z) + t 2 12 (α t φ -α t,h φ h , β) ≤ α t ω -α t,h ω h z + t 2 12 α t φ -α t,h φ h β ≤ α t ω -α t,h ω h c 2 F 1 + c 2 F 1/2 z 1 + t 2 12 α t φ -α t,h φ h c 2 F 1 + c 2 F 1/2 β 1 ≤ c 2 F C 1 + c 2 F 1/2 α t ω -α t,h ω h 2 + t 2 12 α t φ -α t,h φ h 2 1/2 φ h -R h φ h H(rot,Ω) .
(47) For the other term in the right-hand side of (46), we have by the normalization of the eigenvectors :

(α t ω -α t,h ω h , ω -ω h ) + t 2 12 (α t φ -α t,h φ h , φ -φ h ) = α t ω 2 -(α t + α t,h )(ω, ω h ) + α t,h ω h 2 + t 2 12 α t φ 2 -(α t + α t,h )(φ, φ h ) + α t,h φ h 2 = (α t + α t,h ) 1 -(ω, ω h ) - t 2 12 (φ, φ h ) .
But we also have :

ω -ω h 2 + t 2 12 φ -φ h 2 = ω 2 -2(ω, ω h ) + ω h 2 + t 2 12 φ 2 -2(φ, φ h ) + φ h 2 = 2 -2(ω, ω h ) -2 t 2 12 (φ, φ h ).
(48)

Hence :

(α t ω -α t,h ω h , ω -ω h ) + t 2 12 (α t φ -α t,h φ h , φ -φ h ) = α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2 .
(49) Using ( 47) and ( 49) into (46), Lemma 4.3 holds. Now, it remains to bound each of the two residuals.

Lemma 4.4 With the notations ( 9) and ( 12), we have

| Res 1 | 2 -1,h T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T + E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E . ( 50 
)
where [γ h ] E is the jump of γ h across E defined by :

[γ h ] E = γ h | T + -γ h | T -with E = T + ∩ T -. Proof: Let v ∈ H 1 0 (Ω).
Using standard Green formula into each element of the triangulation, we get : [START_REF] Carstensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF]) be such that, for all T ∈ T h :

Res 1 (v) = (α t,h ω h , v) -(γ h , ∇v) = T ∈T h T (α t,h ω h + divγ h )v - E∈∂T E γ h • n E v = T ∈T h T (α t,h ω h + divγ h )v - E∈E h E [γ h ] E • n E v, Let v I ∈ S 1 0 (T h ) = {v ∈ H 1 0 (Ω) : ∀ T ∈ T h , v| T ∈ P 1 (T )} (cf. estimate (3.6) of
v -v I T h T { ∇v -ψ ω T + h T ∇ψ ω T } ∀ ψ ∈ H 1 0 (Ω) 2 ; v -v I E h 1/2 E { ∇v -ψ ω E + h E ∇ψ ω E } ∀ ψ ∈ H 1 0 (Ω) 2 .
We can notice that Res 1 (v I ) = 0, and consequently :

Res 1 (v) = Res 1 (v -v I ) = T ∈T h T (α t,h ω h + divγ h )(v -v I ) - E∈E h E [γ h ] E • n E (v -v I ) ≤ T ∈T h α t,h ω h + divγ h T v -v I T + E∈E h [γ h ] E • n E E v -v I E T ∈T h h T t 2 + h 2 T α t,h ω h + divγ h T 1 t 2 + h 2 T { ∇v -ψ ω T + h T ∇ψ ω T } 22 + E∈E h h 1/2 E t 2 + h 2 E [γ h ] E • n E E 1 t 2 + h 2 E { ∇v -ψ ω E + h T ∇ψ ω E } T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T 1/2 | (ψ, v)| 1,h + E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E 1/2 | (ψ, v)| 1,h ,
so that (50) holds.

