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Abstract Much work is currently devoted to increas-
ing the reliability, completeness and precision of the
data used by driving assistance systems, particularly in
urban environments. Urban environments represent a
particular challenge for the task of perception, since
they are complex, dynamic and completely variable.
This article examines a multi-modal perception approach
for enhancing vehicle localization and the tracking of
dynamic objects in a world-centric map. 3D ego- local-
ization is achieved by merging stereo vision perception
data and proprioceptive information from vehicle sen-
sors. Mobile objects are detected using a multi-layer
lidar that is simultaneously used to identify a zone of
interest in order to reduce the complexity of the per-
ception process. Object localization and tracking is then
performed in a fixed frame which simplifies analysis and
understanding of the scene. Finally, tracked objects are
confirmed by vision using 3D dense reconstruction in
focused regions of interest. Only confirmed objects can
generate an alarm or an action on the vehicle. This is
crucial to reduce false alarms that affect the trust that
the driver places in the driving assistance system. Syn-
chronization issues between the sensing modalities are
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solved using predictive filtering. Real experimental re-
sults are reported so that the performance of the multi-
modal system may be evaluated.

Keywords Multi-modal perception - Visual odom-
etry - Object tracking - Dynamic map - Intelligent
vehicles

1 Introduction

Advanced Driver Assistance Systems (ADAS, an acro-
nym list is given at the end of the paper) can improve
road safety through their obstacle detection and avoid-
ance functions. For these functions, the location and
the speed of nearby mobile objects are key pieces of
information.

Static Object

Zone of Interest

Fig. 1 A Dynamic Map is composed of a list of the states of
tracked objects located within a zone of interest together with
the changing vehicle dynamics in the 3D scene.

In the literature, a number of different approaches
have been applied to problems of object localization
and tracking. Robotics approaches have been used to
distinguish the static part of the environment [9] and
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Fig. 2 Multi-Modal System Design

to simultaneously detect moving objects [32]. Leibe et
al. have presented in [18], a stereo vision strategy for
obtaining a 3D dynamic map using a Structure-from-
Motion technique and image object detectors. Using li-
dar information only, it is possible to estimate the ego-
motion and to detect mobile objects through a dense
3D grid-map approach [21]. In contrast, for [4] and [17],
real-time sensor-referenced approaches (i.e. ego- local-
ization is not considered) are presented using multi-
sensor systems showing the complementarity of lidar
and vision systems in automotive applications.

A world-centric approach presents interesting prop-
erties once the ego-localization is estimated accurately
(up to 1 cm per Km/h). The tracking performance can
be improved, since the dynamics of the mobile objects
are better modeled. This sort of approach simplifies the
understanding of the scene and the ADAS implemen-
tation, and is also well adapted to cooperative applica-
tions [26] (e.g. vehicle-to-vehicle communication). The
present study addresses the problem of ego-localization
and object tracking in urban environments.

Ego-localization can be achieved using propriocep-
tive and exteroceptive sensors [5]. GPS is an affordable
system that provides 3D positioning. Unfortunately, GPS
performance can decrease significantly in urban envi-
ronments because of multi-paths and satellites outages.
Dead-reckoning is a complementary solution which can
be used when GPS information is unreliable. Stereo Vi-
sion Systems (SVS), often used for 3D reconstruction,
detection and recognition tasks, are also useful for dead-
reckoning (also called 3D ego-motion estimation) [6].

Object tracking for ADAS is still an active research
domain. Urban environments are characterized by com-

plex conditions: moving and static objects, mobile per-
ception, varied infrastructures. Object representation
[23,22], association methods [29], motion model and
tracking strategies [19] are key points requiring partic-
ular attention.

In this work, we study a tightly coupled multi-modal
system able to provide a 3D local perception of the vehi-
cle’s surrounding environment in a world-centric frame,
as depicted in Fig. 1. The modeled environment is com-
posed of static and moving objects and a zone of inter-
est localized in front of the vehicle. Our contribution
lies in the estimation of the dynamics (location and
speed) of the surrounding objects in order to build a
dynamic map, and in ensuring the map’s integrity by
using different, independent sensing principles. A dy-
namic map is composed of a list of the states of tracked
objects together with the changing vehicle dynamics in
the 3D scene. A particular difficulty faced in this study
is the use of asynchronous modalities which are sam-
pled independently. To address this issue, we propose a
multi-sampled strategy.

The multi-sensor system we have designed makes
use of essential information provided by an SVS cou-
pled with a Multi-Layer lidar (denoted ML lidar) and
proprioceptive sensors (i.e. wheel speed sensors and a
yaw rate gyro).

The overall system design and architecture of the
proposed system are illustrated in Fig. 2. First, nearby
objects are detected based on ML lidar data. The SVS
and the proprioceptive vehicle sensors are used simulta-
neously to estimate the 3D ego-localization of the vehi-
cle. Subsequently, the detected objects are localized and
tracked w.r.t. a world reference frame. Finally, tracked



objects are transferred to a vehicle-centered frame in or-
der to be confirmed by the SVS, by taking into account
the different sampling times of the two sensing modali-
ties. Confirmed tracks that are declared as verified then
become the input into an ADAS for the detection of
possible collisions.

In this article four main topics are addressed: 3D
ego-localization, exteroceptive sensor calibration (i.e.
data alignment), object localization and tracking, and
visual track confirmation. First, a detailed description
of the embedded multi-sensor system setup is given in
section 2. Next, the perception function is presented
and experimental results are discussed. Section 3 is de-
voted to 3D ego-localization using vision and proprio-
ceptive sensors. The extrinsic calibration procedure is
described in detail in section 4. Object localization and
tracking are examined in section 5. Visual track con-
firmation and synchronization issues are discussed in
section 6. Finally, the conclusion and perspectives of
this work are presented.

