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EXTENSION OF ALE METHODOLOGY TO UNSTRUCTURED CONICAL

MESHES

Benjamin Boutin1, Erwan Deriaz2, Philippe Hoch∗, 3 and Pierre Navaro4

Abstract. We propose a bi-dimensional �nite volume extension of a continuous ALE method on
unstructured cells whose edges are parameterized by rational quadratic Bezier curves. For each edge,
the control point possess a weight that permits to represent any conic (see for example [LIGACH])
and thanks to [WAGUSEDE,WAGU], we are able to compute the exact area of our cells. We
then give an extension of scheme for remapping step based on volume �uxing [MARSHA] and self-
intersection �ux [ALE2DHAL]. For the rezoning phase, we propose a three step process based on
moving nodes, followed by control point and weight re-adjustment. Finally, for the hydrodynamic
step, we present the GLACE scheme [GLACE] extension (at �rst-order) on conic cell using the
same formalism. We only propose some preliminary �rst-order simulations for each steps: Remap,
Pure Lagrangian and �nally ALE (rezoning and remapping).

Résumé. Nous proposons une extension volumes �nis bi-dimensionnelle d'une méthode ALE con-
tinue sur des cellules non structurées dont les bords sont paramétrés par des courbes de Bézier
quadratiques rationnelles. Pour chaque arête, le point de contrôle possède un poids qui permet
de représenter n'importe quelle conique [LIGACH] et grâce à [WAGUSEDE,WAGU], nous pou-
vons calculer l'aire exacte de nos cellules. Pour la phase de remapping, on donne l'extension de
deux schéma, l'un basé sur le calcul de �ux de volumes [MARSHA] et l'autre par �ux avec auto-
intersection [ALE2DHAL]. Pour la phase de lissage de maillage, nous proposons un processus en
trois étapes basées sur le déplacement des noeuds, suivi de celui des points de contrôle puis �nale-
ment du réajustement du poids. En�n, pour la phase hydrodynamique, on présente l'extension du
schéma GLACE [GLACE] (à l'ordre un) sur les cellules coniques en utilisant le même formalisme.
Nous montrons seulement des simulations préliminaires à l'ordre 1 sur chaque étape : Remap,
Lagrange pur et ALE (rezoning et remapping).

Introduction

The prototype system of interest is the Euler system written in �ux forms. Written over a frame moving
with an arbitrary speed V, the evolution of volume, mass, momentum and total energy on a generic cell C(t)
writes (see [DUVAUT] [ALED] [EQU] [GLACE2D] [EUCCLHYD] [HdrPhMaire]):


Dt

∫
C(t)

1 dv − ∫
∂C(t)

V.N̂ ds = 0,
Dt

∫
C(t)

ρ dv +
∫
∂C(t)

ρ(U−V).N̂ ds = 0,
Dt

∫
C(t)

ρU dv +
∫
∂C(t)

(ρU⊗ (U−V) + P )N̂ ds = 0,
Dt

∫
C(t)

ρE dv +
∫
∂C(t)

(ρE(U−V) + PU).N̂ ds = 0, P (ρ, ε), ε internal energy, ε = E − 1
2 |U|2.

(1)
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Figure 1. Di�erent coordinate system at same time t, x = Φ(t,X) and x = Ψ(t, ξ). The
trajectory of a particule in Ωx is de�ned by d

dtx = V (t, x) (with x(0) = ξ).

Where Dt is de�ned by Dt

∫
C(t)

φdv =
∫
C(t)

∂tφdv +
∫
∂C(t)

φV.N̂ ds (where V and φ are written with

Eulerian coordinates). The speed V is decomposed into a physical and grid velocities: V = U−Ug, so the
resulting system is solved by a splitting separating �uid and grid motions.
In a �rst purely Lagrangian step V = U, only pressure appears in physical thermodynamical �ux:

DMAT
t

∫
C(t)

1 dv − ∫
∂C(t)

U.N̂ ds = 0,
DMAT
t

∫
C(t)

ρ dv = 0,
DMAT
t

∫
C(t)

ρU dv +
∫
∂C(t)

P N̂ ds = 0,
DMAT
t

∫
C(t)

ρE dv +
∫
∂C(t)

PU.N̂ ds = 0.

(2)

We recall that (2) is the semi-Lagrangian (or updated Lagrangian) form of Euler system, where all the spatial
quantities are written with Eulerian coordinates like (1), it corresponds to a local di�erential operator at
point (t,x) (x Eulerian coordinate):

dMAT
t φ = ∂φ

∂t + U.∇φ,
dMAT
t (φJ) = J

(
∂φ
∂t +∇.(φU)

)
,

J determinant of the Jacobian of Euler/Lagrange transformation.
DMAT
t

∫
C(t)

φdx =
∫
C(0)

(
J(dMAT

t φ) + φ∂tJ
)

dX, X Lagrangian coordinate.

(3)

The second part of the splitting V = −Ug gives the system of conservative advection equations:
DADV
t

∫
C(t)

1 dv +
∫
∂C(t)

Ug.N̂ ds = 0,
DADV
t

∫
C(t)

ρ dv +
∫
∂C(t)

ρUg.N̂ ds = 0,
DADV
t

∫
C(t)

ρU dv +
∫
∂C(t)

(ρU)Ug.N̂ ds = 0,
DADV
t

∫
C(t)

ρE dv +
∫
∂C(t)

ρEUg.N̂ ds = 0.

