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On the regularization process for Ariki-Koike algebras

N. Jacon

Abstract

The aim of this note is to study a generalization of theorems by James and Fayers on the modular representations

of the symmetric group and its Hecke algebra to the case of the complex reflection groups of type G(l, 1, n) and the

associated Ariki-Koike algebra.

1 Introduction

One of the main and still open problem in the representation theory of finite groups is the explicit determina-
tion of the irreducible representations for the symmetric groups Sn, for n ∈ N, over a field of characteristic
p > 0. The main informations on these representations are contained in a fundamental object: the de-
composition matrix. By the works of James, the problem of computing this matrix may be attacked using
the representation theory of Hecke algebras. Indeed, James’ conjecture predicts that, in the case where
p > n2, the decomposition matrix of the symmetric group corresponds to the decomposition matrix of a
non semisimple deformation of the group algebra CSn: the Hecke algebra. Both matrices have their rows
labelled by the set of partitions of rank n (which itself labels the set of simple modules of CSn) where as
their columns are labelled by a certain subset of partitions called the set of p-regular partitions (which itself
labels the set of simple modules of FSn where car(F) = p).

An algorithm for the computation of the decomposition matrices for Hecke algebras over C is available.
This algorithm comes from a conjecture given by Lascoux, Leclerc and Thibon [11] and proved by Ariki [1].
It asserts that the decomposition matrix of the Hecke algebra over C is given by the evaluation at v = 1
of the matrix of the canonical basis for the basic representation of the quantum algebra Uv(ŝle). Recently,
several authors have shown that the matrix of the canonical basis itself (and not only its specialization at
v = 1) admits an interpretation in terms of “graded representation theory” of Hecke algebras (see [10] and
the references therein). This matrix can thus be called the v-decomposition matrix of the Hecke algebra.

A nice general property on these matrices has been revealed by James [9] (for the decomposition matrix of
the symmetric group) and Fayers [4] (for the v-decomposition matrix of the Hecke algebra). One can explicitly
associate to each partition λ of n a certain p-regular partition, the regularization of λ, and computes the
associated decomposition number. This result brings in a very important partial order on the set of partitions
which appears in many ways in the representation theory of the symmetric group: the dominance order.

This note is concerned with a generalization of the Hecke algebra of Sn: the Ariki-Koike algebra. We
present an analogue of James and Fayers’ results for the decomposition matrices of these algebras and for
the matrices of the canonical bases for the irreducible highest weight Uv(sl∞)-modules. The concept of
partitions is here replaced by the concept of “multipartitions”, the set of p-regular partitions by the set of so
called cylindric multipartitions and the partial order on partitions with the partial order on multipartitions.
The main results, Theorem 5.1 and Theorem 6.3 give the desired analogues of James and Fayers’ Theorems.
The paper will be organized as follows. In the first section, we introduce the main combinatorial objects we
will use in this paper: multipartitions and symbols and present some useful properties on them. Then we
define the notion of regularization of multipartitions. The third part is devoted to a brief exposition of the
representation theory of Uv(sl∞) using the theory of Fock spaces. All these notions are then used in the two
last parts to obtain our main results.
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2 Multipartitions ans symbols

In this part, we give the combinatorial definitions which are needed for presenting our main results.

2.1. Let l ∈ N>0. We denote

Sl :=
{
(s0, . . . , sl−l) ∈ Zl, | ∀i ∈ {0, . . . , l − 2}, si+1 ≥ si

}
.

Recall that a partition λ = (λ1, . . . , λr) of n ∈ N is an ordered sequence of weakly decreasing non negative
integers such that |λ| :=

∑
1≤i≤r λi = n. The integer hλ := max(i ≥ 0 | λi 6= 0) is called the height of λ

with the convention that hλ = 0 if and only if λ is ∅, the empty partition. A multipartition or l-partition of
n is an l-tuple of partitions λ = (λ0, . . . , λl−1) such that, for each i ∈ {0, 1, . . . , l − 1}, λi is a partition of
rank ni ∈ N and

∑
0≤i≤l−1 ni = n. If λ is a multipartition of n, we denote λ ⊢l n. The height of λ is the

non negative integer:
hλ := max(hλ0 , . . . , hλl−1),

and we have hλ = 0 if and only if λ is the empty multipartition, which is denoted by ∅. The dominance order
on multipartitions is defined as follows. Let λ := (λ0, . . . , λl−1) and µ := (µ0, . . . , µl−1) be two partitions of
n then we denote:

µD λ ⇐⇒ ∀c ∈ {0, . . . , l− 1}, ∀k ∈ N,
∑

0≤i<c

|λi|+
∑

1≤j≤k

λc
j ≥

∑

0≤i<c

|µi| +
∑

1≤j≤k

µc
j ,

where the partitions are considered with an infinite number of empty parts.

