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THE STRONGLY CONFINED SCHRÖDINGER-POISSON SYSTEM
FOR THE TRANSPORT OF ELECTRONS IN A NANOWIRE

NAOUFEL BEN ABDALLAH, FRANCOIS CASTELLA, FANNY FENDT,
AND FLORIAN MÉHATS

Abstract. We study the limit of the three-dimensional Schrödinger-Poisson
system with a singular perturbation, to model a quantum electron gas that is
strongly confined near an axis. For well-prepared data, which are polarized on
the ground space of the transversal Hamiltonian, the resulting model is the cubic
defocusing nonlinear Schrödinger equation. Our main tool is a refined analysis of
the Poisson kernel when acting on strongly confined densities. In that direction,
an appropriate scaling of the initial data is required, to avoid divergent integrals
when the gas concentrates on the axis.

1. Introduction

1.1. The physical problem and the singularly perturbed system. Artifi-
cially confined structures are now routinely realized in the nanoelectronic industry
and the functioning of many electronic devices is based on the transport of charged
particles which are bounded in transversal directions, see e.g. [AFS], [Bas], [FG],
[VW]. The confinement can be typically monodimensional like in quantum wells
where two directions remain for the transport, or bidimensional like in quantum
wires where the transport is in dimension one. In this work we are interested in the
second case, and this paper is devoted to the rigorous derivation of a dynamic one-
dimensional quantum model with space-charge effects describing the transport of
electrons confined in a nanowire. Our strategy is inspired from the one in [BAMP],
[BMSW], [BCM] and consists in an asymptotic analysis of the three-dimensional
Schrödinger-Poisson system (or Hartree system) –that will be referred to as our
“starting model”– with a singular perturbation modeling a strong potential con-
fining the electron gas in a wire. The interesting point concerning the reduced
model obtained in the limit is that the nonlinearity describing space-charge effects
is now localized, this reduced model taking the form of a cubic defocusing nonlinear
Schrödinger equation.

Let us describe the starting model. The space variable is written (x, z1, z2), where
x ∈ R is the direction in which the electron gas is transported free from any external
force and z = (z1, z2) ∈ R

2 are the confined directions. We consider the following
singularly perturbed Schrödinger-Poisson system:

i∂tΨ
ε = −∆Ψε +

1

ε2
Vc

(z
ε

)
Ψε + V

εΨε, (1.1)

V
ε =

1

4πr
∗
(
|Ψε|2

)
. (1.2)
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The unknown in this system is the pair (Ψε,Vε) made of the electronic wave function
Ψε and the self-consistent potential V

ε due to space charge effects, written here as a
convolution with the Poisson kernel. We use the notation r = r(x, z) =

√
x2 + |z|2.

The main modeling assumption is that a strong external potential is applied to
the gas, written here 1

ε2Vc(
z
ε ), where Vc(z) is a prescribed function satisfying the

following assumption.

Assumption 1.1. The function Vc : R
2 7→ R belongs to L2

loc(R
2) and there exists

α > 0 and C > 0 such that

Vc(z) ≥ C |z|α.
The crucial assumption here is the growth at infinity, which determines the strength
of the confinement. The parameter ε ∈ (0, 1) is the scaled thickness of the electron
gas. As we will see after a rescaling in the next section, the normalisation term 1

ε2 is
natural in order to balance the strong external potential with the Laplace operator
in the z variable.

This paper studies the asymptotic behaviour of (Ψε,Vε) as ε goes to zero. Of
course, an initial data Ψε(0, x, z) needs to be prescribed for (1.1), whose specific
form is made precise in the next section.

1.2. Scaling of the initial data and formal limit. In this section, we derive
heuristically the asymptotic model satisfied by the solution of (1.1)–(1.2) as ε goes
to zero. Precise and rigourous statements will be made in the next section. Let us
introduce the following notation for averages in the transversal variables:

〈f〉 =

∫

R2

f(z)dz.