2 Multi-Modal Perception System
2.1 Experimental Set-up

An experimental vehicle belonging to the Heudiasyc
Laboratory was used for the implementation and vali-
dation of the global perception system in real-life con-
ditions. As illustrated in Fig. 3, the vehicle is equipped
with a 47cm-baseline Videre SVS. This SVS is com-
posed of two CMOS cameras, with 4.5mm lenses con-
figured to acquire 320x240 gray-scale images at 30 fps.
The vision system provides essential information for
ego-motion estimation and visual track confirmation.
This system covers 45-degrees with an effective range
up to 50 m in front of the vehicle.

Multi-layer Li

Fig. 3 The experimental vehicle with the stereo vision system
and the IBEO Alasca XT. (Velodyne is not used in this study)

A large surrounding region is covered by an IBEO
Alasca XT lidar which transmits a sparse perception
of the 3D environment at 15 Hz. Installed at the front
of the vehicle, this sensor emits 4 crossed-scan-planes
covering a 3.2° field of view in the vertical direction
and 140° in the horizontal direction with an advertised
200m range. The ML lidar technology is particularly
suitable for automotive applications since detected ob-
jects are not easily lost under pitch vehicle movements,
in contrast to single-raw range-finders. Additionally, the
4-layer configuration allows the extraction of 3D scene
structure attributes such as camber and curbs, since
two layers are angled downwards.

The exteroceptive sensors (i.e. SVS and ML lidar
here) were set up to ensure a complete Field-Of-View
(FOV) overlap, as depicted in Fig. 4. The redundant
sensing coverage is intended to achieve reliable object
detection and tracking.

A CAN-bus gateway provides the speed of the rear-
wheels (WSS) and the yaw rate of the vehicle (from
the ESP). These sensors deliver complementary infor-
mation for the vehicle localization task.
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Fig. 4 Layout representation of the perception coverage pro-
vided by the exteroceptive sensors SVS and the ML lidar

2.2 Frames

The geometrical set-up of the multi-sensor system is
formalized through four local sensor frames as illus-
trated in Fig. 5 and 6. The stereo vision camera system
is represented by two classical pinhole camera models
(i.e. with focal length f and the principal point coordi-
nates [ug vO]T in pixels, assuming no distortion and zero
skew [16]). The two cameras are rigidly linked and hori-
zontally aligned at a baseline distance, b. As illustrated
in Fig. 5, the reference frame of the SVS, denoted S,
is located midway between the two cameras. Informa-
tion referenced w.r.t. the left camera frame, G, can then
be expressed in the S frame (X-Right, Y-Down and Z-
Front) by a translation 9ts = [~b/2 0 0]". The SVS is
fully calibrated and the delivered image pairs are recti-
fied.



The ML-lidar measurements (i.e. a 3D points cloud)
are reported in a Cartesian frame, denoted £ (X-Front,
Y-Left and Z-Up).

/S
1 tg
SVS frame ‘y‘/

s

\ Left camera frame

Q

me

Fig. 5 The multi-sensor frames are located at the optical cen-
ter of the left camera, G, the midpoint of the SVS, S, and the
ML-lidar sensor, L.

In order to sense information in a common percep-
tion space, the relative pose of the sensors frames (i.e.
SVS and ML-lidar frames) has to be estimated through
an extrinsic calibration procedure (Sensor Calibration
module in Fig. 2). Extrinsic parameters can be obtained
using the left camera images and the ML-lidar measure-
ments, given that the frame transformations between
the cameras composing the SVS are known (see Fig. 5).
This process is presented in detail in section 4. The com-
plete frame transformation from the lidar frame £ into
the vision frame S is denoted * [q, t] s and composed
of a unit quaternion and a translation vector.

Additionally, the gyro and wheel speed sensor mea-
surements are referenced with respect to the midpoint
of the vehicle’s rear-axis.

The ego-frame € (X-Right, Y-Down and Z-Front) is
rigidly linked to the vehicle (i.e. body-frame). As this
frame is chosen tangential to the road plane, it simplifies
the geometrical information analysis for the visual lidar
track confirmation (see Fig. 6).

13.2° Vertical FOV

On-board frames

& : Ego-frame (i.e. Body-frame)
S : Stereo Vision System frame
L :Multi-layer Lidar frame

Fig. 6 On-board frames and exteroceptive vertical sensor cov-
erage. The depicted lidar layer divergence and the camera FOV
have been exaggerated for clarity.

3 3D Ego-Localization

3D ego-localization consists in estimating the 3D pose
of the vehicle as a function of time with respect to a
static frame lying, for instance, in a plane tangential
to the earth’s surface. Odometry methods using stereo
vision systems can provide very precise 3D pose esti-
mations based on multiple-view geometrical relations
(i.e. 4-views or quadrifocal constraints) [6]. However,
visual odometry may require considerable computation
time. Here, 3D vehicle ego-localization is estimated us-
ing sparse visual odometry for rapid processing, aided
by the embedded proprioceptive sensors of the vehicle

[25]-

planar
CAN-bus sensors _motion [ 3D

Stereo Vision ——% Ego-Localization

3D vebhicle pose
—>

Stereo images

3D ego-motion

(planar motion)

Fig. 7 Multi-modal 3D ego-localization scheme

3.1 Visual odometry aided by CAN-bus sensors

The ego-motion of the vehicle is defined by an ele-
mentary transformation (rotation-translation composi-
tion, 6 degrees-of-freedom) performed in an interval of
time At. This 3D motion is represented by an axis-angle
rotation and a translation vector, S¢=1) [Aw, Av]g(t).
First, an initial planar motion guess is computed using
the proprioceptive sensors in At. Secondly, a 3D visual
motion estimation algorithm is initialized with this mo-
tion guess and is then iteratively refined (see Fig. 7).

