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A posteriori error estimates of the stabilized Crouzeix-Raviart finite element method for the Lamé-Navier equations

1. Introduction. The finite element methods are widely used for the numerical approximation of many problems occurring in engineering applications, like the Laplace equation, the Lamé system, etc.... (see [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF][START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]). In practice, adaptive techniques based on a posteriori error estimators have become indispensable tools for such methods. Hence there now exists a large number of publications devoted to the analysis of some finite element approximations of problems from solid mechanics and obtaining locally defined a posteriori error estimates. We refer to the monographs [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Babuška | The finite element methods and its reliability[END_REF][START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] for a good overview on this topic.

For the elasticity system in the primal variables, several different approaches have been developed: Residual type error estimators [START_REF] Babuška | Analysis of the efficiency of an a posteriori error estimator for linear triangular elements[END_REF][START_REF] Babuška | A feedback finite element method with a posteriori error estimation. I: The finite element method and some basic properties of the a posteriori error estimator[END_REF][START_REF] Carstensen | A unifying theory of a posteriori error control for nonconforming finite element methods[END_REF][START_REF]A review of a posteriori error estimation techniques for elasticity problems[END_REF][START_REF] Wihler | Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[END_REF][START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF], methods based on the resolution of local subproblems by using higher order elements [START_REF] Babuška | Analysis of the efficiency of an a posteriori error estimator for linear triangular elements[END_REF][START_REF] Babuška | A posteriori error estimates for the finite element method[END_REF][START_REF] Bank | Some a posteriori error estimators for elliptic partial differential equations[END_REF], averaging techniques (the so-called Zienkiewicz-Zhu estimators) [START_REF] Ainsworth | Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems[END_REF][START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Zhu | Adaptive techniques in the finite element method[END_REF][START_REF] Zienkiewicz | A simple error estimator and adaptive procedure for practical engineering analysis[END_REF] and finally estimators based on equilibrated fluxes [START_REF] Ainsworth | A posteriori error estimators for 2nd order elliptic systems II. an optimal order process for calculating self-equilibrated fluxes[END_REF][START_REF] Brink | A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems[END_REF][START_REF] Ladevèze | Accuracy of elastoplatic and dynamic analysis[END_REF][START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF][START_REF] Ladevèze | Error estimates and mesh optimization for finite element computation[END_REF][START_REF] Nicaise | An a posteriori error estimator for the Lamé equation based on equilibrated fluxes[END_REF]. For methods based on dual variables, like mixed methods, we refer to [START_REF] Carstensen | A posteriori error estimates for mixed FEM in elasticity[END_REF][START_REF] Carstensen | Locking-free adaptive mixed finite element methods in linear elasticity[END_REF][START_REF]A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems[END_REF][START_REF] Boulaajine | A posteriori error estimation for the dual mixed finite element method of the elasticity problem in a polygonal domain[END_REF][START_REF] Houston | An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity[END_REF]; note that such methods are usually locking free and therefore the obtained estimators are usually locking free.

Here we analyze two displacement methods based on the primal variables variant of the ones introduced by P. Hansbo and M.G. Larson in [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF] which are nonconforming methods based on the Crouzeix-Raviart finite element. These methods are locking free and very cheap. In [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF], the authors derive a priori optimal error estimates uniform in the Lamé parameter λ (see Theorem 3.1 of [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF]). In this paper, we propose an a posteriori error analysis of these methods. Our analysis enters in the family of estimators of residual type since our error indicator is based on residuals on each triangle and jumps across the inter-element boundaries. We prove reliability of the indicator uniformly in λ (and h), in particular avoiding locking phenomena. The proof is based on a discrete divergence stability result (see [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] for another scheme), the use of an appropriate decomposition of the error into continuous and discontinuous parts [START_REF] Houston | Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation[END_REF]. Local efficiency of our indicator follows by using classical inverse estimates, the use of a strengthened norm allows to obtain its robustness.