(4)

DADV
t is associated to grid velocity. Generally such systems are discretized on polygonal type cells. How-

ever, some problems involve accurate geometric description such as curved boundary of the domain itself,
discretization of a circular initial condition. Of course, it exists also non-stationary problem that will cer-
tainly be better approximated if geometry of control volumes does possess non null curvature (circles for
symmetries on polar radial �ows, interface curve between two materials, multi-material interfaces in mixed
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cells, etc ...).
We want to extend this �nite volume formalism (and then obtain higher genericity in geometric modeling) to
cells with weaker hypothesis on edge representation. Generally, for cells with three of four edges, the curvi-
linear edges parameterization can be obtained by high order �nite element such as P2, Q2 for Lagrangian
higher order (at least third order) hydrodynamics ; see also [FEV,SHUSHEN,RIB,NEWEX]. In our case,
we deal with arbitrary number of edges per cells and we apply a full ALE methodology not only to the
Lagrangian hydrodynamic part (2) but also for solving (4) with Ug 6= 0.
The paper is organized as follows, in the �rst section we make some essential description and geometric
properties of the quadratic rational Bezier curves that are used in other sections. Specially, we recall the
exact �ux formula in [WAGUSEDE,WAGU] used to compute the area of a cell with an arbitrary number
of conic edges, we then reinterpret the area in terms of nodal/control point contributions like in GLACE
formalism [GLACE] giving a �rst step toward the design of hydrodynamic conic GLACE scheme. The sec-
ond section is a direct application of such area formula to extend the remapping step of ALE method by
computing area swept by edges displacement [MARSHA]. For the self intersection based �ux, the formula
of [WAGUSEDE,WAGU] are not su�cient because we need an evaluation of the �ux over an arbitrary value
of the curve parameter, we then explain our extension. Some numerical examples of �rst-order scheme are
presented. The third section is the rezoning step of ALE on conic cells for which we propose to move the
control points after moving the nodes with standard (polygonal) algorithm. The control points are adjusted
in such a way that a conic cell is valid if the underlying logical polygonal is also. Moreover making the
weight of control points a (geometric) variable, the type of conic may change in this process. In the fourth
section, we construct the �rst-order GLACE hydrodynamic scheme, and show some numerical examples for
pure Lagrangian and ALE tests in the last section.

1. Computing exact area for arbitrary conic cells

In this part, we want to obtain an exact formula for the computation of area for arbitrary polygonal
curved cells with any edge number. This is of course the �rst step to build any �nite volume method. Let
X in R2 be the position of a point inside C̄(t), then

|C(t)| =
∫
C(t)

1 dv =
∫
C(t)

1
2

div X dv =
1
2

∫
∂C(t)

X.N̂ ds, N̂ unit normal, s curvilinear abscissa, (5)

where by de�nition s veri�es | ddsX| = 1 in (5). In the case where ∂C(t) can be continuously decomposed

into ne edges, each one being parameterized by a curve q ∈ [0, 1] 7→ Xe(q, t) ∈ R2. We impose the continuity
Xe(1, t) = Xe+1(0, t) (cell's boundary is closed Xne(1, t) = X1(0, t)) and the orientation to be trigonometric.
In the general case, q does not satisfy | ddqX| = 1 but to get an admissible parameterization, we need to

impose | ddqX| 6= 0 everywhere on the curve. For this re-parameterization, formula (5) then writes:

|C(t)| = 1
2

ne∑
e=1

(∫ 1

0

Xe.
(
d
dqX

e
)⊥
dq

)
. (6)

We emphasize that at this level, our constraints are the following:

1) Compute exactly this integral for a parameterization including straight polygonal, circular and par-
abolic cells as special cases.

2) Obtain a formula involving the control points in an explicit analytical form to get a formalism
of [GLACE].

We now describe the parameterization that ful�lls these two constraints.

1.1. Rational quadratic-Bezier parameterization

For computer graphic and applied geometry communities, it is a well known result that any conic segment
can be expressed by a rational quadratic Bezier curve, which is a special kind of NURBS (Non Uniform
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O (0, 0)

Xe(0, t)

Xe(1, t)
Xe+1(0, t)

Xe+1(1, t)

Xe(q, t)

Xe+1(q, t)

Figure 2. Decomposition of boundary integral for area computation.

Rational B-Spline). Straight segment to any conic section can be represented by this kind of parameterization
(see Figure 3 left):

Mω(q) =
M0(1− q)2 +M12ωq(1− q) +M2q

2

(1− q)2 + 2ωq(1− q) + q2
, q ∈ [0, 1]. (7)

The two parameters (M1, ω) are the control point and the associated weight (here ω ≥ 0) for a given logical
edge (M0,M2).

M0

(M1, ω)

M2

ω = 0

ω = +∞

ω = 0.5

ω = 1

ω = 3

M0

(M1, ω)

M2

Mω(q)

Figure 3. Left: Evolution of parameterization with respect to positive values of the pa-
rameter ω (all conic curves can be continuously represented), see property (4) below. Right:
Conic section representation with rational quadratic-Bezier parameterization for edges, �lled
region needs to be exactly computed.

We recall some properties presented in [LIGACH], that we will use in the following sections:

(1) The control simplex (M0,M1,M2) is none degenerate if and only if M1 is not aligned to logical edge
(M0,M2).

(2) Convex hull: the curved segment {Mω(q), q ∈ [0, 1]} lies inside the control simplex for ω ≥ 0.
(3) Endpoints interpolation:

Mω(0) = M0, Mω(1) = M2,
d
dqM

ω(0) = 2ωM0M1,
d
dqM

ω(1) = 2ωM1M2.

HenceMω(q) passes throughM0 andM2 and for ω > 0 the two straight lines passing at these points
respectively with directions d

dqM
ω(0) and d

dqM
ω(1) intersect at the control point M1.