Fig. 8 Yaw rate-WSS dead-reckoning for planar odometry es-
timation



Let C(t) be the center of the body frame defined
at time t — At. If the sampling frequency of the gyro
and the WSS is high enough (about 40 Hz), the wheel
speed is almost constant and the planar ego-motion can
be approximated by the arc of a circle. As illustrated in
Fig. 8, the planar ego-motion of the vehicle is modeled
as follows [7]:

0 As - sin(A0/2)
Awo = Ab AVO = 0
0 As - cos(A6/2)

where A6 is the angle obtained by integrating the
yaw rate, and As is the integrated rear-wheel odometry
in meters. Awyg is a vector representing the axis-angle
rotation of the vehicle motion and Avyg is a vector rep-
resenting the estimated displacement of the rear wheel
axis center.

Using successive stereo image pairs, we obtain a set
of n tracked stereo feature points denoted, p={p1, ..., pn }
and p’ = {p},...,p}}, (i.e. the corresponding left-hand
and right-hand features respectively) and their corre-
sponding optical flow constituting the image motion.
For this purpose, a set of stereo feature points denoted,
p*={p,...,p5} and p* = {p}*,...,p}, is extracted
using Harris features [15] with a ZNCC (Zero-mean
Normal Cross Correlation) criterion and image con-
straints (disparity and epipolar constraints) [28]. The
set of stereo feature points, p* and p’*, is then tracked
over time using Lucas-Kanade method [3].

Alternatively, a stereo feature can be “predicted”
after a 3D motion of the vision system by using a warp-
ing function [6] based on geometrical constraints. These
constraints are induced by the SVS configuration and
the static scene assumption. The idea is to predict the
sets p and |§’ as a function of the sets p* and p/* of
stereo features at time t — 1 (i.e. t — At) and the vehicle
motion encapsulated in the trifocal tensors l’ﬁjk and
T 130].

Consider a stereo feature pair, {p*,p"*}V p* € p*,
p™* € p™ . Thus, their predicted image position is given
by:

. N
-2

where [; and l;- are respectively the left and right im-
age lines passing through the image points p* and p’™* ,
and perpendicular to the epipolar line. l7;jk, is the
trifocal tensor composed by the stereo image pair at
time ¢ — 1 and the left image at time ¢. The second
tensor, ’”’7? k, is composed by the stereo image pair at
time ¢ — 1 and the right image at time ¢. It is worth
recalling that the tensors T’Ej * and l’Ej ¥ are nonlinear

functions of the SVS parameters (i.e. intrinsic and ex-
trinsic) and of the vehicle’s motion ¢~ [Aw, Av]g(t).

However, since urban scenes are not composed ex-
clusively of static objects, the static scene assumption
is not respected. To address this issue, a robust itera-
tive nonlinear minimization is performed according to
the following criterion:

k

amﬁh%@—;wW1MHmpm (2)

where k, is the number of tracked stereo feature
pairs and p; and p} are the left- and right-tracked
stereo features at time ¢. p; and p’ ; are the left and right
stereo features at time ¢ warped by the estimated mo-
tion (i.e. S~ [Aw, Av]g(t)) and the warping function
stated in Eq. 1. W is the weighting matrix, estimated
by an M-estimator function [31] updated using the It-
erative Re-weighted Least Squares algorithm (IRLS).

This robust minimization converges into a solution
by rejecting the feature points that are mainly gener-
ated by mobile objects. The convergence is guaranteed
if at least 50% of the stereo feature points correspond
to static objects (i.e. the environment). The criterion of
Eq. 2 is minimized by using the Levenberg-Marquardt
Algorithm (LM) in an IRLS loop [31]. The convergence
speed of the LM algorithm is increased using the planar
ego-motion S¢=1) [Aw, Avo}g(t), from the CAN-bus
sensors. This information provides a close initialization
guess, and thus helps to reduce the number of iteration
cycles.

Once the ego-motion parameters are estimated, the
vehicle position fix can be obtained by integrating all
the successive estimates. With the aim of reducing noise
before integrating the ego motion S¢—1) [Aw, Av]g(t),
a filter is implemented for the estimated parameters.
To this end a constant accelerated model is considered,
since the ego-vehicle can experience significant speed
changes in braking situations. Regarding the axis-angle
formalism for the attitude changes, Aw, it will be re-
marked that for a non-holonomic moving vehicle, the
variations of the attitude parameters are smooth, ex-
cept for the yaw angle. The latter assumption does not
hold for extreme driving situations (e.g rollover). Un-
der these assumptions, the linear speed and the attitude
changes are filtered using a single first-order model that
reconstructs the derivatives of the ego-motion parame-
ters. This approach is useful for predictive filtering.

Let x(t]t), be the state vector and A(t) the state
transition matrix defined as follows:

w(t)

(10 = | ) A@:{ﬁﬁAlim} 3)
al)

where v(t) and a(t) are the linear speed and ac-
celeration. w(t) represents the derivatives of the axis-
angle parameters which have been considered linear to



a drift £2(¢), assumed to be constant over time. In this
model, the sampling period, At, is not constant. The
covariance of the model, denoted Q, is chosen taking
into account the errors due to the model approximation
and, the covariance noise R is estimated considering a
zero-mean Gaussian white noise.

Through the discrete Kalman filter equations [10],
the predicted state (a priori), x(t|t — 1), and its covari-
ance, P(t|t — 1), are estimated.

Once a new ego-motion estimation (i.e. state obser-
vation), denoted X(¢), is obtained, the predicted state
and its covariance are corrected providing the a poste-
riori state, x(t|t), and covariance, P(t|t).