2.2. Let s = (s0, . . . , sl) ∈ Sl. We now define the notion of shifted symbol. Following [5, §5.5.5], let
β = (β1, . . . , βk) be a sequence of integers and let t be a positive integer. We set

β(s) := (0, 1, . . . , t− 1, β1 + t, . . . , βk + t).

It is a sequence of rational numbers with exactly k + t elements. For i = 0, 1, . . . , l − 1, let hi be the height
of the partitions λi. We consider the following sequence of rational numbers:

βi = (λi
hi − hi + hi, . . . , λi

j − j + hi, . . . , λi
1 − 1 + hi).

This is a sequence of strictly increasing integers if and only if λi is a partition. Now, for i = 0, 1, . . . , l − 1,
we put

hci = hi − si and hcλ = max(hc0, . . . , hcl−1).

Let h be an integer such that h ≥ hcλ + 1. The shifted s-symbol of λ of size h is the family of sequences

B(m,h)(λ) = (B0, . . . ,Bl−1),

such that for j = 1, . . . , l
B

j = (βj(h− hcj)).

Each sequence B
j contains exactly h+ sj elements (Bj

h+sj
, . . . ,Bj

1).

2.3. A shifted symbol is usually represented as (and identified with) an l-row tableau where the c-th row
(starting from the bottom) is B

c (see [5, §5.5.5]). It is written as follows:

B(s,h)(λ) =




B
l−1
h+sl−1

. . . . . . B
l−1
2 B

l−1
1

B
l−2
h+sl−2

. . . . . . B
l−2
1

. . . . . . . . .
B

0
h+s0

. . . B
0
1


 .
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In particular, the ith column (starting from the right) of B(s,h)(λ) contains exactly l − c(i) elements where
c(i) = min(k ∈ {0, 1, . . . , l − 1} | i+ sk − sl−1 > 0) and this column is given as follows:




B
l−1
i

B
l−2
i+sl−2−sl−1

. . .

B
c(i)
i+sc(i)−sl−1


 .

It is easy to recover the multipartition λ from the datum of an arbitrary shifted symbol. Similarly, one
can also easily recover s ∈ Zl modulo a translation by an element (x, . . . , x) ∈ Zl.

Example 2.4. With λ = (3, 2.2.2, 2.1) and s = (0, 0, 2), if we take h = 5 we obtain

B((0,0,2),5)(λ) =




0 1 2 3 4 6 8
0 1 4 5 6
0 1 2 3 7


 .

With s = (0, 1, 2, 3) and λ = (3.1, 1.1, 2.1.1, 3) and h = 3, the shifted symbol is as follows:

B((0,1,2,3),3)(λ) =




0 1 2 3 4 8
0 1 3 4 6
0 1 3 4
0 2 5


 .

3 Regularization of multipartitions

In this section, after having fixed an element in Sl, we associate to each multipartition another one which
belongs to a certain class of multipartitions: the cylindric multipartitions.

Definition 3.1. Assume that s ∈ Sl. A shifted symbol B(s,h)(λ) is called standard if and only in each
column of B(s,h)(λ), the numbers weakly decrease from top to bottom.

Example 3.2. The first symbol in Example 2.4 is not standard where as the second is. Let now s = (0, 1, 2)
and λ = (3.1, 2.2.1, 2.1). If we take h = 5 we obtain

B((0,1,2),5)(λ) =




0 1 2 3 4 6 8
0 1 2 4 6 7
0 1 2 4 7




This symbol is standard.

Definition 3.3. Assume that s = (s0, . . . , sl−1) ∈ Sl then the multipartition λ = (λ0, . . . , λl−1) is called
cylindric if for every c = 0, . . . , l − 2 and i ≥ 1, we have λc

i ≥ λc+1
i+sc+1−sc

(the partitions are taken with an

infinite number of empty parts). We denote by Φs the set of cylindric multipartitions associated to s ∈ Sl

and by Φs(n) the set of cylindric multipartitions of rank n.

Proposition 3.4. Let s ∈ Sl, λ ⊢l n and let B(s,h)(λ) be an associated shifted symbol. Then λ is cylindric

if and only if B(s,h)(λ) is standard.

