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ABSTRACT: We imaged and quantitatively characterized
electromagnetic hot spots near the surfaces of plasmon
resonant gold nanocubes. The strongest fields are localized
at the nanocube corners as compared to those on the sides.
The near-field enhancement on the surface of the cube was
imaged as a function of incident polarization, leading to
information on the localization of fields on specific regions on
the surface. We found that the field intensity drops
dramatically when the nanocube corner is slightly tilted with
respect to the incident laser polarization. This dramatic
dependence on angle was verified by electrodynamics
simulations. These results will enable the use of gold nanocubes in field enhancement applications and refractive-index sensing.

1. INTRODUCTION

The optical properties of gold and silver nanocubes (NCs) have
been the focus of much recent experimental and theoretical
work.1−12 Much of this work has focused on the unique
properties of the cubes, especially enhanced local electro-
magnetic fields, particularly at the 8 vertices and along the 12
edges of the cube, when illuminated with light. These hot spots
produce a strong optical response, and can enhance interesting
phenomena including optical nonlinearities,13 fluorescence,
exciton−exciton annihilation,14 and Raman scattering (i.e.,
surface enhanced Raman scattering or SERS).2,3,9 Although a
variety of other nanoparticle geometries can enhance the above-
noted processes, NCs offer advantages in that large, relatively
monodisperse colloidal samples can be easily prepared, they are
robust, and the size of the NCs can be controlled. Thus, the
plasmon resonances of NCs can be tuned across a wide
spectrum, while the vertices are expected to give stronger
electromagnetic field enhancements than spherical particles.
Various interesting optical effects have been reported on

NCs. For example, Sherry et al. used dark-field microscopy to
observe a new plasmon resonance effect for a single silver
nanocube in which the plasmon line shape has two distinct
peaks when the particles are located on a glass substrate.9

McLellan et al. utilized silver NCs and correlated the SERS
spectra from individual NCs to their physical parameters
revealed by high-resolution scanning electron microscopy
imaging.2 They observed dramatic variations in SERS intensity
when the NCs were oriented at different angles relative to the

polarization of the excitation laser.2 Five years later, the same
group also reported a novel approach for the generation of hot
spots with sufficiently strong SERS enhancements for single-
molecule detection by simply depositing silver NCs on the
surface of a gold or silver substrate.15 As a last example, Zhang
et al. reported coupling and hybridization of the plasmon
modes of a metallic nanostructure by introducing an adjacent
semi-infinite dielectric.11 They demonstrated that, for a
nanocube, a nearby dielectric mediates an interaction between
bright dipolar and dark quadrupolar modes, resulting in
bonding and antibonding hybridized modes.11

To date, little is known about local near-field optical
properties of metal NCs, since most of the plasmonic studies
were carried out in the far-field. However, to pave the way for
tailoring nanostructured electromagnetic fields using NCs, a
detailed characterization of their near-field properties is
essential. There is considerable theoretical work on the
nanostructured field around a nanocube, but there is no direct
measurement of the near-field enhancement or its spatial or
angular profile. Essentially, these quantities are known only in
theory but not in practice. Here, we present a quantitative study
of the localized surface plasmons of gold nanocubes in the near-
f ield.
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In this paper, we map and characterize the electromagnetic
field hot spots on individual gold nanocubes (Au NCs) using a
novel experimental approach that relies on plasmonic photo-
polymerization and provides sub-5 nm resolution.16−18 We
report field measurements on individual Au NCs with different
orientations relative to the excitation laser polarization, leading
to information on the localization of fields on specific regions
on the surface. We found that the highest fields are localized at
the nanocube corners as compared to its sides. The field
intensity drops dramatically when the nanocube corner is
slightly tilted with respect to the incident laser polarization.
This dramatic dependence on angle was verified by electro-
dynamics simulations.

