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An unconditional existence result for
elastohydrodynamic piezoviscous lubrication problems

with Elrod-Adams model of cavitation?

Guy Bayada?? Laurent Chupin? and Bérénice Grec*
Batiment Léonard de Vinci - 21, avenue Jean Capelle
69 621 Villeurbanne cedex - France

Abstract

An unconditional existence result of a solution for a steady fluid-structure prob-
lem is stated. More precisely, we consider an incompressible fluid in a thin film,
ruled by the Reynolds equation coupled with a surface deformation modelled by a
non-linear non local Hertz law. The viscosity is supposed to depend non-linearly
on the fluid pressure. Due to the apparition of a mushy region, the two-phase flow
satisfies a free boundary problem defined by a pressure-saturation model.

Such a problem has been studied with simpler free boundaries models (varia-
tional inequality), or with boundary conditions imposing small data assumptions.
We show that up to a realistic hypothesis on the asymptotic pressure-viscosity be-

haviour it is possible to obtain an unconditional solution of the problem.

1 Introduction

The knowledge of the pressure in a lubricated device is a key problem to compute oper-
ational characteristic of such devices such as bearings, seals, magnetic recorder heads...
Mathematically speaking, it means to solve the Reynolds equation ([10]). At first glance,
it is a classical elliptic equation in which coefficients are related to the viscosity u of the
fluid, the gap h between the surrounding surfaces and some velocities data. However it is

well known that in real operational condition, the pressure inside the fluid is so high that
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the viscosity is no longer constant while the surrounding elastic surfaces are deformed.
This fluid-structure interaction is often described by the Hertz integral model ([18]).

Moreover, the fluid cannot be considered as an homogeneous one. Thus a free bound-
ary between a full film area and the mushy region made by a mixture of oil and air (the
cavitation region) must be included in the model. The most usual one in the mathemat-
ical literature is based upon a first kind of variational inequality ([11], [16]). Considering
all these aspects leads to a much more complicated Reynolds EHD (elastohydrodynamic)
“equation” which is a quasi-variational non local non linear inequality. Existence theorem
and uniqueness results have been obtained by Oden an Wu ([15]), Rodriguez ([17]), Hu
([12]). Most often, the proof of the existence is obtained by a fixed point approach using

both L> and H' estimates, using a small data assumption to obtain compactness results.

More recently, it has been observed ([5], Bayada and Bellout [2]) that such small data
assumption can be avoided if a specific viscosity-pressure behaviour is assumed. From
a practical point of view, this behaviour is much more reasonable than the small data
assumption: satisfactory numerical computation results are obtained for a very large
range of data while the specific viscosity-pressure behaviour retained does not contradict

any experiments ([19]).

Another step in the complexity of the model was introduced as it was observed ([8],
[9]) that the previously used variational inequality model describing the cavitation does
not fulfill a mass flow conservation property. Moreover, it cannot be used to describe some
phenomena like starvation since only data on the pressure can be used in the variational
inequality model in a satisfactory way. Based upon a generalization of the free boundary in
the dam problem ([7], [6]), the new mathematical model addresses a two-unknown system
(pressure and saturation) and a hyperbolic-elliptic Reynolds equation. This model is
a full conservative one and allows both data on the pressure and input flow to be dealt
with. Existence theorem and uniqueness properties have been obtained in [3], [1] for basic
isoviscous fluid and rigid surfaces. Generalization to the full piezoviscous EHD problem
appears in [4] in which an existence theorem using a small data assumption has been

obtained considering only data for the pressure.

The purpose of the present paper is to prove that for this new cavitation model,
the small data assumption can be avoided while boundary data both on input flow and
pressure can be introduced. To be observed also is the fact that while small data as-
sumption allows various approaches to be used (see [4]), the present work relies strongly
on the Griibin transform (see section 2) and does not seem to be generalisable to other

approaches.

In section 2 a precise statement of the problem is given and some related regularized

systems are introduced. Section 3 is devoted to the obtaining of some estimates. Some of



them are very close, although different, from the one used for the small data case. At last
in section 4 new estimates and the introduction of a specific viscosity-pressure relation

allow to prove the existence of a solution to the problem (Theorem 4.7).