(4) Conic type parameter, see Figure 3 left:
34



(a) ω = 0 : degenerate straight segment.
(b) 0 < ω < 1 : ellipse segment, and in the case where M1 is on the perpendicular bisector of

(M0,M2) and when ω := cos( θ2 ), circle segment is recovered, see Figure 4

M0

(M1, ω =
√

2
2 )

M2

θO

Figure 4. Circle recovered by special values of the couple (M1, ω), if O is the local �origin�
attached to edge : OM1 = R

ω (cos( θ2 ), sin( θ2 )), R = |OM0| = |OM2|.

(c) ω = 1 : parabolic segment.
(d) ω > 1 : hyperbolic segment, and when ω →∞ the conic segment tends to go through M1.

(5) Shoulder point, see Figure 5: S:=Mω(q = 1/2) is the middle point of the curved segment, it can
also be computed by:

S =
1
2

(Q0 +Q2), where Q0 =
1

1 + ω
(M0 + ωM1), Q2 =

1
1 + ω

(ωM1 +M2). (8)

The tangent line of Mω(q) at S passes through Q0 and Q2 and is parallel to (M0,M2), moreover S
is the point of the curve that maximizes the distance between the curve and (M0,M2).

M0

(M1, ω)

M2

S Q0

Q2

Figure 5. Shoulder point of rational quadratic Bezier curve (7).

(6) Implicit form: the implicit equation for Mω(q) = (xω(q), yω(q)) writes

λ1(x, y)2 − 4ω2λ0(x, y)λ2(x, y) = 0, (9)

where {λi(x, y)}i=0,1,2 correspond to the barycentric coordinates of the point (x, y) with respect to
the control simplex (M0,M1,M2).

1.2. Edge based formula

Computing (6) with rational quadratic Bezier parameterization (7) writes:

I =
1
2

∫ 1

0

(xω(q)
d

dq
yω(q)− d

dq
xω(q)yω(q)) dq, (10)

where (xω(q), yω(q)) are the cartesian coordinates of the point Mω(q). This integral can be decomposed in
two parts (see Figure 2):
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(1) the area between the curve Mω(q) and the segment (M0,M2) (see Figure 3 right). We denote
A(Mω(q),M0,M1,M2) this (exact) area and AT (M0,M1,M2) the (exact) area of the straight edges
control simplex.

(2) the area of the simplex (O,M0,M2) with straight edges: AT (O,M0,M2).

In [WAGU], the author gives a way to compute it when M0 = (0, 0) and M2 = (x2, 0) so that we need to
add this term to compute the integral (10), hence for arbitrary M0 and M2:

I = A(Mω(q),M0,M1,M2) +AT (O,M0,M2) = A(Mω(q),M0,M1,M2) +
1
2

det(OM0,OM2). (11)

We now recall the results in [WAGU] to compute A(Mω(q),M0,M1,M2). For each kind of conic (ω = 0
to ω →∞), there exists a function f(ω) such that:

A(Mω(q),M0,M1,M2) = f(ω) AT (M0,M1,M2). (12)

We give the details of f(ω) (see Figure 6):
(1) if ω = 0, then f(ω) = 0,

(2) if 0 < ω < 1, then f(ω) = 2ω
1−ω2

(
1√

1−ω2 atan(
√

1−ω
1+ω )− ω

2

)
,

(3) if ω = 1, then f(ω) = 2
3 ,

(4) if ω > 1, then f(ω) = ω
ω2−1

(
ω + 1√

ω2−1
log(ω −√ω2 − 1)

)
.

(13)

0 10 20
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0.4
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0.9933
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0.7
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Figure 6. Left: graph of the nonlinear function f(ω) weighting the area of simplex
(M0,M1,M2) in formula (12)(13), in abscissa weight ω. Right: zoom near (ω = 1, f(1) = 2

3 ).

Remark 1. (1) f(w) is a continuous strictly increasing function on [0,∞[ with value on [0, 1[.
(2) Using relation (12), we give the cell area with arbitrary number of edges, where r and r + 1 are the

logical endpoint and r + 1/2 is the control point.

|Cj | =
∑

(r,r+1)

sA(Mω
(r,r+1)(q),Mr,Mr+1/2,Mr+1) +

1
2

(xryr+1 − xr+1yr), (14)

where s is equal to -1 or +1, depending on the orientation of the control point on edge.
If Mr in Figure 7 corresponds to M0(e) in Figure 3 then s=1, else (if it corresponds to M2(e) in
Figure 3) then s=-1;
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Mr+1

(Mr+1/2, ωr+1/2)

Mr

(Mr−1/2, ωr−1/2)

Mr−1

�r,r+1

�
r−

1,r

�r+1/2,r+1 �r,r+1/2

� r−
1/

2,
r

�
r−

1
,r−

1
/
2

Cj

C
poly(r,r+1/2,r+1)
j

C
poly(r,r+1)
j

Figure 7. Generic cell Cj and its inclusion in the convex hull of logical polygonal with
(in red dashed line) and without (in green polyline) control point (here `a,b is the euclidean
distance between point a and b).

1.3. Nodal based formula

In this part, we want to express the formula (14) in terms of degrees of freedom (Mr, Mr+1 and
(Mr+1/2, ω)) de�ning the boundary of cell. We recall that in the case of polygonal (straight) cells, the

Mr+1

(Mr+1/2, ωr+1/2)

Mr

(Mr−1/2, ωr−1/2)

Mr−1

N
r+

1,r N
r,
r−

1

N
r+1/2,r+1

N
r,
r+

1
/
2

N
r−

1
/
2
,r

Nr−1,r−1/2

C
r+

1
/
2
,ω

j

C
r,
ω

j

C
r−

1/
2,
ω

j

Cj

Figure 8. Decomposition of vector Cdof,ω
j at degree of freedom (for short: dof = nodes

and control points) for conic cells, Cdof,ω
j = ∇Mdof |Cj |.

volume of cell can be expressed by (see e.g. [GLACE]):

|Cj | = 1
2

∑
r

Cr
j .OMr (15)

where Cr
j are geometric vectors de�ned at node r by: 1

2 (`r−1,rN̂r−1,r + `r,r+1N̂r,r+1), where vectors N̂r−1,r,

N̂r,r+1 are normal unit vectors, Nr−1,r, Nr,r+1 are non-normalized normal vectors (of length `r−1,r, `r,r+1),
they correspond to the opposite Nr,r−1, Nr+1,r in Figure 8.
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Another property is that Cr
j = ∇Mr |Cj | using homogeneity (with respect to nodes) of discrete formula giving

area |Cj | = Area(M1, ....,Mne), Area is such that Area(λM1, ...., λMne) = λdArea(M1, ....,Mne) ,(d is the
space dimension).
Now, for cells with conic edges, we get the following.

