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Abstract: In this work, we focus on the mathematical analysis of the model of chemostat with
enzymatic degradation of a substrate (organic matter) that can partly be under a solid form
Simeonov and Stoyanov (2003). The study of this 3-step model is derived from a smaller order
sub-model since some variables can be decoupled from the others. We study the existence and
the stability of equilibrium points of the sub-model considering both Monod or Haldane growth
rates and distinct dilution rates. In the classical chemostat model with monotonic kinetics,
it is well known that only one equilibrium point attracts all solutions and that bistability
never occurs Smith and Waltman (1995). In the present study, although (i) only monotonic
growth rates are considered and (ii) the concentrations of input substrate concentration is less
than the break-even concentration, it is shown that the considered sub-model may exhibit
bistability. Hence, the importance of hydrolysis in the appearance of positive equilibrium points
and the bistability is pointed out. If a non monotonic growth rate is considered, depending on
the input substrate concentration, it is shown that at most four positive equilibrium points
exist. Furthermore, for any positive initial condition, the solution converges towards one of the
positive equilibrium points for which the washout is unstable. Finally, we study the case where
the growth rate is density-dependent, such as the Contois kinetics, which may be of interest
if we consider that we work in a non homogeneous environment Lobry and Harmand (2006).
Depending on the input substrate concentration, we show that the system can exhibit either a
bistability or the global stability of the positive equilibrium point or of the washout.

Keywords: Enzymatic degradation, chemostat, models, growth rate, equilibrium, bistability.

1. INTRODUCTION

Anaerobic digestion is a biological process in which organic
matter is transformed into methane and carbon dioxide
(biogas) by microorganisms in the absence of oxygen. The
search for models simple enough to be used for control
design is of prior importance today to optimize fermen-
tation processes and solve important problems such as
the development of renewable energy from waste. Within
the studies of microbiology, biochemistry and technology,
the anaerobic digestion is generally considered as a three
step process: hydrolysis and liquefaction of the large, in-
soluble organic molecules by extracellular enzymes, acid
production by an acidogenic microbial consortium and
a methane production stage realized by a methanogenic

ecosystem. Several mathematical models describing these
phenomena have been proposed in the literature. How-
ever, they are usually too complex to be used for control
synthesis Simeonov and Stoyanov (2003); B. Benyahia
and Harmand (2010a,b); Bastin and Dochain (1991). The
chemical reactions of anaerobic digestion which converts
the substrate into biomass is :

X0
r0=μ0X0−−−−−−→ k0S1

k1S1
r1=μ1X1−−−−−−→ X1 + k2S2 + CO2

k3S2
r2=μ2X2−−−−−−→ X2 + CO2 + CH4

where ri = μiXi, i = 0 · · · 2, denotes the reaction rate,
respectively, μ0 is the specific growth rate of X1 on X0

and μi is the specific growth rate of Xi on Si for i = 1, 2.
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ki, i = 0 . . . 3, denote the pseudo-stochiometric coefficients
associated to the chemical reactions,

Motor
Biogas

CO2, CH4

S1in, S2in, X0in

Q1

V

S1, S2

Q2

S1, S2, X0, X1, X2

Q1 − Q2

Fig. 1. Chemostat.

We consider a continuous culture, i.e the input flow rate
Q1 is equal to the output flow rate. For low concentrations
of substrate, the biomass residence time is greater than
the substrate one, then the output flow rate of biomass
and substrate in the form macromolecules is Q1−Q2. The
three step model Simeonov and Stoyanov (2003) is :⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋ0 = DX0in − αDX0 − μ0(X0)X1,

Ṡ1 = D(S1in − S1) + k0μ0(X0)X1 − k1μ1(S1)X1,

Ẋ1 =
(
μ1(S1) − αD

)
X1,

Ṡ2 = D(S2in − S2) + k2μ1(S1)X1 − k3μ2(S2)X2,

Ẋ2 =
(
μ2(S2) − αD

)
X2,

(1)

where
D =

Q1

V
and

Q1 − Q2

V
= αD.

