On the regularization process for Ariki-Koike algebras
Nicolas Jacon

To cite this version:
Nicolas Jacon. On the regularization process for Ariki-Koike algebras. Séminaire Lotharingien de Combinatoire, 2013. hal-00777352v2

HAL Id: hal-00777352
https://hal.science/hal-00777352v2
Submitted on 23 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the regularization process for Ariki-Koike algebras

N. Jacon

Abstract

The aim of this note is to study a generalization of theorems by James and Fayers on the modular representations of the symmetric group and its Hecke algebra to the case of the complex reflection groups of type $G(l, 1, n)$ and the associated Ariki-Koike algebra.

1 Introduction

One of the main and still open problem in the representation theory of finite groups is the explicit determination of the irreducible representations for the symmetric groups S_n, for $n \in \mathbb{N}$, over a field of characteristic $p > 0$. The main informations on these representations are contained in a fundamental object: the decomposition matrix. By the works of James, the problem of computing this matrix may be attacked using the representation theory of Hecke algebras. Indeed, James’ conjecture predicts that, in the case where $p^2 > n$, the decomposition matrix of the symmetric group corresponds to the decomposition matrix of a non semisimple deformation of the group algebra $\mathbb{C}S_n$: the Hecke algebra. Both matrices have their rows labelled by the set of partitions of rank n (which itself labels the set of simple modules of $\mathbb{C}S_n$) where as their columns are labelled by a certain subset of partitions called the set of p-regular partitions (which itself labels the set of simple modules of $\mathbb{F}S_n$ where $\text{car}(\mathbb{F}) = p$).

An algorithm for the computation of the decomposition matrices for Hecke algebras over \mathbb{C} is available. This algorithm comes from a conjecture given by Lascoux, Leclerc and Thibon [11] and proved by Ariki [1]. It asserts that the decomposition matrix of the Hecke algebra over \mathbb{C} is given by the evaluation at $v = 1$ of the matrix of the canonical basis for the basic representation of the quantum algebra $\mathcal{U}_v(sl_n)$. Recently, several authors have shown that the matrix of the canonical basis itself (and not only its specialization at $v = 1$) admits an interpretation in terms of “graded representation theory” of Hecke algebras (see [10] and the references therein). This matrix can thus be called the v-decomposition matrix of the Hecke algebra.

A nice general property on these matrices has been revealed by James [9] (for the decomposition matrix of the symmetric group) and Fayers [4] (for the v-decomposition matrix of the Hecke algebra). One can explicitly associate to each partition λ of n a certain p-regular partition, the regularization of λ, and computes the associated decomposition number. This result brings in a very important partial order on the set of partitions which appears in many ways in the representation theory of the symmetric group: the dominance order.

This note is concerned with a generalization of the Hecke algebra of S_n: the Ariki-Koike algebra. We present an analogue of James and Fayers’ results for the decomposition matrices of these algebras and for the matrices of the canonical bases for the irreducible highest weight $\mathcal{U}_v(sl_{\infty})$-modules. The concept of partitions is here replaced by the concept of “multipartitions”, the set of p-regular partitions by the set of so called cylindric multipartitions and the dominance order on partitions with the dominance order on multipartitions. The main results, Theorem 5.1 and Theorem 6.3 give the desired analogues of James and Fayers’ Theorems. The paper will be organized as follows. In the first section, we introduce the main combinatorial objects we will use in this paper: multipartitions and symbols and present some useful properties on them. Then we define the notion of regularization of multipartitions. The third part is devoted to a brief exposition of the representation theory of $\mathcal{U}_v(sl_{\infty})$ using the theory of Fock spaces. All these notions are then used in the two last parts to obtain our main results.
2 Multipartitions and symbols

In this part, we give the combinatorial definitions which are needed for presenting our main results.

2.1. Let \(l \in \mathbb{N}_{>0} \). We denote
\[
S^l := \left\{ (s_0, \ldots, s_{l-1}) \in \mathbb{Z}^l, \ | \forall i \in \{0, \ldots, l-2\}, s_{i+1} \geq s_i \right\}.
\]

Recall that a partition \(\lambda = (\lambda_1, \ldots, \lambda_r) \) of \(n \in \mathbb{N} \) is an ordered sequence of weakly decreasing nonnegative integers such that \(|\lambda| := \sum_{1 \leq i \leq r} \lambda_i = n \). The integer \(h_\lambda := \max(i \geq 0 \mid \lambda_i \neq 0) \) is called the height of \(\lambda \) with the convention that \(h_\lambda = 0 \) if and only if \(\lambda \) is the empty partition. A multipartition or \(l \)-partition of \(n \) is an \(l \)-tuple of partitions \(\lambda = (\lambda^0, \ldots, \lambda^{l-1}) \) such that, for each \(i \in \{0,1,\ldots,l-1\} \), \(\lambda^i \) is a partition of rank \(n_i \in \mathbb{N} \) and \(\sum_{0 \leq i \leq l-1} n_i = n \). If \(\lambda \) is a multipartition of \(n \), we denote \(\lambda \vdash n \). The height of \(\lambda \) is the nonnegative integer:
\[
h_\lambda := \max(h_{\lambda^0}, \ldots, h_{\lambda^{l-1}}),
\]
and we have \(h_\lambda = 0 \) if and only if \(\lambda \) is the empty multipartition, which is denoted by \(\emptyset \). The dominance order on multipartitions is defined as follows. Let \(\lambda := (\lambda^0, \ldots, \lambda^{l-1}) \) and \(\mu := (\mu^0, \ldots, \mu^{l-1}) \) be two partitions of \(n \) then we denote:
\[
\lambda \trianglerighteq \mu \iff \forall c \in \{0, \ldots, l-1\}, \forall k \in \mathbb{N}, \sum_{0 \leq i < c} |\lambda^i| + \sum_{1 \leq j \leq k} \lambda^i_j \geq \sum_{0 \leq i < c} |\mu^i| + \sum_{1 \leq j \leq k} \mu^i_j,
\]
where the partitions are considered with an infinite number of empty parts.