Lemma 4.5 With the notation [START_REF] Carstensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF], we have

Res 2 2 -1 T ∈T h h 2 T divCε(φ h ) + γ h + t 2 12 α t,h φ h 2 T + E∈E h h E [Cε(φ h )] E n E 2 E + µ 2 h (γ h ), (51) 
where µ h (γ h ) = sup

η h ∈S 1 0 (T h ) 2 \{0} |(γ h , (I -R h )η h )| |η h | 1 .
Proof: Let ψ ∈ Θ. Using standard Green formula into each element of the triangulation, we get :

Res 2 (ψ) = -a(φ h , ψ) + (γ h , ψ) + t 2 12 (α t,h φ h , ψ) = T ∈T h T (divCε(φ h ) + γ h + t 2 12 α t,h φ h ) • ψ - E∈∂T E Cε(φ h )n E • ψ = T ∈T h T (divCε(φ h ) + γ h + t 2 12 α t,h φ h ) • ψ - E∈E h E [Cε(φ h )] E n E • ψ, Let ψ I ∈ S 1 0 (T h ) 2 ⊂ Θ h (cf. [1, Theorem 1.7]) be such that |ψ I | 1 |ψ| 1 and for all T ∈ T h : ψ -ψ I T h T ∇ψ ω T ; ψ -ψ I E h 1/2 E ∇ψ ω E .
We can notice that Res 2 (ψ I ) = (γ h , (I -R h )ψ I ), which implies :

Res 2 (ψ) = Res 2 (ψ -ψ I ) + (γ h , (I -R h )ψ I ) = T ∈T h T (divCε(φ h ) + γ h + t 2 12 α t,h φ h ) • (ψ -ψ I ) - E∈E h E [Cε(φ h )] E n E • (ψ -ψ I ) + (γ h , (I -R h )ψ I ) ≤ T ∈T h divCε(φ h ) + γ h + t 2 12 α t,h φ h T ψ -ψ I T + E∈E h [Cε(φ h )] E n E E ψ -ψ I E + |(γ h , (I -R h )ψ I )| |ψ I | 1 |ψ I | 1 T ∈T h h T divCε(φ h ) + γ h + t 2 12 α t,h φ h T ∇ψ ω T + E∈E h h 1/2 E [Cε(φ h )] E n E E ∇ψ ω E + µ h (γ h )|ψ I | 1 . (52) 
Then, using the estimate |ψ I | 1 |ψ| 1 and the discrete Cauchy-Schwarz inequality, we get

Res 2 (ψ) T ∈T h h 2 T divCε(φ h ) + γ h + t 2 12 α t,h φ h 2 T 1/2 |ψ| 1 + E∈E h h E [Cε(φ h )] E n E 2 E 1/2 |ψ| 1 + µ h (γ h )|ψ| 1 .
The definition of the norm of H -1 (Ω) leads to (51).

Theorem 4. [START_REF] Beirão Da Veiga | A-priori and a-posteriori error analysis for a family of Reissner-Mindlin plate elements[END_REF] We have

(e ev h ) 2 T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T + E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E + T ∈T h h 2 T divCε(φ h ) + γ h + t 2 12 α t,h φ h 2 T + E∈E h h E [Cε(φ h )] E n E 2 E + φ h -R h φ h 2 H(rot,Ω) + µ h (γ h ) 2 + t 2 12 α t φ -α t,h φ h 2 + α t ω -α t,h ω h 2 + α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2 . (53) 
Proof: The theorem is a direct consequence of Corollary 4.2, Lemma 4.3, Lemma 4.4 and Lemma 4.5.

Remark 4.7 From a practical point of view, the estimate (53) is not useful since the L 2 (Ω) norm of the error is still present in the right-hand-side (see theorem 3.1 of [START_REF] Durán | A posteriori error estimates for the finite element approximation of eigenvalue problems[END_REF] for a similar phenomenom for the Laplace equation). However, the terms containing the exact solution in the right hand side of (53) are neglectible if the eigenvalue is simple (cf. Theorem 2.4). This is the subject of the following corollary.

Corollary 4.8 (Reliability of the estimator) Assume that α t is a simple eigenvalue, then we have :

(e ev h ) 2 T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T + E∈E(Ω) h E (t 2 + h 2 E ) [γ h ] E • n E 2 E + T ∈T h h 2 T divCε(φ h ) + γ h + t 2 12 α t,h φ h 2 T + E∈E(Ω) h E [Cε(φ h )] E n E 2 E + φ h -R h φ h 2 H(rot,Ω) + µ h (γ h ) 2 + h.o.t.
where h.o.t. corresponds to higher order terms.