Proof. For all relevant i ∈ N and c ∈ {0, 1, . . . , l− 2}, we have:

λc
i − i + sc ≥ λc+1

i+sc+1−sc
− (i+ sc+1 − sc) + sc+1 ⇐⇒ λc

i ≥ λc+1
i+sc+1−sc

,

whence
B

c
i ≥ B

c+1
i+sc+1−sc

⇐⇒ λc
i ≥ λc+1

i+sc+1−sc
,

which is exactly what is needed to prove the assertion.
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3.5. We now explain the process of regularization for multipartitions. Let λ ⊢l n and let s = (s0, . . . , sl−1) ∈
Sl. Let B(s,h)(λ) be a shifted symbol associated to λ. Then for each column of the symbol, we reorder the
elements so that it is weakly decreasing from top to bottom. For example, the symbol in Example 2.4

B((0,1,1),4)(λ) =




0 1 3 9
0 4 5 7
0 2 3




becomes: 


0 1 3 9
0 2 3 7
0 4 5


 .

We claim that the resulting set is a well defined standard symbol of a multipartition B(s,h)(µ) = (B0, . . . ,Bl−1).

Indeed, denote this new set by B = (B0, . . . ,Bl−1) and assume that there exist c ∈ {0, 1, . . . , l−1} and j ∈ N

such that
Bc
j+1 ≥ Bc

j .

Let A1 be the multiset of elements in the column of Bc
j which are less or equal than Bc

j in B(s,h)(λ). Let A2

be the multiset of elements in the column of Bc
j+1 which are greater or equal than Bc

j in B(s,h)(λ). Assume
that the column containing Bc

j+1 contains m elements. We know that in the columns of B, the numbers are
weakly decreasing from top to bottom. Thus, by the construction of B and the above assumption, we have
♯A1 ≥ l− c and ♯A2 ≥ m− l+ c+ 1. Now B(s,h)(λ) is a well defined symbol so each row contains elements
which are strictly increasing from left to right. This implies that the rows containing the elements of A1 in
the column of Bc

j and the rows containing the elements of A2 in the column of Bc
j+1 in B(s,h)(λ) must be

disjoint. So the sum ♯A1 + ♯A2 must be less or equal than m. This is not the case, so the result follows.

3.6. Let λ ⊢l n and let B(s,h)(λ) = (B0, . . . ,Bl−1) be an associated shifted symbol. For all c1 ∈ {0, 1, . . . , l−
1} and j1 ∈ {1, 2, . . . , h+ sc1}, we set

R(λ)(j1,c1) = ♯
{
c ∈ {0, 1, . . . , l − 1} | c > c1, B

c1
j1

< B
c
j1+sc−sc1

, B
c1
j1

/∈ B
c
}
,

and
R(λ) =

∑

0≤c≤l−1

∑

1≤j1≤h+sc

R(λ)(j1,c1).

Clearly, this number does not depend of the choice of h (and thus on the choice of the shifted symbol).

Definition 3.7. Let λ be a multipartition and let s = (s0, . . . , sl−1) ∈ Sl. Let Bs,h(λ) be the associ-

ated shifted symbol. There exists a cylindric multipartition λR such that Bs,h(λ
R) = Bs,h(λ)

R. This
multipartition is called the regularization of λ.

By construction, the regularization of a multipartition is a cylindric multipartition by Proposition 3.4.
It is also clear that the regularization of a cylindric multipartition is itself.

Example 3.8. Consider the 3-partition λ := (∅, ∅, 6.2). We set s = (0, 1, 1), h = 3. Then we have:

B((0,1,1),3)(λ) =




0 1 4 9
0 1 2 3
0 1 2


 .

We obtain

B((0,1,1),3)(λ) =




0 1 2 3
0 1 2 9
0 1 4


 .
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We have:

R(λ)(j,c) =

{
0 if (j, c) /∈ {(1, 0), (2, 1), (1, 1)}
1 if (j, c) ∈ {(1, 0), (2, 1), (1, 1)}

and so we have R(λ) = 3 . We can check that λ
R = (2, 6, ∅).

Example 3.9. Consider the 3-partition λ := (5, ∅, 2.1). We set s = (0, 1, 1), h = 3. Then we have:

B((0,1,1),3)(λ) =




0 1 3 5
0 1 2 3
0 1 7


 .

We obtain

B((0,1,1),3)(λ) =




0 1 2 3
0 1 3 5
0 1 7


 .

and we have R(λ) = R(λ)(2,1) = 1. Note that this symbol is standard and we have λR = (5, 2.1, ∅).

