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A POSTERIORI ERROR ESTIMATES OF THE STABILIZED
CROUZEIX-RAVIART FINITE ELEMENT METHOD FOR THE

LAMÉ-NAVIER EQUATIONS.

E. CREUSÉ ∗, M. FARHLOUL † , S. NICAISE ‡ , AND L. PAQUET ‡

Abstract. We obtain a posteriori error estimates for a variant of (non-locking) stabilized non-
conforming methods based on the Crouzeix-Raviart element introduced by P. Hansbo and M. G.
Larson in [M2AN 37 (2003) 63-72]. We derive upper and lower a posteriori error bounds which are
robust with respect to the nearly incompressible materials.

Key words. Crouzeix-Raviart element, nonconforming method, stabilized method, nonlocking,
a posteriori error estimates.
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1. Introduction. The finite element methods are widely used for the numeri-
cal approximation of many problems occurring in engineering applications, like the
Laplace equation, the Lamé system, etc.... (see [10, 18]). In practice, adaptive tech-
niques based on a posteriori error estimators have become indispensable tools for
such methods. Hence there now exists a large number of publications devoted to the
analysis of some finite element approximations of problems from solid mechanics and
obtaining locally defined a posteriori error estimates. We refer to the monographs
[2, 7, 29] for a good overview on this topic.

For the elasticity system in the primal variables, several different approaches
have been developed: Residual type error estimators [4, 5, 17, 30, 31, 11], methods
based on the resolution of local subproblems by using higher order elements [4, 6, 8],
averaging techniques (the so-called Zienkiewicz-Zhu estimators) [1, 2, 32, 33] and
finally estimators based on equilibrated fluxes [3, 12, 23, 24, 25, 27]. For methods
based on dual variables, like mixed methods, we refer to [13, 14, 16, 9, 22]; note
that such methods are usually locking free and therefore the obtained estimators are
usually locking free.

Here we analyze two displacement methods based on the primal variables variant
of the ones introduced by P. Hansbo and M.G. Larson in [20] which are nonconforming
methods based on the Crouzeix-Raviart finite element. These methods are locking free
and very cheap. In [20], the authors derive a priori optimal error estimates uniform
in the Lamé parameter λ (see Theorem 3.1 of [20]). In this paper, we propose an
a posteriori error analysis of these methods. Our analysis enters in the family of
estimators of residual type since our error indicator is based on residuals on each
triangle and jumps across the inter-element boundaries. We prove reliability of the
indicator uniformly in λ (and h), in particular avoiding locking phenomena. The proof
is based on a discrete divergence stability result (see [11] for another scheme), the use
of an appropriate decomposition of the error into continuous and discontinuous parts
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[21]. Local efficiency of our indicator follows by using classical inverse estimates, the
use of a strengthened norm allows to obtain its robustness.

Note that our methods enter in a similar framework than the ones in [17, 31, 11].
But our upper bound cannot be deduced from [17] because the assumption (2.12)
from that paper is not satisfied by our scheme. On the other hand, the schemes in
[17, 31, 11] are different from our proposed schemes, nevertheless the proof of the
upper bound uses similar arguments than in [11].

The outline of the paper is as follows: We recall in Section 2 the boundary value
problem and its numerical approximation. Section 3 is devoted to the proof of the
discrete divergence stability result. The proof of the upper error bound is made in
section 4; and the lower bound is obtained in section 5. Finally some numerical tests
that confirm our theoretical results are presented in the last section.

Let us finish this introduction with some notations used in the remainder of the
paper: On D, the L2(D)-norm will be denoted by ‖ · ‖D. The usual norm and
seminorm of Hs(D) (s ≥ 0) are denoted by ‖ · ‖s,D and | · |s,D, respectively. In the
case D = Ω, the index Ω will be omitted. Similar H(div,Ω) is defined by

H(div,Ω) = {v ∈ L2(Ω)2 : div v ∈ L2(Ω)},

equipped with its natural norm. Finally, the notation a . b means the existence
of a positive constant C, which is independent of the mesh size, of the considered
quantities a and b and of the Lamé coefficient λ such that a ≤ Cb. In other words,
the constant only depends on the aspect ratio of the mesh, on the domain Ω and on
the shear modulus µ, but not on Lamé coefficient λ (see below).