2 Formulation and regularization of the problem

2.1 Statement of the problem

h(zx,y)

Iy
Figure 1: Domain Q7

Let © = (0,L) x (0,1) a rectangular two-dimensional domain, with its boundary I' =
FouTy, with Ty = {(0,y),y € (0,1)}. Let @ be the three-dimensional domain given by
Q=0 x(0,h(z,y)) (see Figure 1).

We consider a newtonian fluid in the domain (), with a given input parameter G, on
Lo x (0,h(x,y)), and a given velocity s = (s,0) on Q. Moreover, let us introduce Gy(y) =

h(0,y)
/ gO(O7y>Z)dZ
0

In a thin domain (i.e. h small with respect to the other dimensions), it is possible to
reduce the Navier-Stokes equations to the Reynolds equation, which is an equation in €2
on the pressure only. In order to take into account the phenomenon of cavitation, we
introduce the Elrod-Adams model.

This model considers that the cavitation zone is characterized by :

- a constant pressure, supposed to be equal to zero,

- an homogeneous blend of air and fluid, for example oil.

It introduces a function #, defined in €2, corresponding to the local proportion of the fluid

in an elementary domain around the point M(z,y), for (z,y) € Q (see Figure 2).



Figure 2: Partition of {2 and profiles of p and # in the one-dimensional case

If the pressure p is equal to the saturation pressure, p must be positive, so that it is
possible to define an unknown partition of €2 into a part {2, where p > 0, and a part
g where p = 0 (cavitation zone, with a blend of air and oil). Therefore, the function

0 € L*>(12) satisfies natural conditions :

9:1 inQ+

Physically, for high pressures, the viscosity of the fluid depends on the pressure p. Let us
denote it by p(p). In all generality, we suppose i to be a positive continuous function of
p.

Moreover, we consider the height of the fluid h(p, x,y) to be given by:

h(p,x,y) = ho(l',Q) + /k([[‘ -5y — t)p(S,t) det7 (I‘,y) € Qv pE LQ(Q)7
Q

k
where the kernel k is defined by k(z,y) = 70, with kg a non-negative constant.

2 1 .2
This kernel corresponds physically to a point c:f)n‘;;cg{c. The function hg is supposed to be
regular and positive, such that hg > m > 0, where m is a constant.

Let us impose the following boundary condition: p|p, = 0. On I'y, the flow G is supposed
to be given as a positive function, with Gy € L*>°(I'g). It is now natural to define the

following functional spaces:

V:{¢€H1(Q)a ¢‘F1:O}7
Vi={6eV,¢>0}.

When h tends to zero, it has been proved that the three-dimensional equations reduce to

an equation on p in ). The strong formulation of the problem can be written as follows
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(see [3] for more details): Find p and 6 such that:

(PO 00
div ( ) Vp) =6 e , D'(Q).
),

0 e H(p

where H(p) is the Heaviside function.

Thus the weak formulation of this problem is: Find p € V't and 0 € L*>°(Q) such that:

P) /}j((pp))Vp'V@:6S/h(p)9(p)3xso+/6*0<p, Vo eV,

Q T'o

0 € H(p).

Remark 2.1 [t is possible to interpret physically the local input flow Gy as follows. The
weak formulation (P) implicitly contains the following relation between the input flow Gy

and the pressure:

. 6560 h(p,0,y) if p(0,y) =0,
~Coly) = B0,y dp
65 h(p,0,y) — 10, 0.9) op if p(0,y) # 0.
pu(p)  On
It is to be noticed that if s < 0, since Oy, h and Gy are positive, only the second case can
occur, and thus Go(y) = 6sh(p,0,y) — M@
pu(p)  On

2.2 The problem for the reduced pressure

A classical approach consists in introducing a change of functions that reduces the problem
to one close to an isoviscous case (see [4], in which this approach and the direct one without
such change of functions are compared. It is shown that similar results are obtained in
both cases).