2.2. Let \(s = (s_0, \ldots, s_{l-1}) \in S^l \). We now define the notion of shifted symbol. Following [5, §5.5.5], let \(\beta = (\beta_1, \ldots, \beta_k) \) be a sequence of integers and let \(t \) be a positive integer. We set
\[
\beta(s) := (0, 1, \ldots, t-1, \beta_1 + t, \ldots, \beta_k + t).
\]
It is a sequence of rational numbers with exactly \(k + t \) elements. For \(i = 0, 1, \ldots, l-1 \), \(h^i \) be the height of the partitions \(\lambda^i \). We consider the following sequence of rational numbers:
\[
\beta^i = (\lambda^i_1 - h^i + h^i, \ldots, \lambda^i_j - j + h^i, \ldots, \lambda^i_l - 1 + h^i).
\]
This is a sequence of strictly increasing integers if and only if \(\lambda^i \) is a partition. Now, for \(i = 0, 1, \ldots, l-1 \), we put
\[
h c^i = h^i - s_i \text{ and } hc^\lambda = \max(h c^0, \ldots, h c^{l-1}).
\]
Let \(h \) be an integer such that \(h \geq h c^\lambda + 1 \). The shifted \(s \)-symbol of \(\lambda \) of size \(h \) is the family of sequences
\[
\mathfrak{B}_{(m,h)}(\lambda) = (\mathfrak{B}^0, \ldots, \mathfrak{B}^{l-1}),
\]
such that for \(j = 1, \ldots, l \)
\[
\mathfrak{B}^j = (\beta^j(h - hc^j)).
\]
Each sequence \(\mathfrak{B}^j \) contains exactly \(h + s_j \) elements (\(\mathfrak{B}^j_{h+s_j}, \ldots, \mathfrak{B}^j_1 \)).

2.3. A shifted symbol is usually represented as (and identified with) an \(l \)-row tableau where the \(c \)-th row (starting from the bottom) is \(\mathfrak{B}^c \) (see [5, §5.5.5]). It is written as follows:
\[
\mathfrak{B}_{(s,h)}(\lambda) = \begin{pmatrix}
\mathfrak{B}^{l-1}_{h+s_{l-1}} & \ldots & \mathfrak{B}^{l-1}_{h+s_{l-2}} \\
\mathfrak{B}^{l-2}_{h+s_{l-2}} & \ldots & \mathfrak{B}^{l-2}_{h+s_{l-3}} \\
\vdots & \ddots & \vdots \\
\mathfrak{B}^0_{h+s_0} & \ldots & \mathfrak{B}^0_1
\end{pmatrix}.
\]
In particular, the i^{th} column (starting from the right) of $B_{(s,h)}(\lambda)$ contains exactly $l - c(i)$ elements where $c(i) = \min(k \in \{0, 1, \ldots, l - 1\} \mid i + s_k - s_{k-1} > 0)$ and this column is given as follows:

\[
\begin{pmatrix}
B_i^{l-1} \\
B_{i+s_l-s_{l-1}}^{l-2} \\
\vdots \\
B_{i+s_{c(i)}-s_{l-1}}^{c(i)}
\end{pmatrix}.
\]

It is easy to recover the multipartition λ from the datum of an arbitrary shifted symbol. Similarly, one can also easily recover $s \in \mathbb{Z}$ modulo a translation by an element $(x, \ldots, x) \in \mathbb{Z}^l$.

Example 2.4. With $\lambda = (3, 2, 2.2, 2.1)$ and $s = (0, 0, 2)$, if we take $h = 5$ we obtain

\[
B_{((0,0,2),5)}(\lambda) = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 6 & 8 \\
0 & 1 & 4 & 5 & 6 \\
0 & 1 & 2 & 3 & 7
\end{pmatrix}.
\]

With $s = (0, 1, 2, 3)$ and $\lambda = (3.1, 1.1, 2.1.1, 3)$ and $h = 3$, the shifted symbol is as follows:

\[
B_{((0,1,2,3),3)}(\lambda) = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 8 \\
0 & 1 & 3 & 4 & 6 \\
0 & 1 & 3 & 4 \\
0 & 2 & 5
\end{pmatrix}.
\]

3 Regularization of multipartitions

In this section, after having fixed an element in S^l, we associate to each multipartition another one which belongs to a certain class of multipartitions: the cylindric multipartitions.

Definition 3.1. Assume that $s \in S^l$. A shifted symbol $B_{(s,h)}(\lambda)$ is called standard if and only if in each column of $B_{(s,h)}(\lambda)$, the numbers weakly decrease from top to bottom.

Example 3.2. The first symbol in Example 2.4 is not standard where as the second is. Let now $s = (0, 1, 2)$ and $\lambda = (3.1, 2.2.1, 2.1)$. If we take $h = 5$ we obtain

\[
B_{((0,1,2),5)}(\lambda) = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 6 & 8 \\
0 & 1 & 2 & 4 & 6 & 7 \\
0 & 1 & 2 & 4 & 7
\end{pmatrix}.
\]

This symbol is standard.

Definition 3.3. Assume that $s = (s_0, \ldots, s_{l-1}) \in S^l$ then the multipartition $\lambda = (\lambda^0, \ldots, \lambda^{l-1})$ is called cylindric if for every $c = 0, \ldots, l - 2$ and $i \geq 1$, we have $\lambda_i^c \geq \lambda_{i+s_c+s_{c+1}-s_c}$ (the partitions are taken with an infinite number of empty parts). We denote by Φ_s the set of cylindric multipartitions associated to $s \in S^l$ and by $\Phi_s(n)$ the set of cylindric multipartitions of rank n.

Proposition 3.4. Let $s \in S^l$, $\lambda \vdash n$ and let $B_{(s,h)}(\lambda)$ be an associated shifted symbol. Then λ is cylindric if and only if $B_{(s,h)}(\lambda)$ is standard.