D denotes the dilution rate of the chemostat and α ∈
[0, 1] represents the fraction of the biomass leaving the
reactor. V denotes the volume of the bioreactor, X0(t) the
concentration of the substrate in the form macromolecules
at time t, with X0in the concentration of the input
nutriment. Sj(t) denote the concentration of the substrates
in the effluent, j = 1, 2, at time t; with Sjin the input
substrate concentrations j. Xi(t) denote the concentration
of the ith population of microorganisms, i = 1, 2, at time
t.
According to the principle of conservation of matter within
the reaction scheme we have∫ t2

t1

μ0(X0)X1V dτ �
∫ t2

t1

k0μ0(X0)X1V dτ i.e 1 � k0,

which means that, the quantity of X0 degraded is greater
than or equal to the quantity of S1 produced. Similarly,
we have

k1 � 1 + k2 and k3 � 1
which means that, the quantity of S1 degraded is greater
than or equal to the quantity of X1 and S2 produced. The
quantity of S2 degraded is greater than or equal to the
quantity of X2 produced.

In the following, we focus on the study of the sub-model
given by the first three equations of system (1), the last two
equations being decoupled since the first three equations
are independent of variables X2 and S2. Thus, we study
the existence and stability of equilibrium points of the
following sub-model :

⎧⎪⎨
⎪⎩

Ẋ0 = D(X0in − αX0) − μ0(X0)X1,

Ṡ1 = D(S1in − S1) + k0μ0(X0)X1 − k1μ1(S1)X1,

Ẋ1 =
[
μ1(S1) − αD

]
X1.

(2)

First, we establish the following result :
Proposition 1.1.

(1) For any non-negative initial condition, the solutions of
system (2) stay positive at any time and are bounded
when t → +∞.

(2) The set

Ω = {(X0, S1, X1) ∈ R
3
+ : Z = k0X0 + S1 + k1X1

� max
(
Z(0), Sin

αD

)}
is positively invariant and attractor of all solutions of
(2), with Sin = D(k0X0in + S1in).

2. STUDY OF THE SUB-MODEL

The washout equilibrium E0 =
(

X0in

α , S1in, 0
)
, always

exists. To look for positive equilibria, we consider the
function

ξ(X0) =
D(X0in − αX0)

μ0(X0)
.

We assume that

H0: The function μ0(·) is increasing, μ0(0) = 0 and
μ′′

0(X0) � 0 for all X0 ∈ ]
0, X0in

α

[
.

Lemma 2.1. Under assumption H0, the function ξ(·) van-
ishes on X0in

α , is decreasing and convex.

In the case where the function μ0(·) is linear or of Monod
type, the assumption H0 is satisfied.

2.1 Study of the sub-model with monotonic growth rate
μ1(·)

In this section, we study the existence of equilibrium points
of system (2) under the following assumption

H1: μ1(0) = 0 and μ′
1(S1) > 0 for all S1 � 0.

H2: The equation μ1(S1) = αD has a finite solution
λ1 = μ−1

1 (αD).

Let Δ the line of equation :

X1 = δ(X0) =
1

k1α

[
(S1in − λ1) + k0(X0in − αX0)

]
.

Lemma 2.2. The equation ξ′(X0) = −k0
k1

has a unique
solution X̄0 ∈ ]

0, X0in

α

[
if and only if

ξ′
(

X0in

α

)
> −k0

k1
.

Moreover,

ξ′
(

X0in

α

)
> −k0

k1
⇐⇒ k0μ0

(
X0in

α

)
> k1αD.

If ξ′
(

X0in

α

)
> −k0

k1
, the intersection of the line Δ with the

curve of the function ξ, has at most two points. Let us
denote by E∗

1 = (X∗
0 , λ1, X

∗
1 ) and E∗∗

1 = (X∗∗
0 , λ1, X

∗∗
1 )

(see Fig. 2). By Lemma 2.2, there exists a unique solution
X̄0 ∈ ]

0, X0in

α

[
of equation ξ′(X0) = −k0

k1
. Thus, there is a

Author-produced version 



limit value XMin
1 for which the curve ξ is tangent to the

line Δ and who satisfied

XMin
1 = X̄1 +

k0

k1
X̄0

with Ē1 = (X̄0, λ1, X̄1) an equilibrium of (2) (see case 4 of
the Fig. 3). At this limite value XMin

1 , we associate SMin
1in

which satisfied

XMin
1 = δ(0) =

1
k1α

[
(SMin

1in − λ1) + k0X0in

]
.