P = a(p)
Thus let us use the following change of functions
(Gribin transform): | T A
p(z,y)
Plaeg) =alp(ey) = [ 55w en
S nls)

P is called reduced pressure (see Figure 3).
Figure 3: Profile of the re-

duced pressure P



Let A be defined by:
+oo

A= / ds
pu(s)
0
The case A = 400 has already been treated in [17]. However, it has been proved experi-

mentally that A has a finite value. In particular, for a viscosity given by Barus law:

u(p) = poe™,  with pg >0, a >0,

the quantity A is finite (A = @).
a

Therefore, we are concerned in this paper with fluids
with a viscosity satisfying A < +oo.
Furthermore, let the function v be the inverse of the

function a (as shown in Figure 4). Thus

p(z,y) = v(P(z,y)) | P
Figure 4: Profile of v(P)

The weak formulation becomes: Find P € V' and § € L>°(2) such that:

/Hg(P)VP~Vg0:63/H(P)9(P)8x90+/6'0g0,
Q Q To

7)/
(P) Vo eV
\QEH(P),

with
H(P,z,y) = ho(z,y) + /k(x — s,y —t)y(P(s,t))dsdt.
Q

The purpose of this paper will be to prove an existence theorem (Theorem 4.7) for the
weak formulation (P’).
2.3 Introduction of a regularized problem

First, in order to regularize the Heaviside function, let us introduce Z, a continuous

approximation of 6 (Figure 5) such that, for n > 0:



Z,(1)
1 ift>mn,
Z,(t) = (i if £ <0,
- ifo<t<n. ;
; if0<t<n 7 "

Figure 5: Regularization of

Now it remains to regularize the function v, which is done by truncation (Figure 6). For
e>0:

v(s) fo<s<A-—c¢,

Ve(s) = .
Y(A—-¢) ifs>A—c.

Figure 6: Regularization of ~

The regularized problem becomes: Find P,. € V" such that:
(Pye) /Hj(PnE)vpns -V = 6s / H.(Pye) Zy(Pye) Outp + / Gop, Vpev,
Q Q o

with

Ho(q,2,y) = ho(z,y) + / k(e — s,y — ) 72(q(s, 1)) dsdt, 1)

3 Existence result and first estimates for the regu-

larized problem

3.1 Existence of a solution

In this section, the existence of a solution for the problem (P,.) is established, for fixed n
and €.



Theorem 3.1 For firzed n > 0 and ¢ > 0, there exists P, € VT solution of (Py.).
Moreover, P,. satisfies:
[ Pyell ) < R,

where R is a constant independent of n and €.

Proof. Let us emphasize that this result will be shown without any condition on the

data, by means of a fixed point method.

For fixed P, € V™, let us introduce the following problem: Find g € V' such that:

/H3 nquVgo—&S/H e) x90+/G0c,0, Vo e V.

Step 1: Since H. > ho(z,y) > 0, it is a classical mixed Dirichlet-Neumann problem, for

which the existence and uniqueness of a solution is well known.

Step 2: Let us now derive estimates for the solution ¢ of (Q). Choosing ¢ = ¢ € V in the

weak formulation, it follows:

/H3 ne |VQ|2_6S/H ns axq_‘_/C:Oq (2)

1)

Let ho,, = (m%nQ ho(x,y) > 0, therefore H.(P,.) > hg;,. The left-hand side term can be
x,y)e

estimated in the following way:

o [1H-(P) V4220 / H(P,0)| V.

Moreover, using that ||Z, ||z~ < 1, and applying Cauchy-Schwarz inequality to the first
right hand-side term in (2), it follows:

65 / H.(P,.) Z,(q) Bq < 63| / HL(Py)| 02| < 615] (212 ||H.(Py) Vall 120

It remains the second right-hand side term. Let G = ||Go(y)||2(r,), hence the following
holds:

/Goq < G lldllzzwe) < G llgllzay < G llallmaey < CGllglla@

C
< CGVY|la@ < h—GHH( B )Vl 2@

where C denotes several constants obtained from trace theorems in Sobolev spaces and

from Poincaré inequality. These constants are independent of both n and ¢.
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At last, equation (2) becomes:

C

G
hom || He(Pye) Val 22y < 6ls] QY2 | Ho(P) Vall 2 @+ 53— ||H( Fre )Vl 2@

This implies that:
C G

Om

where || denotes the measure of ). The last estimate means that

613/ 12"/ how + C G
h3

Let us emphasize that this estimate is independent of n and €.

hom || He(Pye) Vall 220y < 6s] 1912 +

Va2 <

Step 3: It remains to check out the positivity of q.
Let us choose ¢ = ¢~ € V (since ¢ € H*(Q), ¢~ € H'(R2)).We obtain