Proposition 2. (1) The formula of area expressed by edges contribution in (14) can be rewritten using
contribution of nodes, control points and weights (Mr and Mr+1/2 and ωr+1/2) see Figure 8, by
extension of (15) into:

|Cj | = 1
2

∑
r

Cr,ω
j .OMr +

∑
r+1/2

Cr+1/2,ω
j .OMr+1/2

 :=
1
2

∑
dof

Cdof,ω
j .OMdof (16)

(2) The expression of Cr,ω
j and Cr+1/2,ω

j are described below using notation and results of (13):

Cr,ω
j =

1
2
(
(1− f(ωr−1/2))Nr−1,r + (1− f(ωr+1/2))Nr,r+1 + f(ωr−1/2)Nr−1/2,r + f(ωr+1/2)Nr,r+1/2

)
, (17)

Cr+1/2,ω
j =

f(ωr+1/2)
2

(Nr,r+1/2 + Nr+1/2,r+1). (18)

Moreover, we have the following identities:{
For each cell Cj :

∑
r Cr,ω

j +
∑
e Cr+1/2,ω

j = 0,
for each internal node Mr :

∑
j Cr,ω

j = 0, for two adjacent cells j and k : Cr+1/2,ω
j + Cr+1/2,ω

k = 0.
(19)

Remark 3. This is a continuous ω-GLACE formalism going from Cpoly(r,r+1)
j to Cpoly(r,r+1/2,r+1)

j cell, see
Figure 7:

(1) For ω = 0, Cr+1/2,ω
j = 0, Cr,ω

j = 1
2 (Nr−1,r + Nr,r+1), so that for the last, we recover the classical

Cr
j of [GLACE] on polygonal cells Cpoly(r,r+1)

j .

(2) For ω →∞, Cr+1/2,ω
j → 1

2 (Nr,r+1/2 + Nr+1/2,r+1) and Cr,ω
j → 1

2 (Nr−1/2,r + Nr,r+1/2), so that for

both, we also recovered classical Cr
j of [GLACE] on polygonal cells Cpoly(r,r+1/2,r+1)

j .

Hence the continuity of f(ω) over R+ and properties (2) and (3) in section 1.1 imply that for ω ≥ 0, Cr+1/2,ω
j

and Cr,ω
j are varying continuously inside polygonal bounds de�ned by the values (1)(2) above.

2. Conservative flux based remapping on conic cells

We now focus on the numerical approximation of conservative advection equation see (4):

Dt

∫
C(t)

Qdv +
∫
∂C(t)

QUg.N̂ ds = 0. (20)

where Ug(t, x) is a given continuous velocity and Q = (1, ρ, ...) the conservative unknowns.
Integration of (20) over a time interval (tn, tn+1) gives

|C(tn+1)|Q̄n+1 = |C(tn)|Q̄n −
∫ tn+1

tn

(∫
∂C(t)

QUg.N̂ ds

)
dt, (21)

where Q̄(t) = 1
|C(t)|

∫
C(t)

Qdv, and for any t, all volumes |C(t)| are supposed to be strictly positive.

We recall that continuous conservative advection in ALE may be done by rezoning (which corresponds to
possess a �better� mesh at time tn+1 and therefore to know |C(tn+1)| in (21)) plus remapping phase.
The later needs to de�ne new �nite volume value Q̄n+1 on a grid for which we have done the following
operation.
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De�nition 4. The extended continuous rezoning is de�ned by a three steps process (see Figure 10):

(1) Nodes of mesh can move.
(2) Control point of edges can move.
(3) Control point weight can change ω(t) (conic segment type may change).

Remark 5. To take into account these three aspects, the speed in (20) must be decomposed into

Ug = Udisplacement + Urepresentation. (22)

The exact geometric problem see Figure 9 involves an exact conic/conic mesh intersection at each time
step, even if feasible, it is nearly hopeless in 3D and too expensive in any case. Moreover, this complex exact
geometric problem is not necessary to obtain a conservative scheme that satis�es a local maximum principle
(bound preserving).
We propose to extend two �rst-order local volume �uxing methods presented respectively in [MARSHA]

Figure 9. Exact geometric problem: computation of conic/conic mesh intersection between
old mesh (black) and new mesh (red) after moving nodes, control points and weight re-
adjustment.

and [ALE2DHAL] that approximate (21).

2.1. Single zone edge based �ux

The �rst-order extension of [MARSHA] is:

QNj |Cj |N = QOj |Cj |O +
∑
e

Q∗eδVe, (23)

where index O (resp. N) stands for Old (resp. New), δVe is the algebraic area swept by edge displacement
and Q∗e the �ux built in an upwind way. Note that to compute this area we just apply (14) or (16) over a
four edges cell (see Figure 10).
We can establish a maximum principle (local bound preserving scheme) for �rst-order scheme if we have the
CFL-like condition:

|Cj |O +
∑

e,δVe<0

δVe ≥ 0. (24)

If (24) is not ful�lled for a given cell j, we apply sub-cycling, until this constraint is reached (it does always
converge), this constraint ensures that QNj in (23) is a convex combination of neighboring old values QOk .
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M0(tn)

(M1(tn), ω(tn))

M2(tn)
M0(tn+1)

(M1(tn+1), ω(tn+1))

M2(tn+1)

area swept region

Figure 10. Left: Old cell (black) moves to new cell (red); Right: The area swept by edges
forms conic cells which can be computed exactly by (14) or (16).