In the generic case where SMin
1in > 0, we have shown the

following result :
Proposition 2.1.

• If λ1 � S1in, there exists a unique positive equilib-
rium E∗

1 = (X∗
0 , λ1, X

∗
1 ).

• If SMin
1 < S1in < λ1, there exist two positive

equilibria E∗
1 et E∗∗

1 .
• If S1in = SMin

1 , there exists a unique positive equi-
librium Ē1 = (X̄0, λ1, X̄1).

• If S1in < SMin
1 , there is no positive equilibrium.

X1

Cξ

E∗
1•

Δ

E0•
X0in

α

X0

X1 Cξ

E∗
1•

Δ

E0•
X0in

α

X0

X1 Cξ

E∗
1•
Δ

E∗∗
1• E0•
X0in

α

X0

Fig. 2. Case 1: λ1 < S1in = 5.5, case 2: S1in = 4.5 = λ1,
case 3: SMin

1 < S1in = 2 < λ1.

X1
Cξ

XMin
1

Δ
Ē1 = (X̄0, λ1, X̄1)•

E0•
X0in

α

X0

X1
Cξ

Δ

E0•
X0in

α

X0

Fig. 3. Case 4: S1in = 0.75 = SMin
1 , case 5: S1in = 0.2 <

SMin
1 .

In the following, we show the asymptotic behavior of
equilibrium points. We choose the red color for Locally
Asymptotically Stable (LAS) equilibrium, the green color
for saddle node equilibrium and blue color for unstable
equilibrium.
Proposition 2.2.

• E0 is LAS if and only if μ1(S1in) < αD.
• If E∗

1 exists, then it is LAS (stable node).
• If E∗∗

1 exists, then it is unstable (saddle point).

Proof. At washout E0 = (X0in

α , S1in, 0), the Jacobian
matrix of (2) is

J0 =

⎡
⎣−αD 0 −μ0(X0in

α )
0 −D k0μ0(X0in

α ) − k1μ1(S1in)
0 0 μ1(S1in) − αD

⎤
⎦

The eigenvalues are −αD,−D and μ1(S1in) − αD. Then,
the equilibrium E0 is LAS if and only if μ1(S1in) < αD.

At a positive equilibrium E∗
1 = (X∗

0 , λ1, X
∗
1 ), the Jacobian

matrix is

J1 =

[−m11 0 −m13

m21 −m22 θ
0 m32 0

]

where
m11 = αD + μ′

0(X
∗
0 )X∗

1 , m13 = μ0(X∗
0 ),

m21 = k0μ
′
0(X

∗
0 )X∗

1 , m22 = D + k1μ
′
1(λ1)X∗

1 ,
θ = k0μ0(X∗

0 ) − k1αD, m32 = μ′
1(λ1)X∗

1 ,
with m11,m13,m21,m22 and m32 are positive. The char-
acteristic polynomial of J1 is given by

PJ1(λ) = a0λ
3 + a1λ

2 + a2λ + a3

with
a0 = −1, a1 = −(m11 + m22), a2 = −m11m22 + θm32,

a3 = −m32(m21m13 − θm11).
According to the Routh-Hurwitz criterion, E∗

1 is LAS if
and only if {

ai < 0, i = 0 · · · 3
a1a2 − a0a3 > 0.

We have
a2 =

[
k0μ0(X∗

0 ) − k1αD − k1μ
′
0(X

∗
0 )X∗

1

]
μ′

1(λ1)X∗
1

−
[
Dμ′

0(X
∗
0 )X∗

1 + αD
(
D + k1μ

′
1(λ1)X∗

1

)]
.

Since

ξ′(X∗
0 ) +

k0

k1
=

−k1αD − k1μ
′
0(X

∗
0 )X∗

1 + k0μ0(X∗
0 )

k1μ0(X∗
0 )

then we deduce
a2 =

[
ξ′(X∗

0 ) + k0
k1

]
k1μ0(X∗

0 )μ′
1(λ1)X∗

1

−
[
Dμ′

0(X
∗
0 )X∗

1 + αD
(
D + k1μ

′
1(λ1)X∗

1

)]
therefore, if ξ′(X∗

0 ) < −k0
k1

, then a2 < 0. Moreover

a3 = m32αD[k0μ0(X∗
0 ) − k1αD − k1μ

′
0(X

∗
0 )X∗

1 ]