The filtered ego-motion which is reconstructed from
the state and the observation model, H, is given by:

SED [Aw, AVIE,) =H - x(t[t — 1) (4)

with H = [At.]t})((} 06)(6]

Fig. 9 World (W) and Ego (£(t)) and SVS (S(t)) frames at 3
sampling times

Making use of the smooth estimates provided by the
predictive filter using Eq. 4, the vehicle localization is
estimated in the world frame. For this, let YW be the
world reference frame and £(t), the ego frame which is
linked to the vehicle as illustrated in Fig. 6 and 9. The
vehicle pose at time ¢ is denoted WE(t) =W [q(t), p(t)]"
and is represented in the world frame by its attitude -
Wq(t) a unit quaternion - and its position - "Wp(t) - a
vector in meters. It is obtained as follows:

Va(t) = fas+% as@y and  Vp(t) =" as*° pg, *° As(5)

where ¢ denotes the temporal frame index and has
been conveniently omitted for ¢ = 0, x denotes the
quaternion multiplication operator, q represents the
corresponding quaternion conjugate and the underlined
vector (e.g. p) denotes an expanded form (i.e. p =

[0, p’ ]T) for the use of the quaternion multiplica-
tion [14]. As stated in Eq. 5, the rotation €qs is used to
compute the relative orientation of the world frame, W,
w.r.t. the SVS frame, S, since W has been chosen as the

initial position of the ego frame, £(t = 0) (W is chosen
to be coplanar to the road plane). The rigid transfor-
mation $ [q, B] S(8) corresponds to the visual odometry

given by the following equations:

Sasw = “as@_1) xS a(Aw)s1) (6)

s s S(t—1 S - s
Pgy = ds@-1) * ( )Ms(t)* As@-1) T° Pg(_y) (7)

where St~ q(Aw)s() is the unit quaternion cor-
responding to the axis-angle rotation, Aw, composing
the ego-motion parameters S~ [Aw, Av]g(t).

3.2 Experimental Real Time 3D Ego-Localization
Results

A data set was acquired in an urban environment com-
posed of low-rise buildings, trees and moving objects
(i-e. pedestrians and vehicles). During the experiment,
the vehicle’s speed was around 30 Km/h. The vehicle
trajectory is a closed loop featuring pedestrians and
other vehicles. Low-textured scenes (e.g. rural environ-
ments and parking lots) were not considered in this
study.

0
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/ d ___3D Multi-modal
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Fig. 10 Bird’s eye view of the 3D Reconstructed Trajectory
compared to WSS-Gyro odometry and GPS positioning

The 3D ego-localization function was implemented
in C/C++. The 3D trajectory is reconstructed in real
time and is obtained by integrating the ego-motion es-
timations. Fig. 10 illustrates one of the tests performed.
This test consists of a 227m-clockwise loop (i.e. 90 sec-
onds video sequence duration).

These results show that the cooperative strategy
helps to cope with errors from the CAN-sensor-based
odometry, errors mainly attributable to wheel slippage.
This technique also improved the visual odometry per-
formance in critical situations (e.g. high rotational speed



in 90° turns and roundabouts). These improvements
were obtained as a result of the planar motion initial-
ization which avoids any local minima ego-motion solu-
tion. It also enhances outlier rejection and reduces the
minimization iteration cycles. The 3D ego-localization
system performs quite well in situations where GPS
cannot provide a precise position (see the GPS jumps
in Fig. 10).

4 Exteroceptive Sensor Calibration (ML Lidar
- Vision)

The extrinsic calibration of the exteroceptive sensors
(i.e. the ML lidar and the stereo vision system) is nec-
essary for sensing information in a common perception
space. These extrinsic parameters link the local sen-
sor frames by a rigid transformation estimated from
the sensor measurements. Thus, the calibration process
alms at estimating the parameters which minimize the
transformation error between a common set of measure-
ments.

4.1 Problem Statement

Different calibration methods have been proposed to es-
timate with accuracy the rigid transformation between
a camera and a range sensor. Zhang et al. proposed a
target-based calibration method between a camera and
a single-row laser range finder [33]. This method was
considerably improved by Dupont et al. in [8]. A tar-
getless calibration approach for a 3D laser range finder
was later presented by Scaramuzza et al. in [27]. Cali-
bration can also be done by making use of the 4-layer
provided by the ML lidar [24].
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Fig. 11 Extrinsic Camera- Multi-layer Lidar Calibration

Let £p, be the coordinates of a 3D laser point ex-
pressed in the lidar frame £. Therefore, $p, the corre-
sponding coordinates of “p in the stereo vision frame, S,
is given by the following expression:

SB = (QQL *~ g*g ac +°¢ Eg) +° tg (8)

where 9 [q, t] - is the rigid-body transformation from
the lidar frame, £, to the left camera frame, G. Stg
is the rigid-body transformation from the left camera
frame, G, to the stereo vision system frame, S, as stated
in Eq. 8.

As illustrated in Fig. 11, knowledge of the rigid
transformation 9 [q, t], means that SVS and ML lidar
data can be merged.

The calibration method relies on a set of simultane-
ous detections of a circle-based calibration target by the
camera and the multi-layer lidar. For every detection,
the attitude and the position of the calibration target
are estimated with respect to the camera and the li-
dar frames. The complete frame transformation from

the lidar frame £ into the vision frame S, € [q, t],, is
obtained as follows:
Sac=q)+«“qz and St; = Stg +9t, 9)

where q(I) is the unit quaternion representation
of the identity matrix since the frames S and G are
aligned.

Once the lidar-vision frame transformation © [q, t] »
is known, all the lidar measurements at time ¢ are car-
ried over to the vision frame S.

|

4.2 Exteroceptive Sensor Calibration Results

The ML lidar - Vision calibration was obtained using 8
poses. Each pose comprises 20 lidar scans and the corre-
sponding target image of the left camera. The transfor-
mation parameters and their corresponding intervals of
confidence were computed as an Euler vector in radians
and a translation in meters respectively.