2. A discontinuous Galerkin method for the elasticity system.

2.1. The boundary value problem of elasticity. Let Ω be a plane domain
with a polygonal boundary. More precisely, we assume that Ω is a simply connected
domain and that its boundary Γ is the union of a finite number of linear segments Γj ,
1 ≤ j ≤ ne (Γj is assumed to be an open segment). In this domain, we consider an
elastic isotropic material. Let u = (u1, u2) be the displacement field and f = (f1, f2) ∈
[L2(Ω)]2 the body force by unit of mass. For simplicity, we consider in Ω the pure
homogeneous displacement problem. Thus the displacement field u = (u1, u2) satisfies
the following equations and boundary condition:{

−div σ(u) = f in Ω,
u = 0 on Γ,

(2.1)

where the stress tensor is defined by

σ(u) := 2µε(u) + λ tr ε(u)I. (2.2)

The positive constants µ and λ are called the Lamé coefficients where µ ≡ G is the
shear modulus ([28], p. 207) ([19], pp. 72-75, 57-58). We assume that [10]

(λ, µ) ∈ [λ0,+∞[×[µ1, µ2] (2.3)

where

0 < µ1 < µ2 and λ0 > 0.
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As usual, ε(u) denotes the linearized strain tensor, i.e., ε(u) := 1
2 (∇u+ (∇u)

T
) and I

the identity tensor. For any tensor τ (of order 2), the trace of τ is tr τ := τ11 + τ22,
and

div τ := (
∂τ11

∂x1
+
∂τ12

∂x2
,
∂τ21

∂x1
+
∂τ22

∂x2
)

(in an orthogonal cartesian frame). The classical variational formulation of the bound-

ary value problem (2.1) is the following: find u ∈
[
H1

0 (Ω)
]2

such that∫
Ω

σ(u) : ε(v) dx =

∫
Ω

f · v dx, ∀v ∈
[
H1

0 (Ω)
]2
, (2.4)

where σ : ε denotes the contraction of the two tensors, i.e.,

σ : ε =

2∑
i,j=1

σij εij .

The existence and uniqueness of the solution in (2.4), for a given f ∈
[
H−1(Ω)

]2
,

follows from the first Korn inequality (cf. [10], p.286). In the following, we suppose

that f ∈
[
L2(Ω)

]2
.

2.2. The discontinuous Galerkin methods. In order to formulate the dis-
crete problems introduced by P. Hansbo and M.G. Larson in [20], we first recall some
notation.

Let (Th)h>0, be a regular family of triangulations. Let us fix a triangulation
Th ∈ (Th)h>0 and let Eh denote the set of all edges of the triangulation Th. We split

Eh into two disjoint subsets: EIh the subset of edges contained in Ω and E∂h the subset
of edges contained in the boundary of Ω. Further, with each edge E, we associate
a fixed unit normal nE such that for edges contained in ∂Ω, nE is the exterior unit
normal; we further fix a unit tangent tE so that {nE , tE} forms an orthonormal basis
of R2. For any edge E and any triangle T , we denote by |E| the length of E and |T |
the area of T .

Let

DF (Th) := {vh ∈
[
L2(Ω)

]2
; ∀T ∈ Th : vh|T ∈ [P1(T )]

2}

be the space of piecewise linear discontinuous functions (as usual P1(T ) denotes the
space of polynomials of degree less than or equal to 1 on T ).

For a function vh ∈ DF (Th) we denote its jump at an edge E by [[vh]]E = v+
h −v

−
h

for E ∈ EIh and [[vh]]E = v+
h for E ∈ E∂h , and the average 〈vh〉E = (v+

h + v−h )/2 for
E ∈ EIh and 〈vh〉E = v+

h for E ∈ E∂h , where v±h (x) = lim
h→0+

vh(x∓hnE) with x ∈ E. In

the same spirit, we define its broken strain tensor εh(vh) by

εh(vh)T = ε(vh|T ) ∀T ∈ Th,

its broken stress tensor σh(vh) and broken divergence divh vh is defined similarly.
We further introduce the Crouzeix-Raviart space of vector fields CR (Th):

CR (Th) := {vh ∈
[
L2(Ω)

]2
; ∀T ∈ Th : vh|T ∈ [P1(T )]

2
, [[P0vh]]E = 0, ∀E ∈ Eh}

(2.5)
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where for any edge E and any w ∈ L2(E)

P0w :=
1

|E|

∫
E

wds,

and therefore

[[P0vh]]E := P0 [[vh]]E =
1

|E|

∫
E

v+
h ds−

1

|E|

∫
E

v−h ds.