2.1.1. Numerical basic test cases

Now, we show some numerical examples. In Figures 11 and 12, we do only one remapping step of character-
istic function, each one has the same displacement of vertices, only the weight is di�erent (Udisplacement = 0
and Urepresentation 6= 0 see (22)). In Figure 13, we apply a large displacements in such a way that (24) is not
satis�ed. In this case, we need 4 sub-cycling to guarantee positivity, note also that (Udisplacement 6= 0 and
Urepresentation 6= 0 see (22)).
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Figure 11. Left: Initial data and mesh, Final meshes and solutions of �rst-order remapping
scheme (23) for polygons (ω = 0) on center and ellipse (ω = 0.5) on the right.
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Figure 12. Final meshes and solutions of �rst-order remapping scheme (23) with initial
data and mesh Figure 11. From left to right, parabola (ω = 1), hyperbola (ω = 2), mixed.
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Figure 13. Large displacement �eld test for �rst-order �uxing scheme (23). Left: super-
position of meshes before/after (black/red) rezoning. Center: Initial mesh and data. Right:
Final mesh (with modi�cation of weights ω) and solution. Here sub-cycling is needed (4
cycles) because of large displacement, nevertheless maximum principle is still maintained.

2.1.2. Preservation of circular symmetry for non equi-angular sector

In this test case, the radial geometry is such that (r, θ) ∈ [0, 1]× [0, π/2]. The initial circular mesh is made
by 4 sectors and 10 equidistant layers. The i'th angular sector is computed by:

θ(i) =
iπ(1− cos( iπ

2ns ))
2ns

, where ns = 4. (25)

To obtain circles, we �rst set the weights w = 0 for those edges aligned to radial direction and w =
cos( (θ(i+1)−θ(i))

2 ) with control point M1 = R
w (cos( (θ(i+1)+θ(i))

2 ), sin( (θ(i+1)+θ(i))
2 )) for the others (see Figure

(4)). In this advection test case, we impose that the nodal displacement is done only in the radial direction,
and we re-adjust the control points in such a way that circles are recovered. The initial condition is constant

in each sector. For i'th sector u0 = (θ(i+1)+θ(i))
2 , see Figure (14).
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Figure 14. Initial circular mesh with non equi-angular sector (left) and initial condition (right).

We recall that circular heaviside function 1r<R0 or 1ax2+by2+cxy+dx+ey+f<R0 can be exactly represented on
our conical meshes.
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Figure 15. Left: Final mesh obtained after 5 radial displacement (solid) and initial mesh
(dashed), Right: Final solution, we recover exactly the initial data for each layer/sector.

We emphasize that in our case, in such radial circular test case, we have no geometric error that appear on
straight polygonal mesh.

2.2. Self-intersection edge based �ux

In this section, we want to extend the self-intersection �ux based on polygonal cells [ALE2DHAL]. This
is a re�nement of the previous �ux (23) based on sub-zone area computation. In case of an edge e rotating
on itself during rezoning, see Figure 16, two sub-areas δVe,1, δVe,2 are created, with δVe,1δVe,2 < 0.
The �rst-order extension of [ALE2DHAL] is:

QNj |Cj |N = QOj |Cj |O +
∑
e

#subareas∑
k

Q∗e,kδVe,k, (26)

where where index O (resp. N) stands for Old (resp. New) and Q∗e,k is the �ux built in an upwind way.

This is more accurate with respect to the geometric description than (23). We emphasize that this edge-
based formulation is less accurate but more robust than exact meshes intersection which is cell-based by
construction. We can establish a maximum principle (local bound preserving scheme) for �rst-order scheme

Z1
Z2

vol(Z1) = δVe,1

vol(Z2) = δVe,2

Figure 16. Self-intersection for straight polygonal: always at most one intersection point
and two sub-areas to compute.
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(see [ALE2DHAL] for polygons) if we have an other CFL-like condition (this constraint ensures that QNj in

(26) is a convex combination of neighboring old values QOk ):

|Cj |O +
∑
e

#subareas∑
k;δVe,k<0

δVe,k ≥ 0. (27)

As in the case of the scheme (23)(24), if (27) is not ful�lled for some cell, we apply sub-cycling. We then need

q2,2

q1,2

q2,1

q1,1
q2

q1

Figure 17. Self-intersection for arbitrary conic: at most two intersection points to compute,
depending on nodal/control point displacement and weight ω(t) evolution.

to extend the formula (12) of [WAGUSEDE,WAGU] to the case where we only integrate over a sub-interval
of (0,1), say (q1, q2) with 0 ≤ q1 < q2 ≤ 1, see Figure 19:

Iq1,q2 =
1
2

∫ q2

q1

(
x(q)

d

dq
y(q)− d

dq
x(q)y(q)

)
dq. (28)

We denote A(Mω(q),M0,M1,M2, q1, q2) the area between parameters q1 and q2, hence:

Iq1,q2 = A(Mω(q),M0,M1,M2, q1, q2) +AT (O,M(q1),M(q2)),

= A(Mω(q),M0,M1,M2, q1, q2) +
1
2

det(OM(q1),OM(q2)).
(29)

The natural extension of relation (12) is the following, by linearity and additivity, we suppose q1 = 0 and q2
is the arbitrary parameter q:

A(Mω(q),M0,M1,M2, 0, q) = (g(ω, q)− g(ω, 0)) AT (M0,M1,M2), (30)

where the function g(ω, q) is described below. Its computation is equivalent to �nd a primitive (not necessary
vanishing at q = 0 because of di�erence form) of the function 1

2 (x(q) ddqy(q)− d
dqx(q)y(q)) in (28).