= m32αD
[
ξ′(X∗

0 ) + k0
k1

]
k1μ0(X∗

0 )

is negative if and only if ξ′(X∗
0 ) < −k0

k1
. Finally

a1a2 − a0a3 = −
[
ξ′(X∗

0 ) + k0
k1

]
k1μ0(X∗

0 )μ′
0(X

∗
0 )μ′

1(λ1)X∗2
1

+ P

where
P = Dm2

11+
(
(αD)2+αDμ′

0(X
∗
0 )X∗

1

)
k1μ

′
1(λ1)X∗

1−m22a2

is positive if ξ′(X∗
0 ) < −k0

k1
. Since E∗

1 satisfies ξ′(X∗
0 ) <

−k0
k1

, then it is LAS and E∗∗
1 satisfies ξ′(X∗∗

0 ) > −k0
k1

, then
it is unstable.

The simulations shown in Fig. 4 where obtained for the
following Monod functions

μ0(X0) =
2.5X0

1.5 + X0
and μ1(S) =

2S

1.5 + S
and the following values of the parameters
X0in = 3, D = 1, α = 0.75, k0 = 1 and k1 = 1.2
The value of the break-even concentration is λ1 = 0.9. We
illustrate the case of bistability for S1in = 0.7 such as

ξ′
(X0in

α

)
= −0.412 > −0.833 = −k0

k1
.
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In this case, the equation ξ(X0) = δ(X0) admits two
solutions (see Fig. 4 on the left) and the system (2) has a
washout equilibrium

E0 = (4, 0.5, 0)
and two positive equilibria

E∗
1 = (1.201, 0.9, 1.887), E∗∗

1 = (2.808, 0.9, 0.548).
The Fig. 4 in the middle shows the convergence to the
positive equilibrium E∗

1 for the initial condition
X0(0) = 4.5, S1(0) = 2 and X1(0) = 0.368

and the washout for the initial condition (see Fig. 4 on the
right)

X0(0) = 4.5, S1(0) = 2 and X1(0) = 0.367
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1•
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1• E0• X0

X1

X0

S1

Time

X0

S1
X1

T ime

Fig. 4. Existence of two positive equilibria and bistability
for S1in < λ1.

2.2 Study of the sub-model with non-monotonic growth
rate μ1(·)

In the following, we study the existence of equilibrium
points of system (2) under the following assumption

H3: The function μ1(·) is non monotonic and is such that
the equation μ1(S1) = αD admits two solutions λ1 and
λ2 with λ1 < λ2.

Let Δi the line of equation :

X1 = δi(X0) =
1

k1α

[
(S1in−λi)+k0(X0in−αX0)

]
, i = 1, 2.

The positive equilibrium E∗
i = (X∗

0i, λi, X
∗
1i) of system (2)

is a solution of the equation
X∗

1i = δi(X∗
0i) = ξ(X∗

0i), i = 1, 2.

When the intersection of the curve ξ and the line
Δi is formed by two points, let us denote them by
E∗

i = (X∗
0i, λi, X

∗
1i) if ξ′(X∗

0i) < −k0
k1

and by E∗∗
i =

(X∗∗
0i , λi, X

∗∗
1i ), otherwise (see Fig. 5 and Fig. 6). In the

case ξ′
(

X0in

α

)
> −k0

k1
, there exists a unique solution

X̄0 ∈ ]
0, X0in

α

[
of the equation ξ′(X0) = −k0

k1
. As the two

lines Δ1 and Δ2 are parallel, then there exists for i = 1, 2
a limit value XMin

1 for which the curve of ξ is tangent to
the line Δi and which satisfies

XMin
1 = X̄1 +

k0

k1
X̄0

with Ēi = (X̄0, λi, X̄1) an equilibrium of (2) for i = 1, 2.
At this limit value XMin

1 , we associate SMin
1i such that

XMin
1 = δ(0) =

1
k1α

[SMin
1i − λi + k0X0in].

In the generic case where SMin
1i > 0 for i = 1, 2, the cases

SMin
12 < λ1 and SMin

12 > λ1 have to be distinguished. When
SMin

12 < λ1, we have shown the following result :

Proposition 2.3.