The first discontinuous Galerkin method is a variant of the one introduced in [20]
and reads as follows: find uh ∈ DF (Th) such that

ah(uh, vh) = (f, vh), ∀vh ∈ DF (Th) . (2.6)

The bilinear form is here defined by

ah(uh, vh) := a0h(uh, vh) + (2µ+ λ)λγ0

∑
E∈Eh

1

hE
([[P0uh · nE ]] , [[P0vh · nE ]])E(2.7)

+2µγ′0
∑
E∈Eh

1

hE
([[P0uh · tE ]] , [[P0vh · tE ]])E

−
∑
E∈Eh

((〈σh(uh)〉EnE , [[vh]]E)E + (〈σh(vh)〉EnE , [[uh]]E)E) ,

a0h(uh, vh) :=
∑
T∈Th

(σ(uh), ε(vh))T + 2µγ1

∑
E∈Eh

1

hE
([[uh]] , [[vh]])E , (2.8)

while the linear form is defined by

(f, vh) =

∫
Ω

f · vh dx.

Here the parameters γ0, γ
′
0 and γ1 are the stabilizing parameters fixed below.

Here and below (σ(uh), ε(vh))T means the L2-inner product

∫
T

σ(uh) : ε(vh) dx.

Similarly for vector valued functions v, w ∈ L2(E)2, (v, w)E means the L2-inner prod-

uct

∫
E

v · w ds.

Note that our bilinear form ah differs from the one in [20] by the second and
third terms of the right-hand side of (2.7), indeed in that paper these two terms are
replaced by

(2µ+ λ)γ0

∑
E∈Eh

1

hE
([[P0uh]] , [[P0vh]])E .

This modification is made to have a discrete stability result and hence a robust
a posteriori estimate that cannot be obtained if we keep the original term from [20].
Note further that the bilinear form ah is similar to the one in [11] except that the
second and third terms are replaced by

λ2γ0

∑
E∈Eh

1

hE
([[uh · nE ]] , [[vh · nE ]])E .
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As a consequence the well-posedness of the corresponding problem in [11] is obtained
for γ1 and γ0 large enough (independently of λ), while our problem is well-posed only
for γ0 and γ′0 large enough (independently of λ). Our approach allows then to use a
penalization parameter γ1 as small as we want (but bounded away from zero). This
difference also implies the use of a different error norm.

The well-posedness of problem (2.6) follows from the strong coerciveness of ah in
DF (Th), that we now show (see Proposition 2.2 of [20] or Proposition 2.2 of [11])

Proposition 2.1. There exist three positive constants γmin, γ′min and C inde-
pendent of λ, µ and the mesh size h such that for all γ0 > γmin and all γ′0 > γ′min
and any vh ∈ DF (Th), we have

ah(vh, vh) ≥ C
(

2µ‖εh(vh)‖2 + λ‖ divh vh‖2

+ (2µ+ λ)λ
∑
E∈Eh

1

hE
‖ [[P0vh · nE ]] ‖2E

+ 2µ
∑
E∈Eh

1

hE
‖ [[P0vh · tE ]] ‖2E + 2µγ1

∑
E∈Eh

1

hE
‖ [[vh]] ‖2E

)

Proof. First for an arbitrary edge E, we have

(〈σh(vh)〉EnE , [[vh]]E)E = 2µ(〈ε(vh)〉EnE , [[vh]]E)E + λ([[divh vh]] , [[vh · nE ]]E)E ,

and since εh(vh) and divh vh are piecewise constant, we get

(〈σh(vh)〉EnE , [[vh]]E)E = 2µ(〈ε(vh)〉EnE , [[P0vh]]E)E+λ([[divh vh]] , [[P0vh · nE ]]E)E .

By Cauchy-Schwarz’s and Young’s inequalities we obtain

|(〈σh(vh)〉EnE , [[vh]]E)E | ≤
µ

δ′
hE‖〈ε(vh)〉E‖2E

+ µδ′h−1
E ‖ [[P0vh]]E ‖

2
E

+
λ

2(2µ+ λ)δ
hE‖ [[divh vh]]E ‖

2
E

+
λ(2µ+ λ)δ

2
h−1
E ‖ [[P0vh · nE ]]E ‖

2
E .

for any δ, δ′ > 0. Using the regularity assumption of the mesh, there exists a positive
constant Ctr such that

hE‖ [[divh vh]]E ‖
2
E ≤ Ctr‖ divh vh‖2ωE

,

hE‖〈ε(vh)〉E‖2E ≤ Ctr‖εh(vh)‖2ωE
,

where, as usual, ωE is the patch associated with E, i.e., ωE = T+
E ∪ T

−
E , when E is

the common edge between T+
E and T−E . These estimates in the previous one lead to
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∣∣∣ ∑
E∈Eh

