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Emmanuel Creusé! Serge Nicaise! Emmanuel Verhille*

March 28, 2013

Abstract

We consider a conforming finite element approximation of the Reissner-Mindlin
eigenvalue system, for which a robust a posteriori error estimator for the eigenvector
and the eigenvalue errors is proposed. For that purpose, we first perform a robust a
priori error analysis without strong regularity assumption. Upper and lower bounds
are then obtained up to higher order terms that are superconvergent, provided that
the eigenvalue is simple. The convergence rate of the proposed estimator is confirmed
by a numerical test.

Key Words Reissner-Mindlin plate, finite elements, a posteriori error estimators, eigen-
values.
AMS (MOS) subject classification 74K20; 65M60; 65M15; 65M50.

Introduction

Nowadays, a posteriori error estimators have become an indispensable tool in the context
of finite element methods. They are now widely used in order to control the numerical
error, as well as to drive the adaptive mesh refinement processes. Many works have been
devoted to this topic (see e.g. [1, 4, 33, 36] for general monographies). Considering the
Reissner-Mindlin system, several kind of suitable finite elements exist, and a well known
task to overcome is to avoid the so-called ”shear locking effect”, by using properly defined
operators at the discrete level. In the literature, if a lot of papers have already been de-
voted to the a priori error analysis of this system, far less references can be found on its a
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posteriori error analysis (see e.g. [6, 9, 10, 11, 20, 26, 30, 32]).

In this work, we are specifically interested in the Reissner-Mindlin eigenvalues system,
corresponding to the modeling of a vibration plate problem. Our goal is to derive an a pos-
teriori estimator which is robust with respect to the plate thickness parameter ¢, efficient
and also explicitly computable. To our best knowledge, only the a priori analysis of this
eigenvalue problem in a regular context is up to now available (see [16, 17, 18, 22, 25, 31]
for an overview on this topic). We have here in mind to extend it to the non regular
context, and, with these results in hand, to provide a relevant a posteriori error estimator.
For similar results for the Laplace equation, we refer to [29, 19].

The outline of the paper is as follows : In Section 1, we recall the Reissner-Mindlin
eigenvalues system and its discretization. Section 2 gives an a priori error analysis whithout
strong regularity assumptions, that constitutes its originality. Section 3 is devoted to some
preliminary results in order to prove the upper bound of the a posteriori estimator. This
one directly follows and is detailed in section 4. We then give an a posteriori estimate for
the eigenvalues error in section 5. The lower bound is developped in section 6 and leads
to the efficiency of our estimator. Finally, some numerical tests are presented in section 7,
that confirm its requested behavior.

1 The boundary value problem and its discretization

Let Q be a bounded open domain of R? with a Lipschitz boundary that we suppose to
be polygonal. Assuming that the plate is clamped, its free vibration modes are solutions
of the following problem (called Reissner-Mindlin eigenvalue problem) : Given # a fixed
positive real number that represents the thickness of the plate, find a non-trivial solution
(@,¢) € HX(Q) x HL(Q)? and 7; > 0 such that for all (7,7) € H}(Q) x HL(Q)? we have :

fgd(gg,d;)+§f/(@@—q~5)-(Vf;—z[;)df:}2 [E/Qﬁa)f;df+— ﬁq@-z&d@] . (1)

Q

where 7 is the angular vibration frequency, p is the density of the plate and
(6,0) = [ €26 s i
Q

Here, the operator : denotes the term-by term tensor product and



where F and v are respectively the Young modulus and the the Poisson coefficient of the
material. We also define

Ek
2(1+v)’

where k is the shear correction factor usually equal to 5/6 [17]. Now, in order to perform
an a posteriori error analysis that do not depend on the chosen unit of length problem (1)
has to be given in its dimensionless formulation. To do it, we introduce a density as well as
a length scale of reference, respectively denoted by p and L (the latest being in the order
of the diameter of the domain ). We consequently define the dimensionless variables and
unknowns z, p, ¢ and w by :

¢ =

x=Lx, p=pp, p=¢ and @ =Lw.

Considering the case of the constant density (p = p so that p = 1), problem (1) in which the
eigenvector is normalized is now equivalent to find a non-trivial (w, ¢) € H}(Q)?* x H}(Q)
and o; > 0 such that for all (v,v) € H}(2) x H}(2)? we have :

a(o,v) + / (Vo—=v)de = oy {/wvdx—k—/(b lpdaz],
/w dx+—/gz5 odr =1,

where we note :

a6 1) = / Ce(9) : e(W)dz,

Ce(¢) =2pe(d) + Air(e(¢)) I,
with

and

(6) = 5(Vo + (V6)T).

Defining ( = 5 /E, the dimensionless variables and parameters arising in (2) are given by :

Etz

t=1/L, V—C(Vw—@ and oy =

From now on, the parameter ¢ is supposed to be in the interval (0, t,,4:] With ¢4, > 0
fixed. In the following, (-, -)p stands for the usual inner product in (any power of) L*(D).

For shortness the L?*(D)-norm is denoted by || - ||p. For s > 0, the usual norm and
seminorm of H*(D) are respectively denoted by || - ||sp and |- |s,p and the usual norm on
H=*(D) = (H§(2))" is denoted || - ||—s,p. For all these notations, in the case D = €, the
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index €2 is dropped. The usual Poincaré-Friedrichs constant in 2 is the smallest positive
constant ¢y such that

16]] < crloli Vo € Hy(2)>

By Korn’s inequality [21], a is an inner product on H}(Q)? equivalent to the usual one.
Indeed, defining the energy norm || - ||¢ by

llle = a(¥,v) Vi € Hy(Q)?,

it can be shown (see [12]) that
1
Yl < ;H?/JH%WJ € Hy(Q)". (3)

Let us now consider a discretization of (2) based on a conforming triangulation 7, of €
composed of triangles. We assume that this triangulation is regular, i.e., for any element
T € Ty, the ratio hy/pr is bounded by a constant o > 0 independent of 7" and of the mesh

size h = max hr, where hr is the diameter of T" and pr the diameter of its largest inscribed
€/n

ball. We consider on this triangulation classical conforming finite element spaces W) x Oy,
such that

W, C W&h = {Uh € CO(Q);Uh =0 on 0f) and Un|T € ]P)g(T) VT e 771} C H&(Q),

O, C Wg,h X W&h C H&(Q) X H&(Q),

for some positive integer ¢, where P,(7") is the space of polynomials of degree at most [
defined on T'. The discrete formulation of the Reissner-Mindlin eigenvalue problem is now
to find (wp, ¢n) € Wy, x O, and oy, > 0 such that

t2
a(dn, ¥n) + (v, Von, — Rptp) = aup | (wn,vp) + E(%,%) Y (v, n) € Wi, X O,
t2
lwnl” + EH%H2 =1,
(4)

Y = Ct*(Vwy, — Ridn). (5)

Here, R;, denotes the reduction integration operator in the context of shear-locking with
values in the so-called discrete shear force space I';, which depends on the involved finite
element [5, 7, 16, 15, 35]. We assume moreover that

Ry € Ho(rot, Q) Vi, € Oy,

where Hy(rot, Q) = {v € L*(Q)% rot v € L2() and v -7 = 0 on 90}, equipped with the
norm
1011 oty = 0l + lIrot vl
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Here, for any v = (vi,v9)T € L?(2)2, rotv = vy /Ox — dvy /Oy and 7 is the unit tangent
vector along 0f). In this work, Ry, is defined as the interpolation operator from ©;, on the
Hy(rot, Q) conforming lower-order Nedelec finite element space [21].

In this paper, we consider the lowest order MITC element (also called the Duran Liber-
man element) for which W), and ©,, are defined by

Wiy, = {vn € C°(); v, = 0 on 9Q and vy € P(T) VT € Tp},

Oy =W, @ By,

where By, is the edge bubble space (see [10, 15] for more details). In that case, I'j, is chosen
as the lowest order Nédélec finite element space, namely

) = {o € Ho(rot,Q); o0 € Po(T)? ® Bo(T) (w2, —21) ' VT € Tn}

and the reduction operator Ry, is the associated interpolation operator that is characterized
as follows: for any v € Hy(rot,2), Ryt is the unique element in ', satisfying

/(Rh¢—¢)'TEdS=07
E

for all edges E of T and any T € T,. The advantage of this element is that it is locking
free (see [15] for a robust a priori estimate). Other examples are also possible, we refer
to Table 1 of [10] for a comprehensive list. In that case, our a posteriori error analysis is
valid, but the robust a priori error analysis remains open for some of these elements (for
instance, the MITC3 element).