Proof. For all relevant $i \in \mathbb{N}$ and $c \in \{0, 1, \ldots, l - 2\}$, we have:

\[
\lambda_i^c - i + s_c \geq \lambda_{i+s_c+s_{c+1}-s_c}^{c+1} - (i + s_{c+1} + s_c) + s_{c+1} \iff \lambda_i^c \geq \lambda_{i+s_{c+1}+s_c}^{c+1},
\]

whence

\[
B_i^c \geq B_{i+s_{c+1}+s_c}^{c+1} \iff \lambda_i^c \geq \lambda_{i+s_{c+1}+s_c}^{c+1},
\]

which is exactly what is needed to prove the assertion. \qed
3.5. We now explain the process of regularization for multipartitions. Let $\lambda \vdash l$ and let $s = (s_0, \ldots, s_{l-1}) \in S^l$. Let $\mathfrak{B}_{(s,h)}(\lambda)$ be a shifted symbol associated to λ. Then for each column of the symbol, we reorder the elements so that it is weakly decreasing from top to bottom. For example, the symbol in Example 2.4

$$\mathfrak{B}_{((0,1),4)}(\lambda) = \begin{pmatrix} 0 & 1 & 3 & 9 \\ 0 & 4 & 5 & 7 \\ 0 & 2 & 3 \end{pmatrix}$$

becomes:

$$\begin{pmatrix} 0 & 1 & 3 & 9 \\ 0 & 2 & 3 & 7 \end{pmatrix}.$$

We claim that the resulting set is a well defined standard symbol of a multipartition $\mathfrak{B}_{(s,h)}(\mu) = (\mathfrak{B}^0, \ldots, \mathfrak{B}^{l-1})$. Indeed, denote this new set by $\mathfrak{B} = (\mathfrak{B}^0, \ldots, \mathfrak{B}^{l-1})$ and assume that there exist $c \in \{0,1,\ldots, l-1\}$ and $j \in \mathbb{N}$ such that

$$\mathfrak{B}^c_{j+1} \geq \mathfrak{B}^c_j.$$

Let \mathcal{A}_1 be the multiset of elements in the column of \mathfrak{B}^c_j which are less or equal than \mathfrak{B}^c_j in $\mathfrak{B}_{(s,h)}(\lambda)$. Let \mathcal{A}_2 be the multiset of elements in the column of \mathfrak{B}^c_{j+1} which are greater or equal than \mathfrak{B}^c_j in $\mathfrak{B}_{(s,h)}(\lambda)$. Assume that the column containing \mathfrak{B}^c_{j+1} contains m elements. We know that in the columns of \mathfrak{B}, the numbers are weakly decreasing from top to bottom. Thus, by the construction of \mathcal{B} and the above assumption, we have $\sharp \mathcal{A}_1 \geq l - c$ and $\sharp \mathcal{A}_2 \geq m - l + c + 1$. Now $\mathfrak{B}_{(s,h)}(\lambda)$ is a well defined symbol so each row contains elements which are strictly increasing from left to right. This implies that the rows containing the elements of \mathcal{A}_1 in the column of \mathfrak{B}^c_j and the rows containing the elements of \mathcal{A}_2 in the column of \mathfrak{B}^c_{j+1} in $\mathfrak{B}_{(s,h)}(\lambda)$ must be disjoint. So the sum $\sharp \mathcal{A}_1 + \sharp \mathcal{A}_2$ must be less or equal than m. This is not the case, so the result follows.

3.6. Let $\lambda \vdash l$ and let $\mathfrak{B}_{(s,h)}(\lambda) = (\mathfrak{B}^0, \ldots, \mathfrak{B}^{l-1})$ be an associated shifted symbol. For all $c_1 \in \{0,1,\ldots, l-1\}$ and $j_1 \in \{1,2,\ldots, h + s_{c_1}\}$, we set

$$R(\lambda)_{(j_1,c_1)} = \sharp \left\{ c \in \{0,1,\ldots, l-1\} \mid c > c_1, \mathfrak{B}^c_{j_1} < \mathfrak{B}^c_{j_1+s_{c-c_1}}, \mathfrak{B}^c_{j_1} \not\in \mathfrak{B}^c \right\},$$

and

$$R(\lambda) = \sum_{0 \leq c \leq l-1} \sum_{j_1 \leq h+s_c} R(\lambda)_{(j_1,c)}.$$

Clearly, this number does not depend of the choice of h (and thus on the choice of the shifted symbol).

Definition 3.7. Let λ be a multipartition and let $s = (s_0, \ldots, s_{l-1}) \in S^l$. Let $\mathfrak{B}_{s,h}(\lambda)$ be the associated shifted symbol. There exists a cylindric multipartition λ^R such that $\mathfrak{B}_{s,h}(\lambda^R) = \mathfrak{B}_{s,h}(\lambda)^R$. This multipartition is called the regularization of λ.

By construction, the regularization of a multipartition is a cylindric multipartition by Proposition 3.4. It is also clear that the regularization of a cylindric multipartition is itself.

Example 3.8. Consider the 3-partition $\lambda := (\emptyset, \emptyset, 6,2)$. We set $s = (0,1,1), h = 3$. Then we have:

$$\mathfrak{B}_{((0,1,1),3)}(\lambda) = \begin{pmatrix} 0 & 1 & 4 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}.$$

We obtain

$$\mathfrak{B}_{((0,1,1),3)}(\lambda) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 9 \\ 0 & 1 & 4 \end{pmatrix}.$$
We have:

\[R(\lambda)_{(j,c)} = \begin{cases}
0 & \text{if } (j, c) \not\in \{(1,0), (2, 1), (1, 1)\} \\
1 & \text{if } (j, c) \in \{(1,0), (2, 1), (1, 1)\}
\end{cases} \]

and so we have \(R(\lambda) = 3 \). We can check that \(\lambda^R = (2, 6, \emptyset) \).

Example 3.9. Consider the 3-partition \(\lambda := (5, 0, 2.1) \). We set \(s = (0,1,1), h = 3 \). Then we have:

\[
\mathfrak{B}_{((0,1,1),3)}(\lambda) = \begin{pmatrix}
0 & 1 & 3 & 5 \\
0 & 1 & 2 & 3 \\
0 & 1 & 7
\end{pmatrix}.
\]

We obtain

\[
\mathfrak{B}_{((0,1,1),3)}(\lambda) = \begin{pmatrix}
0 & 1 & 2 & 3 \\
0 & 1 & 3 & 5 \\
0 & 1 & 7
\end{pmatrix}.
\]

and we have \(R(\lambda) = R(\lambda)_{(2,1)} = 1 \). Note that this symbol is standard and we have \(\lambda^R = (5, 2.1, 0) \).

\section{Action of \(\mathcal{U}_e(\mathfrak{sl}_\infty) \) on the Fock space}

\subsection*{4.1.}
Let \(v \) be an indeterminate and let \(\mathcal{U}_e(\mathfrak{sl}_\infty) \) be the enveloping algebra of \(\mathfrak{sl}_\infty \) with Chevalley generators \(e_j, f_j \) and \(t_j \) \((j \in \mathbb{N}) \), see for example [5, §6.1]. The simple roots and fundamental weights are denoted by \(\alpha_k \) and \(\Lambda_k \) for \(k \in \mathbb{N} \) respectively. Let now \(s \in S^I \) and let \(\mathcal{F}^s \) be the associated Fock space. This is the \(\mathbb{Q}(v) \)-vector space defined as follows:

\[\mathcal{F}^s = \bigoplus_{n \in \mathbb{Z} \geq 0} \mathbb{Q}(v)^{\lambda_n}. \]

One can define an action of \(\mathcal{U}_e(\mathfrak{sl}_\infty) \) which turns \(\mathcal{F}^s \) into an integrable \(\mathcal{U}_e(\mathfrak{sl}_\infty) \)-module.