(〈σh(vh)〉EnE , [[vh]]E)E

∣∣∣ ≤ 2µCtr

δ′
‖εh(vh)‖2

+ µδ′
∑
E∈Eh

h−1
E ‖ [[P0vh]]E ‖

2
E

+
λCtr

(2µ+ λ)δ
‖ divh vh‖2

+
λ(2µ+ λ)δ

2

∑
E∈Eh

h−1
E ‖ [[P0vh · nE ]]E ‖

2
E .

By this estimate and the definition of ah, we deduce that

ah(vh, vh) ≥ 2µ(1− 2Ctr

δ′
)‖εh(vh)‖2 + λ(1− 2Ctr

(2µ+ λ)δ
)‖ divh vh‖2

+ 2µγ1

∑
E∈Eh

1

hE
‖ [[vh]]E ‖

2
E

+ (2µ+ λ)λ
(
γ0 − δ −

2µδ′

(2µ+ λ)λ

) ∑
E∈Eh

1

hE
‖ [[P0vh · nE ]] ‖2E

+ 2µ(γ′0 − δ
′)
∑
E∈Eh

1

hE
‖ [[P0vh · tE ]]E ‖

2
E .

Now we choose δ and δ′ such that

(1− 2Ctr

δ′
) = (1− 2Ctr

(2µ+ λ)δ
) =

1

2
,

or equivalently

δ′ = 4Ctr and δ =
4Ctr

(2µ+ λ)
.

With this choice we then have

ah(vh, vh) ≥ µ‖εh(vh)‖2 +
λ

2
‖ divh vh‖2

+ 2µγ1

∑
E∈Eh

1

hE
‖ [[vh]]E ‖

2
E

+ (2µ+ λ)λ
(
γ0 −

4Ctr
(2µ+ λ)

− 8µCtr
(2µ+ λ)λ

) ∑
E∈Eh

1

hE
‖ [[P0vh · nE ]] ‖2E

+ 2µ(γ′0 − 4Ctr)
∑
E∈Eh

1

hE
‖ [[P0vh · tE ]]E ‖

2
E .

The conclusion follows with the choice

γmin = max{1, 4Ctr
(2µ+ λ)

+
8µCtr

(2µ+ λ)λ
} and γ′min = 4Ctr.
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By the previous result, we deduce that for γ0 > γmin and γ′0 > γ′min, problem
(2.6) is well posed.

As shown in Proposition 2.1 of [20] the method is consistent, namely

ah(u− uh, vh) = 0,∀vh ∈ DF (Th) . (2.9)

Restricting the discontinuous Galerkin method to the space of Crouzeix-Raviart
functions, we obtain the following simplified scheme: find u0h ∈ CR (Th) such that

a0h(u0h, vh) = (f, vh), ∀vh ∈ CR (Th) . (2.10)

As before this second method is consistent:

a0h(u− u0h, vh) = 0,∀vh ∈ CR (Th) . (2.11)

Observe that Theorem 2.3 of [26] guarantees that the displacement vector field

u ∈
[
H3/2+ε(Ω)

]2
for some ε ∈]0, 1

2 [. Consequently σ(u) · nE has sense on each edge

E ∈ Eh as an element of [Hε(E)]
2 ⊂

[
L2(E)

]2
and Green’s formula can be applied

element by element. Hence the consistency always holds.
We finally refer to [20] for robust a priori error estimates.
Our goal is to bound the “triple norm” |||e||| :=

√
a0h(e, e) of the error

e := u− uh.

But in order to get a robust estimate we even need to use the parameter depending
norm:

|||e|||2λ = |||e|||2 + λ2‖Π0divhe‖2 + λ2
∑
E∈Eh

1

hE
‖[[P0e · nE ]]‖2E ,

where divhe means the broken divergence and Π0 is the L2-projection on L2
0(Ω)2

defined by

Π0f = f − 1

|Ω|

∫
Ω

f(x) dx,∀f ∈ L2(Ω)2.

Before going on notice that if u0h ∈ CR (Th), then∫
Ω

divh u0h dx = 0.

3. Discrete stability. The stability of the continuous problem (2.4) was proved
in Proposition 3.2 of [11] and means that there exists a positive constant c independent
of λ such that

λ‖ div u‖ ≤ c‖f‖.