Rotation parameters, [¢, 6, w]T, are then converted
into a quaternion, formalizing the extrinsic parameters
to the form 9 [q, t],. Fig. 12 illustrates the resulting
lidar data re-projection onto the stereo images.

5 Object Localization and Tracking

This stage corresponds to a multi-modal strategy which
is able to estimate the planar trajectory of the neighbor-
ing objects as they move in the 3D scene. The proposed
system operates in a fixed reference frame, since precise
ego-localization is available (see section 3). The track-
ing strategy is presented below as follows: identifying
the zone of interest, object detection, track prediction,
and object-track association and updating. Finally, the
experimental results of this perception function are re-
ported.
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Fig. 12 ML Lidar data re-projection on stereo images

5.1 Identifying the Zone of Interest

Urban environments constitute a very complex 3D scene
because of the presence of a large number of static and
mobile objects. Different approaches may be used to
reduce the complexity of the scene (i.e. the number
of tracked objects) using, for instance, the temporal
track persistence (i.e. forgetting factor), the dynamic
of the tracks and the uncertainty of the track local-
ization. For this study, we reduce the 3D observation
space by detecting a zone of interest (ZOI) based on
prior knowledge of the scene. This function was pro-
posed and implemented in real time by Fayad et al.
n [11]. The method is based principally on lidar scan
histogram maxima detection.

‘z
ML Lidar L1 p pitch angle
S h  ML-lidar height
h ‘f\: X inter-layer angle
TR
Road pi; ne~~ ~ tolerance
First lidar layer ~ N\ L

Second lidar layer (PredictedT\("::\

Fig. 13 Road lidar data filtering

A first lidar data filtering step is performed with
the aim not only of improving the ZOI detection, but
also of significantly attenuating scene clustering issues.
This filtering involves detecting the 3D lidar data cor-
responding to the road surface, using the characteristic
pattern observed when the two lower layers intersect the
road plane at different angles, as illustrated in Fig. 13.
The second lidar layer can be predicted from the first
lidar layer and the geometrical constraints. The mea-
surements belonging to the road plane are detected and
excluded from further processing when the Euclidean

R R PO S R R

44, Srteteee
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error between the predicted and the measured layer
falls below a predefined threshold. The pitch angle of
the ML-lidar, denoted p, is estimated by a temporal fil-
tering and is updated using the detected road impacts.
The parameters h (ML-lidar height) and v (inter-layer
angle) are assumed to be known.

The zone of interest is characterized by two local
limits in the z-axis direction of the lidar frame. As il-
lustrated in Fig. 14, a 4-layer data scan is projected
onto the “zy plane (see upper subplot) and provides a
convenient histogram “y axis (see lower subplot). Ob-
jects such as security barriers, walls and parked vehicles
limit the zone of interest effectively. The detected limits
are then filtered using a fixed-gain Luenberger observer
in order to reduce oscillations produced by significant
changes in pitch. Intersections and roundabouts may
lead to the loss of histogram peaks. In such cases no
further updates of the ZOI are performed, meaning that
it is the last ZOI estimation which is retained.
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Fig. 14 Identifying the zone of interest using a y-axis his-
togram



5.2 Object Detection

Based on each ML-lidar scan, an object detection func-
tion delivers a set of neighboring objects obtained by a
3D Euclidean inter-distance clustering. Predefined geo-
metric features [22] would be an alternative, but these
require prior knowledge of the object. Detected objects
are characterized by their planar location (i.e. *Z = 0)
in the lidar frame £, their dimension (i.e. bounding cir-
cle) and a detection confidence indicator [12], estimated
using the following criteria:

— The ability of the ML sensor to detect vertical ob-
jects with respect to its range position.

— The beam divergence which worsens the measure-
ment precision, particularly in situations of a non-
perpendicular incidence angle.

— The theoretical maximum number of laser impacts
(per layer) lying on a detected object. This factor
can be computed as a function of the object dimen-
sion, the detection range and the laser scanner res-
olution.

Knowing the 3D localization of the vehicle, the detected
objects can be referenced with respect to the world
frame, W . For instance, let £3(t) = [z y 0]" be the
coordinates of a detected object at time t. Its corre-
sponding localization in W can be computed as follows:

S(”g(t) _ (Sq£ e i(t) &S 615) Jrs t, (10)
Wy = (Ma) <SP (1)« a) +" p(t) (11)

where S®F(t) and Wy (t) are the corresponding co-
ordinates of the detected object in the SVS and the
world frame respectively.

Only the detected objects lying in the ZOI are lo-
calized w.r.t. the world frame using Eq. 10 and 11.
They are then tracked independently using Kalman fil-
ters [13]. This tracking step improves the robustness of
the perception scheme.

5.3 Track Prediction

The track state is described by "Wy(t[t) consisting of
the Y X Z plane coordinates (x(t), z(t)) in meters and
the planar velocity (v, (t), v.(t)) in m/s as follows:

Wy(tlr) = [2() 2(1) va(®) v(t) ] (12)

The object size is considered as an attribute of the
track but is not included in the state. Assuming that
the motion of the objects is linear and uniform, the
prediction of the track state is given by the following
evolution equation:

Wyt —1) =B() Wyt - 1]t - 1) (13)

. Ioo At'12x2]
with B(t) =
®) |:02><2 Izxo
where Wy (t[t—1) is the predicted state of the tracked
object, B(t) is the state transition matrix and At is the

sampling time period (which is not constant).