/Hg(Pne)v(qu - qi) : vqi - 65/H6(P775) ZH(Q) aﬂcqi + /GO qi'
Q Q To

The term Vg Vg~ is zero almost everywhere, and so does the term Z,(q) 0,¢~. Indeed,
if ¢ >0,¢” =0, and if ¢ <0, Z,(¢) = 0. It remains:

/H3 nE\Vq]—/Goq

To
Since Go(y) > 0, we have /HS(PnE)\Vq\Q < 0, and thus /HS(P,?E)\VCJ\Q = 0. Hence

Q
g~ is constant almost everywhere. Furthermore ¢|r, = 0, therefore ¢~ = 0, which proves
that ¢ > 0.

Step 4: In order to finish the proof of Theorem 3.1, it remains to apply Schauder fixed
point theorem. Now, let
~ 6s] QY2 hg,, + C G
M
and let us define T : V* — VT by T(P,.) = ¢, where ¢ is solution of (Q). T is well

defined, and we proved that T(Bg) C Bgr. Moreover, T is continuous, since the function

and Bp={fe V"', 0<|fllg <R},

Py — H.(P,) is continuous. Let (P.)nen be a sequence of V*-functions converging

weakly to P, let (¢")nen be the sequence of solutions of (Q) to PJ., and ¢ the solution

ne "
corresponding to P,.. It holds:

/H3 Vq" Vg0—6s/H Zn(q”)agcgo—l—/Gogo

To
/ H3(P,.)Vq Vi = 6s / H.(P,) Z,(q) Dup + / Go s
Q Q To



Subtracting the two equations, we write:

HX PRV — HX(Py)Vq
= (HX(PR)Vq" — HX(Pe)Vq") + (HZ(Pe)Vq" — H2 (P ) V).

Using that H?(P).) — H3(P,.) tends to zero, it remains the term H2(P,.) V(¢" — ¢). In

a similar way:

HE(P;;) Zn(qn) - HE(PUE) Zn(Q)
= (H€(P17:5) Zn(qn) — H.(Pye) Zn(qn)) + (Ha(Pne) Zn(qn) - HE(Pm) Zn(q))‘

Again, H.(P).) — H.(P,.) converges to zero. It follows, choosing ¢ = ¢" — ¢ and using the
definition of Z,:

[ E@VE -0 =65 [ (P Za") - Zi(a) 0.6~ 0
_ % / H.(P,) (¢" — ) 0u(q" — q)

The first term is bounded . On the other hand, since H.(P,.) > H,,;. > 0, and since
the equation above holds for any 7, it follows that ¢" — ¢ tends to zero, and thus that
g™ — ql| 1) tends to zero, thus ¢" converges strongly to ¢ in V*. Finally, applying
Schauder fixed point theorem, it follows that the problem (P,.) admits a solution P,.
satisfying

[Poellrre) < R.
This finishes the proof. 0

Remark 3.2 Let us emphasize that in previous works (in particular [4{]), similar H?-
bounds have been obtained provided some smallness assumption on the data. In the present
paper, the constant R is not supposed to satisfy any smallness condition, and in particular

is not supposed to be less than A. Therefore it will be shown separately that P,. remains

bounded by A.

3.2 Classical estimates

In this section, we will obtain first estimates on P,. and ~.(P,.). These estimates will be
useful in order to prove the convergence of 7. (P,.) toward the expected function. However,
it will not be enough to pass to the limit, and better estimates will be obtained in the

next section.

Let us start with an L bound for P,..

10



Proposition 3.3 The solution P, of the problem (P,.) satisfies the following inequality:

1Pl < JALC (g GO J80C (GO
nellL>(2) = H2— S Hmng < hgm h0m

mne

where Hyppe = (m;gQH c(Ppe(z,y)) and G" = ||Go|| L= (ry)-
zy

Proof. The key point in the proof is to use a lemma by Kinderlehrer-Stampacchia [13].

However, due to the boundary term on I'y, a specific treatment is to be used.