By the usual Helmholtz decomposition of any Hy(rot,)) vector field [8, p. 299], for any
b, € Oy, there exist 2 € HY(Q) and 8 € H}(Q)? such that,

(R, — Ion = Vz — B, (6)
as well as a constant C' > 0 such that

1213 + 1817 < C (R = DbnllZr ot 0 (7)

More precisely, if we introduce the constant cg such that

181 < cr|lrot(Ry — I)onl|,

then we have C' = (1 + ¢%)(1 + % + ch c%).
If (w, ¢) is the solution of (2) and (wp, ¢p,) the one of (4), the usual error e§" is defined as

() =|w—wnli + |6 — i+ 3y —
+ PMrot(y — )P+ Iy — vll? - (8)
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The residuals are defined as follows :

Resi(v) = (aunpwn,v) — (14, Vo) for any v € Hi(€), (9)
o 2
Ress(t) = —a(on, )+ (n ) + = (aendn, ¥) forany v € HY(Q)'.  (10)

We finally need to introduce the following mesh-dependent norm. For all (¢,v) €
H}(Q) x H} ()2, we define

1

1, o)1 = IVeIP + Y 5= Vv = 3 (11)

2
]

For any functional F' defined on H{(Q2) x H}(Q)?, the dual norm associated with (11) is
classically defined by

N = sup Flw) (12)

wwyert @xai@2\{oy 1@, 0)[1Ln

In the following, the notation a < b and a ~ b mean the existence of positive constants ¢,
and ¢y, which are independent of the mesh size, of the plate thickness parameter ¢, of the
quantities ¢ and b under consideration and of the coefficients of the operators such that
a<Scoband b S a S b, respectively. The constants may in particular depend on the
aspect ratio o of the mesh. We denote by w7 the union of elements 7" € 7T, that share
at least a node with 7" and by wg the union of elements having in common the edge F.
Finally, &£, denote the set of interiors edges in 7;, and, for any edge E € &, we define by
hg its length and by ng a fixed unit normal vector to E.

2 Robust a prior: estimations

This section is devoted to an a prior: error analysis of the Reissner-Mindlin eigenvalue
problem. This subject is the origin of a lot of works (see e.g. [16], [17], [18], [22], [25], [31])
in the smooth case, in the sense that the domain is supposed to have a smooth boundary or
to be a convex polygon. Here we want to perform a similar analysis without the convexity
assumption. This requires to revisit the whole results with less regular solutions. We first
start with robust a priori estimates for the Reissner-Mindlin system with data in L*(2)
and then give their consequence to the eigenvalue problem.

2.1 Robust a prior: estimates for the Reissner-Mindlin system

As suggested before, we need to determine the regularity properties and to give uniform
estimates of the solution of the Reissner-Mindlin system with L? right-hand side. For this
purpose, let us consider the following problem : Given g € L?(Q) and ¢ € L*(Q)?, find
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(Bi,wy) € Hy(Q)* x HY(Q) such that for all (n,v) € Hi()?* x Hi(Q)
2
a(Bim) + (7, Vo =) = (9,0) + S5 (e0), 13)

7 = (2 (Vw, — By).
This problem has a unique solution in Hj(Q)? x H(Q) since the bilinear form

((8,w), (n,v)) = a(B,m) + ¢t~ *(Vw — B, Vv — 1),

is coercive in H}(Q)? x HI(Q).
For such a problem we have the following regularity result with robust a priori estimates
(in the regular case, see Theorem 7.1 of [2]).

Theorem 2.1 There exists £g € (0, 1] such that for all e € (0,0, (B, wi) € HY*5(Q)? x
H3/22(Q) with

1Bell3/2+e + Nwillajore + I7ell=1/24e + tliTellyore < llgll + £¥llll- (14)

Proof: As in [2], we see that (5, w:) € Hyg(Q)* x H(9Q) is the unique solution of (13) if
and only if (r, B, p, wy) € HLQ) x HL(Q)? x HY(Q) x HY(Q) is solution of the triangular
system

C(Vr, Vi) = (g, 1), Y € Hy(9),

a(ﬁtu w> - C(Cuﬂphw) = C(VT', 1/}) + %(@7 %)7vw € H&<Q)27 (15)

— (B4, curlq) — t*(curl pg, curl ¢) = 0,Vq € HY(Q),

(Vwy, Vs) = (B + 12V, Vs), Vs € H (),

with the relation

“2(Vwy — B;) = Vr + curlpy,

and the notation

HY(Q) = HY(Q)NL*Q), L*Q) ={qeL*Q): / q(x) dz = 0}.
Q
Now we divide the proof is different steps:
1) The first problem in (15) is a Dirichlet problem in 2 with a L?(2) datum, therefore
by [24, Corollary 2.4.4], there exists e € (0, 3] such that r € H*?%¢(Q), for all £ € (0, 4]
and

17]l3/24¢ < Mgl (16)

2) We now look at the system in (f;,p;) that by taking the difference between the
second and the third line of (15) (multiplied by () takes the form

a(By, ) —C(curl py, )+ (By, curl )+t (curl py, curl q) = (F,¥),V(1, q) € H&(Q)QXHI(Q),
(17)



where here F' := (Vr+ %w. Again this problem has a unique solution for any F' € H~1(Q)?

since the left-hand side is coercive in H}(Q)% x H'(Q). By taking (¢, ¢) = (8, p¢) and using
Korn’s inequality, we get

1B:17 + €[l curl pe||* < ([ F |11 Bell1,

and therefore
1Bells + tl curl pe|| S ([ F][ -1 (18)

But by taking ¥ = 0 in (17), we get
(B, curl q) + t*(curl py, curlq) = 0,Vq € H'(Q), (19)
since the curl of a constant function is zero. By integration by parts, we get equivalently
(curl B, q) = —t*(curl py, curl q), Vg € H' ().
By Cauchy-Schwarz’s inequality in the right-hand side, we obtain

|(curl B, q)

Y ——— < 2| curl ]l

qeHE(2),¢7#40 gl

and by (18) we arrive at
[earl Gl S - (20)

We now look at an estimate of the L?-norm of p,. For that purpose, we notice that by
Corollary 1.2.4 of [21] there exists ¢° € HJ(€)? such that

dive’ =p, in Q,

and
1% S Mlpell-
Therefore the function ¢° = (—¢3, ¢7) belongs to Hj(Q)? and satisfies

curl® =dive® =p,  in Q, (21)

as well as
141 < llpell- (22)
Using as test function in (17) the pair (¢°,0), we get

¢(eurlpy, ¥%) = a(Br, ¥°) — (F.97).

Using (21) and Green’s formula, we obtain

Cllpell* = Clpes cwrl ) = ((curl py, ¥°) = a(B, ¢°) — (F,9°).
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Using Cauchy-Schwarz’s inequality, (18) and (22), we arrive at

pell < 111 (23)

Let us now introduce the mapping Aq as follows
Ao HY(Q)? = H(Q)? x L*(Q) : F — (B0, po),

where (Bo,p0) € HE(Q)? x L2(Q) is the unique solution of the Stokes like system (that
formally corresponds to (17) with ¢t = 0)

{ o)~ mente) < (7). < T o
(curl By, q) = 0,Vq € L*(Q).

Clearly (see [2, p. 1288]) Aj is an isomorphism and consequently for all ¢t € (0, t,,4.] We
can consider the mapping

By : HY(Q)? x LA(Q) = E2(©) x H(Q) : (Bo. po) — (pr cwrl 3)

where (3, p;) is the unique solution of (17) with right-hand side F' = A5 (B0, po)-
First we notice that the estimates (20) and (23) imply that B; is uniformly (in t)
bounded in the sense that

lpell + ¢l curl Bell -1 < N1 Bollx + llpoll-

On the other hand the proof of Theorem 7.1 of [2] shows that B; is also uniformly bounded
from H*(Q)?> N HY(Q)? x HY(Q) to H'() x L*(2) in the sense that

Iplls + = curl Billo < [1Boll2 + llpollr.

reminding that curl 8y = 0.