2. METHODS
2.1. Experimental Methods. Nanocube Synthesis and

Characterization. Au NCs were synthesized in water following
a seed-mediated growth method. NCs of edge length 60 ± 3
nm are prepared following a recently published procedure19

based on the earlier experiments of Sau and Murphy20 which
involves a two-step approach composed of a seeding process
and a growth process. The seed solution is prepared by adding
an ice-cold NaBH4 solution (0.42 mL, 10 mM) into an aqueous
solution composed of a mixture of HAuCl4 (92 μL, 10 mM)
and CTAB (7 mL, 100 mM). This seed solution is kept at 25
°C for 2 h to decompose excess borohydride before use. The
growth solution is prepared by the successive addition of three
aqueous solutions: CTAB (9 mL, 22 mM), HAuCl4 (0.250 mL,
10 mM), and ascorbic acid (3 mL, 38 mM). Next, 20 μL of a
water-diluted seed solution (1:50) is injected into the growth
solution. The resultant solution is allowed to sit overnight at 25
°C. Concentrated solutions of NCs are obtained by
centrifugation at 4500 rpm for 15 min, twice, and redispersed
in a suitable amount of water. A few μL of these concentrated
solutions are dropcast on carbon-coated copper grids and
indium tin oxide (ITO) substrates for TEM and SEM
measurements, respectively.
Cetyltrimethylammonium bromide (CTAB ≥ 98%), chlor-

oauric acid (HAuCl4·3H2O), sodium borohydride (NaBH4,
99%), and ascorbic acid (99+%) were purchased from Sigma
and used as received. Deionized water is used for all
experiments and dilutions.
The UV−visible extinction spectra in solution are recorded

with a 1 cm cell on a Jasco V-570 spectrophotometer.
Transmission electron microscopy (TEM) observations are
made using a Philips CM12 microscope operating at 120 kV,
and scanning electron microscopy (SEM) images are acquired
on a Zeiss-Ultra55-FEG microscope. Figure 1A shows a
transmission electron microscope (TEM) image of a
concentrated deposit of Au-NCs on a TEM grid. Figure 1B
shows a typical scanning electron micrograph (SEM) of Au
NCs well dispersed on the ITO glass substrate. Figure 1C
represents the gold cube template that is used for the
simulations. Figure 1D shows both the experimental (in red)
and theoretical (in blue) extinction spectra of Au NCs
immersed in water. The experimental extinction spectrum is
collected on the ensemble solution of Au NCs immersed in
water, while the theoretical spectrum is carried out with an
isolated gold cube surrounded by a uniform medium with the
index of refraction of water, 1.33. Nonetheless, the level of
agreement is quite good, with the overall shapes being very
similar and the theoretical maximum (570 nm) being just
slightly to the red of the experimental one (562 nm).

Near-Field Measurements. The method for measuring the
near-field intensities around the nanocube is based on a
technique developed in our group in Troyes. It has been shown
by Bachelot and co-workers that it is possible to structure a
photosensitive polymer solution using the localized surface
plasmons of noble metal nanoparticles resulting in a map of the
distribution of the near-field intensity around these nano-
particles.
In this technique, we employ a photopolymerizable chemical

system that exhibits a threshold dose Dth below which no
polymerization can occur. The nonlinear threshold behavior of
the formulation allows for high resolution patterning under
evanescent excitation of localized plasmons. A full quantitative
study as a function of the excitation dose allows us to map the
near-field as a function of distance away from the
nanostructure.17

We contrast the current technique with another method
developed in our group. The latter method is based on
irradiation of a homogeneous layer of azobenzene based
copolymer covering the plasmon resonant nanoparticles with
the photopolymer.12,21 This approach enables visualization of
the optical near-field through local photoinduced displacement
of azobenzene molecules experiencing isomerization cycles
under laser illumination. Using this chemical system, molecular
motions assisted by the localized field have been studied and
vectorial imaging of the nanostructured near-field has been
achieved. Although this imaging technique constitutes a
powerful way to map the different components of the near-
field of noble metal nanoparticles by means of photosensitive
molecules, it does not quantify near-field features. The method
presented in the current paper is significantly different from
that described in refs 12 and 21: It is based on free-radical
photopolymerization and allows quantification of the plasmons
of metal nanostructures in the near-field, which has been a key
challenge in the community.