Let £ > 0. Let P,gf ) be the function defined by

Pp—k if P>k
0 if P <k

P —

ne

and Ay, the set Ay = {(x,y) € Q, P(x,y) > k}. It is easy to check that Péf) lies in V'*
and that
Vpna in fik,

Obviously, we have a similar relation for &,;P,gé€ ),

VP = (3)

Choosing ¢ = Rgf ) as a test function in (Pye), we have:
/ H}PO)VPE? = 6s / H.(PY) Z,(P®) 0,PF + / Go P
1)
Now, the last term can be estimated in the following way:

/ Go PY < [[Gol ooy / PY) < [|Goll (o) / P

Ty ToNnAg Ay

< 1 Gollzcro) / VD),

using Poincaré inequality in L'(Ay). Thus, since ||Go||p=(r,) is a constant independent of

¢ and 7 we can conclude that

1 1/2
[ HPEITEOR < 6ls] [ (HRE) TPLP)

mne

1/2

1
0 [ (EPOVREP

Ay mne

11



Hence, using Cauchy-Schwarz inequality, and since HE(P,%C )) > Hoppe:

1/2
6 C
/ HY (P VPO < ( oL+ 3/2>|A 1 / H3 (P VPP
Hmns Hmns

It follows that:

1/2
6|s| oyel
3 k) k)|2 1/2
/H (PEV P = <H1/2 o | A2,
mne mne

Finally we get that:

2
6]s|] CG 1 CG'\?
VE n Ay < (6|s| i Ayl
/ mns Hrln/nQa ng/ia H, ézns Hmna

Moreover, classical Sobolev embeddings (H'(Q) C L*(Q)) imply that:

/|vp<k| /\VP bi2>c /|P"“‘> (A/P(k :

Ay

where C depends only on €2, and thus does not depend on k. Now, let ¢/ > k. Clearly
A, C A, therefore

2/3 2/3
free) " (free) " (fuw) s o
£

since in A, P > ¢, thus P\ = P — k> ( — k.
Let us denote ¢(¢) = |Ay|. Precedent computations imply that:

/ 1 C ca\’
0P < = (Ol + T ) olb)

mne

hence

1 C ca
)< —oe 6 )3/
0 < e (601 s ) 0™
where C' denotes different constants independent of ¢ and 7. Applying a lemma by

Kinderlehrer and Stampacchia, given for example in [13, Lemma B.1], we conclude that:

20Q|/2C ca\’®
_ 3 __
¢(d) =0 for d&° = T (6‘3‘ -+ Hmne) .

mne

12



Now, since ¢(d) = 0 «— |Ay4| =0 «— P, < d in Q, the precedent relation implies that:

8\9\1/60 [oxes
1Poell i) < = | Blsl + 77— ) - (4)
mne mne

Moreover, since H,,,. is bounded from below by hg,,, the second part of the desired

inequality follows immediately from the first one. ([l

To end this section, let us prove an L' estimate uniformly with respect to both ¢ and n

for p,.. This estimate will be used in order to show an L' bound on p.

Theorem 3.4 There exists a constant C' independent of € and n such that
/pns = /75(13775) S C.
Q Q

Proof. Because of the definition of the kernel k, we know that k(z — s,y — t) >
1
Thus H,,,. satisfies

2v/2|)

EmchMml/%mﬁ

From (4), and using the fact that H,,,. > hon, it follows that

C
H2, .’

mne

[ Prell o) <

thus

/%m@smmm;@,
(9]

where C' denotes some constants independent of € and 7.

Now, if we suppose that / Ye(Pye) tends to infinity when e tends to zero, ||P| L=
Q

A
would tend to zero. Thus || P L) < ) when ¢ tends to zero. But, from the definition

of 7. and the monotonicity of v we have, for € small enough

Q/%(Pne) < Q/V(Pne) < Q/v <§)

This leads to a contradiction and finishes the proof. 0

13



4 Passing to the limit - Additional estimates

4.1 First estimates for the reduced problem

The following theorem states some immediate estimates on the limit of P,..

Theorem 4.1 Let P, be the limit of the sequence P,. for e — 0, and let P be the limit
of the sequence P, for n — 0. P satisfies:

[PllLee(0) < A.

Moreover there exists a constant C' independent of € and n such that

1Pl 1) = /”y(P) <C.

Q

Before proving this theorem, let us state the following lemma, whose proof can be find in
Bayada and Bellout [2, Lemma 6].