Therefore by interpolation, the mapping B; is uniformly bounded from H'*#(2)? N
H(Q)? x H3(Q) to H*(Q) x H"1(Q), for all s € [0,1], s # 1/2 (for s = 1/2, the statement
is also valid but the target space should be changed into HY2(Q) x (HY2(Q))) with the
estimate

plls + ¢l curl Bells—1 < NlBoll1+s + llpolls- (25)

Let us show that this implies that there exists g9 € (0,3] such that for all & € (0, ]
(B¢, p) belongs to H3/27(Q)? x H??*¢(Q) with the estimate

1Bell3/24¢ + el /246 + tPll3j21e S NEF [ —1/24e- (26)

Indeed by [24, Theorem 6.2.3] and [34, section 6.2], there exists eg € (0, 3] such that
for all ¢ € (0,£5], Ao is an isomorphism from H~/**¢(Q) into H***(Q)* N H}(Q)* x
HY?2(Q) N L2(Q2). Hence by the property (25) of B, with s = 1/2 + ¢, we get

pelljoe + 7 el Bell—1jore S 1F -1/ (27)

9



At this stage, we can look at 5; € H3(€2)? solution of the elasticity system

a(By, ) = (F + Ccurl p, )V € Hy(Q)?,

and using (23, Thm 6.1] and [34, section 6.1], there exists e, € (0, 3] such that for all
e € (0,e1], By € H¥?2(Q)? if F + Ccurlp, € H~Y/?t%(Q)? with the estimate

1Bells/21e S I1F + Ceurl pel| 1721 (28)

In a second step, as (19) means that p, € H'(€) is the unique solution of the Neumann
problem

Ap, =t 2curl 3 in Q,
Onpr =0 on 0.

Hence if € € (0,24] by [13, ?], we find that p, belongs to H/>*¢(Q)) with the estimate

||Pt||3/2+e S t_2|| curl 61?”—1/2—}—5-

Consequently for eg < min{ea,eg}, by (27), we get

tpellsjore S IEF =172+ (29)

The estimate (26) then follows from (27), (28) and (29) by choosing eg = min{eg,er,ea}.

Coming back to problem (15), the right-hand side of (17) is given by F':= (Vr + %w.
Hence by (16) and (26), for all € € (0,£/], (B, p:) belongs to H3/>t2(Q)? x H*?**%(Q) with
the estimate

1Bells /2 + lIpelljzee + tpllszre < llgll + llell. (30)

3) The last identity in (15) means that w; € HJ(£2) can be seen as the unique solution
of

(Vwy, Vs) = (B, + t°Vry, Vs), Vs € Hy (),

Hence for all € € (0,¢;], w; belongs to H3/?+5()) with the estimate
[willsjore S N8+ 2Vl -1 /24
Combined with (16) and (30) we have obtained
lwillsj2+e < llgll + [l (31)

Finally recalling that 7, = (t~*(Vw, — ;) = ((Vr + curlp,), the estimate (14) is a
simple consequence of (16), (30) and (31). n
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2.2 Robust a priori error estimates for the eigenvalue problem

In order to perform the error analysis between the exact eigenvalues of (2) and their
approximation (eigenvalues of (4)), it is convenient to introduce the operator

T, : LX(Q)° x L*(Q) — L*(Q)* x L*(Q) = (¢, 9) = Til, 9) = (Bi,we),

where (8;,w;) € Hi(Q)? x H}(Q) is the unique solution of (13) with datum (g, g). As the
bilinear form a introduced before is symmetric, T; is a selfadjoint and compact operator
from L?(Q)% x L*(Q) into itself equipped with the natural inner product and norm

t2
(¢, 9)|} = EH@HQ + gl

Furthermore o is an eigenvalue of (2) if and only if O% is an eigenvalue of Tj.
Ast — 0 (cfr. [8]), the solution (53;,w;) of (13) converges to (5o, wo) € HJ ()% x HL(Q),
where (3, po) is the unique solution of (24), wy € HZ(Q) is the unique solution of

1

. Awy=finQ
D) W=/

Setting 79 = ((Vr + curlpy) (that belongs to Hy(curl, 2)"), it holds

{ a(ﬁoﬂ/’) + <7—07 Vv — ¢> = (gav)vv(nav) S ]—IOI(Q)2 X H&(Q)a (32>
Bo = Vwy.

Let us notice that the regularity results from Theorem 2.1 only yield 7 € H~'/2*4(Q)
for some ¢ € (0,1/2].
As before we define the operator Ty by

Ty : L(Q)° x LA(Q) = L) x L(Q) : (¢, 9) = To(, 9) = (o, wo).

The first aim is to prove that T} tends to Ty as ¢ goes to zero even in the non-convex
case (see Lemma 3.1 of [17] in the convex case):

Lemma 2.2 For all (¢, g) € L*(Q)* x L*(Q), it holds

(T} — TO)(‘Pag)HHg(Q)?ng(Q) S \/E|(<P79)|t-

Proof: Subtracting (32) to (13) we have
2

- E(wﬂ?)av(nvv) € Hol(Q)Q X H(%(Q)

a(/Bt - /807w) + <Tt — 7o, Vv — w>
Hence taking n = 8; — By and v = wy — wy, we find
t? t?

E(‘Paﬁt — Bo) — = (7t — T0, 1)

a(By — Bo, Bt — Po) = c

11



Using the (uniform) coerciveness of a, Cauchy-Schwarz’s inequality and the a priori esti-
mate (14), we get

2

12 t
18: — Bollf < Ellwllllﬁt—ﬁoll+Z||Tt—To||—1/2+e||||7t||1/2fe

< e, 9)il1B: — Bolli + tl(e, 9) |2

Hence Young’s inequality leads to

18: = Bolli £ Vl(@, 9l (33)

Observing that

t2

V(ws —wo) = B — Bo + ZTta

we get

t2

IV {we=wo)ll < 1B = Boll + Flm
S 1B = Boll + Ell7elln 2+

The conclusion then follows from the previous estimate (33) and (14). u

Once such a convergence result is obtained by standard perturbation arguments (see
for instance [28] and [17] for its application to the Reissner-Mindlin system), we obtain the
next result.

Lemma 2.3 Let pg > 0 be a fixed eigenvalue of Ty of algebraic multiplicity m and let D
be a open disc of the complex plane centred at gy that contains no other element of the
spectrum of Ty. Then there exists ty > 0 (depending on i) such that for all t € (0,to], T}
contains exactly m eigenvalues in D (repeated according to their algebraic multiplicities).
In particular pg is the limit of eigenvalues of T;. Furthermore if ug is a simple eigenvalue
of Ty, then Ty has a simple eigenvalue p; in D for all t < ty and the distance of j; to the
remainder of the spectrum of Ty remains uniformly bounded from below.

We are now ready to prove some convergence results between exact eigenvalues and
eigenvectors and discrete ones:

Theorem 2.4 Let py > 0 be a simple eigenvalue of Ty and fix ty small enough such
that T} fulfils the properties of Lemma 2.3, in particular denote by j; its eigenvalue that
converges to po. Let oy = i that is a simple eigenvalue of problem (2) and let (w, ) €
H} ()2 x H} () be its corresponding normalized eigenvector, i.e., |(w, @)|; = 1. Then there
exist hg > 0, and € € (0, %] such that for all h < hg, the discrete problem (4) has a unique
eigenvalue oy, that converges to oy as h goes to zero. Furthermore if (wy, ¢n) € Wy, X Oy,
is the corresponding normalized eigenvector, i.e., |(wh, @n)| = 1, then one has

16 = @l + lw —wnll S AV2F, (34)
6 — onll + [lw—will < A, (35)
|Oét — Oét7h| 5 h1+28. (36)
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Proof: Given (p,g) € L*(2)? x L*(2), we consider (3,4, w;n) € W), X Oy, solution of
a(Ben, ) + (e, Von — Ramn) = (g, 0n) + %(%m) , ¥ (Un, n) € Wi X O
Ton = (3 (Vwen — RyBen).
and the mapping
Tin: L*(Q)? x L*(Q) = LX(Q)* x L*(Q) = (¢, 9) = Tinl(e, 9) = (Ben wen).
As in Lemma 3.2 of [17], we prove that for all (p, g) € L*(©2)? x L?(Q), it holds