Note that our methods enter in a similar framework than the ones in [START_REF] Carstensen | A unifying theory of a posteriori error control for nonconforming finite element methods[END_REF][START_REF] Wihler | Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[END_REF][START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF]. But our upper bound cannot be deduced from [START_REF] Carstensen | A unifying theory of a posteriori error control for nonconforming finite element methods[END_REF] because the assumption (2.12) from that paper is not satisfied by our scheme. On the other hand, the schemes in [START_REF] Carstensen | A unifying theory of a posteriori error control for nonconforming finite element methods[END_REF][START_REF] Wihler | Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[END_REF][START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] are different from our proposed schemes, nevertheless the proof of the upper bound uses similar arguments than in [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF].

The outline of the paper is as follows: We recall in Section 2 the boundary value problem and its numerical approximation. Section 3 is devoted to the proof of the discrete divergence stability result. The proof of the upper error bound is made in section 4; and the lower bound is obtained in section 5. Finally some numerical tests that confirm our theoretical results are presented in the last section.

Let us finish this introduction with some notations used in the remainder of the paper: On D, the L 2 (D)-norm will be denoted by • D . The usual norm and seminorm of H s (D) (s ≥ 0) are denoted by • s,D and | • | s,D , respectively. In the case D = Ω, the index Ω will be omitted. Similar H(div, Ω) is defined by

H(div, Ω) = {v ∈ L 2 (Ω) 2 : div v ∈ L 2 (Ω)},
equipped with its natural norm. Finally, the notation a b means the existence of a positive constant C, which is independent of the mesh size, of the considered quantities a and b and of the Lamé coefficient λ such that a ≤ Cb. In other words, the constant only depends on the aspect ratio of the mesh, on the domain Ω and on the shear modulus µ, but not on Lamé coefficient λ (see below).

A discontinuous

Galerkin method for the elasticity system.

The boundary value problem of elasticity.

Let Ω be a plane domain with a polygonal boundary. More precisely, we assume that Ω is a simply connected domain and that its boundary Γ is the union of a finite number of linear segments Γ j , 1 ≤ j ≤ n e (Γ j is assumed to be an open segment). In this domain, we consider an elastic isotropic material. Let u = (u 1 , u 2 ) be the displacement field and f = (f 1 , f 2 ) ∈ [L 2 (Ω)] 2 the body force by unit of mass. For simplicity, we consider in Ω the pure homogeneous displacement problem. Thus the displacement field u = (u 1 , u 2 ) satisfies the following equations and boundary condition:

-div σ(u) = f in Ω, u = 0 on Γ, (2.1) 
where the stress tensor is defined by

σ(u) := 2µ (u) + λ tr (u)I. (2.
2)

The positive constants µ and λ are called the Lamé coefficients where µ ≡ G is the shear modulus ( [START_REF] Parton | Mathematical methods of the theory of elasticity[END_REF], p. 207) ( [START_REF] Frey | Analyse des Structures et Milieux Continus Mécanique des Solides[END_REF], pp. 72-75, 57-58). We assume that [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF] (λ, µ)

∈ [λ 0 , +∞[×[µ 1 , µ 2 ] (2.3)
where 0 < µ 1 < µ 2 and λ 0 > 0.

As usual, (u) denotes the linearized strain tensor, i.e., (u) := 

find u ∈ H 1 0 (Ω) 2 such that Ω σ(u) : (v) dx = Ω f • v dx, ∀v ∈ H 1 0 (Ω) 2 , (2.4) 
where σ : denotes the contraction of the two tensors, i.e.,

σ : = 2 i,j=1 σ ij ij .
The existence and uniqueness of the solution in (2.4), for a given

f ∈ H -1 (Ω) 2 ,
follows from the first Korn inequality (cf. [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF], p.286). In the following, we suppose that f ∈ L 2 (Ω) 2 .

2.2. The discontinuous Galerkin methods. In order to formulate the discrete problems introduced by P. Hansbo and M.G. Larson in [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF], we first recall some notation.

Let (T h ) h>0 , be a regular family of triangulations. Let us fix a triangulation T h ∈ (T h ) h>0 and let E h denote the set of all edges of the triangulation T h . We split E h into two disjoint subsets: E I h the subset of edges contained in Ω and E ∂ h the subset of edges contained in the boundary of Ω. Further, with each edge E, we associate a fixed unit normal n E such that for edges contained in ∂Ω, n E is the exterior unit normal; we further fix a unit tangent t E so that {n E , t E } forms an orthonormal basis of R 2 . For any edge E and any triangle T , we denote by |E| the length of E and |T | the area of T .