A discrete version of this estimate was also proved in Corollary 3.7 of [11] for their
own scheme. Using similar arguments we also obtain a discrete stability.

Proposition 3.1. If uh ∈ DF (Th) is the solution of (2.6), then

|||uh|||λ . ‖f‖.
7



Proof. We first use Lemma 3.5 of [11] that yields w ∈ DF (Th) ∩H(div,Ω) such
that

divw = −λΠ0(divh uh),

‖∇hw‖ . λ‖Π0(divh uh)‖,∑
E∈Eh

1

hE
‖ [[w]] ‖2E . λ2‖Π0(divh uh)‖2.

With such a choice we notice that in ah(uh, w) the term

(2µ+ λ)λγ0

∑
E∈Eh

1

hE
([[P0uh · nE ]] , [[P0w · nE ]])E ,

is zero and therefore the arguments of Proposition 3.6 of [11] can be applied.

4. Robust upper bound of the error. For all T ∈ Th, the local estimator ηT
is defined by

η2
T = h2

T ‖fT ‖
2
T+

∑
E∈Eh:E⊂T

hE ‖[[σ(uh) · nE ]]E‖
2
E

+
∑

E∈Eh:E⊂T

1

hE
(‖[[uh]]‖2E+λ2 ‖[[P0uh · nE ]]‖2E),

where fT = 1
|T |
∫
T
f(x) dx. The global estimator is given by

η2 =
∑
T∈Th

η2
T .

Finally let

osc2(f) =
∑
T∈Th

h2
T ‖f − fT ‖

2
T

be the oscillating term.
Now we are able to state our locking-free a posteriori error estimate:
Theorem 4.1. With the previous notation, we have the following a posteriori

estimate:

|||e|||λ . η + osc(f). (4.1)

Proof. We proceed as in the proof of Theorem 4.2 of [11]. Namely we take
ω ∈ H1

0 (Ω)2 such that

divω = λΠ0(divh e),

‖ω‖1,Ω . λ‖Π0(divh uh)‖,

and such that there exist β > 0 and κ > 0 for which

4µ‖ε(ec)‖2 + λ2‖Π0(divh e)‖2 ≤ κ(2µ(ε(ec), ε(ec + βω)) + βλ(divh e,divω)),(4.2)

where, as usual (see for instance [21, 11]), ec is the continuous part of the error,
namely

ec = u− uch,
8



and

uh = uch + u⊥h ,

with uch ∈ V ch := DF (Th) ∩ H1
0 (Ω)2 and u⊥h ∈ DF (Th)

⊥
, where DF (Th)

⊥
is an

appropriate orthogonal complement of V ch into DF (Th).
In a first step using this splitting and the standard estimate

‖∇hu⊥h ‖2 .
∑
E∈Eh

1

hE
‖[[uh]]‖2E , (4.3)

we have (compare with the estimate (29) from [11])

|||e|||2λ . ‖ε(ec)‖2 + λ2‖Π0(divh e)‖2 (4.4)

+
∑
E∈Eh

1

hE
(‖[[uh]]‖2E + λ2 ‖[[P0uh · nE ]]‖2E).

Hence it remains to estimate the first two terms of this right-hand side. For that
purpose, we use (4.2) and transform its right-hand side as in [11] to get

4µ‖ε(ec)‖2 + λ2‖Π0(divh e)‖2 . (σ(u), ε(w))− (σh(uh), ε(w)) (4.5)

+2µ(ε(u⊥h ), ε(w))− λ(divh e,div ec),

where w = ec + βω that belongs to H1
0 (Ω)2 and satisfies (see [11, p. 1550])

‖w‖1,Ω . |||e|||λ (4.6)

For the two first terms of this right-hand side we use the continuous and discrete
formulation to get successively (with wh = ICl(w) the Clément interpolant of w)

(σ(u), ε(w))− (σh(uh), ε(w)) = (σ(u), ε(w − wh))− (σh(uh), ε(w − wh))

+ (σ(u), ε(wh))− (σh(uh), ε(wh))

= (σ(u), ε(w − wh))− (σh(uh), ε(w − wh))

−
∑
E∈Eh

(〈σ(wh)〉EnE , [[uh]]E)E .

Hence using again the continuous formulation and piecewiese Green’s formula, we
arrive at

(σ(u), ε(w))− (σh(uh), ε(w)) = (f, w − wh)

−
∑
E∈Eh

(([[σh(uh) · nE ]] , wh)E + (〈σ(wh)〉EnE , [[uh]]E)E) .