(T, = Ton) (2, )l mpoyex i) S B2, 9)e (37)
Indeed the only difference is to use the estimate
18: = Bealls + el = 7enll S BY2(IBellsare + tmellyore + 17l -1240).  (38)

If this estimate holds then by (14) we will get

18 = Benlls + thme = meall < B2 (llgll + £lll)),

and consequently
lwe = winlle S BYZHE(lgll + 12l (39)
since
2

t
V(wg —wep) = Br—RpBen+ — (1t — Ten)

¢
t2
= B —RuBi+Ru(Br — Ben) + Z(Tt — Tih)-
Hence using standard propertries of Ry, we get
t2
IV(we —wen) < (18 — RuBell + [[Ra(Be — Ben)ll + ZHTt — Tell

SO RIBL + 1B — Benllr + tl7e — Tenll;

which yields (39) thanks to (38) and (14).
~ To prove (38) we adapt Lemma 3.1 of [15] to our setting by proving that for any
(B,W) € W, x Oy, setting 7 = (t~3(Vw — Ry,3), we have

18 = Benlls + 17 — 7enll S1B — Bl + 17 — 7l + A2yl 1o (40)

Indeed as in Lemma 3.1 of [15], we may write
- N t2 . A t2
a(ﬁ - Bt,hu 6 - ﬁt,h) + Z<7A_ — Tt,h, T — Tt,h) = a(ﬁ — 6157& — ﬁt,h) + Z(,?A_ — & Tt,h)
+ (/YHB - Bt,h - Rh(B - Bt,h)-

13



Hence by the uniform coerciveness of a, Young’s inequality and Cauchy-Schwarz’s inequal-
ity we get

1B = Bl + 27—l S 18— Bl + )17 — nl)?
+ vell=1/242 18 = Ben — Ra(B = Ben) |1 /2—e-

Hence using the estimate
7 = Ranllja—= S B2 ]y, (41)

again by Young’s inequality we arrive at (40).

This estimate (40), (14) and the arguments of Corollary 3.2 of [15] lead to (38).

The estimate (37) and Theorem 7.1 of [3] lead to (34) due to Lemma 2.3.

Since f3; belongs to H}(Q)?, we can use the same duality argument than the one from
Lemma 3.4 of [17] thanks to Lemma 3.3 of [17] and get

18: = Benll + llwe — wenll £ BT (gl + 2 l)).
In other words, for all (¢, g) € L?(Q)? x L?*(2), it holds
(T2 = Ten) (s Dl 2wz S BN, 9l (42)

and (35) follows as before.
In order to prove the relation (36), we use the same argument than in Theorem 2.2 of
[17], namely applying Remark 7.5 of [3], we have

e — Nt,h| <C((T: — Tm)(ﬁt,wt)h + |[(T: — Tm)(ﬁt,wt)ﬁ),

where C' is a positive constant depending on the inverse of the distance from p; to the
remainder of the spectrum of 7;. Hence by Lemma 2.3 and (42) we obtain

| — prep| S BT

1
As oy = — and oy, = —, we arrive at (36). ]
Lt Kt h

Remark 2.5 If Q) is convex, then we can take ¢ = 1/2, and we recover standard results
presented in most existing works (e.g. [16], [17], [18], [22], [25], [31]).

3 Preliminary results
The aim of this section is to prove three lemmas which will be used in the following of the
paper. The proofs of Lemmas 3.2 and 3.3 are close (but non identical) to the ones of [10]

and [12]. Nevertheless, we give them for the sake of completeness.

14



Lemma 3.1 We have

_ 2 2
v = wl?y <6 (u+ N — dulle + 3||Resal|* ) + 3¢ <EHOMZ5 — Oét,h¢h”) . (43)

Proof: First, it can be shown that for any ¢ € (HJ(2))? (cf [12]),

llIe < 2 (e + MWL,
hence by (2), (4) and the definition of @, we get
2
(=) = al6,6) — a5 (6,8) — ()

2

= a(¢ — ép, V) — Resa()) — %(O@(b — QppPn, V)

— +2
< ¢ = enllell¥lle + [ Reszl-1|vh + 5 llowd — cwngnll 9]

o 2
< (@G N0 = e + |Fesal-s-+ er 5wt~ acacnl] ) 1o

By the definition of the norm in H~!(), we conclude that

_— £2 2
=l < (@G04 20210 = onlle + [ Resalls + cr gt - acacnl)

_— £2 2
<6t A o= onll 4 3IReI, + 365 ( fyllawd — ol )

Lemma 3.2

16 — @nll2 + ¢y — 7ull® = Resy(w — wi + 2) + Ress(é — dn + B8) — a(é — én, )
2
+(ow — ay pwp, w — wp, + 2) + %(ataﬁ — QypPn, @ — On + ),

where z and B are the functions appearing in the Helmholtz decomposition (6).

Proof: First, (2) and (6) lead to

(Y= (R = D)én) = (v =, Vz—B)
= (v,Vz—=8) = (m, Vz = 8)

2
= alw,2) + aug5(6, ) — a(6,8) = (0, V2 = B)
2
= u(w, 2) + a5 (6,8) a6 = 6n, 6) — alén, B) — (1, V2 = )

15



As v = (t73(Vw — ¢) and v, = (t"3(Vwy — Rudy), we may write

lo—nlle+C Ellyv—mll* = a(d—dn, d—6n)+(v—, (Vw—Vwn)—=(6—n))+(7—7h, (Ra—1)¢n).

By the previous identity and the definition of }%?1 and @, we obtain

&= 6nll2 + ¢y =
2
= = wn) + (6,6 — 0n) — al6n, 6 — 6n) = (o V(w — 1)

2
+<fyh7¢ - (bh) + at(w,z) + at%(¢75) - CL((b - ¢h7ﬁ) - a’<¢h76) - (fyhavz - 6)

2

= Resy(6 = ¢n + B) — 5

Qe pbn, @ — &+ 5) — (9, V(w —wn + 2)) — alp — én, B)

2
oy (w,w — wy, + 2) + %(Wb, b — on+B)

= Resy(¢ — dn + B) + Resy(w — wh + 2) — (ppwi, w — wp + 2) — a(é — ¢, B)

2

t
+oy(w,w —wp + 2) + E(Oé#b — QupPny @ — Op + B) + ap(w,w — wp, + 2)

= Resy(¢ — on + B) + Resi(w —wiy + 2) — a(é — ¢, B)
2
+(ouw — oy pwh, w — wh + 2) + %(Othﬁ — b, @ — on + B).

This proves the requested identity. [ ]

Lemma 3.3
1 o 1 o 1, 1. 2
§||¢—¢h+5||c+§||¢—¢h||c+§f =1y =l

+%Z < IV(w —wp + 2) — (¢ — én + B)|I7

2 2
t
< (qw — o pwp, w — wp, + 2) + E(atqﬁ — Oepdn, @ — O+ B)
— —_ ]_
+Resi (w — wn + 2) + Resa(¢ — dn + 8) + 5 18]lc-

Proof: Because of (6), we first remark that
V==t (Vw =V — ¢+ ¢n + Vz — ),
so that we have for all T' € T},
IV(w = wn+2) = (¢ = n + B) 7 < 2t |y — mllz-

16



This estimate implies that

1 1 1
§||¢ — ¢n + B2 + §||¢ — onlld + 5@ Y2y = l?

1 ¢
t3 > m”v(w —wn+2) = (¢ —on+ B)7
e 1 1 1
I — on + BlIE + lé— énlle + §C_1t2||7 — l|* + éC_thTeZT I = ll7
h

<

N | —

1 1
<y =P+ §a(¢ — o+ B,0—én+B) + §H¢ — onll?

1 1
=y =l + 5 (Il¢ — dnlle + 2a(¢ — én, B) + 18l12) + §H¢ — ol

1
= ll6 = dnlle + 'l = wmll® + S l1Blle + ol = ¢n, B).