\subsection*{4.2.}
Let \(\beta := (\beta_1, \ldots, \beta_m) \) be a sequence of strictly increasing positive numbers. We write \(j \in \beta \) if the number \(j \) appears in the sequence \(\beta \) and, \(j \not\in \beta \) otherwise. In this case, we write \(\beta \cup \{j\} \) for the sequence of strictly positive numbers obtained by inserting the number \(j \) in \(\beta \). Similarly, if \(j \in \beta \) then \(\beta \setminus \{j\} \) is defined to be the sequence obtained from \(\beta \) by removing \(j \).

Let \(\lambda \vdash_I n \) and let \(\mathfrak{B}_{(s,h)}(\lambda) \) be an associated shifted symbol. Let \(\mu \vdash_I n \) and let \(\mathfrak{B}_{(s,h)}(\mu) \) be an associated shifted symbol (so we assume that \(h \geq \max(hc^\lambda, hc^\mu) + 1 \)) Then we write

\[\lambda \xrightarrow{\cdot c} \mu \]

if for all \(d \in \{0, 1, \ldots, l - 1\} \), we have

\[\mathfrak{B}_{\cdot h}(\mu)^d = \begin{cases}
\mathfrak{B}_{\cdot h}(\lambda)^d & \text{if } d \neq c \\
(\mathfrak{B}_{\cdot h}(\lambda)^d \setminus \{j + h - 1\}) \cup \{j + h\} & \text{if } d = c
\end{cases} \]

Let \(k \in \mathbb{N} \), we write:

\[\lambda \xrightarrow{(c_1, \ldots, c_k)} \mu, \]

if there exists a sequence of multipartitions

\[\lambda := \lambda[1], \ldots, \lambda[k], \lambda[k + 1] := \mu, \]

such that for all \(i = 1, \ldots, k \), we have

\[\lambda[k] \xrightarrow{c_i} \lambda[k + 1]. \]
Hence, we have:
\[
\mathcal{B}_{s,b}(\mu)^d = \left\{ \begin{array}{ll}
\mathcal{B}_{s,b}(\lambda)^d & \text{if } d \neq c_i \text{ for all } i = 1, \ldots, k \\
\{ \mathcal{B}_{s,b}(\lambda)^d \setminus \{j + h - 1\} \} \cup \{j + h\} & \text{if } d = c_i \text{ for } i = 1, \ldots, k
\end{array} \right.
\]

We also write \(\lambda \xrightarrow{j,k} \mu \) if there exists a sequence \((c_1, \ldots, c_k) \in \{0, 1, \ldots, l - 1\}^k \) such that \(\lambda \xrightarrow{j,k} (c_1, \ldots, c_k) \mu \).

Finally, given \(\lambda \) and \(\mu \) such that \(\lambda \xrightarrow{j,k} (c_1, \ldots, c_k) \mu \), we define the following number:
\[
N_j(\lambda, \mu) = \sum_{1 \leq i \leq k} \left(\begin{array}{c}
\text{number of integers equals to } j + h - 1 \text{ in } \mathcal{B}_{s,b}(\mu)^c \text{ with } c \leq c_i \\
\text{number of integers equals to } j + h \text{ in } \mathcal{B}_{s,b}(\lambda)^c \text{ with } c \leq c_i \end{array} \right)
\]

Example 4.3. Consider the 4-partition \(\lambda = (3,1,\emptyset,6,2) \) and \(s = (0,0,1,1) \). For \(h = 3 \), we get the symbol:
\[
\mathcal{B}_{((0,0,1,1),3)}(\lambda) = \begin{pmatrix}
0 & 1 & 4 & 9 \\
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 1 \\
0 & 2 & 5 & 1
\end{pmatrix}.
\]

We have
\[
(3,1,\emptyset,6,2) \xrightarrow{3,2} (3,2,1,\emptyset,6,2),
\]
where the symbol of \(\mu \) is:
\[
\mathcal{B}_{((0,0,1,1),3)}(\mu) = \begin{pmatrix}
0 & 1 & 4 & 9 \\
0 & 1 & 2 & 3 \\
0 & 1 & 3 & 1 \\
0 & 3 & 5 & 1
\end{pmatrix}.
\]

4.4. For our purpose, we only need to describe the action of the Chevalley generators \(f_i \) for \(i \in \mathbb{Z} \) and their divided power \(f_j^{(r)} := \frac{f_j^r}{r!} \) for \(r \in \mathbb{N} \). This is given as follows. Let \(\lambda \vdash \ell \) \(n \), let \(r \in \mathbb{N} \) and let \(j \in \mathbb{Z} \), then we have
\[
f_j^{(r)} \lambda = \sum_{\lambda \vdash \ell \vdash n} q^{N_j(\lambda, \mu)} \mu.
\]

It is known that the \(\mathcal{U}_n(\mathfrak{sl}_\infty) \)-submodule \(V(s) \) of \(\mathcal{F}_n \) generated by the empty multipartition is an irreducible highest weight module for \(\mathcal{U}_n(\mathfrak{sl}_\infty) \).