The first term is estimated in a standard way. The second term is also estimated in
a classical way, namely∑

E∈Eh

([[σh(uh) · nE ]] , wh)E =
∑
E∈Eh

([[σh(uh) · nE ]] , wh − w)E ,

and therefore by classical local error estimates on the Clément interpolant ([29],
Lemma 1.4, p. 11) using Lemma 3.4 of [11], we get∣∣∣∣∣ ∑

E∈Eh

([[σh(uh) · nE ]] , wh)E

∣∣∣∣∣ . η‖w‖1,Ω.

9



For the last term we can write (see above)

(〈σ(wh)〉EnE , [[uh]]E)E = 2µ(〈ε(wh)〉EnE , [[uh]]E)E + λ(〈divh wh〉E , [[P0uh · nE ]]E)E .

Hence using scaling arguments, we obtain∣∣∣∣∣ ∑
E∈Eh

(〈σ(wh)〉EnE , [[uh]]E)E

∣∣∣∣∣ . ‖wh‖1,Ω
(∑
E∈Eh

1

hE

(
‖ [[uh]] ‖2E + λ2‖ [[P0uh · nE ]] ‖2E

)) 1
2

.

Hence using again Lemma 1.4 of [29], we get∣∣∣∣∣ ∑
E∈Eh

(〈σ(wh)〉EnE , [[uh]]E)E

∣∣∣∣∣ . η‖w‖1,Ω.

The third term of (4.5) is estimated by using (4.3), namely

|2µ(ε(u⊥h ), ε(w))| . ‖∇hu⊥h ‖‖∇w‖ . η‖∇w‖.

For the last term of (4.5) since ec belongs to H1
0 (Ω)2 its divergence is of mean

zero and therefore as in [11], we find

−λ(divh e,div ec) ≤ −λ(divh e,divh u
⊥
h ).

Hence by Cauchy-Schwarz’s inequality and the estimate (4.3), we again arrive at

−λ(divh e,div ec) . ηλ‖ divh e‖ . η |||e|||λ .

All the previous estimates lead to the conclusion.

5. Lower bound of the error. For a subset ω of Ω̄, we denote by

|||e|||2λ,ω := (σh(e), εh(e))ω + λ2‖Π0 divh e‖2ω

+
∑

E∈Eh:E⊂ω

1

hE

(
2µγ1‖ [[uh]] ‖2E + λ2‖ [[P0uh · nE ]] ‖2E

)
,

osc2ω(f) :=
∑

T∈Th:T⊂ω
h2
T ‖f − fT ‖

2
T .

As usual, for any triangle T we denote by

ωT = ∪T ′∈Th:T ′∩T 6=∅T
′,

the patch associated with T . Similarly for an edge E, we set

ωE = ∪T ′∈Th:E⊂T ′T ′.

We start with the element residual.
Lemma 5.1. For all T ∈ Th, we have

hT ‖fT ‖T . |||e|||λ,T + oscT (f).
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Proof. If bT is the standard bubble function associated with T , we set wT = fT bT .
Hence by a standard inverse inequality we have

‖fT ‖2T .
∫
T

fT · wT dx =

∫
T

(fT − f) · wT dx−
∫
T

div σ(u− uh) · wT dx,

reminding that div σ(u) = −f . For the second term of this right-hand side applying
Green’s formula we obtain

‖fT ‖2T .
∫
T

(fT − f) · wT dx+

∫
T

σ(u− uh) : ε(wT ) dx.

Now we can write∫
T

σ(u− uh) : ε(wT ) dx = 2µ

∫
T

ε(u− uh) : ε(wT ) dx+ λ

∫
T

div(u− uh) div(wT ) dx

= 2µ

∫
T

ε(u− uh) : ε(wT ) dx+ λ

∫
Ω

divh(u− uh) div(wT ) dx.

Since wT can be seen as a function in H1
0 (Ω)2, we deduce that∫

T

σ(u− uh) : ε(wT ) dx = 2µ

∫
T

ε(u− uh) : ε(wT ) dx+ λ

∫
Ω

Π0 divh(u− uh) div(wT ) dx

= 2µ

∫
T

ε(u− uh) : ε(wT ) dx+ λ

∫
T

Π0 divh(u− uh) div(wT ) dx.