4 Action of Uv(sl∞) on the Fock space

4.1. Let v be an indeterminate and let Uv(sl∞) be the enveloping algebra of sl∞ with Chevalley generators
ej , fj and tj (j ∈ N), see for example [5, §6.1]. The simple roots and fundamental weights are denoted by
αk and Λk for k ∈ N respectivly. Let now s ∈ Sl and let Fs be the associated Fock space. This is the
Q(v)-vector space defined as follows:

Fs =
⊕

n∈Z≥0

⊕

λ⊢ln

Q(v)λ.

One can define an action of Uv(sl∞) which turns Fs into an integrable Uv(sl∞)-module.

4.2. Let β := (β1, . . . , βm) be a sequence of strictly increasing positive numbers. We write j ∈ β if the
number j appears in the sequence β and, and j /∈ β otherwise. In this case, we write β∪{j} for the sequence
of strictly positive numbers obtained by inserting the number j in β. Similarly, if j ∈ β then β \ {j} is
defined to be the sequence obtained from β by removing j.

Let λ ⊢l n and let B(s,h)(λ) be an associated shifted symbol. Let µ ⊢l n and let B(s,h)(µ) be an

associated shifted symbol (so we assume that h ≥ max(hcλ, hcµ) + 1.) Then we write

λ
j

−→
c

µ

if for all d ∈ {0, 1, . . . , l − 1}, we have

Bs,h(µ)
d =

{
Bs,h(λ)

d if d 6= c
(Bs,h(λ)

d \ {j + h− 1})) ∪ {j + h} if d = c

Let k ∈ N, we write:

λ
j:k
−→

(c1,...,ck)
µ,

if there exists a sequence of multipartitions

λ := λ[1], . . . ,λ[k],λ[k + 1] := µ,

such that for all i = 1, . . . , k, we have

λ[k]
j

−→
ck

λ[k + 1].
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Hence, we have:

Bs,h(µ)
d =

{
Bs,h(λ)

d if d 6= ci for all i = 1, . . . , k
(Bs,h(λ)

d \ {j + h− 1})) ∪ {j + h} if d = ci for i = 1, . . . , k

We also write λ
j:k
−→ µ if there exists a sequence (c1, . . . , ck) ∈ {0, 1, . . . , l − 1}k such that λ

j:k
−→

(c1,...,ck)
µ.

Finally, given λ and µ such that λ
j:k
−→

(c1,...,ck)
µ, we define the following number:

Nj(λ,µ) =
∑

1≤i≤k

(
{number of integers equals to j + h− 1 in B(s,h)(µ)

c with c ≤ ci}
−{number of integers equals to j + h in B(s,h)(λ)

c with c ≤ ci}

)

Example 4.3. Consider the 4-partition λ = (3.1, ∅, ∅, 6.2) and s = (0, 0, 1, 1). For h = 3, we get the symbol:

B((0,0,1,1),3)(λ) =




0 1 4 9
0 1 2 3
0 1 2
0 2 5


 .

We have
(3.1, ∅, ∅, 6.2)

3:2
−→
(0,1)

(3.2, 1, ∅, 6.2),

where the symbol of µ is:

B((0,0,1,1),3)(µ) =




0 1 4 9
0 1 2 3
0 1 3
0 3 5


 .

4.4. For our purpose, we only need to describe the action of the Chevalley generators fi for i ∈ Z and their

divided power f
(r)
j :=

f r
j

[r]v !
, for r ∈ N. This is given as follows. Let λ ⊢l n, let r ∈ N and let j ∈ Z, then we

have
f
(r)
j .λ =

∑

λ
j:r
−→µ

qNj(λ,µ)µ.

It is known that the Uv(sl∞)-submodule V (s) of Fs generated by the empty multipartition is an irreducible
highest weight module for Uv(sl∞).

4.5. Let Uv(sl∞)− be the subalgebra of Uv(sl∞) generated by the fi’s. We have a ring automorphism x 7→ x
of Uv(sl∞)− such that

f j = fj (j ∈ N), and v = v−1,

which induces a C-linear map v 7→ v on V (s) defined by:

v.∅ = v.∅.