The singular term 1
ε2Vc(

z
ε ) in the Schrödinger equation (1.1) induces a concentra-

tion of the density on the axis z = 0. We expect that, as ε → 0, the density takes
the form of a line density multiplied by a delta function:

|Ψε(t, x, z)|2 ∼
〈
|Ψε(t, x, ·)|2

〉
δ(z). (1.3)

The crucial point is the consequence of (1.3) on the selfconsistent potential. Indeed,
we can prove (see Proposition 2.1) that, near the axis z = 0, the solution of (1.2)
looks like

V
ε(t, x, z) ∼ − 1

2π

〈
|Ψε(t, x, ·)|2

〉
log ε. (1.4)

This estimate suggests the following choice of initial data: we choose Ψε(0, x, z) to

be small, of order | log ε|−1/2 (e.g. in L2(R3)).
In order to observe the system at the scale of the gas, we work with rescaled

space variables, setting

Ψε(t, x, z) =
1

ε
√

| log ε|
ψε
(
t, x,

z

ε

)
, V

ε(t, x, z) =
1

| log ε|V
ε
(
t, x,

z

ε

)
.

The system in the new unknowns ψε, V ε becomes

i∂tψ
ε = −∂2

xψ
ε +

1

ε2
Hzψ

ε +
1

| log ε|V
εψε , (1.5)

V ε =
1

4πrε
∗ |ψε|2, rε(x, z) =

√
x2 + ε2|z|2, (1.6)

ψε(0, x, z) = ψε
0(x, z), (1.7)

where the Hamiltonian in the z direction is

Hz = −∆z + Vc(z).
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Inserting (1.4) in (1.5), we obtain that, asymptotically, ψε satisfies

i∂tψ
ε = −∂2

xψ
ε +

1

ε2
Hzψ

ε +
1

2π

〈
|ψε|2

〉
ψε , (1.8)

ψε(0, x, z) = ψε
0(x, z). (1.9)

This is our reduced model. An elementary remark is, the term
〈
|ψε|2

〉
in the nonlin-

earity does not depend on the z variable. It is thus easy to filter out the oscillations
in time induced by the 1

ε2Hz term. Indeed the function

φε = eitHz/ε2
ψε

satisfies the following problem, independent of ε:

i∂tφ
ε = −∂2

xφ
ε +

1

2π

〈
|φε|2

〉
φε , (1.10)

φε(0, x, z) = ψε
0(x, z), (1.11)

where we used the fact that eitHz/ε2
is an isometry on L2

z(R
2), ie

〈
|φε|2

〉
=
〈
|ψε|2

〉
.

The limit model can be seen as a system of nonlinear Schrödinger equations (NLS)
in dimension one. To see this, let us introduce the eigenfunctions (χk(z))k≥1 of the
operator Hz and the associated eingenvalues (Ek)k≥1 . Remark that Assumption
1.1 implies the operator Hz is self-adjoint (see e.g. [RS], vol 2, Theorem X.28) and,
defined as a sum of quadratic forms, is an operator with compact resolvent (see [RS],
vol. 4, Theorem XIII.67). It possesses purely discrete spectrum and a complete set
of eigenfunctions. The reduced model (1.10), (1.11) can be projected on the χk’s
and is equivalent to the system

i∂tϕk = −∂2
xϕk +

1

2π




∞∑

j=1

|ϕj |2

ϕk , (1.12)

ϕk(0, x) =

∫

R

ψ0(x, z)χk(z)dz, k ∈ N
∗. (1.13)

The solution of the rescaled initial problem is then –formally– asymptotically close
to

ψε(t, x, z) =

∞∑

k=1

e−itEk/ε2
ϕk(t, x)χk(z).

1.3. Statement of the main result. Let us introduce the energy space

H = {u ∈ H1(R3),
√
Vcu ∈ L2(R3)}, (1.14)

endowed with the norm

‖u‖2
H = ‖u‖2

H1(R3) + ‖
√
Vcu‖2

L2(R3) = ‖∂xu‖2
L2(R3) + ‖H1/2

z u‖2
L2(R3).

Remark that Assumption 1.1 yields the following control for functions in the energy
space:

∀u ∈ H
∫

R3

|z|α|u|2 dxdz ≤ C‖u‖2
H . (1.15)

Consider for the rescaled starting model (1.5)–(1.7) a sequence of initial data (ψε
0)ε>0

satisfying the following assumption.