The conclusion follows from Lemma 3.2. m

4 Reliability of the estimator

Theorem 4.1 Let us consider 0 < € < 1/2, as well as two parameters vy > 0 and vy > 0.
Moreover, let us define

3 T+e—1 t?
Ble)=max | = +c%E——+6 +)\;1+7).
€)= (b 00 gy

Then,

(ei)? < Aull|Resi[|[2, ), + Az|| Resa||2 ) + Azl — én + BIIE + Asllén — Rudnll o)

9 2
= > ATV =+ = 6= o+ A+ s (s — sl

TET
t2
+A7 |:(atw — Q pWh, W — Wh, + 2) + E(Oétéf) — Qe Ph, ¢ — On + 5)] ,
(44)
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with
A1 = I/lB(f‘:)Q;

A2 = I/QB(E‘:)Q + 3,

I

2 _
A, = max <15_ 5 2+23(5)(M+A)02R) ;
r_ (B(e) 1
- - TeT
SR+ Rk oyt + ki) VI e
Ag =3¢
A7:23(€)

Proof: The proof is similar to the one of [12, Theorem 1] so we only give a sketch of it.
Using [12, Lemma 2], we have

t2 2 - 2/5

<62U>2 )Cil 2”7 Th

1—-1/e—
S s H<Z5h— h¢h’\2—%286|’¢—¢h”2

+|¢ — dnls + ¢ t2||7—%||2+C t4||7“0t(7—%)||2+||7—7h||31

s 1—1/e—¢ 9 t° ~1,2 2
< (1—Cpﬁ> |6 — onli + (IJFm)C =1y =l

1-— 2/5 _
o 190 = Rudnl* + 2 lrot(y = ) I + lly — w2

1 g+€ t2
S(M;rcfvﬁ)w onll + ( m) )y =l

-1
+15— 25||¢h - Rh¢h||2 + C_2t4||7”0t(’y — 'yh)H2 + ||’7 _ 7h||%1-

Then, because of Lemma 3.1 as well as
2
P rot(y — m)|I* < B 6 — onllg + 2 [lrot(n — Radn) I,
we obtain
1
s t+e—1
ev)2 < (= 2 €
(€@ = <u A= 2e)
+ 1+L Ty =l + 1 [6n — Rangnl|®
¢(1—2¢) 1—2¢

_ 12 2
v3lRel, + 36 (15l - awnl)

6+ A)) 16— énl2 + 2llrot(én — Rugn)|l

18



By the definition of B(e) as well as Lemma 3.3, we get
2

(ef’)* < Ble) (2(0%@ — QW W — Wy + 2) + 2%(0%25 Genn, @ — O+ B)

+2Res; (w — wh + 2) + 2Resa (¢ — én + B) + 1812 — 16 — én + Bl

—th V(e —wn+2) = (6= én+ B)I3) + 3| Fewa 12

TeTh
2

21
+ ( 5_ 25) 60 — Ruon||* + 2||rot(¢n — Rugn)||?

1
#2 2
+3¢h ( =l — arnonll | -
12
We notice that

Resy(w — wi + 2) < ||| Rest |1l [l (&, w — wn + 2)|[[1p ¥ & € HE(Q)?,

Resy (¢ — ¢+ B) < | Resa|l-1é — én + Bl

where, here and below, with a small abuse of notation, we use the extension (by zero) of
the linear operator Res; to the whole of HJ(Q2) x HJ(£2)?

Res, : HY(Q) x HA(Q)? — R : (v,1) — Res, (v).

Introducing now the parameters 11 > 0 and v, > 0 and using two times Young’s
inequality lead to

— 1 —
() < nBEPINResillZan + M@0 —wn+ 2lEp + vaBe) | Resell,

4o|6 = 6u+ BIE = BN — dn -+ A1 + BEII?

2_1 J—
+(F52 ) 1w~ Racnl? + 3l Fesall, + 2lroon - Rl

-y (t2+h2) IV(w—wn+2) = (6= on+ B)|7

TeTh

2
+2B(e) [(atw — oy pWh, W — Wy, + 2) + %(04#25 — Q1 dn, @ — n + )

2 ?
+36 (o0 — auaenll)
Finally, choosing v = ¢ — ¢, + 3, we get

00 =+ Dl = 96 = b+ AP+ 3 g IV = +2) = (9= on+ D),

TeT
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and the previous inequality yields (44). |

Corollary 4.2 [t holds
(5")* S I Resl 121 + [ ResallZy + [lon — Rudullirgore

t2
(oqw — ag pwp, w — wp, + 2) + E(Oéﬁb — QP @ — On + 5)’ + t4”04t¢ - Oét,h<l5h”2-

Proof: Assuming 1 — 2¢ > 0, the parameters v; and v, arising in the values of A3 and
Al in (44) are first chosen such that A3 < 0 and A > 0 for all T € T,. Namely we take

v, = vy = 2k/B(e) with
Uz
K=max<{ —, — ¢,
p2¢

(i) < Aul[[Resul||2,,, + Aol| Resa || + fh”@h — RuonllZrgor0

~ t
+Ag [(Oftw — Quy pWh, W — W, + 2) + E(Oftcb — updn, @ — On + B)

and we obtain

(45)
/42 2
o )

with .

A1 = 2/€B<€),

Ay = 2kB(e) + 3;

5 2 _

A4:max<1€_ ; 2+2B(8)(u+)\)c§%) ;

AG = QB(E),

A'y = 3037
We conclude by taking any ¢ € (0, %) n

Lemma 4.3

t2
(Qpw — oy pwp, w — wp, + 2) + E(atqﬁ — e Pny @ — On + 5)'

2.C 1/2 t?
< ( L ) (Hatw — oy pwp || + =g — Oét,h(bh”) |én — Ruon |l (rot,0)

1+ c 12
Qp + Qg p _ 2 ﬁ _ 2
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Proof: Clearly we have

t2
(Oztw — Qy pWh, W — Wy, + Z) + E(Oéﬂb - Oét,h¢ha ¢ — on + 5)

2 46
= (apw — oy pwp, w — wp) + %(wb — QppOn, ¢ — On) (46)

+(ouw — g pwn, 2) + %(atﬁb — Q1 On, B).

We can notice that for all v € H}(Q) or v € H}(Q)?, we have

1
2 2
V]l S( CFQ) [Vl
1+ c3

Using Cauchy-Schwarz’s inequality and (7), we have :

2
(atw — Oy hWh, Z) + E(atﬁb - at,h¢h7 5)’

t2
< [l — avpwnl| |2 + 5 llawd — awndull 5]l

C% 1/2 t2 C% 1/2
< llaws = sl (1557 ) Dell+ et - acaenl (55 ) 191
F F

1/2 97 1/2
c3.C ) t? R
< _ - _ — .
iz |lovw — i pwnl]® + 12Hozt<b e nonl| |6 — Radn | o)
(47)

For the other term in the right-hand side of (46), we have by the normalization of the
eigenvectors :

2
(oztw — Q pWh, W — wh) + E(at¢ - at,h¢ha ¢ — ¢h)

= aul|w]|* = (o + aup)(w, wn) + apfwn

2
1 (6P ~ (@ + @n) (6, 60) + aeal )

= (o +aun) (1= )~ 0,600

But we also have :

t2

2
oo — wnl* + f—2||¢ —onll® = llwll® = 2(w,wn) + llwnl® + 5 (101" = 20, 6n) + lIénl®)

2

= 2 2(w.u) — 20 (6.00).
(48)
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Hence :

2

t a +a t2
(= g —n)+ ot = auadns6—n) = L8 (o~ o -l ).
(do

2

Using (47) and (49) into (46), Lemma 4.3 holds.

Now, it remains to bound each of the two residuals.

Lemma 4.4 With the notations (9) and (12), we have

1Res 210 S D W + hp)|awnwn + divyl|7 + Y hu(t + b))l - nelE. (50)

TET, Ec&;,

where [y,] g is the jump of vy, across E defined by :

Yrle = Yulr+ — nlr- with E = T+NT-.