Proposition 6. The primitive for arbitrary values of the parameter q in [0, 1] is given by:
(1) if ω = 0, then g(ω, q) = 0,

(2) if 0 < ω < 1, then g(ω, q) = ω
1−ω2

(
1√

1−ω2 atan(
√

1−ω
1+ω (2q − 1))− 2ωq+1

2+4(ω−1)q(1−q)

)
,

(3) if ω = 1, then g(ω, q) = 2
3q

3,

(4) if ω > 1, then g(ω, q) = ω
2(ω2−1)

(
1√
ω2−1

log(
√
ω+1−(2q−1)

√
ω−1√

ω+1+(2q−1)
√
ω−1

) + 2ωq+1
1+2(ω−1)q(1−q)

)
.

(31)

Remark 7. (1) The reader can check that g(ω, 1)− g(ω, 0) is equal to f(ω) in (13).
(2) For �xed q, the function g(ω, q)− g(ω, 0) is continuous in ω.
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Figure 18. Sub-area decomposition for conic self-intersection in case of only one intersec-
tion point.

M2

(M1, ω)

M0Mω(q)
(0 < q < 1)

Figure 19. Self-intersection computation: Primitive of conic at arbitrary value parameter
q gives the area of shaded region.

We emphasize that solving the problem of �nding the intersections of two conic segments is a fourth order
polynomial equation that can be solved by algebraic formula. Here, we do not use this approach and use an
iterative method that must be done at each time step (or at each sub-cycling phase).

(1) Localization: compute the �ux by creation of bounding boxes for each conic segment (see Figure 20),
bi is the straight segment joining the two endpoints of conic Cni and hi the translated segment passing
by the shoulder point Si. For each conic Cni, we compute the intersection with the two straight
lines bj , hj (j 6= i). We give an exact solution of intersection straight/conic segment:
(a) We take the segment (Ma,Mb) equation: (yb − ya)(x− xa)− (xb − xa)(y − ya) = 0, into which

we replace (x, y) by equation (7), we obtain a degree two equation in q:

(yb − ya)
(
(x0 − xa)(1− q)2 + 2ωq(1− q)(x1 − xa) + q2(x2 − xa)

)−
(xb − xa)

(
(y0 − ya)(1− q)2 + 2ωq(1− q)(y1 − ya) + q2(y2 − ya)

)
= 0.

(32)

(b) For each qi real solution of (32), we check if 0 < qi < 1 to keep it.

(2) Iterative step: there are at most four intersection points. If there are no intersection point at all for
both conics, then these two conics do not intersect and we can use the �ux (23) in Figure 10.
If there exists an intersection point for problem (32), we use that initial guess to compute iteratively
a qn sequence of parameter (for each conic, we have at most four such sequences qnk , k=1,..,4). We
use the implicit form f(x, y) = 0 of both conics Cni, Cnj (see property (6) in section I), and then
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bj

hj

Sj Cnj

b i

h i

Si

Cni

qi qj

Figure 20. Construction of mutual bounding boxes.

iterate to solve:
fj(xi(qn+1

k ), yi(qn+1
k )) = 0, j 6= i, (33)

and stop if |fj(xi(qn+1
k ), yi(qn+1

k ))| < ε (ε = 10−11).

(3) Filtering: We �lter redundant qi (for j 6= k, if |qj − qk| < ε we keep only one). Having unique qi, we
check if 0 < qi < 1 to keep that point. See example of Figure 21.

0.3722 0.4 0.5 0.5279
0.2047

0.3

0.329

0.3722 0.4 0.5 0.5279
0.2047

0.3

0.329

Figure 21. Zoom of intersection points (�lled diamond �) obtained with self-intersection
�ux calculation (26), circles ◦ (resp. square �) are control points on OLD (green) mesh
(resp. NEW (red) mesh).
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Figure 22. Left Superposition of OLD (cartesian) and NEW mesh (truly conic), initial
data is given in Figure 11. Comparison of two schemes: center single zone �ux scheme
(23) and self-intersection scheme (26) on right, slightly di�erence here, maximum principle
obtained in each case (here little white squares represent control points of conic edges).

3. Rezoning on conic cells

In this section, we want to reuse the rezoning technologies based on the logical mesh to control the quality
of underlying polygonal cells. In [ALE2DHAL], we de�ne short and medium ranges of a node and de�ne a
nodal quality that can be translated to this logical mesh. The control points of edges are moved in a second
step. Now, the rezoning step can be described by the following three steps process:

(1) Move the nodes using logical polygonal connectivity (without control points). Here we use existing
algorithms [JUN, RJM, ESCO] and the nodal mesh quality of [ALE2DHAL] using short/medium
range of a node (without control points).

r r + 1

r + 2

r − 1 r − 2

Cj

Figure 23. De�nition of short-medium range same as logical underlying polygonal mesh:
Short r = {r + 1, r − 1}, Med r = {r + 2, r − 2}.