Proof: Using Cauchy-Schwarz's inequality, we get :

t 2 12 α t φ -α t,h φ h 2 + α t ω -α t,h ω h 2 = (α t ω -α t,h ω h , α t (ω -ω h ) + (α t -α t,h ) ω h ) + t 2 12 2 (α t φ -α t,h φ h , α t (φ -φ h ) + (α t -α t,h )φ h ) ≤ α t (α t ω -α t,h ω h , ω -ω h ) + α t t 2 12 2 (α t φ -α t,h φ h , φ -φ h ) +|α t -α t,h | α t ω -α t,h ω h ω h + t 2 12 2 α t φ -α t,h φ h φ h .
But, by (49), we have :

(α t ω -α t,h ω h , ω -ω h ) + t 2 12 2 (α t φ -α t,h φ h , φ -φ h ) ≤ max 1; t 2 12 (α t ω -α t,h ω h , ω -ω h ) + t 2 12 (α t φ -α t,h φ h , φ -φ h ) ≤ max 1; t 2 12 
α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2 .
By a discrete Cauchy-Schwarz inequality and the normalization of the discrete solutions given by (4), we get :

α t ω -α t,h ω h ω h + t 2 12 2 α t φ -α t,h φ h φ h ≤ α t ω -α t,h ω h 2 + t 2 12 2 α t φ -α t,h φ h 2 1/2 ω h 2 + t 2 12 2 φ h 2 1/2 ≤ α t ω -α t,h ω h 2 + t 2 12 2 α t φ -α t,h φ h 2 1/2 max 1; t 2 12 1/2 . 25 
Therefore, using Young's inequality with a parameter δ > 0 :

t 2 12 α t φ -α t,h φ h 2 + α t ω -α t,h ω h 2 ≤ α t max 1; t 2 12 
α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2 +|α t -α t,h | max 1; t 2 12 1/2 α t ω -α t,h ω h 2 + t 2 12 2 α t φ -α t,h φ h 2 1/2 ≤ α t max 1; t 2 12 
α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2 + δ 2 |α t -α t,h | 2 max 1; t 2 12 + 1 2δ α t ω -α t,h ω h 2 + t 2 12 2 α t φ -α t,h φ h 2 .
Choosing δ = 1, we get :

t 2 12 α t φ -α t,h φ h 2 + α t ω -α t,h ω h 2 ≤ α t (α t + α t,h ) max 1; t 2 12 ω -ω h 2 + t 2 12 φ -φ h 2 + |α t -α t,h | 2 max 1; t 2 12 .
As ω -ω h 

A posteriori estimate for the eigenvalue error

Let η ev be the estimator presented in Corollary 4.8 :

η 2 ev = T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T + E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E + T ∈T h h 2 T divCε(φ h ) + γ h + t 2 12 α t,h φ h 2 T + E∈E h h E [Cε(φ h )] E n E 2 E + φ h -R h φ h 2 H(rot,Ω) + µ h (γ h ) 2 .
Theorem 5.1 We have :

|α t -α t,h | η 2 ev + ζt -2 φ h -R h φ h 2 + (γ h , φ h -R h φ h ) + T 2 ex , ( 54 
)
where

T 2 ex = t 2 12 α t φ -α t,h φ h 2 + α t ω-α t,h ω h 2 + α t + α t,h 2 ω -ω h 2 + t 2 12 φ -φ h 2
is the term containing the exact solution.

Proof: We recall that (ω, φ, α t ) (resp. (ω h , φ h , α t,h )) is the solution of problem (2) (resp. ( 4)). Then we have :

φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 = φ 2 C + φ h 2 C -2a(φ, φ h ) + ζ -1 t 2 γ 2 + γ h 2 -2(γ, γ h ) = φ 2 C + ζ -1 t 2 γ 2 + φ h 2 C + ζ -1 t 2 γ h 2 -2 a(φ, φ h ) + ζ -1 t 2 (γ, γ h ) = α t + α t,h -2 a(φ, φ h ) + ζ -1 t 2 (γ, γ h ) , (55) 
as well as

a(φ, φ h ) + ζ -1 t 2 (γ, γ h ) = a(φ, φ h ) + (γ, ∇ω h -R h φ h ) = a(φ, φ h ) + (γ, ∇ω h -φ h ) + (γ, φ h -R h φ h ) = α t (ω, ω h ) + t 2 12 (φ, φ h ) + (γ, φ h -R h φ h ). (56) 
Then, from the relations (55) and (56), we have :

φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 α t + α t,h -2 α t (ω, ω h ) + t 2 12 (φ, φ h ) + (γ, φ h -R h φ h ) ,
so that from (48) :

φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 = α t + α t,h + α t ω -ω h 2 + t 2 12 φ -φ h 2 -2 -2(γ, φ h -R h φ h ) = α t,h -α t + α t ω -ω h 2 + t 2 12 φ -φ h 2 -2(γ, φ h -R h φ h ),
In other words, noticing that α t > 0, we have :

α t,h -α t = φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t ω -ω h 2 + t 2 12 φ -φ h 2 +2(γ, φ h -R h φ h ) = φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t ω -ω h 2 + t 2 12 φ -φ h 2 +2(γ -γ h , φ h -R h φ h ) + 2(γ h , φ h -R h φ h ) ≤ φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t ω -ω h 2 + t 2 12 φ -φ h 2 +2 γ -γ h φ h -R h φ h + 2(γ h , φ h -R h φ h ) ≤ φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t ω -ω h 2 + t 2 12 φ -φ h 2 +ζ -1 t 2 γ -γ h 2 + ζt -2 φ h -R h φ h 2 + 2(γ h , φ h -R h φ h ) ≤ 2[ φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 ] -α t ω -ω h 2 + t 2 12 φ -φ h 2 +ζt -2 φ h -R h φ h 2 + 2(γ h , φ h -R h φ h ) ≤ 2(e ev h ) 2 + ζt -2 φ h -R h φ h 2 + 2(γ h , φ h -R h φ h ).
Using Theorem 4.6, we obtain :

α t,h -α t ≤ C 1 (η 2 ev + T 2 ex ) + ζt -2 φ h -R h φ h 2 + 2(γ h , φ h -R h φ h ), (57) 
for some C 1 > 0 (independent of t and h).

In order to obtain an evaluation of the error eigenvalues, we must now evaluate α t -α t,h to finally control the quantity |α t -α t,h |. All we have to do is to repeat the previous arguments replacing (56) by the identity

a(φ, φ h ) + ζ -1 t 2 (γ, γ h ) = -Res 1 (ω) -Res 2 (φ) + α t,h (ω h , ω) + t 2 12 (φ h , φ) ,
that directly follows from the definition of Res 1 and Res 2 . Furthermore by ( 2) and ( 4), we see that

α t = a(φ, φ) + ζ -1 t 2 γ 2 , α t,h = a(φ h , φ h ) + ζ -1 t 2 γ h 2 .
These two identities and the normalization in ( 2) and ( 4) lead to

α t -α t,h = φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t,h ω -ω h 2 + t 2 12 φ -φ h 2 -2 Res 1 (ω) -2 Res 2 (φ).
Then, using the fact that Res 1 (ω h )+ Res 2 (φ h ) = (γ h , φ h -R h φ h ) and inserting the functions β and z from the Helmholtz decomposition (6) we get

α t -α t,h = φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t,h ω -ω h 2 + t 2 12 φ -φ h 2 28 -2 Res 1 (ω -ω h + z) + (γ h , ∇z) -(α t,h ω h , z) -2 Res 2 (φ -φ h + β) + (γ h , φ h -R h φ h ) + a(φ h , β) -(γ h , β) - t 2 12 (α t,h φ h , β) = φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t,h ω -ω h 2 + t 2 12 φ -φ h 2 -2 Res 1 (ω -ω h + z) + Res 2 (φ -φ h + β) + (γ h , φ h -R h φ h ) +a(φ h -φ, β) + (γ -γ h , φ h -R h φ h ) + (α t ω -α t,h ω h , z) + t 2 12 (α t φ -α t,h φ h , β) ,
the last identity following from [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF]. By Cauchy-Schwarz's inequality, we get