Assumption 1.2. The sequence (ψε
0)ε>0 is uniformly bounded in H and converges

in L2(R3) to a function ψ0.
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Standard techniques [BM], [Cas], [Caz], [ILZ], allow to prove that for any ε ∈ (0, 1)
the three-dimensional Schrödinger-Poisson system (1.5) − (1.7) admits a unique
global weak solution (ψε, V ε) for t ∈ R, in the energy space. In order to analyze its
limit as ε→ 0, let us summarize the available estimates on ψε. The first one is the
L2 estimate. For all t we have

‖ψε(t)‖2
L2(R3) = ‖ψε

0‖2
L2(R3) ≤ C. (1.16)

Unfortunately, (see Proposition 2.1), this estimate alone does not enable to bound
the selfconsistent potential, and one needs at least an estimate on the derivative
of ψε with respect to x. Let us now examine the second natural estimate for the
Schrödinger-Poisson system, namely the energy estimate. It reads, in rescaled vari-
ables:

‖∂xψ
ε(t)‖2

L2(R3) +
1

ε2
‖H1/2

z ψε(t)‖2
L2(R3) +

1

| log ε|
∥∥V ε(t)|ψε(t)|2

∥∥
L1(R3)

= ‖∂xψ
ε
0‖2

L2(R3) +
1

ε2
‖H1/2

z ψε
0‖2

L2(R3) +
1

| log ε|
∥∥V ε(0)|ψε

0|2
∥∥

L1(R3)
. (1.17)

Multiplying this equation by ε2, one can deduce a bound for ‖H1/2
z ψε(t)‖L2(R3) (see

the beginning of Section 3), but not for ‖∂xψ
ε(t)‖L2(R3). However, for a certain set of

well-prepared initial data it can be easily proved that this quantity is bounded. As
it was remarked in [BMSW], it suffices to consider initial data which are polarized
on the first eigenmode χ1 of the transverse Hamiltonian Hz. This leads to the
following theorem, which is our main result.

Theorem 1.3. Under Assumptions 1.1 and 1.2, assume moreover that the initial

data is nearly polarized on the first eigenmode χ1 of Hz, associated to the eigenvalues

E1 in the sense: ∥∥∥(Hz − E1)
1/2 ψε

0

∥∥∥
L2(R3)

≤ C ε. (1.18)

Then there exist C > 0 such that the solution ψε of (1.5)–(1.7) satisfies:

‖∂xψ
ε(t)‖L2 ≤ C, independently of ε > 0 and t ∈ R, (1.19)

and the following convergence result holds, for all T > 0,
∥∥∥ψε(t, x, z) − e−itE1/ε2

ϕ(t, x)χ1(z)
∥∥∥

L2(R3)
−→
ε→0

0 uniformly on [−T, T ],

where ϕ(t, x) solves the cubic defocusing NLS equation

i∂tϕ = −∂2
xϕ+

1

2π
|ϕ|2ϕ , ϕ(0, x) =

∫

R

ψ0(x, z)χ1(z)dz. (1.20)

Remark that (1.20) is a particular case of the limit model (1.12), (1.13) derived
formally in the previous subsection. The keystone of the convergence proof is the
L2 estimate (1.19) of ∂xψ

ε. In the general case of initial data bounded in H but not

polarized on the first eigenmode, the following partial result can be proved as an
easy extension of Theorem 1.3. Under the assumption that (1.19) holds, the function

eitHz/ε2
ψε converges locally uniformly in L2(R3) to the solution φ of

i∂tφ = −∂2
xφ+

1

2π

〈
|φ|2

〉
φ , φ(0, x, z) = ψ0(x, z).

The outline of the paper is the following. In Section 2, we give an asymptotic
expansion as ε→ 0 of the solution of the rescaled Poisson equation (1.6), for wave-
functions ψε in a suitable functional space. Section 3 is devoted to the proof of
Theorem 1.3. We use as a first step the energy estimate for well-prepared data in
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order to get an estimate of ‖∂xψ
ε‖L2 in that case. We conclude the proof using a

stability result for the cubic NLS equation.

2. Approximation of the Poisson kernel

In this section, we study the convolution with the Poisson kernel when ε is close
to zero. We consider the Poisson potential V ε, after the rescaling z 7→ εz, x 7→ x,
and let ε → 0 in (1.6). In order to make a precise statement, let us first recall the
definition of the finite part of a singular integral. For u ∈ C0,η(R) ∩ L1(R), with
η ∈ (0, 1), we have

FP

∫

R

u(x′)

|x− x′| dx
′ = lim

η→0

(∫

|x−x′|>η

u(x′)

|x− x′|dx
′ + 2u(x) log η

)
.

=

∫

|x−x′|<1

u(x′) − u(x)

|x− x′| dx′ +

∫

|x−x′|>1

u(x′)

|x− x′|dx
′ .