Figure 1. (A, B) Typical TEM and SEM images of Au NCs dispersed
on a TEM grid and on an ITO/glass substrate, respectively. (C) A
gold cube template used for the simulations. (D) Experimental (in
red) and theoretical (in blue) extinction spectra of Au NCs immersed
in water.

2



Composition of the Photosensitive Solution. The photo-
polymerizable solution is made up of three basic components: a
sensitizer dye, a cosynergist amine, and a multifunctional
acrylate monomer, pentaerythritol triacrylate (PETIA). PETIA
is used as received from the supplier and forms the backbone of
the polymer network. The cosynergist amine is methyldietha-
nolamine (MDEA), and the Eosin-Y (2′,4′,5′,7′-tetrabromo-
fluorescein disodium salt) is used as the sensitizer dye. This
system is developed mainly because of its high sensitivity in the
spectral region from 450 to 550 nm.22−24 In addition, this
liquid system is very flexible, as it is possible to modify the
components independently to adjust the physical and chemical
properties of the formulation, namely, viscosity, spectral
sensitivity, polymerization threshold, and energy. The results
reported in this article are obtained with mixtures containing
0.5 wt % Eosin-Y and 4 wt % MDEA.
Measurement of the Polymer Elongation. In a typical

experiment, we use acetone to clean a glass sheet coated with
an optically thin (3 nm) ITO layer and then make the sheets
hydrophilic by means of UV-ozone treatment. A 1 μL droplet
of a well-diluted Au NC solution is then deposited on the
surface of the ITO/glass sheet and kept until the solvent
evaporates. Once the sample dries, it is washed with a copious
amount of acetone, and finally dried with a stream of air. All
samples are used within 12 h after being prepared. After being
deposited on the surface, the Au NCs are precisely
characterized using AFM. The photoactive polymer solution
is then poured over the sample. We employ normally incident
laser light with wavelength λ0 = 532 nm from the glass side to
photoexcite the system for specific time periods corresponding
to a given dose. After application of a dose, the excess polymer
solution is poured off. We then use AFM measurements to infer
the polymer elongations from the difference of the AFM
measurements after and before irradiation. The nature of the
measurements is that these elongations are associated with the
top ends of the cubes (relative to the bottom glass surface). We
focus on the polymer elongation emanating from a corner
region and the side region, and in each case consider the
elongation along a direction normal to the metal/polymer
interface extending away from the cube, and measure these
elongations as a function of polarization angle.
Figure 2A shows an AFM image of well-dispersed Au NCs

on an ITO surface. The photopolymerizable solution has been
designed to meet three requirements: (a) the photoinitiator
was chosen to have sensitivity (as evidenced by its absorption
spectrum presenting a peak at 532 nm)17 in the visible range
overlapping the localized surface plasmon resonance (LSPR)
spectrum of the nanostructure, (b) the photopolymerizable
system should exhibit a nonlinear response based on a
threshold dose, below which no photopolymerization can
occur, and which needs to be well characterized as a function of
the excitation wavelength a priori, and (c) the diffusion of the
molecules in the formulation should be ideally low. Indeed, low
diffusion and a sharp threshold response of the formulation are
crucial for achieving a high resolution of this near-field
enhanced photolithography.25

During photoexcitation, the laser polarization is fixed linearly,
as is indicated by the white arrow in Figure 2B, and its dose, D0,
is set at a fraction of the threshold dose, Dth: f = D0/Dth. Dth
corresponds to the minimum energy necessary to observe
formation of polymer on the substrate.16−18 Because the
exposure dose D0 is below Dth, the photopolymerization can
only be initiated at regions (within a few nm around the