(2) Move the control points in a predictor-corrector procedure:
(a) Predictor: The �rst displacement are taken as the half sum of extremities displacements (see

Figure 24 left). All these displacements are done independently (Jacobi update).
(b) Corrector: If necessary, control point Mpred is moved to a position such that the corresponding

edge does not intersect two adjacent control simplexes and is truly inside the conic cell. We em-
phasize that thanks to properties (2)(3) in section I (Convex hull and Endpoints interpolation),
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Figure 24. Rezoning of control points. Predictor displacement ∆pred
1 = 1

2 (∆0 + ∆2), and
Corrector: Predicted control point projected on relaxed position of middle logical edge and
Shoulder point of predicted Edge.

it is su�cient to ensure that the control point does not belong to any neighboring simplex. In
the case of such an intersection, the control point position is (iteratively) relaxed with predicted
Shoulder point position (and middle of logical edge e Me

d = 1
2 (M0 + M2)). Such a treatment

has the property to (iteratively) diminish the maximum curvature of the edge and thus tends
toward a valid cell (with the hypothesis that the underlying logical polygonal cell is valid): see
(24) right and (25). See a numerical example Figure 26 where predictor is always done.

final edge

∆cort
1

M e,N
0

(M e,pred
1 , ω)

(M e,N
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M e,N
2
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Figure 25. Rezoning: Moving node and control point with distance diminution in case of

non valid cell (total displacement ∆1 = ∆pred
1 + ∆cort

1 (Figure 24 and 25) ). Right: dashed
line draw the link between control point to both end points and Shoulder point: �nal conic
cells are valid if underlying logical polygon are valid.

(3) For each control points re-compute the optimal weight ω. Hence we may obtain naturally a contin-
uous geometric cell boundary re-adaptation, we postpone this question for future work and keep the
same (initial) value here.
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Figure 26. Smoothing of conic unstructured cells (arbitrary number of edges) using [ESCO]
for node displacement (on polygonal mesh without control points) and a posteriori control
point displacement using check of cell validity, Old cells: dashed line (green) with control
point represented by (green) dashed circle and New cells: solid line (red) with control point
represented by (red) solid square.

4. Extension of GLACE Hydrodynamic scheme on conic cells : ω-GLACE

In this section, we give an extension of polygonal GLACE hydrodynamic scheme [GLACE] to arbitrary
conical meshes (2): 

Dt

∫
C(t)

1 dv − ∫
∂C(t)

U.N̂ ds = 0,
Dt

∫
C(t)

ρ dv = 0,
Dt

∫
C(t)

ρU dv +
∫
∂C(t)

P.N̂ ds = 0,
Dt

∫
C(t)

ρE dv +
∫
∂C(t)

PU.N̂ ds = 0.

(34)

If we denote M(t) the mass of cell C(t) (M(t) =
∫
C(t)

ρ dv) which is constant , the semi-discrete ω-GLACE

Cj

Ck

Mr+1 Mr

(Mr+1/2, ωr+1/2)

pr+1
j

Ur+1
prj

Ur

p
r+1/2
j

Ur+1/2

Figure 27. Degree of freedom for Lagrangian ω-GLACE scheme on conic cell.
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scheme on conic cells writes:
Mjτ

′
j(t) =

∑
r(C

r,ω
j ,Ur) +

∑
r+1/2(Cr+1/2,ω

j ,Ur+1/2), τj(t) = 1
ρj(t)

,

MjU′j(t) = −∑r Cr,ω
j prj −

∑
r+1/2 Cr+1/2,ω

j p
r+1/2
j ,

MjE
′
j(t) = −∑r(C

r,ω
j ,Ur)prj −

∑
r+1/2(Cr+1/2,ω

j ,Ur+1/2)pr+1/2
j .

(35)

where the Cr,ω
j and Cr+1/2,ω

j are computed in (17) and (18). In order to determine Ur and Ur+1/2 and the

corresponding pressure prj and p
r+1/2
j , we apply the same techniques as in [GLACE] for nodes and control

points. The Riemann invariant is discretized

(1) for nodes r, onto Cr,ω
j direction giving:

prj − pj + αrj(Ur −Uj ,n
r,ω
j ) = 0, (36)

where nr,ωj =
Cr,ω

j

|Cr,ω
j | see (17).

(2) for control points r + 1/2 of edges, onto Cr+1/2,ω
j direction giving:

p
r+1/2
j − pj + α

r+1/2
j (Ur+1/2 −Uj ,n

r+1/2,ω
j ) = 0, (37)

where nr+1/2,ω
j =

C
r+1/2,ω
j

|Cr+1/2,ω
j |

see (18).

Here αrj and α
r+1/2
j in (36), (37) are the acoustic impedance ρjcj (c is the sound speed c2 = ∂P

∂ρ |S , and S

the entropy) of the cell Cj . To construct the solver we also enforce the following conservation condition:

• Around internal nodes: ∑
j

prjC
r,ω
j = 0 (38)

• Around control point of internal edges:∑
j p

r+1/2
j Cr+1/2,ω

j = 0, which is equivalent to
p
r+1/2
j Cr+1/2,ω

j + p
r+1/2
k Cr+1/2,ω

k = 0.
(39)

Hence in this case, thanks to relation Cr+1/2,ω
k + Cr+1/2,ω

j = 0 see (19), we obtain the continuity of
pressure at control point:

p
r+1/2
j = p

r+1/2
k (40)

To solve (36), we consider the following two by two linear systems and obtain the velocities at each node:
ArUr = br, with

Ar =
∑
j ρjcj

Cr,ω
j ⊗Cr,ω

j

|Cr,ω
j | ,

br =
∑
j Cr,ω

j pj + ρjcj
Cr,ω

j ⊗Cr,ω
j

|Cr,ω
j | Uj .