• If S1in � λ2 > λ1, there exist two positive equilibrium
E∗

i , i = 1, 2.
• If λ1 � S1in < λ2, there exist three positive equilib-

rium E∗
i and E∗∗

2 .
• If SMin

12 < S1in < λ1, there exist four positive
equilibrium E∗

i and E∗∗
i .

• If SMin
12 = S1in, there exist three positive equilibrium

E∗
1 , E∗∗

1 and Ē2.
• If SMin

11 < S1in < SMin
12 , there exist two positive

equilibrium E∗
1 and E∗∗

1 .
• If SMin

11 = S1in, there exists a unique positive equi-
librium Ē1.

• If S1in < SMin
11 , there is no positive equilibrium.

In the case where SMin
12 > λ1, we can prove, similarly, that

if S1in � SMin
11 , we have one, two, three or four positive

equilibria, depending on the position of S1in.
X1

Cξ
Δ1

Δ2
E∗

1•
E∗

2

•

E0 •
X0in

α

X0

X1 Cξ

E∗
1•

E∗
2
•

E∗∗
2 • E0•

X0in
α

X0

X1 Cξ

E∗
1•

E∗
2

•
E∗∗

2
• E∗∗

1•E0•
X0in

α

X0

Fig. 5. Case 1: S1in = 8 > λ2 = 7, case 2: λ1 = 4.5 <
S1in = 5.75 < λ2, case 3: SMin

12 < S1in = 3.7 < λ1.
X1

Cξ

E∗
1•

Ē2
•

E∗∗
1• E0•

X0in
α

X0

X1 Cξ

E∗
1•

E∗∗
1•
E0•

X0in
α

X0

X1 Cξ

E0•
X0in

α

X0

Fig. 6. Case 4: S1in = 3.125 = SMin
12 , case 5: SMin

11 =
0.62 < S1in = 1.8 < SMin

12 , case 6: S1in = 0.1 < SMin
11 .

We study now the local stability properties of the equilib-
ria. For E0, E∗

1 and E∗∗
1 , we have the same results as in

Proposition 2.2. Moreover, we can prove :
Proposition 2.4.

• If E∗
2 exists, then it is unstable.

• If E∗∗
2 exists and D + k1μ

′
1(λ2)X∗∗

12 > 0, then it is
LAS.

Proof. The Jacobian of the system (2) at E∗
2 is

J2 =

[−m11 0 −m13

m21 β θ
0 −m32 0

]

where

m11 = αD + μ′
0(X

∗
02)X

∗
12, m13 = μ0(X∗

02),
m21 = k0μ

′
0(X

∗
02)X

∗
12, β = −(

D + k1μ
′
1(λ2)X∗

12

)
,

θ = k0μ0(X∗
02) − k1αD, m32 = −μ′

1(λ2)X∗
12,

with m11,m13,m21 and m32 are positive. The characteris-
tic polynomial of J2 is given by

PJ2(λ) = a0λ
3 + a1λ

2 + a2λ + a3
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with
a0 = −1, a1 = β − m11, a2 = m11β − θm32,

a3 = m32(m21m13 − θm11).
We have

a2 =
[
ξ′(X∗

02) + k0
k1

]
k1μ0(X∗

02)μ
′
1(λ2)X∗

12

−
[
Dμ′

0(X
∗
02)X

∗
12 + αD

(
D + k1μ

′
1(λ2)X∗

12

)]
.

If D + k1μ
′
1(λ2)X∗

12 > 0 and ξ′(X∗
02) > −k0

k1
, then a2 < 0.

It is easy to check that

a3 = −m32αD
[
ξ′(X∗

02) +
k0

k1

]
k1μ0(X∗

02)

who is negative if and only ξ′(X∗
02) > −k0

k1
. Thus, E∗

2 is
unstable. One can readily check that

a1a2 − a0a3 = m11β
2 − m2

11β + m32(m21m13 − θβ)
and
θX∗∗

12 = k0μ0(X∗∗
02 )X∗∗

12 − k1μ1(λ2)X∗∗
12 = −D(S1in − λ2).

If E∗∗
2 exists then S1in < λ2, thus θ > 0. We conclude that

according to the Routh-Hurwitz criterion, if E∗∗
2 exists and

D + k1μ
′
1(λ2)X∗∗

12 > 0,

then it is LAS.