Let

DF (T h ) := {v h ∈ L 2 (Ω) 2 ; ∀T ∈ T h : v h|T ∈ [P 1 (T )] 2 }
be the space of piecewise linear discontinuous functions (as usual P 1 (T ) denotes the space of polynomials of degree less than or equal to 1 on T ). For a function v h ∈ DF (T h ) we denote its jump at an edge

E by [[v h ]] E = v + h -v - h for E ∈ E I h and [[v h ]] E = v + h for E ∈ E ∂ h , and the average v h E = (v + h + v - h )/2 for E ∈ E I h and v h E = v + h for E ∈ E ∂ h , where v ± h (x) = lim h→0 + v h (x ∓ hn E ) with x ∈ E.
In the same spirit, we define its broken strain tensor h (v h ) by

h (v h ) T = (v h|T ) ∀T ∈ T h ,
its broken stress tensor σ h (v h ) and broken divergence div h v h is defined similarly. We further introduce the Crouzeix-Raviart space of vector fields CR (T h ):

CR (T h ) := {v h ∈ L 2 (Ω) 2 ; ∀T ∈ T h : v h|T ∈ [P 1 (T )] 2 , [[P 0 v h ]] E = 0, ∀E ∈ E h } (2.5)
where for any edge E and any w ∈ L 2 (E)

P 0 w := 1 |E| E wds,
and therefore

[[P 0 v h ]] E := P 0 [[v h ]] E = 1 |E| E v + h ds - 1 |E| E v - h ds.
The first discontinuous Galerkin method is a variant of the one introduced in [20] and reads as follows: find

u h ∈ DF (T h ) such that a h (u h , v h ) = (f, v h ), ∀v h ∈ DF (T h ) .
(2.6)

The bilinear form is here defined by

a h (u h , v h ) := a 0h (u h , v h ) + (2µ + λ)λγ 0 E∈E h 1 h E ([[P 0 u h • n E ]] , [[P 0 v h • n E ]]) E (2.7) +2µγ 0 E∈E h 1 h E ([[P 0 u h • t E ]] , [[P 0 v h • t E ]]) E - E∈E h (( σ h (u h ) E n E , [[v h ]] E ) E + ( σ h (v h ) E n E , [[u h ]] E ) E ) , a 0h (u h , v h ) := T ∈T h (σ(u h ), (v h )) T + 2µγ 1 E∈E h 1 h E ([[u h ]] , [[v h ]]) E , (2.8) 
while the linear form is defined by

(f, v h ) = Ω f • v h dx.
Here the parameters γ 0 , γ 0 and γ 1 are the stabilizing parameters fixed below.

Here and below (σ

(u h ), (v h )) T means the L 2 -inner product T σ(u h ) : (v h ) dx.

Similarly for vector valued functions

v, w ∈ L 2 (E) 2 , (v, w) E means the L 2 -inner prod- uct E v • w ds.
Note that our bilinear form a h differs from the one in [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF] by the second and third terms of the right-hand side of (2.7), indeed in that paper these two terms are replaced by

(2µ + λ)γ 0 E∈E h 1 h E ([[P 0 u h ]] , [[P 0 v h ]]) E .
This modification is made to have a discrete stability result and hence a robust a posteriori estimate that cannot be obtained if we keep the original term from [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF]. Note further that the bilinear form a h is similar to the one in [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] except that the second and third terms are replaced by

λ 2 γ 0 E∈E h 1 h E ([[u h • n E ]] , [[v h • n E ]]) E .
As a consequence the well-posedness of the corresponding problem in [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] is obtained for γ 1 and γ 0 large enough (independently of λ), while our problem is well-posed only for γ 0 and γ 0 large enough (independently of λ). Our approach allows then to use a penalization parameter γ 1 as small as we want (but bounded away from zero). This difference also implies the use of a different error norm.