(2.1)

Both quantities are well defined whenever u ∈ C0,η(R) ∩ L1(R). Our aim here is to
prove the following result.

Proposition 2.1. Consider ψ in the energy space H defined by (1.14), and let

Gε(ψ) =

∫

R

∫

R2

|ψ(x′, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′.

Then we have the following asymptotic expansion:

Gε(ψ) = −2 log ε〈|ψ(x, ·)|2〉 +R1(ψ) +Rε
2(ψ), (2.2)

where

R1(ψ) = −2

∫

R2

log |z − z′||ψ(x, z′)|2dz′ + 2 log 2〈|ψ(x, ·)|2〉 + FP

∫

R

〈|ψ(x′, ·)|2〉
|x− x′| dx′

and for all u ∈ H we have

‖R1(ψ)u‖L2 ≤ C‖ψ‖2
H ‖u‖H , ‖Rε

2(ψ)u‖L2 ≤ Cβ ε
β‖ψ‖2

H ‖u‖H , (2.3)

for all β < min(1/2, α/2), α being defined according to Assumption 1.1.

Remark that this asymptotic expansion shares several terms (the principal term
in log ε and the FP term) with the expression that was obtained in [CDR], where a
different but connected problem was studied. In this paper, effective Hamiltonian
were discussed for modeling a transport on the surface of a cylinder with a small
radius, in a linear setting.

Proof. Let us first list some useful available estimates deduced from Sobolev em-
beddings and from (1.15): for all u ∈ H, we have

‖∂xu‖L2(R3) + ‖u‖L∞

x L2
z
+ ‖∂zu‖L2(R3) + ‖(1 + |z|α/2)u‖L2(R3) ≤ C ‖u‖H. (2.4)
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Let us now decompose

Gε(ψ) =

∫

R3

|ψ(x′, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′.

=

∫

R2

∫

|x−x′|<1

|ψ(x′, z′)|2 − |ψ(x, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

+

∫

R2

∫

|x−x′|<1

|ψ(x, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

+

∫

R2

∫

|x−x′|≥1

|ψ(x′, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

= I1 + I2 + I3 .

(2.5)

We first analyze the term I1 by rewriting it as

I1 =

∫

R2

∫

|x−x′|<1

|ψ(x′, z′)|2 − |ψ(x, z′)|2
|x− x′| dx′dz′ + rε

1, (2.6)

where rε
1 is to be upper-bounded later. Using

∣∣ψ(x, z) − ψ(x′, z)
∣∣ ≤ C|x− x′|1/2

(∫

R

|∂xψ(y, z)|2 dy
)1/2

, (2.7)

we deduce that the first term in the right-hand side is well defined and can be
bounded thanks to (2.4):
∣∣∣∣∣

∫

R2

∫

|x−x′|<1

|ψ(x′, z′)|2 − |ψ(x, z′)|2
|x− x′| dx′dz′

∣∣∣∣∣ ≤C ‖∂xψ‖L2 ‖ψ‖L∞

x L2
z

∫ 1

0

1

ξ1/2
dξ

≤C‖ψ‖2
H

In order to estimate the remainder rε
1, we remark that for all γ ∈ [0, 2] there

holds:

0 ≤ 1

|x− x′| −
1√

(x− x′)2 + ε2|z − z′|2
≤ εγ |z − z′|γ

|x− x′|1+γ
. (2.8)

Pick β such that 0 < β < min(1
2 ,

α
2 ) and take γ = β. One can estimate the

remainder as

|rε
1| ≤ Cεβ

∫

R2

∫

|x−x′|<1

‖∂xψ(·, z′)‖L2
x

|x− x′|1/2+β
(|z|β + |z′|β)

(
|ψ(x′, z′)| + |ψ(x, z′)|

)
dx′dz′,

where we used (2.8) and (2.7). By the Cauchy-Schwarz estimate, for all u ∈ H we
get

‖rε
1 u‖L2 ≤ Cεβ‖∂xψ‖L2

(
‖|z|βψ‖L2 ‖u‖L∞

x L2
z
+ ‖ψ‖L∞

x L2
z
‖|z|βu‖L2

)∫ 1

0

1

ξ1/2+β
dξ

+ Cεβ‖∂xψ‖L2‖uw‖L2

with

w(x) :=

∫

|x−x′|<1

(
∫

R2 |z′|2β |ψ(x′, z′)|2dz′)1/2

|x− x′|1/2+β
dx′ .