α t -α t,h ≤ φ -φ h 2 C + ζ -1 t 2 γ -γ h 2 -α t,h ω -ω h 2 + t 2 12 φ -φ h 2 +2 Res 1 (ω -ω h + z) + Res 2 (φ -φ h + β) + |(γ h , φ h -R h φ h )| + φ h -φ C β C + ζ -1/2 t γ -γ h ζ 1/2 t -1 φ h -R h φ h + α t ω -α t,h ω h 2 + t 2 12 2 α t φ -α t,h φ h 2 1/2 z 2 + β 2 1/2 .
Noticing that α t,h > 0 and using the reliability of the estimator presented in section 4 we obtain :

α t -α t,h ≤ C 2 (η 2 ev + T 2 ex ) + ζt -2 φ h -R h φ h 2 + 2(γ h , φ h -R h φ h ), (58) 
for some C 2 > 0 (independent of t and h). Hence (54) is a direct consequence of the estimates (57) and (58).

Similarly to Corollary 4.8, we have :

Corollary 5.2 Assume that α t is a simple eigenvalue, then we have : 

|α t -α t,h | η 2 ev + ζt -2 φ h -R h φ h 2 + (γ h , φ h -R h φ h ) + h.o.t. Remark 

Efficiency of the estimator

In order to prove the efficiency of the estimator, each part of it (except the terms involving the exact solutions) has now to be bounded by the error e ev h up to a multiplicative constant.

Lemma 6.1

(R h -I)φ h 2 H(rot,Ω) ζ -2 t 4 γ -γ h 2 Ω + |ω -ω h | 2 1 +|φ -φ h | 2 1 + ζ -2 t 4 rot(γ -γ h ) 2 . Proof: Since (R h -I)φ h = ζ -1 t 2 (γ -γ h ) -∇(ω -ω h ) + (φ -φ h ), we have R h -I)φ h ≤ ζ -1 t 2 γ -γ h + |ω -ω h | 1 + φ -φ h ,
and with the Poincaré-Friedrichs inequality, we get

(R h -I)φ h 2 ζ -2 t 4 γ -γ h 2 + |ω -ω h | 2 1 + |φ -φ h | 2 1 .
Moreover, we have

rot(φ h -R h φ h ) 2 ζ -2 t 4 rot(γ -γ h ) 2 + |φ -φ h | 2 1 ,
so that lemma 6.1 holds.

Lemma 6.2 We have

T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h -α t ω 2 T +t 2 γ -γ h 2 + γ -γ h 2 -1 . (59) 
and

E∈E(Ω) h E (h 2 E + t 2 ) [γ h ] E • n E 2 E T ∈T h h 2 T (t 2 + h 2 T ) α t ω -α t,h ω h 2 T +t 2 γ -γ h 2 + γ -γ h 2 -1 . ( 60 
) Proof: Let v T = b 2 T (α t,h ω h + divγ h ) for all T ∈ T h , b
T being the classical element bubble function. So, we get by the elementwise inverse estimates :

α t,h ω h + divγ h 2 T (α t,h ω h + divγ h , v T ) T = (α t,h ω h , v T ) T -(γ h , ∇v T ) T = (α t,h ω h -α t ω, v T ) T + (γ -γ h , ∇v T ) T . (61) h 4 T α t,h ω h -α t ω 2 T 1/2 .
(64) Using Young's inequality in this last estimate, we get (59). For all interior edge E = T + ∩T -, we define the classical edge bubble function b

E ∈ H 1 0 (ω E ) such as supp b E = ω E , 0 ≤ b E ≤ 1 = max x∈E b E , ω E b E dx ≈ h 2 E , E b E ds ≈ h E , ∇b E L 2 (T ± ) h -1 E b E L 2 (T ± ) , |∇b E | H 1 (ω E ) h -2 E b E L 2 (ω E ) .
For all E ∈ E h , we define w

E = b 2 E ([γ h ] E • n E ) ∈ H 2 0 (ω E ) 2 with w E 2 ω E h E [γ h ] E • n E 2 E . So, we obtain : [γ h ] E • n E 2 E ([γ h ] E • n E , w E ) E = (divγ h , w E ) ω E + (γ h , ∇w E ) ω E = (α t,h ω h + divγ h , w E ) ω E + (γ h , ∇w E ) ω E -(α t,h ω h , w E ) ω E = (α t,h ω h + divγ h , w E ) ω E -(γ -γ h , ∇w E ) ω E + (α t ω -α t,h ω h , w E ) ω E .
Using a discrete Cauchy-Schwarz inequality and the regularity of the mesh, we have by summation