Lemma 4.2 Let E =] — M, M[x] — M, M[C R? and let v, be a sequence of functions

L*(E) which converges almost everywhere to v. If

Q ={(z,y) € E, v(z,y) > A+ 1},
O ={(v,y) € E, vn(z,y) > A}

1
and |Q.| # 0 then there exists ng > 0 such that ¥n > ng, |QF| > §|QT\

Proof. (of Theorem 4.1) The first estimate is obtained by contradiction. Let us assume
that there exists 7 > 0 such that 0, = {(z,y) € Q, P(z,y) > A+ 7} has a non-zero

1
measure. Then, applying Lemma 4.2 to P, it follows that /%(Pne) > é\QTh(A —
o)

£) —— +oo, which is a contradiction with Theorem 3.4.
87"7*)

For the second estimate, let 7 > 0, and P/ (z,y) = inf(Py(v,y),A — 7). Since P,
converges strongly to P in L*(2), Py converges strongly to P7(z,y) = inf(P(z,y), A—T)
in L?(€2). Now, it is clear that v.(P.) < 7(P,c), since 7. is increasing, thus / Ve(Pp) <C

0
by Theorem 3.4. Moreover, for ¢ small enough, 7.(P}.) = v(FP}.) < v(A —7) < C, with

C a constant independent of ¢ and 7, but which depends on 7. Thus for fixed 7, v.(P7.)

converges to v(P7) in L'(Q), and /v(PT) < C. Now, letting 7 go to zero, we obtain
Q

from the monotone convergence theorem that / v(P) < C, since v(PT) — y(P). O

T—0

Q

14



4.2 Additional estimates

It remains to pass to the limit in the non-linear terms of (P,.). Let us explain in the

following the main steps of the proof.

4.2.1 Main idea for passing to the limit

It is well-known ([4]) that the estimates obtained in the precedent section are not enough

to prove an unconditional existence result for the problem (P).
In order to treat the non-linear term when passing to the limit in the equation when

e — 0 and  — 0, stronger estimates on H. have to be proved. For the term H2VP,.,

since VP, converges weakly in L*(Q), it suffices that H. converges strongly in L%(2). To
this purpose, we will show that H. is bounded in W1¢(Q).

To this end, we will see that it is enough to show that v.(P,.) is bounded in L%(f2), since
the convolution kernel k£ in H. has a regularizing effect. To prove this, we will introduce
the function 7. (P,)?, for some o > 0, and prove that this function is bounded in H*().
Thus, we will be able to conclude that v.(P,.) is bounded in L7"(2), for any r > 2, and
therefore at least in L°(Q2) (see Proposition 4.3).

However, since ~.(P,c)” will be used as a test function in the weak formulation, it will be

necessary to introduce a cut-off function ) and consider 7. (P, )79 (Pye).

4.2.2 Detailed estimates

In order to obtain the needed estimates, let us introduce an additional hypothesis on the

asymptotic behavior of the piezoviscosity law. More precisely, we suppose that:

Ip* >0, wpp =pmp+ Q)ﬁ forp>p*, with g>1, Q >0, (5)

where @ and ( are constants. Actually we could suppose only that u(p) I (p+ Q)~,
o0

which in particular allows to consider Barus law for finite values of p and an asymptotic

behavior of this sort (see Introduction for physical explanation).

The following proposition is the key of the needed estimate on H..

3
Proposition 4.3 Let u(p) satisfy the condition (5). For1 < [ < 2 Ve(Pye) satisfies

"VE(PHE)"LG(Q) <C,
where C' is independent of € and 7.

Before starting the proof, let us introduce the following functions and notations. Defining

15



*

(r+Q)""

d
ay = /—8, the hypothesis (5) means that A = a; + Let us denote

S nls) B-1
A = aq + as. Moreover, let € be small enough, so that ¢ < %.
Then we introduce the function
Oc(Pe) = (Q +7=(Pre))* ¥ (Pye), (6)

where « will be chosen below and where ¥(t) € C?*(R) is a cut-off function defined by
Y'(t) > 0 and
0 fort<a+ %,

Y(t) = D) (7)

a
1 fora1+?2<t.

Let us observe that the function 6. € V' defined in this way is an admissible test function
for the problem (P,.), since P|r, = 0, and thus on I'y we have ¢(P,.) = 0.