The well-posedness of problem (2.6) follows from the strong coerciveness of a h in DF (T h ), that we now show (see Proposition 2.2 of [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF] or Proposition 2.2 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF]) Proposition 2.1. There exist three positive constants γ min , γ min and C independent of λ, µ and the mesh size h such that for all γ 0 > γ min and all γ 0 > γ min and any v h ∈ DF (T h ), we have

a h (v h , v h ) ≥ C 2µ h (v h ) 2 + λ div h v h 2 + (2µ + λ)λ E∈E h 1 h E [[P 0 v h • n E ]] 2 E + 2µ E∈E h 1 h E [[P 0 v h • t E ]] 2 E + 2µγ 1 E∈E h 1 h E [[v h ]] 2 E Proof.
First for an arbitrary edge E, we have

( σ h (v h ) E n E , [[v h ]] E ) E = 2µ( (v h ) E n E , [[v h ]] E ) E + λ([[div h v h ]] , [[v h • n E ]] E ) E ,
and since h (v h ) and div h v h are piecewise constant, we get

( σ h (v h ) E n E , [[v h ]] E ) E = 2µ( (v h ) E n E , [[P 0 v h ]] E ) E +λ([[div h v h ]] , [[P 0 v h • n E ]] E ) E .
By Cauchy-Schwarz's and Young's inequalities we obtain

|( σ h (v h ) E n E , [[v h ]] E ) E | ≤ µ δ h E (v h ) E 2 E + µδ h -1 E [[P 0 v h ]] E 2 E + λ 2(2µ + λ)δ h E [[div h v h ]] E 2 E + λ(2µ + λ)δ 2 h -1 E [[P 0 v h • n E ]] E 2 E .
for any δ, δ > 0. Using the regularity assumption of the mesh, there exists a positive constant C tr such that

h E [[div h v h ]] E 2 E ≤ C tr div h v h 2 ω E , h E (v h ) E 2 E ≤ C tr h (v h ) 2 ω E ,
where, as usual, ω E is the patch associated with E, i.e., ω E = T + E ∪ T - E , when E is the common edge between T + E and T - E . These estimates in the previous one lead to

E∈E h ( σ h (v h ) E n E , [[v h ]] E ) E ≤ 2µC tr δ h (v h ) 2 + µδ E∈E h h -1 E [[P 0 v h ]] E 2 E + λC tr (2µ + λ)δ div h v h 2 + λ(2µ + λ)δ 2 E∈E h h -1 E [[P 0 v h • n E ]] E 2 E .
By this estimate and the definition of a h , we deduce that

a h (v h , v h ) ≥ 2µ(1 - 2C tr δ ) h (v h ) 2 + λ(1 - 2C tr (2µ + λ)δ ) div h v h 2 + 2µγ 1 E∈E h 1 h E [[v h ]] E 2 E + (2µ + λ)λ γ 0 -δ - 2µδ (2µ + λ)λ E∈E h 1 h E [[P 0 v h • n E ]] 2 E + 2µ(γ 0 -δ ) E∈E h 1 h E [[P 0 v h • t E ]] E 2 E .
Now we choose δ and δ such that

(1 - 2C tr δ ) = (1 - 2C tr (2µ + λ)δ ) = 1 2 ,
or equivalently δ = 4C tr and δ = 4C tr (2µ + λ) .

With this choice we then have

a h (v h , v h ) ≥ µ h (v h ) 2 + λ 2 div h v h 2 + 2µγ 1 E∈E h 1 h E [[v h ]] E 2 E + (2µ + λ)λ γ 0 - 4C tr (2µ + λ) - 8µC tr (2µ + λ)λ E∈E h 1 h E [[P 0 v h • n E ]] 2 E + 2µ(γ 0 -4C tr ) E∈E h 1 h E [[P 0 v h • t E ]] E 2 E .
The conclusion follows with the choice

γ min = max{1, 4C tr (2µ + λ) + 8µC tr (2µ + λ)λ
} and γ min = 4C tr .

By the previous result, we deduce that for γ 0 > γ min and γ 0 > γ min , problem (2.6) is well posed.

As shown in Proposition 2.1 of [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF] the method is consistent, namely

a h (u -u h , v h ) = 0, ∀v h ∈ DF (T h ) .
(2.9)

Restricting the discontinuous Galerkin method to the space of Crouzeix-Raviart functions, we obtain the following simplified scheme: find u 0h ∈ CR (T h ) such that

a 0h (u 0h , v h ) = (f, v h ), ∀v h ∈ CR (T h ) .
(2.10)

As before this second method is consistent:

a 0h (u -u 0h , v h ) = 0, ∀v h ∈ CR (T h ) . (2.11)
Observe that Theorem 2.3 of [START_REF] Nicaise | About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I. Regularity of the solutions[END_REF] guarantees that the displacement vector field u ∈ H 3/2+ (Ω)

2 for some ∈]0, 1 2 [. Consequently σ(u)

• n E has sense on each edge

E ∈ E h as an element of [H (E)] 2 ⊂ L 2 (E)
2 and Green's formula can be applied element by element. Hence the consistency always holds.