E∈E h h E (h 2 E + t 2 ) [γ h ] E • n E 2 E E∈E h (α t,h ω h + divγ h , h E (h 2 E + t 2 )w E ) ω E + (α t ω -α t,h ω h , h E (h 2 E + t 2 )w E ) ω E -γ -γ h , E∈E h h E (h 2 E + t 2 )∇w E ω E T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T 1/2 E∈E h (h 2 E + t 2 ) w E 2 ω E 1/2 + T ∈T h h 2 T (t 2 + h 2 T ) α t ω -α t,h ω h 2 T 1/2 E∈E h (h 2 E + t 2 ) w E 2 ω E 1/2 + γ -γ h -1 ∇ E∈E h h 3 E ∇w E + t γ -γ h E∈E(Ω) th E ∇w E . (65) 
By the following inverse estimate :

∇w E ω E + h E |∇w E | 1,ω E h -1/2 E [γ h ] E • n E E ,
we get :

∇ E∈E h h 3 E ∇w E 2 E∈E h h 6 E |∇w E | 2 1 E∈E h h 3 E [γ h ] E • n E 2 E (66) ≤ E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E .
The same kind of argument give :

E∈E h th E ∇w E 2 E∈E h t 2 h 2 E ∇w E 2 ω E E∈E h t 2 h E [γ h ] E • n E 2 E (67) ≤ E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E .
By (65), (66) and (67), we obtain : 

E∈E h h E (h 2 E + t 2 ) [γ h ] E • n E Theorem 6.5 We have T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T + E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E + φ h -R h φ h 2 H(rot,Ω) + T ∈T h h 2 T divCε(φ h ) + γ h + t 2 12 α t,h φ h 2 T + E∈E h h E [Cε(φ h )] E n E 2 E + µ h (γ h ) 2 |ω -ω h | 2 1 + |φ -φ h | 2 1 + (1 + ζ -1 t 2 )ζ -1 t 2 γ -γ h 2 + γ -γ h -1 +ζ -2 t

Numerical validation

Here we illustrate and validate our theoretical results by a simple computational example.

Let Ω be the unit square ]0, 1[ 2 . We take ν = 0.3, k = 5/6 and t = 0.1. The meshes we use are uniform ones composed of n 2 squares, each of them being cut into 8 triangles as displayed the Figure 1 for n = 4. The refinement strategy is an uniform one so that the value of the mesh size h between two consecutive meshes is twice smaller.

Before evaluating the a posteriori error estimator, we compute ω 1 t,h by :

ω 1 t,h = 2(1 + ν) t α 1 t,h ,
where α 1 t,h is the first computed approximated eigenvalue. In fact, this rescaling process is done in order to allow some comparisons with some bibliography data [START_REF] Dawe | Rayleigh-Ritz vibration analysis of Mindlin plates[END_REF][START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF][START_REF] Huang | A nine node Lagrangian Mindlin plate element with enhanced shear interpolation[END_REF]. Table 1 displays the obtained values for different values of n, and shows that ω 1 t,h converges when h goes towards zero, as theoretically expected. 2 with the ones obtained by the Huang and Hinton method in [START_REF] Huang | A nine node Lagrangian Mindlin plate element with enhanced shear interpolation[END_REF] (column HH), the Dawe and Roufaeil method in [START_REF] Dawe | Rayleigh-Ritz vibration analysis of Mindlin plates[END_REF] (column DR) and the Durán, Hervella-Nieto, Liberman, Rodríguez and Solomin method in [START_REF] Durán | Approximation of the vibration modes of a plate by Reissner-Mindlin equations[END_REF] (column DHLRS). Our value is clearly in good agreement with these references, even if from Table 2 it can noticed that it is the smallest one. This can be explained by the fact that our mesh resolution is finer. Indeed, in We plot in Figure 2 the evolution of the computed estimator η ev as well as its different contributions η h,i , i = 1..6 versus h. First, it can be seen that the contributions η h,4 and η h,6 converge at order 3 and that the contributions η h,3 and η h,5 converge at order 2. Moreover, it is clear that the main part of η ev is η h,2 . Nevertheless, we can also remark that the convergence rate of η h,2 (resp. η h,1 ) starts for coarse meshes near to 2 (resp. 3). This behaviour can easily be explained by the definition of η h,2 (resp. η h,1 ) when h is larger than t. As soon as h becomes smaller than t, the convergence rate equal to 1 for η h,2 (resp. 2 for η h,1 ) is recovered as it can be observed in Figure 2 for the finest meshes. 