Using this, one can define the canonical basis elements of V (s). They are elements of V (s) which are
parametrized by the set of cylindric multipartitions

{bλ | λ ∈ Φs},

and characterized by the following property:

∀λ ∈ Φs, bλ = bλ, bλ = λ +
∑

µ⊢ln

dµ,λ(v)µ,

for elements dµ,λ(v) ∈ vQ[v] with µ ⊢l n such that λ 6= µ.
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4.6. We now briefly explain an algorithm for computing the canonical bases of irreducible highest weight
Uv(sl∞)-modules. An analogue of this algorithm has already been described in [7] (and the proofs can be
found therein) in a more general setting but here it can be simplified here. Let λ = (λ0, . . . , λl−1) ⊢l n be
a non empty cylindric multipartition and let B(s,h) := B(s,h)(λ) be an associated shifted symbol. Denote

B(s,h) = (B0, . . . ,Bl−1). From this datum, we define a new multipartition λ− ⊢l n
′ < n together with two

integers j(λ) and r(λ).

1. Let c(λ) be the minimal integer such that λc(λ) is non empty. This means that there exists i(λ) ∈ N

such that
B

c(λ)
i(λ) > B

c(λ)
i(λ)+1 + 1.

Assume that i(λ) is minimal with this property and set

j(λ) := B
c(λ)
i(λ) .

2. Let r(λ) ∈ N be maximal such that

B
c(λ)
i(λ) = B

c(λ)+1
i(λ)+sc(λ)+1−sc(λ)

= . . . = B
c(λ)+r(λ)−1
i(λ)+sc(λ)+r(λ)−1−sc(λ)

= j(λ),

then we have r(λ) ≥ 1 and because λ is cylindric, by Proposition 3.4, we deduce that:

j(λ) > B
c(λ)+k−1
i(λ)+sc(λ)+k−1−sc(λ)+1 + 1

for all k = 1, . . . , r(λ).

3. Take the symbol obtained by replacing in B(s,h) all the elements

B
c(λ)
i(λ) = B

c(λ)+1
i(λ)+sc(λ)+1−sc(λ)

= . . . = B
c(λ)+r(λ)−1
i(λ)+sc(λ)+r(λ)−1−sc(λ)

= j(λ)

by j(λ) − 1. This is a well defined shifted symbol B
′
(s,h). Thus there exists a unique l-partition

λ− ⊢l n− r(λ) such that B(s,h)(λ
−) = B

′
(s,h).

4. By construction, B′
(s,h) is standard so λ− is cylindric.

Using this, we can produce a sequence of cylindric multipartitions λ[k] with k = 1, . . . ,m + 1 ∈ N such
that λ[1] = λ, λ[m+ 1] = ∅ and λ[k + 1] = λ[k]− for k = 2, . . . ,m. Set jk := j(λ[k])− h and ak := r(λ[k])
for k = 1, . . . ,m. Then note that we have:

λ[m+ 1]
jm:am
−→ λ[m]

jm−1:am−1
−→ . . .

j1:a1
−→ λ[1].

We have thus defined two sequences of integers (jm, . . . , j1) and (am, . . . , a1). Then we can define

aλ := f
(a1)
j1

f
(a2)
j2

. . . f
(am)
jm

.∅.

By induction, our construction implies that we have:

aλ = λ+
∑

λ⊲µ

bµ,λ(v)µ.

(the proof is exactly the same as in [6, Prop 4.6].) Note that if bµ,λ(v) 6= 0 then the multiset of elements
appearing in Bs,h(µ) is the same as the one of Bs,h(λ) (for h large enough). When λ runs the set of all
cylindric multipartitions, these elements provide a basis for V (s) and an algorithm for the computation of
the canonical basis (see below or [5, Ch. 6]). This, in turn, implies that if dµ,λ(v) 6= 0 then the multiset of
elements appearing in Bs,h(µ) is the same as the one of Bs,h(λ) (for h large enough) and we have:

bλ = λ+
∑

λ⊲µ

dµ,λ(v)µ.
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Example 4.7. Let s = (0, 0, 1) and λ = (2.2, 2.2, 2.2.1), for h = 3, we get the following symbol:

B((0,0,1),3)(λ) =




0 2 4 5
0 3 4
0 3 4




which is standard. We begin with c(λ) = 0 and j(λ) = 4. Then we have r(λ) = 2. The new symbol is




0 2 4 5
0 2 4
0 2 4




which is the symbol B((0,0,1),3)(λ[2]) with λ[2] = (2.1, 2.1, 2.2.1). Then we have c(λ[2]) = 0, j(λ[2]) = 4,
r(λ[2]) = 3 and we get the symbol: 


0 2 3 5
0 2 3
0 2 3




which is the symbol B((0,0,1),3)(λ[3]) with λ[3] = (1.1, 1.1, 2.1.1). Continuing in this way, keeping the notation
of the above remark, we obtain

λ[4] = (1, 1, 2.1), λ[5] = (∅, ∅, 2), λ[6] = (∅, ∅, 1), λ[7] = ∅.