By Cauchy-Schwarz’s inequality and the inverse inequality ‖ε(wT )‖T . h−1
T ‖fT ‖T ,

we obtain

hT ‖fT ‖T . oscT (f) + ‖ε(u− uh)‖T + λ‖Π0 divh(u− uh)‖T .

The conclusion follows from the direct estimate

‖ε(e)‖2T ≤
1

2µ

∫
T

σ(e) : ε(e) dx. (5.1)

We argue in a similar manner for the normal jump, namely we have the
Lemma 5.2. For all E ∈ Eh, we have

h
1/2
E ‖[[σ(uh) · nE ]]E‖E . ‖|e|‖λ,ωE

+ oscωE
(f).

Proof. Denoting by bE the edge bubble we set wE = [[σ(uh) · nE ]]E bE that
belongs to [H1

0 (ωE)]2. Hence by a standard inverse inequality we have

‖[[σ(uh) · nE ]]E‖
2
E
∼
∫
E

[[σ(uh) · nE ]]E · wE ds =

∫
E

[[σ(uh − u) · nE ]]E · wE ds

=
∑

T∈Th:T⊂ωE

∫
∂T

σ(uh − u) · n · wE ds.

Hence an integration by parts yields

‖[[σ(uh) · nE ]]E‖
2
E
∼

∑
T∈Th:T⊂ωE

(

∫
T

σ(uh − u) : ∇(wE) dx+

∫
T

f · wE dx).

11



Using the same argument as before and Cauchy-Schwarz’s inequality and inverse
inequalities we obtain

h
1/2
E ‖[[σ(uh) · nE ]]E‖E .

∑
T∈Th:T⊂ωE

(‖ε(uh − u)‖T + hT ‖fT ‖T )

+ λ‖Π0 divh(u− uh)‖ωE
+ oscωE

(f).

The conclusion follows from Lemma 5.1 and the estimate (5.1).
These two lemmas directly yield the
Theorem 5.3. For all T ∈ Th, we have

ηT . |||e|||λ,ωT
+ oscωT

(f).

6. The nonconforming Galerkin method based on the Crouzeix-Raviart
element. The arguments of the three previous section can be directly applied to the
discontinuous method (2.10). They are even simpler because [[P0uh · n]]E = 0 on any
edge E. Hence we have not to use the extra term

λ2
∑
E∈Eh

1

hE
‖[[P0e · n]]‖2E .

in the norm of the error (because it is zero).
More precisely we can prove the next results:
Theorem 6.1. We have the following a posteriori estimate:

|||e|||+ λ‖Π0 divh e‖ . η0 + osc(f), (6.1)

where

η2
0 =

∑
T∈Th

η2
0T ,

and for all T ∈ Th, the local estimator η0T is defined by

η2
0T = h2

T ‖fT ‖
2
T +

∑
E∈Eh:E⊂T

hE ‖[[σ(uh) · nE ]]E‖
2
E

+
∑

E∈Eh:E⊂T

1

hE
‖[[uh]]‖2E .

Theorem 6.2. For all T ∈ Th, we have

η0T . |||e|||ωT
+ λ‖Π0 divh(e)‖ωT

+ oscωT
(f),

where

|||e|||2ω :=
∑

T∈Th:T⊂ω
(σ(e), ε(e))T + 2µγ1

∑
E∈Eh:E⊂ω

1

hE
‖ [[uh]] ‖2E .

Theorem 6.1 is also a consequence of Theorem 2.1 of [15] since u0h satisfies the
assumptions of this theorem. We give here an alternative proof.

7. Numerical experiments. In this section, some numerical experiments are
performed to illustrate the above theoretical results, similarly to the ones proposed in
[11]. In all the following cases, Crouzeix-Raviart finite elements CR (Th) defined by
(2.5) are used on a regular mesh composed of triangles.

12



7.1. Divergence-free smooth solutions. The first test consists in solving
equation (2.1) on the unit square Ω = (0, 1)2, for the exact solution given by :

u(x, y) =
1

π2
(sin(πx) sin(πy))n−1

(
sin(πx) cos(πy)
− sin(πy) cos(πx)

)
,

where n ≥ 2 is a given integer and where f is chosen accordingly. It should be noted
that u is smooth, divergence-free, and that u|∂Ω = 0.