Proof: Let v € H} (). Using standard Green formula into each element of the triangula-

tion, we get :

Resi(v) = (ot pwn, v) = (9m, V)

> [/ (o pwn + divy)v — Z/'Yh nEv]

TeT, EeoT
= > [ (@t divnye = Y [ pule- e,
TET, T Ecéy B

Let vf € S}(Th) ={v € H}(Q) : VT € Tp,v|r € Pi(T)} (cf. estimate (3.6) of [10]) be such
that, for all T € T}, :

v =v'llr < b {IVY = ¥l + b2l VYl } Vo0 € Hy()
lo=o"lle S B {IV0 = Gl + hel Villup} Vo € HY(OQ)2

We can notice that Res, (v") = 0, and consequently :

Res, (v)

IN

AN

ﬁe?l(v—vl)

Z/Oéthwh+dw% v—' Z/%E ng (v —v')

TeT Ee&y,

> llawpwn +divyllzo = o'lle + Y e - nellelle =o'l
TET, E€&;,

Z hT 2 + h%”Ozt hWh + diU’Yh”T

1
ter. ’ 2+ b2

22
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1
+ > hgi 2+ e - nells

Ecéy \% t2 + h2E

{IVo = Ylluy + hr |V llop )

1/2
(Z hp(t + h) e pwn + div%ll%) 1@, )1,

TeT

1/2
+(ZhE(t2+h%)H[%]E~nEH%> [l (&, o) ],m,

Ee&y,

so that (50) holds. u

Lemma 4.5 With the notation (10), we have

2

2
HR@SQ” . < Z h3. || divCe(dn) + Y + 12ath¢h
TET, T (51)
+ > helllCe(én)lz nellh + uh(m),
Eegy,
I-R
where py(7n) = sup | (9, ( h)ﬁh)|.

€53 (Tn)2\{0} [

Proof: Let ¢ € ©. Using standard Green formula into each element of the triangulation,
we get :

2

§5w>=-wwmw+m%w+fg%mmw
2
= (divCe(pp) + +—at on) - Ce(pn)n w]
v o - fen
= Z/ (divCe(op) +’yh+t—ath¢h Z/Ce bn)lEne - U,
TeTh Ecéy

Let 97 € S§(Tn)* C ©, (cf. [1, Theorem 1.7]) be such that '], < [¢|; and for all T € Ty,

{Hw Ve S bl Ve flr
19 =% le S W IV llap

We can notice that @(@Z)I) = (v, (I — Ry)¥!), which implies :

Ress () = Resy(th — 1) + (n, (1= Ry)0")
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— Z / (divCe(pp) + n + t—&th%) (V¥ — IDI)

ter 12
-> / Ce(@n)lene - (¥ —¥") + (v, (T = Ra)y")
Eeg&y,
2
< Z divCe(pn) + vn + Eat h®n ||Q/} — "Iz
TeT,
I-R I
£ 37 ez sl sl — o + 100 - QLI
Ecéy 1
< S b ||divCe(n) + 9 + ;atm 1Y% ]lor
TeT,
+ Z hil? | [Ce(on)] e el 2l Vi lws + tn(1a) [0 - (52)
Ec&;,

Then, using the estimate [1)!]; < |1, and the discrete Cauchy-Schwarz inequality, we get
9\ 1/2
Ress(v) < (Z h2T ) Y]
T

=
1/2
+ (Z hel|[Ce(én)]r nE||129> [l + g () [

Ee&y

2

t
divCe(én) + vn + —

12at,h¢h

The definition of the norm of H~!(Q) leads to (51). n

Theorem 4.6 We have
(€5)2 S Y W + hi)awnwn + divyallF + D hp(® + BE)l[wle - nelly

TeTh Ee&),

/2 2
+ ) hi

divCe(ép) + vn + E%Mbh + Z hell[Ce(on)le el
TET;, T Ec&;, (53)

2 ?
Hlon = BanlByansy + ) + (1500 = cunnl

o + o t?
Hlaw = amnll + 252 (o = wnll + Tl - anl?).

Proof: The theorem is a direct consequence of Corollary 4.2, Lemma 4.3, Lemma 4.4 and
Lemma 4.5. m

Remark 4.7 From a practical point of view, the estimate (53) is not useful since the L*()
norm of the error is still present in the right-hand-side (see theorem 3.1 of [19] for a similar
phenomenom for the Laplace equation). However, the terms containing the exact solution
in the right hand side of (53) are neglectible if the eigenvalue is simple (cf. Theorem 2.4).
This is the subject of the following corollary.
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Corollary 4.8 (Reliability of the estimator) Assume that oy is a simple eigenvalue,
then we have :

() S Y + hp)lawnwn + divwllz + D he(t® + b)) [vale - nely
TeT Ee&(2)

+ ) b

TeTh

2

divCe(dn) + Vn + — Ay On

> hllCe(n)]nell

12 T peg)

_'_”(bh - Rh(bh”?—[(rot,ﬂ) + ,uh(f)/h)2 + h.o.t.

where h.o.t. corresponds to higher order terms.

Proof: Using Cauchy-Schwarz’s inequality, we get :

£ ?
(f5h0e0 = auadnl ) +llaws = cunanl?

= (qw — g pwn, i (w — wp) + (o — ap) wp)

9\ 2
+ <f—2) (Oétéb - Oét,hﬁbh, Oét(ﬁb - ¢h) + (Oét - Oéuh)ﬁbh)
2

2
t
< ap(opw — Qg pwp, w — wp) + (E) (a — app,dn, @ — én)

t2
+|at—at,h|{||atw—amwh|| ||wh||+( )natas ol ||¢h||}.

But, by (49), we have :

2

2
(Qw — g pwp, w — wp) + (t—) (e — v pdn, @ — o)

12
2 2
< max{ 1; 3 (oqw — oy pwp, w — wy) + E(Oétﬁf) — upPn, @ — On)
t t?
< max{l E} w {Hw — wp||? + E”(b - (bh”Q] .

By a discrete Cauchy-Schwarz inequality and the normalization of the discrete solutions
given by (4), we get :

2\ 2
o — agpon ||wh||+( )ncw cendnll [ nll

1/2 )
t2
<uatw—athwhu v (5) oo - amhu?) <uwhu2+(ﬁ) HashrP)
2 1/2 2 1/2
|ovw — a pwn? +< ) o — v ndnl|? max{l;ﬁ} )
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Therefore, using Young’s inequality with a parameter 6 > 0 :

t2 2
(EHOW - at,th) + [Jasw — o pewn|?

2) o+«
< atmax{l;—} %

t2
o 2 e o 2
B {HW wnlI* + 12||¢ onll }

9§ 1/2 42\ 2 1/2
+|ay — Oét,h| max {1§ E} | aw — O%,hf«th2 + (E) | — at7h¢h||2>
t2
2
2

12
_5| - |2 1 L —1 | - ||2 —tQ 2 | - ||2
8% [0 max S (67109 Ay W 8% [0 .
+2 t t.h 19 + 25 t thWh||" + 2 o, t.hPn

Choosing 0 = 1, we get :

2
o —anlP + $516 = ]

2 ?
(fgloed — auaenll) -+ llow = s

12 12 12
< -+ oy max {15 5 |l =l + 10— onlP| + 1o = aeafmax {15 5 .

As [Jw — wpl?, [|¢ — ¢nll* and |y — cyp]?* are superconvergent (cf. Theorem 2.4), then

t? o+ a 2
(500 — auanl) -+ laww = cunnll + 252 (oo — P+ o = onl?) ave s

perconvergent. ™

5 A posteriorit estimate for the eigenvalue error

Let 1., be the estimator presented in Corollary 4.8 :

gy =Y Wt + W) agpwn + divwllz + Y he(t® + hg)l|wle - nels

TET, ) Eeg&y,
) 12
+ ) hE||divCe(¢n) + n + T3 0endh|| + > hpll[Ce(én)]s nsllE
TET;, ) , T  Eeg,
+|én — Rudnllrrorny + 1a(vn)”
Theorem 5.1 We have :
o — | S 02, + 3 on — Ruonll® + (n, &0 — Run) + T2, (54)

12 2 oy + g 12
where T2, = (Eﬂatgb — at,hgbhH) +||atw—at7hwh||2+% lw — wal|* + EHQ& — onl?