5.4 Track-Object Association and Updating

At each ML-lidar sampling, the tracks are updated.
This involves matching the new detected objects and
tracks using a mono-hypothesis assumption. The im-
plemented association test relies on a nearest neighbor
criterion [1] (i.e. min(n)) using the following normalized
metric:

n” = ()" (M(t]t — 1) + N) ™" pu(t)+In (det (M(t]t — 1) + N)) (14)
with  p(t) = C-Wy(tft — 1) ="V ¥(t) (2.2

and C = [I2><2 02><2]

where"y(t)(s,.) represents, with a slight abuse of
the notation, the X Z coordinates of the detected object
in the W frame, C is the observation matrix and M (t|t—
1) the covariance matrix of the predicted state, Vy(t|t—
1). The first term of Eq. 14, corresponds to the classi-
cal Mahalanobis metric, and the second corresponds to
a weighting factor, In (det (M(¢]t — 1) + N)), computed
from the track imprecision. The uncertainties in the li-
dar localization of the objects and the object motion
model are taken into account through the covariance
of the measurement noise, N and the covariance of the
state transition model, O.

In order to cope with temporal object occlusions,
the unmatched tracks are retained for a fixed time du-
ration (for example, 2 seconds). However, setting a long
prediction time may result in retaining track artifacts.
The unmatched objects in the zone of interest gener-
ate new tracks until the algorithm reaches a previously
defined maximum number of tracked objects. Here, the
fixed number of tracks is set sufficiently high to track
all the detected objects in the ZOI.

Finally, the states of the tracks and their corre-
sponding covariances are improved by combining the
information provided by the associated lidar objects po-
sitions and the predicted tracks [1]. For this we use the
Kalman filter update equations.

It is worth recalling that the object tracking stage
increases the robustness of the system by allowing the
occlusion of objects, since tracks contain information
that has been confirmed several times by the same source
(the ML lidar here).
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5.5 Experimental Results

In the experimental study of the multi-modal object lo-
calization and tracking system, the 3D ego-localization,
the identification of the zone of interest and the detec-
tion of objects functions were processed in real time and
their outputs were logged. The object tracking function
was implemented in Matlab. The reported results were
obtained in offline conditions, taking as the input the
logged data.
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Fig. 15 Reconstruction of the Zone of Interest (*YXZ plane
view)

Fig. 15 illustrates the X Z view of the reconstructed
zone of interest in the fixed-reference frame. The re-
constructed ZOI was obtained by exchanging geomet-
rical data between the lidar and vision-based functions
through the calibration information. It is important to
remark that at the beginning of the test sequence (i.e.
initial position (0,0) on X Z view), the vehicle remains
stationary, which shows how the boundaries of the zone
of interest converge. These results constitute a very
interesting feature which can be linked to GIS (Geo-
graphic Information System) for map-matching appli-
cations.

Fig. 16 illustrates a zoomed area of the dynamic
map. In this figure we focus on a tracked vehicle. The
size of the track is represented by its bounding circle
in red and its center as a red triangle. The detected
track size changes as the surface is impacted by the ML
lidar. The corresponding image track projections (3D
red boxes) and their speed vector (green line) are also
illustrated in the upper part of the figure. Observing
the image projection of the track speed vector, one can
see that the multi-modal system performs quite well.

Fig. 17 shows another section of the dynamic map.
No ground truth for the track localization was available

during the experiment. However, the reconstructed tra-
jectory corresponds to the pedestrian’s observed trajec-
tory in the snapshot sequence.

56
54 ey

52/ Zone of Interest \.\'\\ Pedestrian track

TESLL

50 =
~ () o.
Eas /////fm_ 24

46 / Vehicle trajectory L

and speed

Fig. 17 Trajectory of a pedestrian

6 Visual Track Confirmation

The multi-modal system presented thus far provides a
precise localization, with respect to a fixed-reference
frame, of the vehicle and the surrounding objects that
represent potential obstacles. However, the object de-
tection relies on a single source: the ML lidar. This
section presents visual track confirmation, which repre-
sents a way of increasing the integrity of the information
provided by the system. Integrity is a key attribute of
a perception system when dealing with ADAS [19]. For
the system proposed in this paper, integrity means that
the intended perception functions provide trustworthy
information without false alarms or ambiguity.

Visual track confirmation is performed using the
following strategy. First, each lidar-tracked object is
transformed into the ego frame £(t). Its correspond-
ing bounding cylinder (lidar bounding circle with an
arbitrary height) is reprojected onto the stereo images.
In each image, the track projection provides a Region
Of Interest (ROI). Secondly, the pixels composing the
ROI are reconstructed by stereopsis in the 3D space in
order to provide a 3D point cloud. Thirdly, this set of
3D points is segmented into 2 clusters : the object and
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Fig. 16 Trajectory of a tracked vehicle

the background. Finally, the track is confirmed if one
of the 3D point cluster centroids is validated using a
Mahalanobis distance given a confidence level.

6.1 Region Of Interest in the images

The projection of an observed track onto the image
plane can be done once the track position is referenced
w.r.t. the camera frame. But, the 3D track fix must
be firstly reconstructed, since the state vector provides
its planar coordinates (i.e. YY X Z coordinates) only. To
this end, the last object altitude (i.e. "VY coordinate)
associated to the track is used. In the following, the
reconstructed track fix is denoted Wy* (¢[t — 1) . The
track is then localized in the ego frame, £(¢) as follows:

SOyttt —1) = Yat)» Myttt — 1)p) " a(t) (15)
EDy (et —1) = €qs +°W y T (2t — 1)+ @s (16)

where Sy * (¢t — 1) is the reconstructed track fix
in the S(t) frame and €®y™* (|t — 1) is the resulting
position of the track in £(¢).

The ROI is characterized by re-projecting the bound-
ing box vertices of the track on the images. These ver-
tices are estimated from the track size (the track height
is known a priori) and its 3D centroid position (see
Fig. 19).

The track position is projected onto the image plane
by the following equation:

|

U

v
1

1 ~ K- ((Pag =0 y et — 1)« e ) +7 ts) (17)

where [u v 1]7 are the image coordinates and K is
the intrinsic camera matrix. °qg corresponds to the
conjugate quaternion of £qs and 9ts = —Stg . The
operator ~ means up to a scale factor.