4.8. Following [13, §6.25], the above construction provides an algorithm for the computation of the canonical
basis of V (s): The (modified) LLT algorithm. This is done recursively as follows. Let n ∈ N>0. For all
k < n, assume that we have constructed all the canonical basis elements

{bλ | λ ∈ Φs(k)}.

Now, let λ ∈ Φs(n). We want to compute bλ.

1. We set cλ = f
(r(λ))
j(λ)−h

bλ− and we have cλ = cλ.

2. The element bλ− is known by induction. Again, by the above construction, we have

cλ = λ+
∑

λ⊲ν

d̂ν,λ(v)ν ,

for Laurent polynomials d̂ν,λ(v) with d̂λ,λ(v) = 1 and we obtain

bλ = cλ −
∑

λ⊲ν

αν,λ(v)bν ,

for some Laurent polynomials αν,λ(v) such that αν,λ(v) = αν,λ(v
−1).

3. We find the greatest multipartition ν 6= λ with respect to ⊲ such that d̂ν,λ(v) 6= 0. If no such
multipartitions exist, then we have cλ = bλ. Otherwise, αν,λ(v) is the unique bar invariant Laurent

polynomial such that the coefficients of αν,λ(v) and d̂ν,λ(v) associated to the vi with i ≤ 0 are the
same. We then replace cλ with the bar invariant element cλ − αν,λ(v)bν and we repeat the last step

until all of the coefficients d̂ν,λ(v) belong to vZ[v] for λ 6= ν.
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5 The main results

The first main result of this paper is the following theorem concerning the computation of the coefficients of
the canonical basis elements for irreducible highest weight Uv(sl∞)-modules..

Theorem 5.1. Assume that λ and µ are l-partitions of rank n and assume that µ is cylindric. Then we

have dλ,µ(v) = 0 unless µD λR while dλ,λR(v) = vR(λ).

The strategy for the proof of this theorem is modeled on the one presented in [4]. However, the proofs
of the preparatory results we need here are of course different than the ones given in [4]. The first lemma is
the analogue of [4, Lemma 2.3].

Lemma 5.2. Let λ = (λ0, . . . , λl−1) ⊢l n and µ = (µ0, . . . , µl−1) ⊢l n. Assume that µ is cylindric and that

µ− j:k
−→ µ. Let ν be a partition of n− k such that ν

j:k
−→ λ and µ− D νR. Then µDλR with equality only if

µ− = νR.

Proof. Assume that we have

µ0 = . . . = µc(µ)−1 = ∅ and µc(µ) 6= ∅.

Then, by construction, we have that

Bs,h(µ)
d = (Bs,h(µ

−)d \ {j + h− 1})) ∪ {j + h}

for d = c(µ), . . . , c(µ) + k − 1. Similarly, by the definition of the regularization, we have that

Bs,h(λ
R)d = (Bs,h(ν

R)d \ {j + h− 1})) ∪ {j + h}

for elements d ∈ {r1, . . . , rk} ⊂ {0, . . . , l − 1}. As we have µ− D νR, we deduce that:

(νR)0 = . . . = (νR)c(µ)−1 = ∅.

We have to check that ri ≥ c(µ) for all i ∈ {1, . . . , k}. So let us assume that we have r1 < c(µ) (without
loss of generality). Thus, we have

Bs,h(ν
R)r11 = 0− 1 + sr1 + h = j + h− 1

which implies that j = sc1 . Thus, we deduce that j + h = sc1 + h ∈ Bs,h(µ)
c(µ). As j − 1 /∈ Bs,h(µ)

c(µ)

by the construction of µ, we deduce that i(µ) > sc(µ) − sr1 + 1. However this implies that Bs,h(µ) is not

standard. Indeed, we have in this case Bs,h(µ)
c(µ)
i(µ) > Bs,h(µ)

r1
i(µ)+sr1−sc(µ)

. This a contradiction because µ

is cylindric.
Assume now that we have the equality µ = λR, this implies that {r1, . . . , rk} = {c(µ), . . . , c(µ)+ k− 1}.

Thus we also have µ− = νR which concludes the proof.

The second lemma is the analogue of [4, Prop 2.5].

Lemma 5.3. Let λ be a cylindric multipartition and let µ be a multipartition such that µR = λ. Let µ−

be a multipartition of n− k such that µ− j:k
−→ µ for some j ∈ Z and k ∈ N and such that (µ−)R = λ− then

the coefficient of µ in f
(k)
j µ− is vR(µ)−R(µ−).