1s the term containing the exact solution.
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Proof: We recall that (w, ¢, o) (resp. (wn, ¢n, up)) is the solution of problem (2) (resp.
(4)). Then we have :

l¢ = dulle + ¢y —
= lI9llc + llénlle — 2a(d, én) + ¢ (IIVI1° + llmll* = 2(v, )

(55)
= 16112 + ¢TIV + Nlonll2 + ¢ Imll” — 2 (al@, dn) + ¢ (7, 7m)
= oy + Qpp — 2 ((l(gb, gbh) + C_ltz(’)/’ ’Yh)) 5
as well as

a(p,dn) + C (v, ) = alg, én) + (7, Vwrn — Rygy)

= a(¢, ¢n) + (v, Vwn — én) + (7, &n — Ruodn)

2
= o |(w,wn) + %((b, on) | + (v, on — Rudn). (56)

Then, from the relations (55) and (56), we have :
/2
6= 6n12 + ¢y =l = -t =2 (e | @rn) + 1506.00)] + (.60~ Ra) )

so that from (48) :

R e A
t
— -t [l =l + 16 = ol = 2] 20,6 — Ras)

t2
— = -t [l =l + 5516~ nlP| 263,00~ Rasn)

In other words, noticing that a; > 0, we have :
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N t? |
apn—oy = o=z + ¢y —mll® — Hw—whH2+5H¢—¢th
+2(7, o — Rnon) ) _

_ 12 1
= ||¢ — onlleg + Ny — > — | lw — wal]* + EH¢ — ol
+2(7 = Y, &n — Rudn) + 2(9n, o1 — Rudn) ]

_ 12 1
< o= nllz + Y — wll® — | lw — wall® + EW — on)?
2|17 = vullllén — Rudnll + 2(n, dn — Ruchn) _

_ t2 |
< lg—dnllz + Y — ll® — | lw — wall® + E||¢ — onl?
Ty =l + G n — Ragnll® + 2(vm, dn — Riuon)
_ 12
< 2l = nllz + ¢y — W) — [Hw —w* + EW — onl?
+¢t 2| on — Rugnll* + 2(vh, dn — Rugn)
< 2(e)? + (2| on — Ruodnll* + 2(vn, b1 — Ruon)-

Using Theorem 4.6, we obtain :

agp— oy < Ci(nZ, + T5) + Ct 7% [ dn — Rudall* + 2(7n, &1 — Radn), (57)
for some Cy > 0 (independent of ¢ and h).

In order to obtain an evaluation of the error eigenvalues, we must now evaluate c; — oy p,
to finally control the quantity |a; — ay|. All we have to do is to repeat the previous
arguments replacing (56) by the identity

o o 2
(6. 6n) + ¢ 90) = =T () = Feaa(6) + | (n,) + 5(60.0)].

that directly follows from the definition of Res, and Res,. Furthermore by (2) and (4), we
see that

ar = a(¢,¢) + P aun = aldn, én) + ¢l

These two identities and the normalization in (2) and (4) lead to
_ t°
ac=au = o=+ =l — e [l = wnll + 50— enl®

—2Resy () — 2Resy(9).

Then, using the fact that }?c;l(wh)+@(¢h) = (Y, on—Rp¢n) and inserting the functions
f and z from the Helmholtz decomposition (6) we get

- t°
o= = o=l 4l =l — aun [l =l + Tlo -l
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-2 <§e?1(w —wp + 2) + (Yh, V2) — (e pwn, z))
o 2
—2 (Resz(¢ — ¢n+ B) + (Vn, o — Rutn) + alon, B) — (v, B) — %(%Mbh, 5))
2
= o= Gl + ¢l =l = un [l —anlP+ S50 - anl®

—2(@@; —wp+2) + Ee?g(aﬁ — ¢n + B) + (Vh &0 — Riodn)

2

+a(on — ¢, B) + (v — Yh, &n — Riudn) + (uw — ay pon, 2) + %(wb — pOn, 5)>,

the last identity following from (2). By Cauchy-Schwarz’s inequality, we get

_ t?
a=au < 6=+ =l — o =l + Tlo— aul®

—|—2{ ‘ﬁe?l(w —wh—l—z)‘ + ‘Ee?g(qﬁ— th—l-ﬁ)‘ + |(Yn, &n — Ruon)|

+lln — dllelBlle + ¢ty — w2t [ én — Radal

1/2
AW 1/2
" (Hatw—at,hwhu%(ﬁ) uam—at,mhu?) (112 + 18192 .

Noticing that a;, > 0 and using the reliability of the estimator presented in section 4 we
obtain :

o — app, < Co(nZ, +T2) + %[ dn — Rudnll” + 2(vn, on — Riudn), (58)

for some Cy > 0 (independent of ¢ and h). Hence (54) is a direct consequence of the
estimates (57) and (58). n

Similarly to Corollary 4.8, we have :

Corollary 5.2 Assume that oy is a simple eigenvalue, then we have :
| — o] S 02, + 2 0n — Rudnll” + (Y, o0 — Rigdn) + hoo.t.

Remark 5.3 The term (v, ¢ — Rypop) can be evaluated numerically. However, it can be
bounded by ||Vu|| ||¢n — Rnonl|. We further can numerically remark that the term ||¢n —
Ry, ¢n|| converges faster than the estimator : hence if oy is a simple eigenvalue, we can
claim that the term |y — aup| is superconvergent (since it is bounded by the square of 1,
up to higher order terms) and the relation (iii) given in Theorem 2.4 is recovered.
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6 Efficiency of the estimator

In order to prove the efficiency of the estimator, each part of it (except the terms involving
the exact solutions) has now to be bounded by the error e§” up to a multiplicative constant.

Lemma 6.1
IRy — Donlltroray S ¢ Y — llg + lw — wil?
+|o = onlt + ¢t rot(y — ) I

Proof: Since
Ry, = Dop = (v — ) — V(w — wy) + (¢ — én),

we have
IRy — Dnll < 1y — | + |w — wali + |6 — énl,

and with the Poincaré-Friedrichs inequality, we get
I(Rs = Dnll* S 2y =l + [w — wilf + | — ol

Moreover, we have

Irot(¢n — Radn)[I> < ¢ [rot(y — ) I* + & — uli,

so that lemma 6.1 holds. ]

Lemma 6.2 We have

DB + hi)lanwn + diviallz S D R + b3 |lewnwn — cnwlF
TeTh TeTh

]y = ll* + Iy — allZs. (59)

and

> ey +)bwle-nellz S D b3 + hp)llaw — arpwnll7
Ec&(Q) TETh

+ 7 = ll* + Iy — I (60)

Proof: Let vp = by pwy, + divyy) for all T € Ty, by being the classical element bubble
function. So, we get by the elementwise inverse estimates :

e pwn + divyal7 S (apwn + divyn, vr)r
= (opwn, vr)r — (Y, VUr)r

= (atvhwh — oW, UT)T + (’7 — Yh, V’UT)T. (61)
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By summation and Cauchy-Schwarz inequalities, we get

> B3 + )l awnwn + divys|7

TeTh
= > (8 + W) (unwn — aww, vr)r + > B3+ h3) (v = v, Vor)r
TET TETh
< b/ + W lagnwn — awwlleha /8 + W llrlle + ) tly = e thEl| Vor|lr
TeT), T€Th
- 4
Hly = mll=1| Y B Vor X
T€ETh
(62)
Using the elementwise inverse estimates :
IVorlr S hyllewnwn + divygflor:
Vorhir S b’ llawnwn + divynllwy; (63)

and notifying that

2
| > mVur| = 3 hIVerBe S Y Allawuen + divil,.

TeTh TeT, TeT,

we obtain, using the regularity of the mesh and discrete Cauchy-Schwarz inequalities in

(62)

> B3 + )l awnwn + divys||7
TeT

1/2 1/2
S (Z h(t* + hp) e pwn — atWH%) (Z h(t* + h) o pwn + div%ll%)

TeTh TeT

1/2 1/2
+t[ly =l (Z A [ atw”%) + Iy = nll-1 <Z hllanwn — atWHQT) :

TeT TeT,
(64)

Using Young’s inequality in this last estimate, we get (59).