6.2 3D dense reconstruction of the ROI

Every pair of images contains 3D dense information of
the scene since the pixel images correspondence and the
camera parameters are known. This information can be
represented by a disparity map which in this study is
assumed to be referenced w.r.t. the left camera of the
SVS.

The 3D dense reconstruction of the ROI consists
in overlapping the ROI and the disparity map as illus-
trated in Fig. 18. The set of corresponding disparity
values is then extracted. Finally, the 3D coordinates,
[ry 2], of each pixel are estimated by performing a
classical triangulation process [16].

Fig. 18 3D dense reconstruction of the ROI

6.3 Track confirmation

Conceptually, the existence of a tracked object is con-
firmed if its position matches the visual 3D points. One
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possible strategy would be to test all the points in order
to determine the percentage that match with the track.
However, this approach may be time consuming and is
not compatible with an embedded system. An alterna-
tive is to cluster the visual points to apply a feature-
like test. Because of the imprecision of the lidar object
model, the ROI usually contains the imaged object and
some scene background, as illustrated in Fig. 18. For
this reason, clustering the 3D points can be seen as an
ideal solution for simplifying and speeding up the pro-
cess.

Visual clusters centroids ROI reprojection

using K-means ", ] . Pbject
RV /R Background
4 1@/4 _________
p Tracked gbject
Left image
" World frame Disparity Map

Fig. 19 Visual 3D Track Confirmation

Assuming that the objects and the scene background
in the ROI are distinguishable in the 3D space (see the
example shown in Fig. 19), the reconstructed 3D points
can be segmented into two clusters: track and back-
ground. This assumption is usually justifiable, because
the tested objects are located on the ZOI which corre-
sponds to the navigable space, as shown in Fig. 20. For
this kind of clustering, a K-means method [20] is par-
ticularly suitable, since the number of classes is known.
The clustering is based on the Euclidean distance be-
tween 2 clusters characterized by theirs centroids, € (t)cj
for all j = {1,2}, and their associated points. Two par-
ticular cases can occur, but they have no impact. If the
ROI contains only the object (i.e. no background is in-
cluded), the two clusters obtained will remain close to
the real track. If no real object is included in the ROI
(i.e. a lidar false detection), the clusters will form part
of the background.

Background 3D points

Cluster centroid
Object 3D point cluster

B
[SX=TIN]

30 Lidar Track — —%-

Ego—-frame

Z (m) 10

-10 x(m

Fig. 20 3D visualization of a confirmed track using 3D point
clusters

Once the clusters have been determined, the un-
certainty associated with each cluster needs to be es-
timated. As the centroid of every cluster is localized
from a set of reconstructed points, its uncertainty is
strongly correlated to the triangulation process quality.
As shown in [2], the confidence in the range of each
centroid, g(t)cj can be estimated, up to a tolerance fac-
tor a, by the following:

2 E(t)
b- C(2),j
B 1_(1_(a'5(t)c{2)7~> ),Oé<b.})1
Tj = ™ (18)

1 2

where €(t¢ 2),; refers to the z metric coordinate of
the centroid ¢ (tg c; and 7; is a score which expresses the
confidence in the cluster centroid fix in depth w.r.t the
SVS. This score is directly derived from the first-order
approximation of the joint probability distribution of
the centroid image projection on the left and right im-
age planes. The error tolerance factor, «, is set in me-
ters, taking into account the image resolution, the focal
distance, the baseline of the SVS and the accuracy of
the SVS calibration.

In order to perform a normalized test between the
clusters and the track to be verified, the covariance of
the 2D position of the cluster centroid U can be esti-
mated using this confidence score 7;:

1
k1'7’j O
kQ-T]‘

where the weighting parameters k; and ko can be
chosen on the basis that the reconstruction error re-
garding depth has more impact in the longitudinal di-
rection (V7 axis) than transversely (i.e. ky > ki:
typically one can choose ko = 2k1).

Each cluster is tested w.r.t the ML-lidar tracked ob-
ject using a Mahalanobis distance, &, with respect to the
track position:

& = k- (U+M(tt—1))"" - &" (20)
with =5 C(z,2),j —£® y (- D(a,2)

where €®c(, ) and €Wy (tt — 1)(, ) are respec-
tively the €() X Z coordinates of the centroid cluster to
be tested and the tracked object. The matrix M(¢|t —
1) is the covariance of the tracked object location. If
min(§) is below a certain threshold (typically corre-
sponding to 3 standard deviations), this means that
one visual cluster matches with the track in position. A
match confirms the existence of the tracked object. In-
tegrity is automatically satisfied, since two independent
sources have been used.
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6.4 Sampling synchronization issues

The visual track confirmation scheme relies on three
main functions interacting together: the disparity map
computation, the 3D-ego localization and the object de-
tection. These functions are asynchronous and run in
different threads at different frequencies (26, 16 and 15
Hz respectively) which are quite constant as illustrated
in Fig. 21.

2500

- Stereo Mean Frequency: 16Hz
« Lidar Mean Frequency: 15Hz
2000} Disparity Mean Frequency: 26Hz

ith sample

time (s)

Fig. 21 Sampling function frequencies

In order to address these synchronization issues, pre-
dictive filters are used based on accurate stamped data.
The possible processing tasks over time are:

— A new 3D-ego localization is available: the predic-
tive filter of the ego-motion is time-updated and its
state is corrected.

— New objects are detected by the ML-lidar: the last
known vehicle localization is predicted up to this
time. Then, these objects are localized in the world
frame and the tracked objects are updated.