We finally refer to [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF] for robust a priori error estimates.

Our goal is to bound the "triple norm" |||e||| := a 0h (e, e) of the error

e := u -u h .
But in order to get a robust estimate we even need to use the parameter depending norm:

|||e||| 2 λ = |||e||| 2 + λ 2 Π 0 div h e 2 + λ 2 E∈E h 1 h E [[P 0 e • n E ]] 2 E ,
where div h e means the broken divergence and Π 0 is the L 2 -projection on L 2 0 (Ω) 2 defined by

Π 0 f = f - 1 |Ω| Ω f (x) dx, ∀f ∈ L 2 (Ω) 2 .
Before going on notice that if u 0h ∈ CR (T h ), then

Ω div h u 0h dx = 0.
3. Discrete stability. The stability of the continuous problem (2.4) was proved in Proposition 3.2 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] and means that there exists a positive constant c independent of λ such that

λ div u ≤ c f .
A discrete version of this estimate was also proved in Corollary 3.7 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] for their own scheme. Using similar arguments we also obtain a discrete stability.

Proposition 3.1. If u h ∈ DF (T h ) is the solution of (2.6), then

|||u h ||| λ f .
Proof. We first use Lemma 3.5 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] that yields w ∈ DF (T h ) ∩ H(div, Ω) such that div w = -λΠ 0 (div h u h ),

∇ h w λ Π 0 (div h u h ) , E∈E h 1 h E [[w]] 2 E λ 2 Π 0 (div h u h ) 2 .
With such a choice we notice that in a h (u h , w) the term

(2µ + λ)λγ 0 E∈E h 1 h E ([[P 0 u h • n E ]] , [[P 0 w • n E ]]) E ,
is zero and therefore the arguments of Proposition 3.6 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] can be applied.

4.

Robust upper bound of the error. For all T ∈ T h , the local estimator η T is defined by

η 2 T = h 2 T f T 2 T + E∈E h :E⊂T h E [[σ(u h ) • n E ]] E 2 E + E∈E h :E⊂T 1 h E ( [[u h ]] 2 E +λ 2 [[P 0 u h • n E ]] 2 E ),
where

f T = 1 |T | T f (x) dx.
The global estimator is given by

η 2 = T ∈T h η 2 T .
Finally let

osc 2 (f ) = T ∈T h h 2 T f -f T 2 T
be the oscillating term. Now we are able to state our locking-free a posteriori error estimate: Theorem 4.1. With the previous notation, we have the following a posteriori estimate:

|||e||| λ η + osc(f ). (4.1)
Proof. We proceed as in the proof of Theorem 4.2 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF]. Namely we take

ω ∈ H 1 0 (Ω) 2 such that div ω = λΠ 0 (div h e), ω 1,Ω λ Π 0 (div h u h ) ,
and such that there exist β > 0 and κ > 0 for which 4µ (e c ) 2 + λ 2 Π 0 (div h e) 2 ≤ κ(2µ( (e c ), (e c + βω)) + βλ(div h e, div ω)),(4.2)

where, as usual (see for instance [START_REF] Houston | Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation[END_REF][START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF]), e c is the continuous part of the error, namely

e c = u -u c h , and 
u h = u c h + u ⊥ h , with u c h ∈ V c h := DF (T h ) ∩ H 1 0 (Ω) 2 and u ⊥ h ∈ DF (T h ) ⊥ ,
where DF (T h ) ⊥ is an appropriate orthogonal complement of V c h into DF (T h ). In a first step using this splitting and the standard estimate