The first line of the right-hand side is bounded thanks to (2.4) and β < 1
2 . To bound

the last term, we use Hölder and Hardy-Littlewood-Sobolev inequalities:

‖uw‖L2 ≤ ‖w‖L1/β ‖u‖
L

2/(1−2β)
x L2

z
≤ C ‖|z|βψ‖L2 ‖u‖

L
2/(1−2β)
x L2

z
≤ C ‖ψ‖H ‖u‖H ,
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where we used (2.4) and the fact that β < α
2 and 2

1−2β > 2. Finally, we have

‖rε
1 u‖L2 ≤ C εβ ‖ψ‖2

H ‖u‖H.

For the term I2, a direct computation of the integral with respect to x′ gives

I2 = 2(− log ε+ log 2)〈|ψ(x, ·)|2〉 − 2

∫

R2

log |z − z′||ψ(x, z′)|2dz′ + rε
2 , (2.9)

with

rε
2 = 2

∫

R2

|ψ(x, z′)|2 log

(
1 +

√
1 + ε2|z − z′|2

2

)
dz′.

Let us first estimate the dominant term in (2.9). The term 〈|ψ(x, ·)|2〉 is clearly
bounded in L∞ by (2.4). In order to bound the second term

v =

∫

R2

log |z − z′||ψ(x, z′)|2dz′,

we remark that

∣∣log |z − z′|
∣∣ ≤ C

(
1|z−z′|<1

|z − z′|1/2
+ 1 + |z|α/2 + |z′|α/2

)

and from Hardy-Littlewood-Sobolev and Gagliardo-Nirenberg inequalities, we get,
pointwise in x,
∫

|z−z′|<1

1

|z − z′|1/2
|ψ(x, z′)|2dz′ ≤ C‖ψ(x, ·)‖2

L4 ≤ C‖ψ(x, ·)‖L2‖∂zψ(x, ·)‖L2 .

Hence, for all u ∈ H,

‖uv‖L2 ≤ C ‖ψ‖L∞

x L2
z
‖∂zψ‖L2 ‖u‖L∞

x L2
z
+ C‖|z|α/2ψ‖2

L2 ‖u‖L∞

x L2
z

+ C‖ψ‖2
L∞

x L2
z
‖(1 + |z|α/2)u‖L2 ≤ C ‖ψ‖2

H ‖u‖H,

where we used (2.4). Let us now estimate the remainder rε
2. With the above choice

of β ≤ 1
2 < 2, we have

log

(
1 +

√
1 + t2

2

)
≤ Ctβ for all t > 0,

thus, for all u ∈ H,

‖rε
2 u‖L2 ≤ C εβ‖ψ‖L∞

x L2
z
(‖|z|βψ‖L2 ‖u‖L∞

x L2
z
+ ‖ψ‖L∞

x L2
z
‖|z|βu‖L2)

≤ C εβ ‖ψ‖2
H ‖u‖H,

where we used again (2.4) and β < α
2 .

Consider now the term I3, that we write

I3 =

∫

|x−x′|≥1

〈
|ψ(x′, z′)|2

〉

|x− x′| dx′ + rε
3, (2.10)

with the following immediate bound for the dominant term:

0 ≤
∫

|x−x′|≥1

〈
|ψ(x′, z′)|2

〉

|x− x′| dx′ ≤ ‖ψ‖2
L2 .
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Moreover, from (2.8), the following estimate can be deduced for the remainder:

|rε
3| ≤ C εβ

∫

R2

∫

|x−x′|≥1

|z − z′|β |ψ(x′, z′)|2
|x− x′|1+β

dx′dz′

≤ C εβ
(
|z|β‖ψ‖2

L2 + ‖|z|β/2 ψ‖2
L2

)
.