4.5. Let \(\mathcal{U}_n(\mathfrak{sl}_\infty)^- \) be the subalgebra of \(\mathcal{U}_n(\mathfrak{sl}_\infty) \) generated by the \(f_i \)'s. We have a ring automorphism \(x \mapsto \overline{x} \) of \(\mathcal{U}_n(\mathfrak{sl}_\infty)^- \) such that
\[
\overline{f_j} = f_j \ (j \in \mathbb{N}), \quad \text{and} \quad \overline{v} = v^{-1},
\]
which induces a \(\mathbb{C} \)-linear map \(v \mapsto \overline{v} \) on \(V(s) \) defined by:
\[
\overline{v} \overline{\emptyset} = \overline{v} \emptyset.
\]

Using this, one can define the canonical basis elements of \(V(s) \). They are elements of \(V(s) \) which are parametrized by the set of cylindric multipartitions
\[
\{ b_\lambda \mid \lambda \in \Phi_s \},
\]
and characterized by the following property:
\[
\forall \lambda \in \Phi_s, \ b_\lambda = b_\lambda, \ b_\lambda = \lambda + \sum_{\mu \vdash n} d_{\mu,\lambda(v)} \mu,
\]
for elements \(d_{\mu,\lambda(v)} \in v\mathbb{Q}[v] \) with \(\mu \vdash n \) such that \(\lambda \neq \mu \).
We have thus defined two sequences of integers (the canonical basis (see below or [5, Ch. 6]). This, in turn, implies that if by induction, our construction implies that we have:

\[B_{i(\lambda)} \succ B_{i(\lambda)+1}, \]

Assume that \(i(\lambda) \) is minimal with this property and set \(j(\lambda) := B_{i(\lambda)} \).

2. Let \(r(\lambda) \in \mathbb{N} \) be maximal such that

\[B_{i(\lambda)}^{c(\lambda) + 1} = B_{i(\lambda) + s_{c(\lambda)} + 1 - s_{c(\lambda)}}, \ldots, B_{i(\lambda) + s_{c(\lambda)} + r(\lambda) - 1 - s_{c(\lambda)}} = j(\lambda), \]

then we have \(r(\lambda) \geq 1 \) and because \(\lambda \) is cylindric, by Proposition 3.4, we deduce that:

\[j(\lambda) > B_{i(\lambda) + s_{c(\lambda)} + k - 1} = B_{i(\lambda) + s_{c(\lambda)} + k - 1} + 1 \]

for all \(k = 1, \ldots, r(\lambda) \).

3. Take the symbol obtained by replacing in \(B_{(s, h)} \) all the elements

\[B^{c(\lambda)}_{i(\lambda)} = B^{c(\lambda) + 1}_{i(\lambda) + s_{c(\lambda)} + 1 - s_{c(\lambda)}}, \ldots, B^{c(\lambda) + r(\lambda) - 1}_{i(\lambda) + s_{c(\lambda)} + r(\lambda) - 1 - s_{c(\lambda)}}, \]

by \(j(\lambda) = 1 \). This is a well defined shifted symbol \(B'_{(s, h)} \). Thus there exists a unique \(l \)-partition \(\lambda^- \vdash \lambda \) such that \(B_{(s, h)}(\lambda^-) = B'_{(s, h)} \).

4. By construction, \(B'_{(s, h)} \) is standard so \(\lambda^- \) is cylindric.

Using this, we can produce a sequence of cylindric multipartitions \(\lambda[k] \) with \(k = 1, \ldots, m + 1 \in \mathbb{N} \) such that \(\lambda[1] = \lambda, \lambda[m + 1] = \emptyset \) and \(\lambda[k + 1] = \lambda[k^-] \) for \(k = 2, \ldots, m \). Set \(j_k := j(\lambda[k]) - h \) and \(a_k := r(\lambda[k]) \) for \(k = 1, \ldots, m \). Then note that we have:

\[\lambda[m + 1] \xrightarrow{j_{m+1} \cdots j_2 \cdots j_1} \lambda[1]. \]

We have thus defined two sequences of integers \((j_1, \ldots, j_k) \) and \((a_1, \ldots, a_k) \). Then we can define

\[a_{\lambda} := j_1^{(a_1)} j_2^{(a_2)} \cdots j_m^{(a_m)} \emptyset. \]

By induction, our construction implies that we have:

\[a_{\lambda} = \lambda + \sum_{\lambda \triangleright \mu} b_{\mu, \lambda} v(\mu). \]

The proof is exactly the same as in [6, Prop 4.6].) Note that if \(b_{\mu, \lambda}(v) \neq 0 \) then the multiset of elements appearing in \(B_{s, h}(\mu) \) is the same as the one of \(B_{s, h}(\lambda) \) (for \(h \) large enough). When \(\lambda \) runs the set of all cylindric multipartitions, these elements provide a basis for \(\mathcal{V}(s) \) and an algorithm for the computation of the canonical basis (see below or [5, Ch. 6]). This, in turn, implies that if \(d_{\mu, \lambda}(v) \neq 0 \) then the multiset of elements appearing in \(B_{s, h}(\mu) \) is the same as the one of \(B_{s, h}(\lambda) \) (for \(h \) large enough) and we have:

\[b_{\lambda} = \lambda + \sum_{\lambda \triangleright \mu} d_{\mu, \lambda}(v)(\mu). \]
Example 4.7. Let $s = (0, 0, 1)$ and $\lambda = (2, 2, 2, 2, 2, 1)$, for $h = 3$, we get the following symbol:

$$
\mathfrak{B}_{((0,0,1),3)}(\lambda) = \begin{pmatrix}
0 & 2 & 4 & 5 \\
0 & 3 & 4 \\
0 & 3 & 4
\end{pmatrix}
$$

which is standard. We begin with $c(\lambda) = 0$ and $j(\lambda) = 4$. Then we have $r(\lambda) = 2$. The new symbol is

$$
\begin{pmatrix}
0 & 2 & 4 & 5 \\
0 & 2 & 4 \\
0 & 2 & 4
\end{pmatrix}
$$

which is the symbol $\mathfrak{B}_{((0,0,1),3)}(\lambda[2])$ with $\lambda[2] = (2, 1, 2, 1, 2, 2, 1)$. Then we have $c(\lambda[2]) = 0$, $j(\lambda[2]) = 4$, $r(\lambda[2]) = 3$ and we get the symbol:

$$
\begin{pmatrix}
0 & 2 & 3 & 5 \\
0 & 2 & 3 \\
0 & 2 & 3
\end{pmatrix}
$$

which is the symbol $\mathfrak{B}_{((0,0,1),3)}(\lambda[3])$ with $\lambda[3] = (1, 1, 1, 2, 1, 1)$. Continuing in this way, keeping the notation of the above remark, we obtain

$$\lambda[4] = (1, 1, 2, 1), \quad \lambda[5] = (0, 0, 2), \quad \lambda[6] = (0, 0, 1), \quad \lambda[7] = \emptyset.$$

4.8. Following [13, §6.25], the above construction provides an algorithm for the computation of the canonical basis of $V(s)$: The (modified) LLT algorithm. This is done recursively as follows. Let $n \in \mathbb{N}_0$. For all $k < n$, assume that we have constructed all the canonical basis elements

$$\{b_\lambda \mid \lambda \in \Phi_s(k)\}.$$

Now, let $\lambda \in \Phi_s(n)$. We want to compute b_λ.