Proof. The result of Proposition 4.3 will be proved under the following condition on the

parameters :

3
2—a— >0, 1<ﬁ<§, 1+a—03>0. (8)
Let us observe that the set of all a and [ satisfying the condition (8) is non-empty. In
3
particular for any [ € }1, 5 [, there exists an « such that («, 3) satisfies the condition

(8).
Introducing the function g,. = 7.(Pye)” ¥(Py), for o > 0, we will show that ||gye||m1 @) is

bounded. Moreover, let us denote (see Figure 7)

2a
0= {(%,y) €, Pna(zay) <a+ ?2}

2
0y = {(z,y) € 2, aﬁ% < Pp(z,y) < A—e}

Q?) = {(x,y) € Qv A—¢ S P77€(x7y)}
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|
a; + 3 a + 2%
A—c¢
Figure 7: Partition of Q and profile of ¢)(P,.)

Then Q = Oy 11 Q, 11 Q3, since these three sets are pairwise disjoints.

Now, expanding |V g, (P,.)[?, it follows that

[ 199, (P = 0% [P GV PO’
Q

Q

+ 20/VE(PUS)QU_I(V;)2|Vpna|2¢,(Pne) ¢(Pn€) + /%(Pne)%‘vpns‘2¢,(Pn€)2'
Q Q

e In €, each of these three terms are bounded independently of € and 7, since far

from A — ¢, P, is bounded, and so is 7.(P,.).

o In Q3, 7.(P).) = 7(A — ¢) is constant, hence v, = 0. Moreover ¢ = 1, thus ¢ = 0.
Therefore /]VgnE(Pns)\Z = 0.

Q3

e In s, we have again ¢ = 1. It remains

/ Vge(Pre) > < C + 0 / (B2 D (L(P) PV P, .
Q

Qo

Now, since 0. = (Q + Ve (Pye))” ¥(Pye) = (Q + 7:(Pye))” on s, we have v.(P,.) = sy —
(), and thus
1 i-a 1 .
Vé(PTIE) = 555 ° 5; = o (@ + VE(Pna))l 5:: (9)
On the other hand, the hypothesis (5) implies that

alp)=ar+ [(s+@) s = A+

p*

(p+Q)""°
1-5
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Therefore
P(Pre) = (1= B)(Pye = 4))77 = Q.
hence
ULPy) = (1= B) (P = AN = (1:(Pye) + Q) (10)
Using the two expressions of v.(P,.) obtained in (9) and (10), we get that
(LRI < - (Q +7(Py)) 7 (),

and conclude that

1 (e
[ IVauPP < [ (@4 2u(R) T (P TR
Q Q2

Choosing 0 = > 0, it follows that

l+a—-0
2

1
/‘vg%(Pm)F = C+02/55;‘Vpne\2‘
Q Qo

Now, using Proposition 4.4 below, we can conclude that

/ Ve (Pr)? < C, (1)

thus ||gye|| 1 (@) is bounded, and this implies that

H’YE(PnE)UHHl(Q) <C.

Finally, using Sobolev embeddings, it follows that ~.(P,.) is bounded in L7"(2) for any
r > 2, thus in L(Q) for r big enough (r = 6/0). Therefore, we proved that

HV&(Pm)HLG(Q) <C.

O

Now, let us present the proof of the following result, which has been used in the precedent

proof in order to establish (11).

Proposition 4.4 Suppose that there exists a constant ¢* > 0 such that v satisfies

() < Ft), VE>ar+ % (12)

and suppose that 0 < a <1 and 2 — a — (> 0. Then the following inequality holds:

/ VP,P3(P,) < C.
Q

where C' 1s a constant independent of € and n.
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Remark 4.5 Let us observe that any C?*-function 1 satisfying the condition (7) satis-
fies also the condition (12). Indeed, ' is a C'-function on [al + %,A], thus bounded.