∇ h u ⊥ h 2 E∈E h 1 h E [[u h ]] 2 E , (4.3) 
we have (compare with the estimate (29) from [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF])

|||e||| 2 λ (e c ) 2 + λ 2 Π 0 (div h e) 2 (4.4) 
+ E∈E h 1 h E ( [[u h ]] 2 E + λ 2 [[P 0 u h • n E ]] 2 E ).
Hence it remains to estimate the first two terms of this right-hand side. For that purpose, we use (4.2) and transform its right-hand side as in [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF] to get 4µ (e c ) 2 + λ 2 Π 0 (div h e) 2 (σ(u), (w)) -(σ h (u h ), (w)) (4.5) +2µ( (u ⊥ h ), (w)) -λ(div h e, div e c ), where w = e c + βω that belongs to H 1 0 (Ω) 2 and satisfies (see [11, p. 1550])

w 1,Ω |||e||| λ (4.6)
For the two first terms of this right-hand side we use the continuous and discrete formulation to get successively (with w h = I Cl (w) the Clément interpolant of w)

(σ(u), (w)) -(σ h (u h ), (w)) = (σ(u), (w -w h )) -(σ h (u h ), (w -w h )) + (σ(u), (w h )) -(σ h (u h ), (w h )) = (σ(u), (w -w h )) -(σ h (u h ), (w -w h )) - E∈E h ( σ(w h ) E n E , [[u h ]] E ) E .
Hence using again the continuous formulation and piecewiese Green's formula, we arrive at

(σ(u), (w)) -(σ h (u h ), (w)) = (f, w -w h ) - E∈E h (([[σ h (u h ) • n E ]] , w h ) E + ( σ(w h ) E n E , [[u h ]] E ) E ) .
The first term is estimated in a standard way. The second term is also estimated in a classical way, namely

E∈E h ([[σ h (u h ) • n E ]] , w h ) E = E∈E h ([[σ h (u h ) • n E ]] , w h -w) E ,
and therefore by classical local error estimates on the Clément interpolant ([29], Lemma 1.4, p. 11) using Lemma 3.4 of [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF], we get

E∈E h ([[σ h (u h ) • n E ]] , w h ) E η w 1,Ω .
For the last term we can write (see above)

( σ(w h ) E n E , [[u h ]] E ) E = 2µ( (w h ) E n E , [[u h ]] E ) E + λ( div h w h E , [[P 0 u h • n E ]] E ) E .
Hence using scaling arguments, we obtain

E∈E h ( σ(w h ) E n E , [[u h ]] E ) E w h 1,Ω E∈E h 1 h E [[u h ]] 2 E + λ 2 [[P 0 u h • n E ]] 2 E 1 2
.

Hence using again Lemma 1.4 of [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF], we get

E∈E h ( σ(w h ) E n E , [[u h ]] E ) E η w 1,Ω .
The third term of (4.5) is estimated by using (4.3), namely

|2µ( (u ⊥ h ), (w))| ∇ h u ⊥ h ∇w η ∇w .
For the last term of (4.5) since e c belongs to H 1 0 (Ω) 2 its divergence is of mean zero and therefore as in [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF], we find

-λ(div h e, div e c ) ≤ -λ(div h e, div h u ⊥ h ).
Hence by Cauchy-Schwarz's inequality and the estimate (4.3), we again arrive at -λ(div h e, div e c ) ηλ div h e η |||e||| λ .

All the previous estimates lead to the conclusion.

5.

Lower bound of the error. For a subset ω of Ω, we denote by

|||e||| 2 λ,ω := (σ h (e), h (e)) ω + λ 2 Π 0 div h e 2 ω + E∈E h :E⊂ω 1 h E 2µγ 1 [[u h ]] 2 E + λ 2 [[P 0 u h • n E ]] 2 E , osc 2 ω (f ) := T ∈T h :T ⊂ω h 2 T f -f T 2 T .
As usual, for any triangle T we denote by

ω T = ∪ T ∈T h :T ∩T =∅ T ,
the patch associated with T . Similarly for an edge E, we set

ω E = ∪ T ∈T h :E⊂T T .
We start with the element residual. Lemma 5.1. For all T ∈ T h , we have

h T f T T |||e||| λ,T + osc T (f ).
Proof. If b T is the standard bubble function associated with T , we set w T = f T b T . Hence by a standard inverse inequality we have

f T 2 T T f T • w T dx = T (f T -f ) • w T dx - T div σ(u -u h ) • w T dx,
reminding that div σ(u) = -f . For the second term of this right-hand side applying Green's formula we obtain

f T 2 T T (f T -f ) • w T dx + T σ(u -u h ) : (w T ) dx.