nanoparticle) where the near-field enhancement is 1/f, or
higher. Following a rinsing procedure, an AFM image of the
hybrid “nanocube + polymer” system is acquired, as one can see
in Figure 2B, from which a background AFM image of the
nanoparticle preceding the photoexcitation can be subtracted,
leading to differential AFM images such as Figure 2C−E. This
differential imaging provides a high signal-to-noise ratio, drift-
free and tip convolution-free image of the nanoscale polymer
structures fabricated around the nanoparticle.17 For instance, in
the case of a Au nanocube excited with linearly polarized light,
polymer elongation is seen along the polarization direction,
while no polymerization is induced where the unit normal
vector n ⃗ (represented by the white arrows in Figure 2D) is
perpendicular to the laser polarization direction.18 Parts C−E of
Figure 2 show three differential images corresponding to three
differently oriented Au NCs relative to the laser polarization.
These differential images are highly relevant, since they point
out the polymerized zones on the surface of the NCs, and
hence the zones where the near-field enhancement contributed
to overcome the threshold dose.
The spatial profile of the near-field can be extracted from

polymer elongations measured as a function of dose. The local
dose D can be expressed by the phenomenological equation17

α= −D F D yexp( )max 0 (1)

where Fmax is the maximum (at the surface) intensity
enhancement factor related to the LSPR, α is the decay
constant of the field intensity (α−1 is its characteristic decay
length), and y is the distance from the surface of the metal
nanoparticle in the y-direction.17

Figure 2. Near-field photopolymerization based on the resonant
excitation of Au NCs embedded in a photolithographic formulation.
(A) Topographic AFM image of well dispersed Au NCs on an ITO
surface before photoexcitation. (B) Topographic AFM image of the
same region of the sample showing the Au NCs after photo-
polymerization. (C−E) Differential images of three differently oriented
Au NCs relative to the laser polarization: a cube whose vertical sides
are well aligned with the incident polarization (C), a tilted nanocube
(D), and a cube with the diagonal axis (corner to corner) parallel to
the laser polarization (E). The up−down arrow in panel B represents
the incident laser direction. The 90 nm scale bar shown in panel C
applies to all differential images.
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We already know that photopolymerization only occurs
when D > Dth. By applying this condition to eq 1, one can
obtain17

α− ≥
×

y
D

F D
exp( ) th

max 0 (2)

By reducing eq 2, one can get the maximum distance ymax away
from the Au NCs at which the effective dose overcomes Dth
as17

α= ×−
⎛
⎝⎜

⎞
⎠⎟y F

D
D

lnmax
1

max
0

th (3)

Equation 3 can be rewritten as

α= ×−y F fln( )max
1

max (4)

thus closely fitting the logarithmic behavior of Figure 3A.
2.2. Theoretical Methods. Experimental measurements on

single NCs were supported by electrodynamics simulations of
the near-fields. We carried out computational electrodynamics
simulations with both the finite-difference time-domain
(FDTD) method26,27 and the discrete-dipole approximation
(DDA).28,29 The FDTD calculations employed the commercial
software package FDTD Solutions, by Lumerical Solutions, Inc.
(Vancouver, Canada),27 and the DDA calculations employed
the current release of DDSCAT.29 Consistent with the
experimental results, the cube sides are taken to be of length
60 nm and a radius of curvature of 12 nm is used to round all
corners and sides. A multicoefficient model fit28 to the
Johnson−Christy (JC) gold data30 was used in the FDTD
calculations, and the JC data was used directly (or interpolated)
in the case of the DDA calculations.
For the aqueous spectrum calculation, we assume the cubes

are within an isotropic medium of refractive index correspond-
ing to water, n = 1.33. We initially considered light incident on
a face of the cube with polarization oriented from side to side
or oriented along the diagonal of the cube. FDTD calculations
with grid spacings of 1 nm and DDA calculations with 200 000
dipoles yielded converged results with respect to finer
resolutions and were also in excellent agreement with one
another both in terms of far-field spectral properties and in
terms of the near-fields greater than 2 nm outside the cubes.
Actually, DDA calculations with 100 000 dipoles are sufficient if
only far-field spectra are of interest. If accurate near-fields
within 1−2 nm of the metal interface are desired, on the order
of 400 000 dipoles are necessary. Since the DDA calculations,