1. We set $c_\lambda = f_{j(\lambda), -h} b_\lambda$ and we have $c_\lambda = c_\lambda$.

2. The element b_λ is known by induction. Again, by the above construction, we have

$$c_\lambda = \lambda + \sum_{\lambda > \nu} \hat{d}_{\nu, \lambda}(v)\nu,$$

for Laurent polynomials $\hat{d}_{\nu, \lambda}(v)$ with $\hat{d}_{\lambda, \lambda}(v) = 1$ and we obtain

$$b_\lambda = c_\lambda - \sum_{\lambda > \nu} \alpha_{\nu, \lambda}(v)b_\nu,$$

for some Laurent polynomials $\alpha_{\nu, \lambda}(v)$ such that $\alpha_{\nu, \lambda}(v) = \alpha_{\nu, \lambda}(v^{-1})$.

3. We find the greatest multipartition $\nu \neq \lambda$ with respect to \triangleright such that $\hat{d}_{\nu, \lambda}(v) \neq 0$. If no such multipartitions exist, then we have $c_\lambda = b_\lambda$. Otherwise, $\alpha_{\nu, \lambda}(v)$ is the unique bar invariant Laurent polynomial such that the coefficients of $\alpha_{\nu, \lambda}(v)$ and $\hat{d}_{\nu, \lambda}(v)$ associated to the v^i with $i \leq 0$ are the same. We then replace c_λ with the bar invariant element $c_\lambda - \alpha_{\nu, \lambda}(v)b_\nu$ and we repeat the last step until all of the coefficients $\hat{d}_{\nu, \lambda}(v)$ belong to $v\mathbb{Z}[v]$ for $\lambda \neq \nu$.

8
5 The main results

The first main result of this paper is the following theorem concerning the computation of the coefficients of the canonical basis elements for irreducible highest weight \(U_c(\mathfrak{sl}_\infty) \)-modules.

Theorem 5.1. Assume that \(\lambda \) and \(\mu \) are \(l \)-partitions of rank \(n \) and assume that \(\mu \) is cylindric. Then we have \(d_{\lambda, \mu}(v) = 0 \) unless \(\mu \geq \lambda^R \) while \(d_{\lambda, \mu}(v) = v^{R(\lambda)} \).

The strategy for the proof of this theorem is modeled on the one presented in [4]. However, the proofs of the preparatory results we need here are of course different than the ones given in [4]. The first lemma is the analogue of [4, Lemma 2.3].

Lemma 5.2. Let \(\lambda = (\lambda^0, \ldots, \lambda^{l-1}) \vdash n \) and \(\mu = (\mu^0, \ldots, \mu^{l-1}) \vdash n \). Assume that \(\mu \) is cylindric and that \(\mu^- \not\xrightarrow{j,k} \mu \). Let \(\nu \) be a partition of \(n - k \) such that \(\nu \not\xrightarrow{j,k} \lambda \) and \(\mu^- \supseteq \nu^R \). Then \(\mu \geq \lambda^R \) with equality only if \(\mu^- = \nu^R \).

Proof. Assume that we have
\[
\mu^0 = \ldots = \mu^{c(\mu) - 1} = \emptyset \quad \text{and} \quad \mu^{c(\mu)} \neq \emptyset.
\]
Then, by construction, we have that
\[
\mathfrak{B}_{s,h}(\mu)^d = (\mathfrak{B}_{s,h}(\mu^-)^d \setminus \{j + h - 1\}) \cup \{j + h\}
\]
for \(d = c(\mu), \ldots, c(\mu) + k - 1 \). Similarly, by the definition of the regularization, we have that
\[
\mathfrak{B}_{s,h}(\lambda)^R d = (\mathfrak{B}_{s,h}(\nu^R)^d \setminus \{j + h - 1\}) \cup \{j + h\}
\]
for elements \(d \in \{r_1, \ldots, r_k\} \subset \{0, \ldots, l - 1\} \). As we have \(\mu^- \geq \nu^R \), we deduce that:
\[
(\nu^R)^0 = \ldots = (\nu^R)^{c(\mu) - 1} = \emptyset.
\]
We have to check that \(r_i \geq c(\mu) \) for all \(i \in \{1, \ldots, k\} \). So let us assume that we have \(r_1 < c(\mu) \) (without loss of generality). Thus, we have
\[
\mathfrak{B}_{s,h}(\nu^R)^{r_1} = 0 - 1 + s_{r_1} + h = j + h - 1
\]
which implies that \(j = s_{r_1} \). Thus, we deduce that \(j + h = s_{c(\mu)} + h \in \mathfrak{B}_{s,h}(\mu)^{c(\mu)} \). As \(j - 1 \notin \mathfrak{B}_{s,h}(\mu)^{c(\mu)} \) by the construction of \(\mu \), we deduce that \(i(\mu) > s_{c(\mu)} - s_{r_1} + 1 \). However this implies that \(\mathfrak{B}_{s,h}(\mu) \) is not standard. Indeed, we have in this case \(\mathfrak{B}_{s,h}(\mu)^{c(\mu)} \supseteq \mathfrak{B}_{s,h}(\mu)^{c(\mu)}_{s_{r_1} + s_{c(\mu)}} \). This a contradiction because \(\mu \) is cylindric.

Assume now that we have the equality \(\mu = \lambda^R \), this implies that \(\{r_1, \ldots, r_k\} = \{c(\mu), \ldots, c(\mu) + k - 1\} \). Thus we also have \(\mu^- = \nu^R \) which concludes the proof. \(\square \)

The second lemma is the analogue of [4, Prop 2.5].

Lemma 5.3. Let \(\lambda \) be a cylindric multipartition and let \(\mu \) be a multipartition such that \(\mu^R = \lambda \). Let \(\mu^- \) be a multipartition of \(n - k \) such that \(\mu^- \not\xrightarrow{j,k} \mu \) for some \(j \in \mathbb{Z} \) and \(k \in \mathbb{N} \) and such that \((\mu^-)^R = \lambda^R \) then the coefficient of \(\mu \) in \(\mu^- \) is \(v^{R(\mu^R) - R(\mu^-)} \).