Figure 1 :

 1 Figure 1: Mesh level corresponding to n = 4 and h = √ 2/8.

  n

Figure 2 :

 2 Figure 2: Estimators convergence rate, t = 0.1.

  2 , φ -φ h 2 and |α t -α t,h | 2 are superconvergent (cf. Theorem 2.4), then

	t 2 12 perconvergent. α t φ -α t,h φ h	2	+ α t ω -α t,h ω h	2 +	α t + α t,h 2	ω -ω h	2 +	t 2 12	φ -φ h	2	are su-

  5.3 The term (γ h , φ h -R h φ h ) can be evaluated numerically. However, it can be bounded by γ h φ h -R h φ h . We further can numerically remark that the term φ h -R h φ h converges faster than the estimator : hence if α t is a simple eigenvalue, we can claim that the term |α

t -α t,h | is superconvergent (since it is bounded by the square of η ev up to higher order terms) and the relation (iii) given in Theorem 2.4 is recovered.

  4 rot(γ-γ h ) 2 + T ∈T h h 2 T (t 2 + h 2 T ) α t ω -α t,h ω h The proof is a direct consequence of lemma 6.1, 6.2, 6.3 and 6.4. Like the Corollaries 4.8 and 5.2, we have Corollary 6.6 (Efficiency of the estimator) Assume that the eigenvalue α t is simple, then

									2 T
	+	t 2 12 T ∈T h	h 2 T α t φ -α t,h φ h	2 T +	t 2 12	α t φ -α t,h φ h	2	.
	Proof: T ∈T h	h 2 T divCε(φ h ) + γ h +	t 2 12	α t,h φ h	2 T	+	E∈E h	h

T ∈T h h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h 2 T + E∈E h h E (t 2 + h 2 E ) [γ h ] E • n E 2 E + φ h -R h φ h 2 H(rot,Ω) + E [Cε(φ h )] E n E 2 E + µ h (γ h ) 2 |ω -ω h | 2 1 + |φ -φ h | 2 1 + (1 + ζ -1 t 2 )ζ -1 t 2 γ -γ h 2 + γ -γ h -1

+ζ -2 t 4 rot(γ -γ h ) 2 + h.o.t.

Table 1 :

 1 2.3391 1.6992 1.6129 1.5934 1.5886 1.5874 1.5871 Values of the first approximated eigenvalue ω 1 t,h . Now, our result on the finest grid (n = 128) is compared in Table

	2	4	8	16	32	64	128
	ω 1 t,h						

Table 3 ,

 3 it can be observed similar results for similar mesh resolutions.

	HH	DR DHLRS Our result
	1.591 1.594 1.5913	1.587

Table 2 :

 2 The first value of ω 1 t,h . (Value obtained with the finest mesh avalaible in each paper).To verify the estimator reliability presented in section 5, the error estimator η ev is defined by :η 2 ev = η 2 h,1 + η 2 h,2 + η 2 h,3 + η 2 h,4 + η 2 h,5 + η 2 h,6, where the different contributions are given by :

	η 2 h,1 =		h 2 T (t 2 + h 2 T ) α t,h ω h + divγ h	2 T ,
		T ∈T h				
	η 2 h,2 =	E∈E h	h E (t 2 + h 2 E ) [γ h ] E • n E	2 E ,	
	η 2 h,3 =			t 2 12	α t,h φ h	2 T	,	(72)

T ∈T h h 2 T divCε(φ h ) + γ h +

Table 3 :

 3 The first value of ω 1 t,h . Comparison with DHLRS for different mesh resolutions.

	η 2 h,4 =	h E [Cε(φ h )] E n E	2 E ,
	E∈E h		
	η 2 h,5 = φ h -R h φ h η 2 h,6 = µ 2	2 H(rot,Ω) ,

h (γ h ).
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Proof: We just need to use the same arguments as the proof of lemma 6.2. Lemma 6.4

Proof: We recall the definition of µ h (γ h ) :

The Korn and Friedrichs inequalities lead to (71).