Proof. Consider a shifted symbol B(s,h)(µ
−). Let (i1, c1), . . . , (im, cm) be all the elements of N×{0, 1, . . . , l−

1} such that
B(s,h)(µ

−)c1i1 = . . . = B(s,h)(µ
−)cmim = j + h− 1.
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By hypothesis, we have m ≥ k and one can assume without loss of generality that:

B(s,h)(µ)
c
i =

{
j + h if (it, ct) = (i, c) for one t ∈ {1, . . . , k}
B(s,h)(µ

−)ci otherwise

First, we easily see that for all (i, c) such that B(s,h)(µ
−)ci /∈ {j + h− 1, j + h} we have

R(µ−)(i,c) = R(µ)(i,c).

Let now (i, c) be such that
B(s,h)(µ

−)ci = j + h− 1.

• Assume that c 6= ct for all t ∈ {1, . . . , k}. Then we have B(s,h)(µ)
c
i = j + h − 1. We claim that we

have:
R(µ)(i,c) −R(µ−)(i,c) = {number of integers t ∈ {1, . . . , k} such that c < ct}.

We need to show that if c < ct then we have

B(µ−)cti+sct−sc
> B(µ−)ci .

Assume to the contrary that B(µ−)cti+sct−sc
≤ B(µ−)ci , then by the process of regularization, in the

construction of B(s,h)(λ
−), the number B(s,h)(µ

−)ctit = j+h−1 is send to a row c′ of the symbol which
is greater that the row containing B(s,h)(µ

−)ci = j + h− 1. This is impossible by the construction of

λ
−.

• Assume that c = ct for t ∈ {1, . . . , k}. Then we have B(s,h)(µ)
c
i = j + h. We claim that we have

R(µ)(i,c) = R(µ−)(i,c).

This comes from the fact that if there exist c′ > c such that c′ 6= cs for s ∈ {1, . . . , k} and

B(µ−)c
′

i+sc′−sc′
> B(µ−)ci ,

then j + h− 1 /∈ B(s,h)(µ
−)c

′

which follows from the construction of λ−.

Now assume that (i, c) is such that
B(s,h)(µ

−)ci = j + h.

We follow the same kind of reasoning as above by showing that if ct > c then we have:

B(µ−)cti+sct−sct
> B(µ−)ci .

We deduce that:

R(µ−)(i,c) −R(µ)(i,c) = {number of integers t ∈ {1, . . . , k} such that c < ct}

Now, we use the formula in §4.2 to deduce the result, we have:

Nj(µ
−,µ) =

∑

1≤i≤k

(
{number of integers equals to j + h− 1 in B(s,h)(µ)

c with c ≤ ci}
−{number of integers equals to j + h in B(s,h)(µ

−)c with c ≤ ci}

)

=
∑

c∈{0,...,l−1}

{number of integers t ∈ {1, . . . , k} s.t. c < ct and j + h− 1 ∈ B(s,h)(µ)
c }

−
∑

c∈{0,...,l−1}

{number of integers t ∈ {1, . . . , k} s.t. c < ct and j + h ∈ B(s,h)(µ
−)c }

= R(µ)−R(µ−).
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Remark 5.4. In [12], B. Leclerc and H. Miyachi have given an explicit closed formula for the elements of the
canonical bases for irreducible highest weight modules of level l = 2. This formula also uses the notion of
symbols. When l > 2, these element are more difficult to compute because their are non monomial in terms
of the Chevalley operators (contrary to the case l = 2). It is easy to check that our formula for the above
decomposition numbers are consistent with the ones of Leclerc-Myiachi in this particularly case.

5.5. Proof of Theorem 5.1. The proof is exactly the same as in [4, Thm 2.2]. We give it for the
convenience of the reader. We argue induction on n ∈ N and on the dominance order. When n = 0 or when
µ is minimal with respect to D, there is nothing to do. So let us assume that n > 0 and that we have a
cylindric multipartition µ of rank n. By induction, the result holds when µ is replaced with µ−. Assume

that we have µ− j:k
−→ µ for j ∈ Z and k ∈ N. Then we have:

f
(k)
j bµ− = µ+

∑

µ⊲λ

d̂λ,µ(v)λ.

We will prove the property of the theorem for the numbers d̂λ,µ(v) and then deduce the result for the

numbers dλ,µ(v). Assume that d̂λ,µ(v) 6= 0. Then there exists ν ⊢l n− k such that dν,µ−(v) 6= 0 and such

that ν
j:k
−→ λ. By induction, this implies that µ− D νR. We can then apply Lemma 5.2 which implies that

µD λR.