This is enough to conclude that

‖rε
3 u‖L2 ≤ C εβ ‖ψ‖2

H ‖u‖H .
To complete the proof of the proposition, it suffices to gather (2.6), (2.9) and (2.10),
then to use (2.1). �

3. Proof of the main theorem

As we said in the introduction, the system (1.5)–(1.7) admits two natural conser-
vation laws: the conservation of the L2 norm (1.16) and the energy estimate (1.17).
Whereas it is immediate to deduce from the first one a uniform estimate of the L2

norm of ψε, let us examine the second one. Multiplied by ε2, it gives

‖H1/2
z ψε(t)‖2

L2(R3) ≤ ε2‖∂xψ
ε
0‖2

L2(R3) + ‖ψε
0‖2

H +
ε2

| log ε|‖V
ε(0)|ψε

0|2‖L1(R3) . (3.1)

From Proposition 2.1 and the Cauchy-Schwarz inequality, we get

1

| log ε|‖V
ε(0)|ψε

0|2‖L1 ≤ 1

| log ε|‖V
ε(0)ψε

0‖L2‖ψε
0‖L2

=
1

4π| log ε|‖G
ε(ψ0)ψ

ε
0‖L2‖ψε

0‖L2 ≤ C ‖ψε
0‖4

H,
(3.2)

thus
‖H1/2

z ψε(t)‖2
L2(R3) ≤ ‖ψε

0‖2
H + C ε2‖ψε

0‖4
H, (3.3)

which is uniformly bounded, thanks to Assumption 1.2. In order to have a bound
for ψε in the energy space H, it remains to bound the L2 norm of ∂xψ

ε. This is
done in the next subsection for well-prepared initial data.

3.1. Energy estimate for well-prepared data. We name "well-prepared data"
a sequence of initial data (ψε

0)ε>0 in H which are polarized on the first eigenmode
χ1 of Hz, associated to the eigenvalue E1 in the sense (1.18).

We now prove that, under Assumptions 1.1, 1.2 and the assumption of well-
prepared data, estimate (1.19) holds true. This only relies on the two conservation
laws (1.16) and (1.17). Since E1 is the bottom of the spectrum of Hz, we have

‖H1/2
z u‖2

L2 − E1‖u‖2
L2 =

∫

R3

u (Hz − E1)u dxdz = ‖(Hz − E1)
1/2u‖2

L2 ,

thus substracting E1
ε2 × (1.16) to (1.17) leads to the identity:

‖∂xψ
ε(t)‖2

L2 +
1

ε2
‖(Hz − E1)

1/2ψε(t)‖2
L2 +

1

| log ε|
∥∥V ε(t)|ψε(t)|2

∥∥
L1

= ‖∂xψ
ε
0‖2

L2 +
1

ε2
‖(Hz − E1)

1/2ψε
0‖2

L2 +
1

| log ε|
∥∥V ε(0)|ψε

0|2
∥∥

L1 .

By Assumption 1.2, (1.18) and (3.2), the right-hand side of this inequality is bounded
independently of ε. Hence

‖∂xψ
ε(t)‖2

L2 +
1

ε2
‖(Hz − E1)

1/2ψε(t)‖2
L2 ≤ C. (3.4)
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This estimate has two consequences. First, with (3.3) it gives

‖ψε(t)‖H ≤ C, (3.5)

uniformly with respect to t. Second, this estimate shows that ψε remains polarized
on the first mode for all time. More precisely, denote

rε(t, x, z) = ψε(t, x, z) − χ1(z)

∫
ψε(t, x, z′)χ1(z

′)dz′.

Remarking that (Hz −E1)
1/2 ≥ (E2 −E1)

1/2 > 0 in the operator sense on H, it can
be deduced from (3.4) the following estimate:

‖rε(t)‖H ≤ Cε. (3.6)

3.2. The convergence theorem. In this section, we prove the convergence result
stated in Theorem 1.3. Let

ψε(t, x, z) = e−itE1/ε2
ϕε

1(t, x)χ1(z) + rε(t, x, z). (3.7)

Inserting (3.7) in (1.5) and projecting on Span(χ1) leads to the following equation

i∂tϕ
ε
1 = −∂2

xϕ
ε
1 +

eitE1/ε2

| log ε|

∫

R2

V ε(t, x, z)ψε(t, x, z)χ1(z)dz. (3.8)

To deal with the non linear term, we use the decomposition given by Proposition
2.1, with V ε = 1

4πG
ε(ψε). Remarking that, by orthogonality, we have

〈
|ψε|2

〉
= |ϕε

1|2 +
〈
|rε|2

〉
,

we get from (2.2)

eitE1/ε2

| log ε|

∫

R2

V ε(t, x, z)ψε(t, x, z)χ1(z)dz =
1

2π
|ϕε

1|2ϕε
1 + fε,

with

fε =
1

2π

〈
|rε|2

〉
ϕε

1 +
eitE1/ε2

4π| log ε|

∫

R2

(R1(ψ
ε) +Rε

2(ψ
ε))ψεχ1dz.