particularly when one wavelength is of interest such as in the
polymer elongation studies, can be significantly faster than the
FDTD ones, most of the remaining calculations were carried
out with the DDA method. With respect to the far-field
extinction spectrum, we find that polarization (or equivalently
cube orientation) has only a minor effect: the extinction peaks
occur very close to one another, with the main difference being
the magnitude of extinction maximum, which can vary
somewhat (but less than 10%). Nonetheless, for the final
reported water spectrum, a Monte Carlo orientational average
over 100 random cube orientations was carried out by
appropriate Euler angle rotations, with a fixed incident
polarization and propagation direction. See ref 31 for a new
approach to orientational averaging.
The ellipsometry measurements we have carried out suggest

that the polymer solution refractive index is in the 1.48−1.52
range, very close to that of glass (1.5), and that the ITO
refractive index is 1.8. Since the ITO is optically thin, the
simplest approach for simulating the polymer elongation
experiments is to consider a cube in a uniform medium of
refractive index 1.5. Consistent with the experiments, λ0 = 532
nm light in one of a variety of possible polarizations is taken to
be incident from “below” the cube, and we analyze the near-
fields on the top-side NC face. Figure 1 in the Supporting
Information section presents schematic diagrams to help clarify
the nature of these calculations. It also serves to define the
polarization angle, which is the angle of the “normal” of the
region in question (either a corner or side region) and the
polarization angle.

3. RESULTS AND DISCUSSION

A quantitative study has been carried out to show how the hot
spots, localized at the sharp features of the NCs, vary according
to the amount of dose fraction relative to threshold dose, f. By
measuring the polymer elongation lengths from the NC corner
for varying dose field strengths and fitting these to an
exponential function, we were able to determine the enhance-
ment factor of the local field at the NC corner. In this case, we
consider incident polarization oriented along the diagonal of
the cube, i.e., along the elongation axis. We term this θc = 0°
polarization referring to the angle between the outward normal
from the corner region and the polarization axis (see Figure
5B).
The trace of the polymer elongation at the NC corner as a

function of f is illustrated in Figure 3A, where f goes from 5 to
75% of the threshold dose, in steps of 10. This figure clearly

Figure 3. Quantification of the enhancement factor value related to localized surface plasmons. (A) Effect of the exposure dose f = D0/Dth on the
photopolymerization elongation of the polymer. (B) Experimental values (red points) of 1/f plotted as a function of the polymer elongation
measured by AFM. The black line corresponds to a single exponential fit. Each data point is an average from measurements of three individual NCs.
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shows that the NC corner exhibits an elongation of 3.5 nm for
an incident dose f = 5%, which implies that an enhancement
factor of at least 20 is expected at the corner of the NC. In
order to accurately determine Fmax, we have plotted in Figure
3B the values of 1/f, deduced from 1/f = Dth/D0, as a function
of the polymer elongation y. The plot can be approximated by a
single-exponential decay.17,32 1/f can be deduced as 1/f =
Fmaxe

−αymax from eq 4. Thus, when fitting the experimental data
with an exponential function, one can deduce the values of the
fitting parameters Fmax and α−1 as 35 and 5 nm, respectively.
We have also estimated Fmax and α−1 from near-field DDA

calculations.29 In these calculations, we examine the total field
intensity enhancement, |E|2/|E0|

2, in the vicinity of the top side
of a cube and focus on either the region near a corner or the
region near the middle of a side. Figure 4 shows maps of |E|2/|

E0|
2 for corner and side excitation cases with incident light

propagating along the x-axis and polarized along the y-axis. In
the case of light polarized along the diagonal connecting two
corners (θc = 0°, Figure 4A), the largest intensity enhance-
ments outside the cube are on the order of 45 and rapidly fall
with a decay length of 2.7 nm. Compared to the experimentally
deduced Fmax and α−1, the theoretical intensity enhancement is
twice as large as Fmax, and the theoretical decay length is half as
small as α−1. That is, the theoretical fields are higher and drop
off more quickly than what has been experimentally deduced.
However, the theoretical near-fields vary rapidly with spatial
position and it is more likely that the experimentally deduced
values reflect a spatial average near a given point. We averaged
the theoretical results within a sphere of radius 2 nm about each
point along the ray and obtained a maximum intensity
enhancement of 30 and a length scale of 3.6 nm, which
compare more favorably with the experimental values of 35 and
5 nm, respectively, deduced in the above paragraph. Obviously
quite different results can be obtained if much larger or much