Moreover, fort e [al + %,A]; Y(t) > (ar + %)

Proof. Step 1: Let us obtain a bound for the term /HE?’(P,]E)|VP7,€|2 0.(P,.) indepen-

dent of n and e. To this end, choosing ¢ = 6.(P,.) 6 V as a test function in (P,.), we

obtain

/ HY (P, )V P, 8L(P,.) = 6 / HL(P,.) 2Py )0 (P)0, Py + / God.(Py.)
Q

o

and, using Young inequality,

[ ERIIVPP AP, < / HP,) VP 8P
Q

Ly
+1832/H P )58(Pn5)+/G055(P,75).
e\4ne
Q 1)

Thus the following estimate holds:

/ H3(P,) |V P, 6L(Fy) < 3657 / L (P +2 / Goso(Py).  (13)
Q Q Hé(PTIE) T

On the other hand, the trace operator is continuous from W(Q) to L*(T') (see for
example[14]). Let us denote Gy the extension of Gy to Q such that Go(x,y) = Go(y).

Thus, using Poincaré inequality, since d.(P,.)|r, = 0,

2/FG065(P77) /GO ) < 02/

To Q
< 1Goll =) / 16.(P)| < I Goll o=@ / 16.(P) IV Pyl
Q

Now, using Cauchy-Schwarz and Young inequalities, we have:

/GO 775) <C /H3 ne |VP77€|25/ 776 H3 a) >

where C' denotes a constant independent of ¢ and n. Using this relation in (13), together
with the definition of hy,,, it follows that

/HS(P%”V |25/ hﬁ/(s/ 775 CHGOHLOO /5 775
Q
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and thus
[ B @vPLaP) <C [ 8Py, (14
Q Q

Step 2: Let us recall the following lemma (see [2, p. 147]).

Lemma 4.6 Suppose that pu(p) satisfies (5). Let d. be defined as in (6) and i) as in (7).
Then there exist some constants C' and M independent of € and n such that

o(t) < M+ C(Q+:(1)v(t) Vi>0. (15)

Now, using (14) and (15):

/waﬁ&masc/M+c@+%m@wmg

where we used again that H. > hg,, in order to get rid of the term H2(P,.). Therefore,
using the fact that v.(P,.) is bounded in L*(2) (Theorem 3.4), and that ¢(¢) is a function
in C?(R), we obtain

[1vppar <c. (16
Q
which finishes the proof. O

4.3 Passing to the limit

In this section, we state the existence theorem. In the proof, it is shown that Proposition

4.3 is the key estimate in order to pass to the limit.

Theorem 4.7 Let P be defined as the limit of P, as in Theorem 4.1 and 8 be the limit of
Z,(P,) forn — 0. Under the hypothesis (5) and (8), (P,0) solves the following problem:

/H3(P)VP~Vg0:63/H(P)9(P)8xcp+/Gog0, Vo eV,
GORE Q T'o

0 € H(P),

with
H(P,z,y) = ho(z) + /k(m — s,y —t)y(P(s,t)) ds dt.
0

Proof. Since the Fourier transform of the kernel k is given by K(§) =

! , it follows
Vg2

from the properties of the convolution (see [20, Satz V.2.14] for example) that if v.(P,.)
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is bounded in L5(Q2), then H.(P,:) given by (1) is bounded in W5(Q), and thus H?(P,.)
is bounded in H'(Q).

Hence we have the following convergences, for ¢ — 0 and then n — 0:

P,. — P in L*(Q), and  Z,(P,.) — 0(P) in L®(Q),
H}(P,.) — Jin H'(Q), and thus  H2(P,.) — J in L*(Q).

Now, we showed in the proof of Theorem 4.1 that ~.(P,.) converges to y(P) in L'(2).
Thus, by the uniqueness of the limit, it follows that J = H3(P).

Therefore, it is possible to pass to the limit in every term of problem (P,.). Thus, (P,0)
is a solution of the problem (P’). This finishes the proof. O

Remark 4.8 Now, if we consider the problem in one dimension, it is possible to prove
that problems (P) and (P') are equivalent. Indeed, since the embedding H* — C° is
compact in one-dimensional space, the weak convergence of P, implies actually that P,
converges uniformly towards P. Thus, v:(P,.) also converges uniformly towards ~(P),
thus P < A and problems (P) and (P') are equivalent.

However, in the two-dimensional case, we are not able to prove that problems (P) and
(P') are equivalent. The estimate || P| @) < A we obtained previously is not enough to
prove the existence of a solution of (P), since p can be infinite and thus does not lie in
HY(Q). In fact, since physically the pressure p cannot be infinite, it is relevant to have
studied problem (P’).
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