For the first example, we set n = 2. We plot in Figure 7.1 the convergence rates
of the error (Figure 7.1 (a)) and of the estimator (Figure 7.1 (b)) for several values of
λ, using a uniform mesh refinement strategy. It can be observed a good convergence
towards zero for both of them corresponding to the one theoretically expected (namely,
order 1 in h corresponding to order -1/2 in the total number of degrees of freedom
ndof).
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Fig. 7.1. Error (a) and Estimator (b) convergence rates in ndof for the regular solution, n = 2,
λ from 1 to 104.

Then, the effectivity index defined by :

Ieff =
η0

|||e|||+ λ‖Π0 divh e‖

is plotted in Figure 7.2. First, it can be observed that for a given value of λ, the
reliability of the estimator is ensured, as underlined by Theorem 6.1. Moreover, even
if the value of Ieff is not totally independant of λ, it remains in a reasonable range
(in the order of 1).

For the second example, we set n = 25 in order to generate high gradients in
the vicinity of the mid-point ( 1

2 ,
1
2 ). Consequently, instead of a uniform one, a local

refinement mesh strategy is performed based on the local error estimator efficiency
proven in Theorem 6.2. Here, this local refinement ensures that the mesh remains
conform (there is no hanging-nodes creation), as well as regular (the minimal angle
allowed in the triangulation is specified, in order to preserve the shape regularity of
the mesh). We refer to [29] for further details and for the algorithm description (red,
green and blue refinement). The resulting meshes obtained for iteration steps 1, 4 and
7 corresponding to λ = 104 are displayed in Figure 7.3, so that we can observe that the
high gradients area is well tracked by the remeshing process. The convergence rates
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Fig. 7.2. Effectivity index Ieff for the regular solution, n = 2, λ from 1 to 104.

of the error and of the estimator are plotted in Figure 7.4 and the effectivity index
in Figure 7.5. Once again, the conclusions are the same than for the first example:
Experimental convergence rates of order 1 and robustness with respect to large values
of λ, as well as only a small variation in λ of the effectivity index (around 1) for all
the considered values of λ.
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Fig. 7.3. Mesh refinements 1, 4 and 7 for the regular solution, n = 25, λ = 104.

7.2. Singular solution. This second test consists now in solving equation (2.1)
on the domain Ω defined by :

Ω = (−1, 1)2\{(x, y);−0.1x ≤ y ≤ 0.1x, 0 ≤ x},

with the external force f chosen to be :

f(x, y) = −r− 3
4

(
1
0

)
, r =

√
x2 + y2.

In that case, the exact solution exhibits a singular behaviour around the origin. We
want to check if the mesh is correctly refined around the singularity when the estimator
is used to carry out the refinement process, and in the same time if the global estimator
decreases consequently towards zero. The resulting meshes obtained for iteration steps
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Fig. 7.4. Error (a) and Estimator (b) convergence rates in ndof for the regular solution,
n = 25, λ from 1 to 104.
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Fig. 7.5. Effectivity index Ieff for the regular solution, n = 25, λ from 1 to 104.

1, 7 and 10 corresponding to λ = 104 are displayed in Figure 7.6, and we can see that
the mesh is automatically refined around the singularity. Moreover, Figure 7.7 shows
that the estimator converges towards zero, with experimental convergence rates of
order 1.
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Fig. 7.6. Mesh refinements 1, 7 and 10 for the singular solution, λ = 104.
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[21] P. Houston, I. Perugia, and D. Schötzau, Mixed discontinuous Galerkin approximation
of the Maxwell operator: Non-stabilized formulation, J. Scientific Computing, 22 (2005),
pp. 315–346.
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equation based on equilibrated fluxes, IMA J. Numer. Anal., 28 (2008), pp. 331–353.

[28] V. Z. Parton and P. I. Perlin, Mathematical methods of the theory of elasticity. Vol. 1, Mir,
Moscow, 1984. Translated from the Russian by Ram S. Wadhwa.

[29] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement tech-
niques, Wiley–Teubner Series Advances in Numerical Mathematics, Wiley–Teubner, Chich-
ester, Stuttgart, 1996.

[30] , A review of a posteriori error estimation techniques for elasticity problems, Comput.
Methods Appl. Mech. Engrg., 176 (1999), pp. 419–440.

[31] T. P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity prob-
lems, Math. Comp., 75 (2006), pp. 1087–1102 (electronic).

[32] J. Z. Zhu and O. C. Zienkiewicz, Adaptive techniques in the finite element method, Commun.
Appl. Numer. Methods, 4 (1988), pp. 197–204.

[33] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for prac-
tical engineering analysis., Internat. J. Numer. Methods Engrg., 24 (1987), pp. 337–357.

18