— A new disparity map is available: the vehicle local-
ization and the tracked objects are extrapolated at
this time. Predicted objects are localized in the ego-
frame using the predicted vehicle pose. Candidate
tracks are proposed, to be confirmed using the dis-
parity map.

p——
o
=

e —
N

» Disparity Map

»3D Ego-Localization

» Object detection

Fig. 22 Example of possible data arrival

Fig. 22 shows an example of possible measurements
arrivals. At tg, the disparity map and the localization
information are available but there is no object. Thus,
only the vehicle pose is updated. At t1, a set of objects
have been detected. They are localized using the pre-
dicted vehicle pose. At t5, tracks can be confirmed using
the predictions of the objects and the vehicle pose.

We remarked during our experiments that this mech-
anism dramatically increases the performance of the
system, particularly when the scene includes a signif-
icant dynamic content.

6.5 Experimental results

The data output log of the disparity map, 3D-ego lo-
calization and object detection functions became the
input into the object tracking and track confirmation
functions that were post-processed using Matlab.

Use Cases and Evaluation Methodology In order for the
performance of the system to be evaluated, we report
experimental results for the visual confirmation func-
tion using five sequences. These use cases are relevant to
common scenarios in urban environments. Fig. 23 gives
a graphical description of the evaluated situations in-
volving three kinds of mobile objects: pedestrians, wheel-
chair pedestrians and cars.

In the reported experiments, the ML-lidar did not
give rise to any misdetections. The evaluation method-
ology aims at quantifying the percentage of time during
which the object tracking function becomes unavailable
because of visual non-confirmations.

The ground truth was referenced manually in the
left image plane of the SVS: the center point coordi-
nates of the observed objects of interest were selected,
frame by frame. All the objects considered in the ground
truth were localized in a common perception region for
the SVS and the ML-lidar. The confirmation track rate
was obtained by counting the number of times where
the bounding box of the confirmed track contains the
ground truth.

Real Data Results The results obtained using the ground
truth are reported in Table 1. A total of 650 frames in
5 different situations showed that at least 81% of the
time, the detected objects of interest were confirmed
by the two modalities. Although one may conclude that
the visual track confirmation may sometimes reduce the
number of true positives, it should nevertheless be re-
marked that the confirmed tracks enhance the integrity
of the perception process.

The false alarm rejection rate was also evaluated by pro-
viding manually a phantom track located four meters in
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Table 1 Rate of detected objects confirmed by vision 20 -10 X(() ) 0 20 20 -10 X ?m) 10 20

m
[ Video Sequence [ A [ B [ C [ D [ E ] World Map Ego-map

Duration (s) 5 4 5 6 10
Number of 110 | 90 90 125 | 235
Analyzed Frames
Number of scans 78 51 62 94 137

Positioning updates 72 37 65 121 160
Visual Confirmation | 100 | 100 | 81.8 | 98.5 | 83.5
Rate (%)

In use cases C and E, it was observed that large
changes in vehicle pitch angle can influence the preci-
sion of object tracking, since object motion is considered
to be planar and the vehicle pitch angle is unknown.

Table 2 False Alarm Rejection for 2856 frames

[ Tracksize (m) [ 08 | 1 [ 12 [ 15 [ 2 |
Erroneous 170 207 208 219 184
Confirmations
FA Rejection 94.04 | 92.75 | 92.72 | 92.33 | 93.55
Rate (%)

In Fig. 24, the left-hand side illustrates the world
map where the ego-vehicle and the detected objects are
localized and tracked. The right-hand side of the fig-
ure shows the reconstructed points of the ROI image.
Looking at the ego-map, it will be remarked that one
of the centroids of the clustered point cloud has been
matched with the track. This match confirms the exis-
tence of the detected object, as illustrated in the upper
image in Fig. 25.

Fig. 24 Example of a confirmed tracked object using the SVS

Fig. 25 presents some examples of confirmed objects.
Their bounding boxes (in red) and their speed vector
projections (in green) show a good localization, even
for fast-moving objects. These results validate the syn-
chronization strategy.

7 Conclusion and Future Work

An asynchronous embedded multi-modal system for ob-
ject localization and tracking has been proposed and
experimentally validated. The approach presented here
provides a 3D dynamic map of a vehicle’s surroundings.
The method merges sensor data to achieve a robust, ac-
curate 3D ego-localization. This function is combined
with a lidar-based object tracking focused on a zone
of interest providing the trajectories and speeds of ob-
jects as they move in the space. A visual confirma-
tion function integrated into the tracking system checks
the integrity of the provided information. To this end,
ROI are processed in a dense way. 3D points are re-
constructed and compared to the lidar-tracked object.
This scheme makes full use of the broad functional spec-
trum of stereo vision systems. Synchronization issues
are taken into account to ensure the temporal consis-
tency of the system.
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Fig. 25 Confirmed objects. The top figure illustrates the visual confirmation of a highly dynamic object (Scenario B in Fig. 23).
The middle figure shows a vehicle having just turned. Here the ROI is delocalized because of pitch changes, given that the ego-
vehicle is accelerating (Senario C in Fig. 23). The bottom figure shows the confirmed pedestrian when crossing the road in Scenario

E (Fig. 23)

The results obtained show the effectiveness and the
integrity of the proposed strategy. The visual confir-
mation function was tested in five different scenarios,
demonstrating a good confirmation rate. Although vi-
sual confirmation inevitably reduces the availability of
the detection function, the obtained rate would appear
to be compatible with the development of ADAS func-
tions (e.g. collision detection and avoidance). The inclu-
sion of a visual object recognition function for selecting
the most suitable object motion model might improve
the tracking process. This is one perspective of our re-
search.

Acronyms

ADAS  Advanced Driver Assistance System
GPS Global Positioning System

SVS Stereo Vision System

FA False alarms

FOV Field-Of-View

WSS Wheel Speed Sensors

ESP Electronic Stability Programme
ML Multi-Layer

CAN Controller Area Network

ROI Region Of Interest

701 Zone Of Interest
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