Now let us assume that λR = µ. If ν ⊢l n is such that dν,µ−(v) 6= 0 and ν
j:k
−→ λ then by induction, we

have νR Dµ−. Then we obtain νR = µ−. Thus, the coefficient d̂λ,µ(v) equals d̂ν,νR(v) times the coefficient

of λ in f
(m)
j ν. By Lemma 5.3 and by induction, this coefficient is vR(λ). Hence, we have shown that d̂λ,µ(v)

is zero unless µD λ
R and d̂λ,λR(v) = vR(λ). The LLT algorithm in §4.8 implies that

dλ,µ(v) = d̂λ,µ(v) +
∑

ξ⊳µ

αξ,µ(v)dλ,ξ(v)

Now assume that µ is not greater than λR with respect to the dominance order. This implies that for
all ξ ⊢l n such that ξ ⊳ µ, ξ is not greater than λ. By induction, we have dλ,ξ(v) = 0. Thus we obtain

dλ,µ(v) = d̂λ,µ(v) and the result follows. This concludes the proof.

6 Regularization for Ariki-Koike algebras

We now present consequences on the representation theory of Ariki-Koike algebras.

6.1. Let s = (s0, . . . , sl−1) ∈ Sl and let η ∈ C. We consider the associative C-algebra H(s) generated by
T0, · · · , Tn−1 subject to the relations (T0 − ηs0 )...(T0 − ηsl−1) = 0, (Ti − η)(Ti + 1) = 0, for 1 ≤ i ≤ n and
the type B braid relations

(T0T1)
2 = (T1T0)

2, TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n),

TiTj = TjTi (j ≥ i+ 2).

H(s) is called the Ariki-Koike algebra. Set e = +∞ if η is not a root of 1. Otherwise, e is the order of η as a
root of 1. We assume that e 6= 1. H(s) is non semisimple in general and its representation theory is usually
studied through its decomposition matrix which we now define. By the works of Dipper, James and Mathas
[2], one can construct a certain set of finite dimensional H(s)-modules called Specht modules:

{
Sλ | λ ⊢l n

}
.

The simple H(s)-modules are indexed by a certain set of multipartitions called FLOTW multipartitions
Φs,e(n) (see [5, §5.7])

{Dµ | µ ∈ Φs,e(n)} .

If e = ∞, we have Φs,e(n) = Φs(n), the set of cylindric multipartitions.
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6.2. If λ ⊢l n then one can consider the composition multiplicities [Sλ : Dµ], with µ ∈ Φs,e(n). The
resulting matrix:

D := ([Sλ : Dµ])λ⊢ln,µ∈Φs,e(n),

is called the decomposition matrix of H(s). The problem of computing the decomposition matrix has been
solved by Ariki [1] by proving a generalization of a conjecture by Lascoux, Leclerc and Thibon. The theorem
asserts that the decomposition numbers [Sλ : Dµ] with µ ∈ Φs,e(n) corresponds to the coefficients of the

canonical bases for an irreducible highest weight Uv(ŝle)-module (realized as submodules of the Fock space)
evaluated at v = 1.

In the case e = +∞, this decomposition numbers are thus the polynomials dλ,µ(v) evaluated at v = 1.
We obtain the following result.

Theorem 6.3. Assume that e = +∞ and that λ and µ are l-partitions of rank n and assume that µ is

cylindric. Then we have: [Sλ : Dµ] = 0 unless µ⊲s λ
R while [Sλ : DλR

] = 1.

By results of several authors, the polynomials dλ,µ(v) also have an interpretation in terms of the rep-
resentation theory of Ariki-Koike algebras. They correspond to graded decomposition numbers (see [10]).
Thus Theorem 5.1 can be interpreted as a graded analogue of the above regularization Theorem.

6.4. It is natural to ask what happen in the case where e ∈ N. Here the main problem is to find a natural
order on the set of multipartitions which is the analogue of the dominance order on partitions. A natural
choice for it is the one used in [7]. Now, the decomposition matrices for Ariki-Koike algebras can be computed
using the algorithm described in this paper and implemented in [8]. Let e = 2, l = 2 , s = (0, 1) and n = 6

then for the 2-partitions λ = (3, 3), µ1 = (4, 2) and µ2 = (2, 4), we have [Sλ : Dµ1

] = [Sλ : Dµ2

] = 1
and there are no partition ν such that [Sλ : Dν ] 6= 0 which are less than µ1 and µ2. Thus, an analogue of
Theorem 6.3 is not available for these choices.
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