smaller averaging regions were considered. The choice of a 2
nm radius averaging region leads to results in accord with
experiment, indicating that the polymer elongation technique
resolves field variations with no better than 2 nm resolution.
The nanoscale formation of solid polymer structures formed

at the side and corner of the NC was measured using AFM at f
= 25%. As we can see in Figures 1 and 2, the NCs present
random orientations relative to the polarization of the incident
laser; thus, the polymer elongations have been recorded as a
function of θs and θc. Parts C and D of Figure 5 show values of

polymer elongations of 36 similar Au NCs with 12 different
orientations as compared to the laser excitation direction. The
incident laser direction is kept unchanged and is shown by the
up−down arrow in Figure 5A and B. This experiment was also
run using seven different values of D0 (where f goes from 5 to
75% of Dth). For sake of brevity, we are only showing the case
where D0 = 0.25Dth. When we consider the polymer elongation
for different orientations of the nanoparticles relative to the
laser polarization, we observe a variation in the polymer
elongation activity. This effect is due to a difference in the local
field strength as the polarization of the excitation laser varies
relative to the axis of the NC side and corner, as confirmed by
the theoretical simulations and seen in Figure 4.

Figure 4. Top views of image maps of near-field intensity
enhancements |E|2/|E0|

2 for gold NCs in an n = 1.5 medium. In
these cases, light is incident from below along the x-axis and is
polarized along the y-axis (see Figure 1 in the Supporting
Information). For the plots, x is fixed at a value of 6 nm below the
top of each cube. The white contour lines correspond to |E|2/|E0|

2 = 4.
(A) Corner excitation with θc = 0°. (B) Side excitation with θs = 0°.

Figure 5. SEM images labeled A and B are of individual Au NCs that
show θs and θc: (A) θs is the angle between the vertical laser direction
and the normal to the NC side, and (B) θc is the angle between the
laser polarization and the corner−corner diagonal. The white up−
down arrow in parts A and B denotes the polarization direction of the
incident laser. Parts C and D show, respectively, the polymer
elongations as a function of θs and θc for D0 = 0.25Dth. Each data point
is an average from measurements of three individual NCs. The error
bars in parts C and D represent the minimum elongation that can be
detected by the AFM, i.e., the AFM lateral resolution that is set at ±1
nm.
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Figure 4B corresponds to theoretical near-field intensity
enhancements for side excitation; i.e., the cube and/or
polarization appropriately rotated such that excitation would
be between two sides and not along the diagonal. We term this
case θs = 0° polarization, referring to the angle between the
normal to the side (elongation direction or y-axis in this case)
and the polarization axis (see Figure 5A). For the calculation,
we simply kept the incident polarization along y and rotated the
cube so that the relevant near-field intensities associated with
elongation from the center of a side would still be along a ray
extending upward along y and outside the cube. In this case,
however, the intensity enhancements are less than half those
associated with corner elongation. Note that, by symmetry, the
θc = θs = 90° cases can also be inferred from Figure 5A and B
by a 90° rotation. This corresponds to simply examining the
fields in these figures along z, with y held fixed at its central
value. One then infers zero field enhancement in the corner
case and some but a reduced amount in the side case. This
latter feature is evidenced, for example, by inward “pinches” of
the |E|2/|E0|