For all interior edge E = T, NT_, we define the classical edge bubble function by € H}(wg)
such as

Suppr:@a OSbES]-:I:?EaEXbEa

/ bE dr ~ hQE, / bE ds ~ hE,
wWE E

IVbpll2yy S b Ibell 2, [VOelmiws) S he 1bell 2 @wn)-
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For all E € &, we define wg = b3, ([v]p - np) € Hi(wg)? with [wg|2, < helllvle - nells-
So, we obtain :

Iwle - nellz < (Dwle - ne,we)e

(divyn, we)wy + (Vs VWE)w,

(g pwh + divyn, WE)wy + (Yhy VUE)w, — (4 pWhs WE)wy
(

i pwh + divYe, WE)wy — (Y = Yhs VWE)wy + (4w — 0 phy WE)wy

Using a discrete Cauchy-Schwarz inequality and the regularity of the mesh, we have by
summation

S ha(hs + ) wle - nslly

Eegy,
< Z {(appwn + divyy, hp(hy 4+ ) wg)w, + (uw — agpwn, hp(h, + ) we)w, }
Ee&y

— (’7 — Yh, Z hE(hQE +t2)VwE>

Ee&), wE

1/2 1/2
S (Z h (8 + hi) || peon, + d’W%HZT) (Z (h + 752)||7~UE||3E>

TeTh Eegy,

1/2 1/2
N (z R 4 1) o — at,hwhn%) (z (v +t2>nwEan)
TET, Ecé&y
\Y <Z h%VwE>

Ee&y,

(65)

+tly=ll|| D theVws
BeE(Q)

+lly =l

By the following inverse estimate :

el

IVwgllws +he|Vwe|iw, Sh Yule - nellE,

we get :
2

S D hEIVwel S hgllle - nelly (66)
E€&;, Ee&y

< Y hp(t + W) e - sl

Ee&y

(g

Ee&y

The same kind of argument give :

Ee&y

2

S D PhIVwsll, £ ) Phellnls - nsl (67)
E€&;, Ee&y,

< Y hp(t + W)l e - el
Ee&y,
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By (65), (66) and (67), we obtain :

2 hlhh )l il S D W 4+ Wpllewneon + divmlfy + 1y =l

Eeg&y, TeTh
|y = ll® + D h3(E + 1) llaww — o pewnl|7-
TETh
Using (59) in (68), we get (60).
Lemma 6.3 We have
2 2
Z h ||divCe( <;5h)+’yh+ﬁ&th¢h |0 — &l + Iy — Wy
T

TeTh

2
_|_—2 Z hQTHothﬁ — Oét,h@m”%v

TeT),

and

2
> hllCe(n)]ensly S 16— onlt + Iy =l + 2 > Ml = andnllz-

Eecé&y TeTh

Proof: We just need to use the same arguments as the proof of lemma 6.2.

Lemma 6.4

2 ?
0 S =l +16 = 6+ Sylountn — el )

Proof: We recall the definition of pup,(7s) :

Y, (I = Rp)nn
pn(n) = sup O € ) )‘,
nh€S3(Th)2\{0} |1

Let n, € S§(7)? \ {0}. Although,
(s T =Rp)nn) = (vamm) — (vn, Rimn)

= (VM) + Qth s - (¢>h,77h) a(Pn, 1)

2
12
< v = wll=alml + l¢ = dnllelnnllc

= (=7 m) + =(wndn — cwd,mn) + ald — dn,1mn)

t2
+g laendn — ol flnn]]-

The Korn and Friedrichs inequalities lead to (71).
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Theorem 6.5 We have

B + W)l agnwn + divill7 + Y bt + b))k - nely + lén — Rudnllfigoo)
TET, E€&;,
t2
+ Z h ||divCe(op) + n + 3™ KWon|| + Z hi|l[Ce(or) e nells + wn(yn)?
TET, T  Eeg,

Slw—wpli+ 0 —énli + 14+ )Ty — wl? + 11y — =

2

+C2 frot (v — )P + Y W (t* + hp) e — e peonl |7
TeT,

2 ?
£ 5 Wllowd — onninly + (Enatqs - at,hashn) |
TeT
Proof: The proof is a direct consequence of lemma 6.1, 6.2, 6.3 and 6.4. ]

Like the Corollaries 4.8 and 5.2, we have

Corollary 6.6 (Efficiency of the estimator) Assume that the eigenvalue oy is simple,
then

B + W)l agnwn + divill7 + Y bt + b))k - nely + lén — Rudnllfigoo)
TET, E€&;,

+ ) + 3 hallCe(én)]enell’ + ua(in)’

TET, T  Eeg,
Slw—wpli4 ¢ —énli + 14+ )Ty — wl? + 11y — =

+C 2t |rot(y — m)|]? + hoo.t.

#2 2
divCe(ép) + vn + 5% hOn

7 Numerical validation

Here we illustrate and validate our theoretical results by a simple computational example.
Let Q be the unit square ]0,1[>. We take v = 0.3, k = 5/6 and ¢ = 0.1. The meshes we
use are uniform ones composed of n? squares, each of them being cut into 8 triangles as
displayed the Figure 1 for n = 4. The refinement strategy is an uniform one so that the
value of the mesh size h between two consecutive meshes is twice smaller.

Before evaluating the a posteriori error estimator, we compute w;, by :

wtl,h =2(1+v)t @/Oéih,

where at{h is the first computed approximated eigenvalue. In fact, this rescaling process is
done in order to allow some comparisons with some bibliography data [14, 17, 27|. Table 1
displays the obtained values for different values of n, and shows that wt{ ;, converges when
h goes towards zero, as theoretically expected.
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Figure 1: Mesh level corresponding to n =4 and h = V2 /8.

n 2 4 8 16 32 64 128
wtl,h 2.3391 | 1.6992 | 1.6129 | 1.5934 | 1.5886 | 1.5874 | 1.5871

Table 1: Values of the first approximated eigenvalue wtl’ b

Now, our result on the finest grid (n = 128) is compared in Table 2 with the ones
obtained by the Huang and Hinton method in [27] (column HH), the Dawe and Roufaeil
method in [14] (column DR) and the Durdn, Hervella-Nieto, Liberman, Rodriguez and
Solomin method in [17] (column DHLRS). Our value is clearly in good agreement with
these references, even if from Table 2 it can noticed that it is the smallest one. This can
be explained by the fact that our mesh resolution is finer. Indeed, in Table 3, it can be
observed similar results for similar mesh resolutions.

HH DR | DHLRS | Our result
1.591 | 1.594 | 1.5913 1.587

Table 2: The first value of w;,. (Value obtained with the finest mesh avalaible in each
paper).

To verify the estimator reliability presented in section 5, the error estimator 7., is defined
by :

7731; = 77f2L,1 + 77f2L,2 + 77f2L,3 + 77f2L,4 + 77f2L,5 + 77}%,67
where the different contributions are given by :

Mew = D W8 + h)llawpwn + divy|7,
TeT,
Mhe = Y he(®®+ )|l - nel,
Ee&),
2 2
Mhs = Z h || divCe(én) + v + Eat h®n . (72)

TeTy,
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n 5 10 20
DHLRS || 1.5947 | 1.5921 | 1.5913
n 4 8 16 32 64 128
Our result || 1.699 | 1.613 | 1.593 | 1.589 | 1.587 | 1.587

Table 3: The first value of w;,. Comparison with DHLRS for different mesh resolutions.

Mha = Y hellCe(on)lenelk,

Ee&y
77121 5 — ”(bh - Rh(bh”?i(rot,ﬁﬁ
Mo = 1 (7).

We plot in Figure 2 the evolution of the computed estimator 7., as well as its different
contributions 1y, ;, ¢ = 1..6 versus h. First, it can be seen that the contributions 1, 4 and 7, 6
converge at order 3 and that the contributions 7, 3 and 7, 5 converge at order 2. Moreover,
it is clear that the main part of 7., is 7,2. Nevertheless, we can also remark that the
convergence rate of 7,5 (resp. n1) starts for coarse meshes near to 2 (resp. 3). This
behaviour can easily be explained by the definition of 7,5 (resp. 7,1) when h is larger
than ¢. As soon as h becomes smaller than ¢, the convergence rate equal to 1 for 7, o (resp.
2 for ny1) is recovered as it can be observed in Figure 2 for the finest meshes.

Acknowledgements

The authors are grateful to the referee for her/his helpful comments and suggestions which
allowed to improve the obtained results.

36



<1< % + 00

estimator
— slopel

— - —slope2
slope3

estimatorl
estimator2
estimator3
estimator4
estimator5
estimator6

Figure 2: Estimators convergence rate, ¢t = 0.1.
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