(41)

This system is always invertible whatever the weight value for edges impinging at node r.
Once the velocity computed by (41) the pressure prj in (35) is computed using (36).
For control point (37), we �rst apply the one dimensional Riemann solver that gives both normal velocity
and continuous pressure (see (40)): Ur+1/2.n

r+1/2,ω
j =

ρjcjUj.n
r+1/2,ω
j +ρkckUk.n

r+1/2,ω
j

ρjcj+ρkck
+ 1

ρjcj+ρkck
(pj − pk),

pr+1/2 = ρjcjpj+ρkckpk

ρjcj+ρkck
+ ρjcjρkck

ρjcj+ρkck
(Uj −Uk).nr+1/2,ω

j .
(42)
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To obtain a truly 2D velocity for the control point, we approximate the tangential part Ur+1/2.τ
r+1/2,ω
j

(with τ
r+1/2,ω
j .nr+1/2,ω

j = 0), see e.g. [Godunov]:

Ur+1/2.τ
r+1/2,ω
j =


Uj.τ

r+1/2,ω
j , if Ur+1/2.n

r+1/2,ω
j > 0,

Uk.τ
r+1/2,ω
j , if Ur+1/2.n

r+1/2,ω
j < 0,

ρjcjUj+ρkckUk

ρjcj+ρkck
.τ

r+1/2,ω
j , else.

(43)

In the last approximation (43) where no �ux passes through the edge, we have just made a simple convex
interpolation. In this case, we could use a more sophisticated approach to treat sliding condition.

5. Numerical Section

5.1. Pure Lagrangian test: Sedov

In this case, we solve the Sedov problem. The initial condition is given by (ρ0, P 0,U0) = (1, 10−6,0) and
γ = 1.4. The pressure in cell C containing the origin is such that, see [HdrPhMaire],

Pc = (γ − 1)ρC
ε0

|C| (44)

where ε0 = 0.244816 so that the solution consists of a diverging shock whose front is located at radius R=1
at time t=1. Moreover, the density peak reaches the value 6.
For conical ω-GLACE simulations, the initial control points are set to the middle of logical edges and all the
weights are set to ω = 1.

Remark 8. • In Figure 28, we notice that our new conical ω-GLACE scheme do not exhibit spurious
mesh instability in the diagonal direction (for ω = 1). This surely could be explained by an analysis
of the associate corner matrix (see for example [HdrPhMaire]) at nodes and control points.

• Link to the previous remark, the result of ω-GLACE and polygonal EUCCLHYD (see [HdrPhMaire])
are qualitatively quite similar. We recall that despite original GLACE, the conical ω-GLACE scheme
possess intermediate pressure located at edge and EUCCLHYD gets two.

• The ω-GLACE with ω = 0 gives the same results as original polygonal GLACE scheme.
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Figure 28. Initial logical mesh made by 30× 30 cells. Meshes at �nal time for �rst-order
original polygonal GLACE scheme (left) and new conical ω-GLACE scheme (right).
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Figure 29. Initial Logical mesh made by 60× 60 cells. At �nal time, we have depicted the
mesh (left) and the numerical solution (right) of the �rst-order conical ω-GLACE scheme.

5.2. Comparison Lagrangian/ALE for conical cells

For the rezoning strategy, we use the mixed Jun/Escobar [JUN,ESCO] smoothing algorithm with nodal
mesh quality control [ALE2DHAL]. The remapping is the single zone edge based �ux (23).
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Figure 30. Density in all cells as functions of the cell-center at �nal time for �rst-order
ω-GLACE scheme with 30×30 logical cells (left) and 60×60 cells (right), reference solution
in solid line.
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Figure 31. Initial regular cartesian grid with nx = 36, ny = 16. We take three perfect
gases (with di�erent γ) at rest in three di�erent zones. Control points are initially set in
the middle of logical edge.

Remark 9. The pure Lagrangian scheme ω-GLACE does not give accurate compuation in this case because
of too much tangled cells. However, we do not observe hourglass modes as for polygonal GLACE scheme.
For ALE simuation, we do not observe qualitative di�erence between polygonal and conical approach.
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Figure 32. Final time t=5. Comparison between ALE with straight polygons (Up), and
two versions of conical meshes (ω ≡ 1) (Center) and ω randomly choosen in [0,2] for each
edges (Down). Caution color levels are not exactly the same.

6. conclusion

We have proposed an extension of continuous ALE formalism in �nite volume discretization for arbitrary
conic cells. Each edge of the cell is parameterized by a rational quadratic Bezier curve de�ned by a control
point and a positive weight ω giving the conic type.
Thanks to [WAGUSEDE,WAGU], we obtain an analytic formula for the area of arbitrary cells (with any
number of edges). We propose two extensions of �rst-order remapping �nite volume scheme [MARSHA]
and [ALE2DHAL]. A maximum principle local bound preserving is deduced if a CFL-like condition is
imposed. The rezoning step is done by a three steps process. The �rst one is the nodal movement using con-
nectivity of logical polygonal mesh without their control points, here we use existing algorithms [JUN,ESCO]
and also nodal quality of [ALE2DHAL]. It is followed by the movement of the control points through a pre-
dictor/corrector procedure leading to valid cells. The third step corresponds to a possible re-adjustment of
the conic parameter ω, it has not been addressed in this paper.
Finally, we also give a representation of GLACE scheme [GLACE] for conic cells in terms of Cr

j formalism.
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This ω-GLACE is contained in the convex hull of two limit polygonal GLACE schemes ω = 0 and ω →∞.
Morevover, the new GLACE scheme possess a degree of freedom located at each edge, in particular better
stability is observed in practice.
To summarize, we give here an overall feasibility presentation, many questions are still to be clari�ed, nev-
ertheless preliminary results seem to be very promising (we use [GO++] for developments and simulations).

7. Future works

We will adress a second order version of these conical Lagrangian and ALE schemes. We would like also
to change the ω in the Lagrangian step, to take into account deformation due to the �ows. Finally, we are
interested in deriving an ω-EUCCLHYD version, see [EUCCLHYD].
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