2 = 4 contour along z.
Parts C and D of Figure 5 exhibit that both the corner and

side elongations are generally largest when the direction
examined is parallel to the vertical laser polarization (θs = θc =
0°). This makes sense because the surface plasmon oscillations
are then directly along those directions. A more significant
polymer elongation is observed in the case of the NC corner
(14 nm for θc = 0°) as compared to its side (7.5 nm for θs =
0°). This is consistent with the corner excitation being stronger
than the side excitation, as is evident from the theoretical near-
fields (Figure 4). As the polarization angle deviates from the
direction being examined, the elongations decrease and are
almost zero by θs = θc = 90°. The very small elongation at θs =
θc = 90° is not surprising because n ⃗⊥ E⃗inc. In the case of side
excitation, there is still a surface plasmon excitation along the
same side with θs = 90°, but it is weaker than the θc = 90° case,
which was also evident from the discussion of the theoretical
near-fields.
Additionally, it must be noted that the polymer elongation

decreases faster as θc goes from 0 to 90° than θs. This may
reflect the fact that the corner benefits from a tip effect which is
more spatially localized than the edge effect which creates
enhancement at the side of the cube. It is important to note
how strong the field is and how dramatically the field
singularities vary at the tip of the metallic object.33 The tip
effect will occur when the cube is oriented with a diagonal axis
(corner to corner) parallel to the laser polarization,18 and
consequently, the NC corner benefits from a higher local field
strength when compared to the NC side; this also helps explain
why the polymer elongation in the case of θc = 0° is greater as
compared to θs = 0°.
We have also made estimates of the elongation lengths based

on our theoretical near-field calculations. As in the discussion of
Figure 4, we consider appropriate rays emanating from the cube
corner or the side and take an average about each point within a
sphere of radius 2 nm. Elementary considerations suggest that,
if one wishes to emulate the situation with 25% dose or f =
0.25, all electric field enhancements corresponding to 1/f = 4 or
higher will lead to photopolymerization. Note that Figure 4 also
shows a white contour line corresponding to |E|2/|E0|

2 = 4. The
predicted maximal elongation is therefore the maximum
distance along the ray examined such that the field intensity
enhancement is 4.

Figure 6 displays the results of the calculations described
above and should be compared with Figure 5C and D. There is

agreement between the experimental results and calculations
with respect to the following points: (i) the corner elongations,
at small polarization angles, are larger than the side elongations;
(ii) the corner elongation, while not showing the sharp initial
decrease, still decreases faster than the side elongation; (iii) the
elongation lengths are on the order of 10 nm; (iv) the side
elongation is less sensitive to the polarization angle and
becomes larger than the corner ones as polarization angle is
increased, i.e., there is a crossover point. However, there are
some noticeable discrepancies between the experimental and
theoretical results, in particular: (i) the experimental corner
elongation drops off more quickly at low angles and (ii) the
theoretical side elongation variation with polarization angle is
much weaker than the experimental one. One source of the
discrepancies noted is the simple averaging technique we have
used to estimate the field enhancements. We have experi-
mented with many alternative ways of averaging the fields and
have not obtained any better results. Since it is known that the
surface plasmon resonance of cubes is very sensitive to fine
details of the cube structure,4 this could be a factor. Simple
variations in the radius of curvature, however, proved
unsuccessful. We have also carried out a number of FDTD
calculations to complement the DDA ones that included the
slight differences of glass and polymer refractive indices and the
thin ITO layer and found very similar results to those presented
here on the basis of the uniform medium. It is possible that
chemical effects could be playing a role such that there is not a
simple linear mapping of elongation with local field intensity
enhancement.
To conclude, we have shown our ability to experimentally

image hot spots at the surface of Au NCs. We measured the
field enhancement of a hot spot on the NC surface can be up to
35. However, there is a dramatic difference in the electro-
magnetic field value at the NC corner as compared to that on
the side. From measurements on individual Au NCs that are
oriented differently relative to the excitation laser polarization,
we were able to determine the sensitivity of the near-field hot
spots to incident polarization. Our experimental results were
found to be consistent with computational electrodynamics
calculations, although further work is required to understand
the origins of some quantitative discrepancies between the
theoretically estimated elongations and the experimental ones.

Figure 6. Theoretically calculated elongations of Au NCs as incident
polarization angle changes relative to the corner (red trace) and the
side (blue trace) of the cube. Note that in the case of corner
elongation θ corresponds to θc and in the case of side elongation θ
corresponds to θs.
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The detailed characteristics of the near-field supported by the
NC geometry presented here will favor the use of these
nanostructures in sensing and field enhancement based
applications.
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