Proof. Consider a shifted symbol \(\mathfrak{B}_{(s,h)}(\mu^-) \). Let \((i_1, c_1), \ldots, (i_m, c_m) \) be all the elements of \(\mathbb{N} \times \{0, 1, \ldots, l - 1\} \) such that
\[
\mathfrak{B}_{(s,h)}(\mu^-)^{i_1} = \ldots = \mathfrak{B}_{(s,h)}(\mu^-)^{i_m} = j + h - 1.
\]
By hypothesis, we have \(m \geq k \) and one can assume without loss of generality that:

\[
\mathfrak{B}_{(s,h)}(\mu)^c_i = \begin{cases}
 j + h & \text{if } (i_1, c) = (i, c) \text{ for one } t \in \{1, \ldots, k\} \\
 \mathfrak{B}_{(s,h)}(\mu^-)^c_i & \text{otherwise}
\end{cases}
\]

First, we easily see that for all \((i, c)\) such that \(\mathfrak{B}_{(s,h)}(\mu^-)^c_i \notin \{j + h - 1, j + h\} \) we have

\[
R(\mu^-)_{(i,c)} = R(\mu)_{(i,c)}.
\]

Let now \((i, c)\) be such that

\[
\mathfrak{B}_{(s,h)}(\mu^-)^c_i = j + h - 1.
\]

- Assume that \(c \neq c_t \) for all \(t \in \{1, \ldots, k\} \). Then we have \(\mathfrak{B}_{(s,h)}(\mu)^c_i = j + h - 1 \). We claim that we have:

\[
R(\mu)_{(i,c)} - R(\mu^-)_{(i,c)} = \{\text{number of integers } t \in \{1, \ldots, k\} \text{ such that } c < c_t\}.
\]

We need to show that if \(c < c_t \) then we have

\[
\mathfrak{B}(\mu^c)^c_{i+s_{c_t}-s_{c^t}} > \mathfrak{B}(\mu^-)^c_i.
\]

Assume to the contrary that \(\mathfrak{B}(\mu^-)^c_{i+s_{c_t}-s_{c^t}} \leq \mathfrak{B}(\mu^-)^c_i \), then by the process of regularization, in the construction of \(\mathfrak{B}(s,h)(\lambda^-) \), the number \(\mathfrak{B}(s,h)(\mu^-)^c_i = j + h - 1 \) is send to a row \(c' \) of the symbol which is greater that the row containing \(\mathfrak{B}(s,h)(\mu^-)^c_i = j + h - 1 \). This is impossible by the construction of \(\lambda^- \).

- Assume that \(c = c_t \) for \(t \in \{1, \ldots, k\} \). Then we have \(\mathfrak{B}_{(s,h)}(\mu)^c_i = j + h \). We claim that we have

\[
R(\mu)_{(i,c)} = R(\mu^-)_{(i,c)}.
\]

This comes from the fact that if there exist \(c' > c \) such that \(c' \neq c_s \) for \(s \in \{1, \ldots, k\} \) and

\[
\mathfrak{B}(\mu^-)^c_{i+s_{c_t}-s_{c^t}} > \mathfrak{B}(\mu^-)^c_i,
\]

then \(j + h - 1 \notin \mathfrak{B}_{(s,h)}(\mu^-)^c \) which follows from the construction of \(\lambda^- \).

Now assume that \((i, c)\) is such that

\[
\mathfrak{B}_{(s,h)}(\mu^-)^c_i = j + h.
\]

We follow the same kind of reasoning as above by showing that if \(c_t > c \) then we have:

\[
\mathfrak{B}(\mu^-)^c_{i+s_{c_t}-s_{c^t}} > \mathfrak{B}(\mu^-)^c_i.
\]

We deduce that:

\[
R(\mu^-)_{(i,c)} - R(\mu)_{(i,c)} = \{\text{number of integers } t \in \{1, \ldots, k\} \text{ such that } c < c_t\}
\]

Now, we use the formula in §4.2 to deduce the result, we have:

\[
N_j(\mu^-, \mu) = \sum_{1 \leq i \leq k} \left(\{\text{number of integers equals to } j + h - 1 \text{ in } \mathfrak{B}_{(s,h)}(\mu)^c \text{ with } c \leq c_t\} \right.
\]

\[
- \{\text{number of integers equals to } j + h \text{ in } \mathfrak{B}_{(s,h)}(\mu^-)^c \text{ with } c \leq c_t\}
\]

\[
= \sum_{c \in \{0, \ldots, l-1\}} \{\text{number of integers } t \in \{1, \ldots, k\} \text{ s.t. } c < c_t \text{ and } j + h - 1 \in \mathfrak{B}_{(s,h)}(\mu)^c\}
\]

\[
- \sum_{c \in \{0, \ldots, l-1\}} \{\text{number of integers } t \in \{1, \ldots, k\} \text{ s.t. } c < c_t \text{ and } j + h \in \mathfrak{B}_{(s,h)}(\mu)^c\}
\]

\[
= R(\mu) - R(\mu^-).
\]

\[\square \]
Remark 5.4. In [12], B. Leclerc and H. Miyachi have given an explicit closed formula for the elements of the canonical bases for irreducible highest weight modules of level \(l = 2 \). This formula also uses the notion of symbols. When \(l > 2 \), these element are more difficult to compute because their are non monomial in terms of the Chevalley operators (contrary to the case \(l = 2 \)). It is easy to check that our formula for the above composition numbers are consistent with the ones of Leclerc-Miyachi in this particularly case.

5.5. Proof of Theorem 5.1. The proof is exactly the same as in [4, Thm 2.2]. We give it for the convenience of the reader. We argue induction on \(n \in \mathbb{N} \) and on the dominance order. When \(n = 0 \) or when \(\mu \) is minimal with respect to \(\succeq \), there is nothing to do. So let us assume that \(n > 0 \) and that we have a cylindric multipartition \(\mu \) of rank \(n \). By induction, the result holds when \(\mu \) is replaced with \(\mu^- \). Assume that we have \(\mu^- \xrightarrow{j,k} \mu \) for \(j \in \mathbb{Z} \) and \(k \in \mathbb{N} \). Then we have:

\[
\sum_{\mu \succcurlyeq \lambda} d_{\lambda,\mu}(v) \lambda.
\]

We will prove the property of the theorem for the numbers \(d_{\lambda,\mu}(v) \) and then deduce the result for the numbers \(d_{\lambda,\mu}(v) \). Assume that \(d_{\lambda,\mu}(v) \neq 0 \). Then there exists \(\nu \xrightarrow{i} n - k \) such that \(d_{\nu,\mu}(v) \neq 0 \) and such that \(\nu \xrightarrow{j,k} \lambda \). By induction, this implies that \(\nu \geq \nu^R \). We can then apply Lemma 5.2 which implies that \(\mu \geq \lambda^R \).