We clearly have

‖fε‖L2(R) ≤ C
∥∥〈|rε|2

〉∥∥
L∞(R)

‖ψε‖L2 +
C

| log ε| (‖R1(ψ
ε)ψε‖L2 + ‖Rε

2(ψ
ε)ψε‖L2) .

In order to bound the first term, we notice that by Cauchy-Schwarz

∣∣∂x

〈
|rε|2

〉∣∣1/2
=

∣∣∣∣Re

∫
rε ∂xr

ε dz

∣∣∣∣

〈|rε|2〉1/2
≤ ‖∂xr

ε‖L2
z

thus by the Sobolev embedding H1(R) →֒ L∞(R)

∥∥〈|rε|2
〉∥∥

L∞(R)
≤ C

∥∥∥
〈
|rε|2

〉1/2
∥∥∥

2

H1(R)
≤ C

(
‖rε‖2

L2(R3) + ‖∂xr
ε‖2

L2(R3)

)
≤ Cε2,

where we used (3.6). Therefore, one deduces directly from (2.3) and (3.5) that

‖fε‖L2(R) ≤
C

| log ε| . (3.9)

Now, the conclusion stems from a stability result for the cubic NLS equation in
dimension one. Indeed, the functions ϕε

1 and ϕ solve respectively

i∂tϕ
ε
1 = −∂2

xϕ
ε
1 +

1

2π
|ϕε

1|2ϕε
1 + fε , ϕε

1(0, x) =

∫

R

ψε
0(x, z)χ1(z)dz. (3.10)
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and

i∂tϕ = −∂2
xϕ+

1

2π
|ϕ|2ϕ , ϕ(0, x) =

∫

R

ψ0(x, z)χ1(z)dz. (3.11)

We remark that both functions are bounded in H1(R), thus in L∞(R), uniformly in
time. For ϕε

1 this property is a direct consequence of (3.5), as ‖ϕε
1‖H1(R) ≤ ‖ψε‖H.

For ϕ, this stems from the energy conservation for the defocusing NLS equation
(3.11) and from the fact that, by Assumption 1.2, the initial data ϕ(0, ·) belongs to
H1(R). Then it is easily seen that for all t we have

‖ϕε
1(t) − ϕ(t)‖L2 ≤ ‖ψε

0 − ψ0‖L2 +

∫ t

0

(
1

2π

∥∥|ϕε
1|2ϕε

1 − |ϕ|2ϕ
∥∥

L2 + ‖fε(s)‖L2

)
ds

≤ ‖ψε
0 − ψ0‖L2 + C

∫ t

0
‖ϕε

1(s) − ϕ(s)‖L2ds+

∫ t

0
‖fε(s)‖L2ds,

so it follows from (3.9), from Assumption 1.2 and from the Gronwall lemma that
for all T > 0

‖ϕε
1 − ϕ‖L∞([−T,T ],L2(R)) −→ε→0

0.

�

3.3. Towards a more precise approximation. According to (3.9), the conver-

gence rate in Theorem 1.3 is at most O
(

1
| log ε|

)
. To go further, Proposition 2.1

suggests the form of the next term in the approximation of the initial model. Tak-
ing into account the R1 term, one can consider the following system:

i∂tϕ̃ = −∂2
xϕ̃+

1

2π
|ϕ̃|2ϕ̃+

1

4π| log ε|

(
γ|ϕ̃|2 + FP

∫

R

|ϕ̃(x′)|2
|x− x′| dx

′

)
ϕ̃ (3.12)

where

γ = −
∫

R4

log

( |z − z′|2
4

)
|χ1(z)|2|χ1(z

′)|2dzdz′

and

ϕ̃(0, x) =

∫

R2

ψε
0(x, z)χ1(z)dz.

From the approximation result given by Proposition 2.1, one could expect a better
convergence rate:

‖ψε(t, x, z) − eitHz/ε2
ϕ̃(t, x)χ1(z)‖L2 ≤ C εβ

with β > 0 as in Proposition 2.1. At the level of this article, this refined convergence
result is a conjecture, as well as the existence of the solution ϕ̃ of (3.12). These
questions will be investigated in a future work.
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