3. STUDY OF CONTOIS MODEL

In this section we study the case where the growth rate
μ0(.) depends on X0 and also on X1. Models with such
growth rates may be of interest if we consider that we work
in a non homogeneous environment Lobry and Harmand
(2006). The Contois function is an exemple of these growth
rates. We consider the model⎧⎪⎨
⎪⎩

Ẋ0 = D(X0in − αX0) − μ0(X0, X1)X1,
Ṡ1 = D(S1in − S1) + k0μ0(X0, X1)X1 − k1μ1(S1)X1,

Ẋ1 =
[
μ1(S1) − αD

]
X1.

(3)

Let us denote by
f(X0, X1) = μ0(X0, X1)X1 − D(X0in − αX0).

We assume that

H4: μ0(0, X1) = 0 and μ0(0, X1) > 0 for all X0 > 0 and
all X1 � 0.

H5:
∂μ0

∂X0
> 0 and

∂μ0

∂X1
< 0 for all X0 > 0 and all X1 � 0.

H6: μ1(0) = 0, μ′
1(S1) > 0 for all S1 � 0 and the equation

μ1(S1) = αD has a unique solution λ1.

H7:
∂f

∂X1
(X0, X1) = μ0(X0, X1) +

∂μ0

∂X1
X1 > 0 for all

X0 > 0 and all X1 � 0.

H8: There exist a ∈]0, X0in

α [ such that
lim

X0→a
X1→+∞

f(X0, X1) = 0.

We consider, now, the existence of positive equilibria. We
first prove :
Lemma 3.1. Assume that H4-H8 hold. The equation
f(X0, X1) = 0 defines a decreasing function

F :
]
a, X0in

α

]
−→ R+

X0 −→ F (X0) = X1

where 0 < a < X0in

α and such that

lim
X0→a

F (X0) = +∞, F
(X0in

α

)
= 0 and F ′(X0) < 0.

Then we state the following result :
Proposition 3.1.

• For S1in > λ1, if F ′′(X0) > 0 for all X0 ∈
]
a, X0in

α

]
,

then there exists a unique positive equilibrium. If
F ′′(X0) changes sign for X0 ∈

]
a, X0in

α

]
, then there

exists at least one positive equilibrium. Generically
one has an odd number of positive equilibria (see Fig.
7).

• For S1in < λ1, if F ′′(X0) > 0 for all X0 ∈
]
a, X0in

α

]
,

then there exist at most two positive equilibria. If
F ′′(X0) changes sign for X0 ∈

]
a, X0in

α

]
, then the

system has generically no positive equilibria or an
even number of positive equilibria (see Fig. 8).

X1

X1 = F (X0)

X1 = δ(X0)

E∗
1•

E0 •
a X0in

α

X0

X1

X1 = F (X0)

X1 = δ(X0)E∗
1

•

E∗∗
1

•
E∗∗∗

1•
E0•

a X0in
α

X0

Fig. 7. Null-clines X1 = F (X0) and X1 = δ(X0) for
S1in > λ1. On the left, F (·) concave. On the right,
F ′′(·) changes sign.

X1
X1 = F (X0)

X1 = δ(X0)

E∗
1•

E∗∗
1• E0•

a X0in
α

X0

X1
X1 = F (X0)

X1 = δ(X0)

E∗
1•

E∗∗
1•

E0•
a X0in

α

X0

Fig. 8. Null-clines X1 = F (X0) and X1 = δ(X0) for
S1in < λ1. On the left, F (·) concave. On the right,
F ′′(·) changes sign.

Example We consider the following function of Contois

μ0(X0, X1) =
m0X0

X0 + a0X1

where m0 > 0 and a0 > 0. We have
∂f

∂X1
(X0, X1) =

m0X
2
0

(X0 + a0X1)2
> 0

thus Assumption H7 is satisfied. Moreover,
lim

X1→+∞
f(X0, X1) = 0

=⇒ X0 =
DX0in

m0
a0

+ αD
= a
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where 0 < a < X0in

α . Therefore, there exists a ∈]0, X0in

α [
such that lim

X0→a
X1→+∞

f(X0, X1) = 0 i.e, lim
X0→a

F (X0) = +∞.