Now we can write

T σ(u -u h ) : (w T ) dx = 2µ T (u -u h ) : (w T ) dx + λ T div(u -u h ) div(w T ) dx = 2µ T (u -u h ) : (w T ) dx + λ Ω div h (u -u h ) div(w T ) dx.
Since w T can be seen as a function in

H 1 0 (Ω) 2 , we deduce that T σ(u -u h ) : (w T ) dx = 2µ T (u -u h ) : (w T ) dx + λ Ω Π 0 div h (u -u h ) div(w T ) dx = 2µ T (u -u h ) : (w T ) dx + λ T Π 0 div h (u -u h ) div(w T ) dx.
By Cauchy-Schwarz's inequality and the inverse inequality (w

T ) T h -1 T f T T , we obtain h T f T T osc T (f ) + (u -u h ) T + λ Π 0 div h (u -u h ) T .
The conclusion follows from the direct estimate (e) 2 T ≤ 1 2µ T σ(e) : (e) dx.

(

We argue in a similar manner for the normal jump, namely we have the Lemma 5.2. For all E ∈ E h , we have

h 1/2 E [[σ(u h ) • n E ]] E E |e| λ,ω E + osc ω E (f ).
Proof. Denoting by b E the edge bubble we set

w E = [[σ(u h ) • n E ]] E b E that belongs to [H 1 0 (ω E )] 2 .
Hence by a standard inverse inequality we have

[[σ(u h ) • n E ]] E 2 E ∼ E [[σ(u h ) • n E ]] E • w E ds = E [[σ(u h -u) • n E ]] E • w E ds = T ∈T h :T ⊂ω E ∂T σ(u h -u) • n • w E ds.
Hence an integration by parts yields

[[σ(u h ) • n E ]] E 2 E ∼ T ∈T h :T ⊂ω E ( T σ(u h -u) : ∇(w E ) dx + T f • w E dx).
Using the same argument as before and Cauchy-Schwarz's inequality and inverse inequalities we obtain

h 1/2 E [[σ(u h ) • n E ]] E E T ∈T h :T ⊂ω E ( (u h -u) T + h T f T T ) + λ Π 0 div h (u -u h ) ω E + osc ω E (f ).
The conclusion follows from Lemma 5.1 and the estimate (5.1). These two lemmas directly yield the Theorem 5.3. For all T ∈ T h , we have

η T |||e||| λ,ω T + osc ω T (f ).
6. The nonconforming Galerkin method based on the Crouzeix-Raviart element. The arguments of the three previous section can be directly applied to the discontinuous method (2.10). They are even simpler because [[P 0 u h • n]] E = 0 on any edge E. Hence we have not to use the extra term

λ 2 E∈E h 1 h E [[P 0 e • n]] 2 E .
in the norm of the error (because it is zero). More precisely we can prove the next results: Theorem 6.1. We have the following a posteriori estimate:

|||e||| + λ Π 0 div h e η 0 + osc(f ), (6.1) 
where

η 2 0 = T ∈T h η 2 0T ,
and for all T ∈ T h , the local estimator η 0T is defined by

η 2 0T = h 2 T f T 2 T + E∈E h :E⊂T h E [[σ(u h ) • n E ]] E 2 E + E∈E h :E⊂T 1 h E [[u h ]] 2 E .
Theorem 6.2. For all T ∈ T h , we have

η 0T |||e||| ω T + λ Π 0 div h (e) ω T + osc ω T (f ),
where

|||e||| 2 ω := T ∈T h :T ⊂ω (σ(e), (e)) T + 2µγ 1 E∈E h :E⊂ω 1 h E [[u h ]] 2 E .
Theorem 6.1 is also a consequence of Theorem 2.1 of [START_REF] Carstensen | Averaging technique for a posteriori error control in elasticity. III. Locking-free nonconforming FEM[END_REF] since u 0h satisfies the assumptions of this theorem. We give here an alternative proof.

7. Numerical experiments. In this section, some numerical experiments are performed to illustrate the above theoretical results, similarly to the ones proposed in [START_REF] Bridgeman | Stability and a posteriori error analysis of discontinuous Galerkin methods for linearized elasticity[END_REF]. In all the following cases, Crouzeix-Raviart finite elements CR (T h ) defined by (2.5) are used on a regular mesh composed of triangles.