Now let us assume that \(\lambda^R = \mu \). If \(\nu \xrightarrow{i} n \) is such that \(d_{\nu,\mu}(v) \neq 0 \) and \(\nu \xrightarrow{j,k} \lambda \) then by induction, we have \(\nu^R \geq \mu^- \). Then we obtain \(\nu^R = \mu^- \). Thus, the coefficient \(\hat{d}_{\lambda,\mu}(v) \) equals \(\hat{d}_{\nu,\mu}(v) \) times the coefficient of \(\lambda \) in \(f_j(n) \nu \). By Lemma 5.3 and by induction, this coefficient is \(v^{R(\lambda)} \). Hence, we have shown that \(\hat{d}_{\lambda,\mu}(v) \) is zero unless \(\mu \geq \lambda^R \) and \(\hat{d}_{\lambda,\mu}(v) = v^{R(\lambda)} \). The LLT algorithm in §4.8 implies that \(d_{\lambda,\mu}(v) = \hat{d}_{\lambda,\mu}(v) + \sum_{\xi \prec \mu} \alpha_{\xi,\mu}(v) d_{\lambda,\xi}(v) \). Now assume that \(\mu \) is not greater than \(\lambda^R \) with respect to the dominance order. This implies that for all \(\xi \xrightarrow{i} n \) such that \(\xi \prec \mu \), \(\xi \) is not greater than \(\lambda \). By induction, we have \(d_{\lambda,\xi}(v) = 0 \). Thus we obtain \(d_{\lambda,\mu}(v) = \hat{d}_{\lambda,\mu}(v) \) and the result follows. This concludes the proof.

6 Regularization for Ariki-Koike algebras

We now present consequences on the representation theory of Ariki-Koike algebras.

6.1. Let \(s = (s_0, \ldots, s_{l-1}) \in S^l \) and let \(\eta \in \mathbb{C} \). We consider the associative \(\mathbb{C} \)-algebra \(\mathcal{H}(s) \) generated by \(T_0, \cdots, T_{l-1} \) subject to the relations \((T_0 - \eta^{s_0}) \cdots (T_0 - \eta^{s_{l-1}}) = 0, (T_i - \eta)(T_{i+1} + 1) = 0 \), for \(1 \leq i \leq n \) and the type \(B \) braid relations

\[
(T_0 T_1)^2 = (T_1 T_0)^2, \quad T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} (1 \leq i < n),
T_i T_j = T_j T_i (j \geq i + 2).
\]

\(\mathcal{H}(s) \) is called the Ariki-Koike algebra. Set \(e = +\infty \) if \(\eta \) is not a root of 1. Otherwise, \(e \) is the order of \(\eta \) as a root of 1. We assume that \(e \neq 1 \). \(\mathcal{H}(s) \) is non semisimple in general and its representation theory is usually studied through its decomposition matrix which we now define. By the works of Dipper, James and Mathas [2], one can construct a certain set of finite dimensional \(\mathcal{H}(s) \)-modules called Specht modules:

\[
\{ S^\lambda \mid \lambda \xrightarrow{i} n \}.
\]

The simple \(\mathcal{H}(s) \)-modules are indexed by a certain set of multipartitions called FLOTW multipartitions \(\Phi_{s,e}(n) \) (see [5, §5.7])

\[
\{ D^\mu \mid \mu \in \Phi_{s,e}(n) \}.
\]

If \(e = \infty \), we have \(\Phi_{s,e}(n) = \Phi_{s}(n) \), the set of cylindric multipartitions.
6.2. If $\lambda \vdash_1 n$ then one can consider the composition multiplicities $[S^\lambda : D^\mu]$, with $\mu \in \Phi_{s,e}(n)$. The resulting matrix:

$$D := ([S^\lambda : D^\mu])_{\lambda \vdash_1 n, \mu \in \Phi_{s,e}(n)},$$

is called the decomposition matrix of $H(s)$. The problem of computing the decomposition matrix has been solved by Ariki [1] by proving a generalization of a conjecture by Lascoux, Leclerc and Thibon. The theorem asserts that the decomposition numbers $[S^\lambda : D^\mu]$ with $\mu \in \Phi_{s,e}(n)$ corresponds to the coefficients of the canonical bases for an irreducible highest weight $U_v(\hat{sl}_{e})$-module (realized as submodules of the Fock space) evaluated at $v = 1$.

In the case $e = +\infty$, this decomposition numbers are thus the polynomials $d_{\lambda,\mu}(v)$ evaluated at $v = 1$. We obtain the following result.

Theorem 6.3. Assume that $e = +\infty$ and that λ and μ are l-partitions of rank n and assume that μ is cylindric. Then we have: $[S^\lambda : D^\mu] = 0$ unless $\mu \trianglerighteq \lambda^R$ while $[S^\lambda : D^{\lambda^R}] = 1$.

By results of several authors, the polynomials $d_{\lambda,\mu}(v)$ also have an interpretation in terms of the representation theory of Ariki-Koike algebras. They correspond to graded decomposition numbers (see [10]). Thus Theorem 5.1 can be interpreted as a graded analogue of the above regularization Theorem.

6.4. It is natural to ask what happen in the case where $e \in \mathbb{N}$. Here the main problem is to find a natural order on the set of multipartitions which is the analogue of the dominance order on partitions. A natural choice for it is the one used in [7]. Now, the decomposition matrices for Ariki-Koike algebras can be computed using the algorithm described in this paper and implemented in [8]. Let $e = 2$, $l = 2$, $s = (0,1)$ and $n = 6$ then for the 2-partitions $\lambda = (3,3)$, $\mu^1 = (4,2)$ and $\mu^2 = (2,4)$, we have $[S^\lambda : D^{\mu^1}] = [S^\lambda : D^{\mu^2}] = 1$ and there are no partition ν such that $[S^\lambda : D^{\nu}] \neq 0$ which are less than μ^1 and μ^2. Thus, an analogue of Theorem 6.3 is not available for these choices.

References

Address
Nicolas Jacon, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon FRANCE
njacon@univ-fcomte.fr