By the implicit function theorem, we have

F ′(X0) = −m0a0X
2
1 + αD(X0 + a0X1)2

m0X2
0

< 0

and

F ′′(X0) =
2a0a0X1

[
m0X1 + αD(X0 + a0X1)

]
m0X3

0

> 0.

X1

X1 = F (X0)

Δ

E∗
1•

E0•
a X0in

α

X1
X1 = F (X0)

Δ
E∗

1•
E∗∗

1• E0•
a X0in

α

X1
X1 = F (X0)

Δ

E0•
a X0in

α

Fig. 9. Cas 1: S1in = 2 > λ1 = 1.5, cas 2: S1in = 0.7 < λ1,
cas 3: S1in = 0.2.

The stability results we obtain in this case are given by :
Proposition 3.2.

• The washout equilibrium E0 is LAS if and only if
μ1(S1in) < αD.

• If the positive equilibrium E∗
1 exists, then it is LAS

(stable node).
• If the positive equilibrium E∗∗

1 exists, then it is
unstable (saddle point).

Proof. At washout E0 = (X0in

α , S1in, 0), the Jacobian
matrix is

J0 =

⎡
⎣−αD 0 −μ0

(
X0in

α , 0
)

0 −D k0μ0

(
X0in

α , 0
) − k1μ1(S1in)

0 0 μ1(S1in) − αD

⎤
⎦

The eigenvalues are −αD,−D and μ1(S1in) − αD. Then,
the equilibrium E0 is LAS if and only if μ1(S1in) < αD.

At a positive equilibrium E∗
1 = (X∗

0 , λ1, X
∗
1 ), the Jacobian

matrix is

J1 =

[−m11 0 −m13

m21 −m22 θ
0 m32 0

]

where

m11 = αD +
∂μ0

∂X0
X∗

1 , m13 = μ0(X∗
0 , X∗

1 ) +
∂μ0

∂X1
X∗

1 ,

m21 = k0
∂μ0

∂X0
X∗

1 , m22 = D + k1μ
′
1(λ1)X∗

1 ,

θ = k0
∂μ0

∂X1
X∗

1+k0μ0(X∗
0 , X∗

1 )−k1αD, m32 = μ′
1(λ1)X∗

1 ,

with m11,m13,m21,m22 and m32 are positive. The char-
acteristic polynomial of J1 is given by

PJ1(λ) = a0λ
3 + a1λ

2 + a2λ + a3

with
a0 = −1, a1 = −(m11 + m22), a2 = −m11m22 + θm32,

a3 = −m32(m21m13 − θm11).

One can easily check that

a2 =
[
F ′(X∗

0 ) +
k0

k1

]
k1

∂f

∂X1
μ′

1(λ1)X∗
1

−
(

D
∂μ0

∂X0
X∗

1 + αDm22

)
.

Therefore, if F ′(X∗
0 ) < −k0

k1
, then a2 < 0. One can also

check that

a3 = m32αD

[
F ′(X∗

0 ) +
k0

k1

]
k1

∂f

∂X1

is negative if and only if F ′(X∗
0 ) < −k0

k1
. So, E∗∗

1 is
unstable. Finally

a1a2 − a0a3 = −
[
F ′(X∗

0 ) +
k0

k1

]
k1

∂f

∂X1

∂μ0

∂X0
μ′

1(λ1)X∗2
1

+ P

where

P = Dm2
11 +

[
(αD)2 + αD

∂μ0

∂X0
X∗

1

]
k1μ

′
1(λ1)X∗

1 − m22a2

is positive if F ′(X∗
0 ) < −k0

k1
. Since E∗

1 satisfy ξ′(X∗
0 ) <

−k0
k1

, then according to the Routh-Hurwitz criterion, it is
LAS.

4. CONCLUSION

In this work, we have analyzed a model of the chemostat
with enzymatic degradation of a substrate that can partly
be under a solid form. The sub-model studied with mono-
tonic growth rates may exhibit a bi-stable behavior, while
it may only occur in the classical chemostat model when
the growth rate is non monotonic. We also studied the case
where the growth rate is density-dependent. Depending on
the input substrate concentration, it was shown that the
system can exhibit either a bistability or the global stabil-
ity of the positive equilibrium point or of the washout.
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