7.1. Divergence-free smooth solutions. The first test consists in solving equation (2.1) on the unit square Ω = (0, 1) 2 , for the exact solution given by : u(x, y) = 1 π 2 (sin(πx) sin(πy)) n-1 sin(πx) cos(πy) -sin(πy) cos(πx) ,

where n ≥ 2 is a given integer and where f is chosen accordingly. It should be noted that u is smooth, divergence-free, and that u |∂Ω = 0.

For the first example, we set n = 2. We plot in Figure 7.1 the convergence rates of the error (Figure 7.1 (a)) and of the estimator (Figure 7.1 (b)) for several values of λ, using a uniform mesh refinement strategy. It can be observed a good convergence towards zero for both of them corresponding to the one theoretically expected (namely, order 1 in h corresponding to order -1/2 in the total number of degrees of freedom ndof ). Then, the effectivity index defined by :

I ef f = η 0 |||e||| + λ Π 0 div h e
is plotted in Figure 7.2. First, it can be observed that for a given value of λ, the reliability of the estimator is ensured, as underlined by Theorem 6.1. Moreover, even if the value of I ef f is not totally independant of λ, it remains in a reasonable range (in the order of 1).

For the second example, we set n = 25 in order to generate high gradients in the vicinity of the mid-point ( 12 , 1 2 ). Consequently, instead of a uniform one, a local refinement mesh strategy is performed based on the local error estimator efficiency proven in Theorem 6.2. Here, this local refinement ensures that the mesh remains conform (there is no hanging-nodes creation), as well as regular (the minimal angle allowed in the triangulation is specified, in order to preserve the shape regularity of the mesh). We refer to [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] for further details and for the algorithm description (red, green and blue refinement). The resulting meshes obtained for iteration steps 1, 4 and 7 corresponding to λ = 10 4 are displayed in Figure 7.3, so that we can observe that the high gradients area is well tracked by the remeshing process. The convergence rates of the error and of the estimator are plotted in Figure 7.4 and the effectivity index in Figure 7.5. Once again, the conclusions are the same than for the first example: Experimental convergence rates of order 1 and robustness with respect to large values of λ, as well as only a small variation in λ of the effectivity index (around 1) for all the considered values of λ. In that case, the exact solution exhibits a singular behaviour around the origin. We want to check if the mesh is correctly refined around the singularity when the estimator is used to carry out the refinement process, and in the same time if the global estimator decreases consequently towards zero. The resulting meshes obtained for iteration steps 1, 7 and 10 corresponding to λ = 10 4 are displayed in Figure 7.6, and we can see that the mesh is automatically refined around the singularity. Moreover, Figure 7.7 shows that the estimator converges towards zero, with experimental convergence rates of order 1. 
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 71 Fig. 7.1. Error (a) and Estimator (b) convergence rates in ndof for the regular solution, n = 2, λ from 1 to 10 4 .
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 72 Fig. 7.2. Effectivity index I ef f for the regular solution, n = 2, λ from 1 to 10 4 .
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 73722 Fig. 7.3. Mesh refinements 1, 4 and 7 for the regular solution, n = 25, λ = 10 4 .
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 74 Fig. 7.4. Error (a) and Estimator (b) convergence rates in ndof for the regular solution, n = 25, λ from 1 to 10 4 .
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 75 Fig. 7.5. Effectivity index I ef f for the regular solution, n = 25, λ from 1 to 10 4 .
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 76 Fig. 7.6. Mesh refinements 1, 7 and 10 for the singular solution, λ = 10 4 .
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 277 Fig. 7.7. Estimator convergence rate in ndof for the singular solution, λ from 1 to 10 4 .

  1 2 (∇u + (∇u)T ) and I the identity tensor. For any tensor τ (of order 2), the trace of τ is tr τ := τ 11 + τ 22 , and

	div τ := (	∂τ 11 ∂x 1	+	∂τ 12 ∂x 2	,	∂τ 21 ∂x 1	+	∂τ 22 ∂x 2	)
	(in an orthogonal cartesian frame). The classical variational formulation of the bound-
	ary value problem (2.1) is the following: