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Consider an ergodic Markov operator M reversible with respect to a probability measure µ on a general measurable space. It is shown that if M is bounded from L 2 pµq to L p pµq, where p ą 2, then it admits a spectral gap. This result answers positively a conjecture raised by in the more restricted semi-group context. The proof is based on isoperimetric considerations and especially on Cheeger inequalities of higher order for weighted finite graphs recently obtained by Lee, Gharan and Trevisan [27]. It provides a quantitative link between hyperboundedness and an eigenvalue different from the spectral gap in general. In addition, the usual Cheeger inequality is extended to the higher eigenvalues in the compact Riemannian setting and the exponential behaviors of the small eigenvalues of Witten Laplacians at small temperature are recovered.

Introduction

The main purpose of this article is to show that hyperbounded, ergodic and self-adjoint Markov operators admit a spectral gap. This property solves a conjecture raised by Høegh-Krohn and Simon [START_REF] Simon | Hypercontractive semigroups and two dimensional self-coupled Bose fields[END_REF] in a semi-group context. More precisely, let us start with a probability space pS, S, µq. A self-adjoint operator M : L 2 pµq Ñ L 2 pµq is said to be Markovian if

@ f P L 2 pµq, f ě 0 ñ M rf s ě 0 M r1s " 1
where 1 is the function always taking the value 1 and where all the previous statements have to be understood µ-almost surely.

In particular, M admits a spectral decomposition: there exists a projection-valued measure pE l q lPr´1,1s such that

M " ż 1 ´1 l dE l
(see e.g. the chapter 7 of the book of Reed and Simon [START_REF] Reed | Methods of modern mathematical physics[END_REF]).

The Markov operator M is said to be ergodic if

@ f P L 2 pµq, M f " f ñ f P Vectp1q
namely if pE 1 ´E1´q rL 2 pµqs is reduced to Vectp1q, the vector line generated by 1. This property is implied by the following stronger requirement: M has a spectral gap if there exists λ ą 0 such that pE 1 ´E1´λ qrL 2 pµqs " Vectp1q and by definition the associated spectral gap is the supremum of such λ.

Finally, the Markov operator M is said to be hyperbounded if there exists p ą 2 such that }M } L 2 pµqÑL p pµq ă `8

We can now state the objective of this paper:

Theorem 1 If a self-adjoint Markovian operator is ergodic and hyperbounded then it admits a spectral gap.

This result was conjectured by Høegh-Krohn and Simon [START_REF] Simon | Hypercontractive semigroups and two dimensional self-coupled Bose fields[END_REF], who rather believed it to be wrong, in the more restricted context of semi-groups. They started with a continuous family of self-adjoint Markovian operators P ≔ pP t q tě0 defined on L 2 pµq and satisfying the semi-group property: P 0 is the identity operator and @ t, s ě 0, P t P s " P t`s

The semi-group P is said to be ergodic if for any f P L 2 pµq, P t rf s converges in L 2 pµq toward µrf s (seen as the function µrf s1). It is said to have a spectral gap if the previous convergence is uniform over the unit ball of L 2 pµq. These properties can be characterized through the associated generator L (see for instance the book of Yosida [START_REF] Yosida | Functional analysis[END_REF]): it is the self-adjoint operator defined on the dense domain DpLq of functions f P L 2 pµq such that pP t rf s ´f q{t converges in L 2 pµq as t goes to 0 `. By definition, the limit is Lrf s. The self-adjoint operator L is non-positive definite and can be spectrally decomposed: there exists a projection-valued measure pF l q lPR `such that L " ´żR `l dF l

By functional calculus, we then have

@ t ě 0, P t " ż R `expp´tlq dF l (1) 
Ergodicity and the existence of a spectral gap respectively amount to F 0 rL 2 pµqs " Vectp1q and to the existence of λ ą 0 such that F λ rL 2 pµqs " Vectp1q. By definition, the spectral gap is the supremum of such λ. It can also be computed via the corresponding Dirichlet form: for any f P L 2 pµq, the mapping R ˚Q t Þ Ñ µrf pId ´Pt qrf ss{t is nonincreasing, designate by Epf q its limit in 0 `, which belongs to R`. This quantity is called the energy of f and let DpEq ≔ tf P L 2 pµq : Epf q ă 8u (it appears that DpLq Ă DpEq and for f P DpLq, Epf q " ´µrf Lrf ss). The mapping DpEq Q f Þ Ñ Epf q is referred to as the Dirichlet form associated to P (see for instance the book [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF] of Fukushima, Ōshima and Takeda). The semi-group P admits a spectral gap if and only if the following quantity λ 2 is nonzero, in which case it is the spectral gap of P :

λ 2 ≔ ˜sup f PL 2 pµq
Varpf, µq Epf q

¸´1

where Varpf, µq ≔ µrf 2 s ´pµrf sq 2 is the variance of f with respect to µ. In the above expression, the convention 0¨8 ≔ 0 is enforced as usual. Finally, the semi-group P is said to be hyperbounded, if there exists a time T ě 0 such that the Markov operator P T is hyperbounded in the previous sense.

Høegh-Krohn and Simon [START_REF] Simon | Hypercontractive semigroups and two dimensional self-coupled Bose fields[END_REF] were wondering if hyperbounded, ergodic and continuous selfadjoint Markov semi-groups admit a spectral gap. Theorem 1 enables to answer positively to this question. It is sufficient to apply it to an element P T of the semi-group which is hyperbounded. The Markov operator P T is seen to be ergodic via the representation [START_REF] Shigeki | Uniform positivity improving property, Sobolev inequalities, and spectral gaps[END_REF].

Let us mention that the Høegh-Krohn and Simon's conjecture is easy to solve, if the hyperboundedness assumption is strengthened into hypercontractivity: the continuous self-adjoint Markov semi-group is said to be hypercontractive, if there exist p ą 2 and a time T ě 0 such that the norm of P T from L 2 pµq to L p pµq is 1. It is well-known that such a semi-group admits a spectral gap, and better, its generator satisfies a logarithmic Sobolev inequality, property in fact equivalent to hypercontractivity. Hyperboundedness is itself equivalent to a non-tight logarithmic Sobolev inequality. The existence of a spectral gap enables to tight such an inequality (for all the previous assertions, see for instance the book of Ané, Blachère, Chafaï, Fougères, Gentil, Malrieu, Roberto and Scheffer [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF]). Thus Theorem 1 shows that for semi-groups, hyperboundedness is equivalent of hypercontractivity, but as it will appear in Proposition 11 of Section 6, there is no quantitative way to go from the former to the latter in general.

Several attempts have been made to find a counterexample or to prove Høegh-Krohn and Simon's conjecture, but extra assumptions were always needed, see for instance the papers of Aida [START_REF] Shigeki | Uniform positivity improving property, Sobolev inequalities, and spectral gaps[END_REF], Mathieu [START_REF] Mathieu | Quand l'inégalité log-Sobolev implique l'inégalité de trou spectral[END_REF], Wu [START_REF] Wu | Uniformly integrable operators and large deviations for Markov processes[END_REF], Hino [START_REF] Hino | Exponential decay of positivity preserving semigroups on L p[END_REF][START_REF] Hino | Correction to: "Exponential decay of positivity preserving semigroups on L p[END_REF], Cattiaux [START_REF] Cattiaux | A pathwise approach of some classical inequalities[END_REF], Wang [START_REF] Wang | Spectral gap for hyperbounded operators[END_REF], Gong and Wu [START_REF] Gong | Spectral gap of positive operators and applications[END_REF] and the bibliographical comments given in section 5.9 of the book [START_REF] Wang | Functional Inequalities, Markov Semigroups and Spectral Theory[END_REF] of Wang for further motivations. The latter author has also shown in [START_REF] Wang | Spectral gap for hyperbounded operators[END_REF] that Theorem 1 is true if }M } 4 L 2 pµqÑL 4 pµq ă 2 and that it is wrong if the Markovian (or the ergodicity) assumption is removed. It provides a glimpse of the deep connection between Markovianity and isoperimetry, on which is based our approach. It is different from the various methods proposed by the above mentioned articles. A crucial ingredient is the Cheeger inequalities of higher order recently proven by Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] for weighted finite graphs. They are recalled in the next section, where we are to work on estimates in the finite framework. The approximation procedure enabling to treat the general situation is presented in the third section. The three last sections are devoted to further observations, respectively about general higher order Cheeger's inequalities, the extension to Orlicz spaces and a quantitative version of Theorem 1. An appendix adapts to principal Dirichlet eigenvalues some estimates of Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] relative to spectral gaps at small temperature. They are required by an illustration of the interest of the Dirichlet connectivity spectra defined in Section 4.

The techniques presented here were extended in several directions. In [START_REF] Wang | Criteria of spectral gap for Markov operators[END_REF], Wang characterizes the existence of the spectral gap of the symmetric Markovian operator M in L 2 pµq, via the uniform integrability condition lim RÑ8 sup µpf 2 qď1 µrf pM rf s ´Rq `s ă 1 In [START_REF] Liu | Multi-way dual Cheeger constants and spectral bounds of graphs[END_REF], Liu introduces a set of multi-way dual Cheeger constants and proves universal higher-order dual Cheeger inequalities for the eigenvalues of normalized Laplace operators on weighted finite graphs, with applications to the essential spectrum of general Markov operators.

Higher order Cheeger inequalities in the finite setting

In this section we deduce a lower bound on the L 2 to L p operator norm of finite Markov kernels in terms of their spectrum, for p ą 2.

So here S is a finite set of cardinal N P Nzt1u (endowed with the trivial σ-field) and µ is a (strictly) positive probability measure on S. We start with a Markovian generator L, namely a matrix pLpx, yqq x,yPS whose off-diagonal entries are non-negative and whose lines sum up to zero. We assume that µ is reversible with respect to L, in the sense that @ x, y P S, µpxqLpx, yq " µpyqLpy, xq

It means that seen as an operator, L is symmetric in L 2 pµq. It is also well-known to be non-positive definite, so let us write down the spectrum of ´L as

0 " λ 1 ď λ 2 ď ¨¨¨ď λ N (2) 
(the first equality comes from the fact that the kernel of L contains at least Vectp1q). Cheeger's inequality in the finite setting relates λ 2 to an isoperimetric quantity. To recall it, we introduce the conductance associated to any subset A Ă S with A " H:

jpAq ≔ µp1 A Lp1 A c qq µpAq (3) 
(where 1 A is the indicator function of A). This quantity if of "isoperimetric" nature, since the numerator is a measurement of the frontier between A and A c , its value is ř xPA,yRA µpxqLpx, yq, while the denominator is the volume of A. The connectivity constant of L is then defined by

ι 2 ≔ min A "H,S maxtjpAq, jpA c qu " min A : 0ăµpAqď1{2 jpAq (4) 
The Cheeger's inequality states that

ι 2 2 8 |L| ď λ 2 ď ι 2
with |L| ≔ max xPS |Lpx, xq| (if |L| happens to vanish, it means that L " 0, so we can assume that |L| ą 0 to avoid trivial statements). The left-most inequality was first obtained by Cheeger [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] in a compact Riemannian manifold setting. Its extension to finite weighted graphs, or equivalently to finite reversible Markov processes, is due to Alon and Milman [START_REF] Alon | λ 1 , isoperimetric inequalities for graphs, and superconcentrators[END_REF], Alon [START_REF] Alon | Eigenvalues and expanders[END_REF], Lawler and Sokal [START_REF] Lawler | Bounds on the L 2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality[END_REF] and Sinclair and Jerrum [START_REF] Sinclair | Approximate counting, uniform generation and rapidly mixing Markov chains[END_REF].

It is natural to wonder if a variant of this result would hold for the other eigenvalues λ 3 , ..., λ N . It leads to introduce the following connectivity spectrum pι n q nP N . For n P N, let D n be the set of n-tuples pA 1 , ..., A n q of disjoint and non-empty subsets of S. Define

@ n P N , ι n ≔ min pA 1 ,...,AnqPDn max kP n jpA k q (5) 
Clearly ι 1 " 0 " λ 1 and it is not difficult to check that for n " 2, one recovers the quantity defined in (4): D 2 can be replaced by its subset containing only the partitions of S into two proper subsets.

In [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] (see also [START_REF] Daneshgar | On nodal domains and higherorder Cheeger inequalities of finite reversible Markov processes[END_REF]), we made the conjecture that there exists a mapping c : N Ñ R ˚such that for all pS, µ, Lq as above,

cpnq ι 2 n |L| ď λ n ď ι n (6) 
The second inequality is immediate, it amounts to consider the vector space generated by the indicator functions of n disjoints subsets in the variational characterization of λ n through Rayleigh quotients.

The first inequality was recently shown by Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] (a related result was obtained by Louis, Raghavendra, Tetali and Vempala [START_REF] Louis | Finding sparse cuts via Cheeger inequalities for higher eigenvalues[END_REF], it could also be used to prove Høegh-Krohn and Simon's conjecture by slightly modifying the arguments that will follow):

Theorem 2 ( [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]) There exists a universal constant η ą 0 such that (6) is satisfied with

@ n P N, cpnq ≔ η n 8
Proof It is just a rewriting of Theorem 3.8 of [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF], where the authors rather work with weighted finite graphs pV, E, ωq: V is the finite set of vertices, E is the set of undirected edges (which may contain loops) and ω : E Ñ R `is the weight. The mapping ω is extended to V by

@ v P V, ωpvq ≔ ÿ uPV : tv,uuPE ωptv, uuq
Lee, Gharan and Trevisan are interested in the normalized Laplacian L which corresponds to the pV ˆV q-symmetric matrix

L ≔ Id ´D´1{2 AD ´1{2
where D is the diagonal matrix with entries pωpvqq vPV and A is the weighted adjacency matrix pωpu, vqq u,vPV . Denote by 0 " r λ 1 ď r λ 2 ď ¨¨¨ď r λ N its eigenvalues, where N is the cardinal of V . Lee, Gharan and Trevisan also consider the connectivity spectrum pr ι n q nP N , which is defined similarly to (5), but with the mapping j replaced by

@ A Ă V, A " H, pAq ≔ ř uPA, vRA : tu,vuPE ωptu, vuq ř wPA ωpwq
Then Theorem 3.8 of [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] states that there exists a universal constant η ą 0 such that

@ n P N , η n 8 r ι 2 n ď r λ n ď 2r ι n (7) 
To come back to the setting of Theorem 2, consider the following allocations (where the minimum is taken over all subspaces H of dimension n of L 2 pµq). The announced result is now an immediate consequence of (7).

V ≔ S E ≔ ttx
Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] have proposed several improvements of [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p pGq[END_REF], see Remark 9 and Theorem 13 below. Nevertheless, as it will be clear in the next section, the exact expression of cpnq for n P N is not important for the purpose of proving Theorem 1, what really matters is that cpnq ą 0. But we will come back to this question in Section 6 below.

Even if at first view hyperboundedness does not seem a very pertinent notion in the finite setting, let us derive from Theorem 2 a quantitative bound for this property. As in the introduction, we consider on the finite set S a Markov kernel M which is symmetric in L 2 pµq. Denote its spectrum by

1 " θ 1 ě θ 2 ě ¨¨¨ě θ N ě ´1
Proposition 3 Assume that for some n P N , we have θ n ě 1 ´cpnq{4. Then we can deduce that for any p ą 2,

}M } p L 2 pµqÑL p pµq ě p1 ´2δ n q p 2 n p 2

´1

where δ n ≔ a p1 ´θn q{cpnq ď 1{2.

Proof

To come back to the situation of Theorem 2, we introduce the Markovian generator L " M ´Id, where Id is the pS ˆSq-identity matrix. We have |L| ď 1 and the spectrum of ´L defined in (2) is given by

@ m P N , λ m " 1 ´θm
Next consider n P N as in the statement of the above proposition. According to Theorem 2, we have

ι n ď a |L|λ n {cpnq ď a λ n {cpnq " δ n
so we can find pA 1 , ..., A n q P D n satisfying,

@ k P n , δ n µpA k q ě µr1 A k Lr1 A c k ss Taking into account that Lr1 A c k s " M r1 A c k s ´1A c k " M r1 ´1A k s ´1A c k " 1 ´M r1 A k s ´1A c k
we deduce that for any k P n ,

p1 ´δn qµpA k q ď µr1 A k M r1 A k ss
For any k P n , consider the set

B k ≔ tx P A k : M r1 A k spxq ě 1 ´2δ n u. We compute that µr1 A k M r1 A k ss " µr1 B k M r1 A k ss `µr1 A k zB k M r1 A k ss ď µpB k q `p1 ´2δ n qpµpA k q ´µpB k qq
It follows from the two last bounds that 1 2 µpA k q ď µpB k q ď µpA k q

Since the sets A 1 , ..., A n are disjoint, there exists k P n such that µpA k q ď 1{n. Consider f " 1 A k , it appears that µrf 2 s " µpA k q and since by assumption 1 ´2δ n ě 0, we get by definition of B k , µr|M rf s| p s ě p1 ´2δ n q p µpB k q ě p1 ´2δ n q p 2 µpA k q (8)

In particular, we obtain that

}M } p L 2 pµqÑL p pµq ě µr|M rf s| p s µrf 2 s p 2 ě p1 ´2δ n q p 2µpA k q p 2 ´1 ě p1 ´2δ n q p 2 n p 2

´1

as announced.

An approximation procedure

We come back to the Høegh-Krohn and Simon's conjecture framework and approximate it by finite sets.

The proof of Theorem 1 relies on a contradictory argument, explaining why it does not provide a quantitative estimation of the spectral gap in terms of the hyperbounded operator norm. Indeed this is not possible, as it will be seen in the last section. With the notations of the introduction, our starting observation is:

Lemma 4 The ergodic self-adjoint Markov operator M has no spectral gap if and only if for any λ ą 0, pE 1 ´E1´λ qrL 2 pµqs is of infinite dimension.

Proof

By the requirements imposed on the projection-valued family pE λ q λPr´1,1s in the spectral Theorem (see for instance the chapter 7 of the book of Reed and Simon [START_REF] Reed | Methods of modern mathematical physics[END_REF]), for any f P L 2 pµq, the mapping r´1, 1s Q λ Þ Ñ µrf E λ rf ss is non-decreasing. It follows that the mapping r0, 2s Q λ Þ Ñ µrf pE 1 ´E1´λ qrf ss is non-decreasing. Since for any λ P r0, 2s, E 1 ´Eλ is a projection operator, we get that the mapping r0, 2s Q λ Þ Ñ dimppE 1 ´E1´λ qrL 2 pµqsq is non-decreasing. So if for some λ P p0, 2s, we have that dimppE 1 ´E1´λ qrL 2 pµqsq ă `8, it appears that the Z `-valued mapping r0, λs Q l Þ Ñ dimpE 1 ´E1´l q has a finite number of jumps, say 0 " l 1 ă l 2 ă ¨¨¨l r ď λ. Each of them corresponds to an eigenvalue 1 ´li , i P r , whose multiplicity is given by the height of the jump (the first one is 1 " dimppE 1 ´E1´q rL 2 pµqsq, due to the ergodicity assumption). Then M admits l 2 ą 0 as spectral gap.

Conversely if the ergodic self-adjoint Markov operator M has a spectral gap, then pE 1 É1´λ qrL 2 pµqs is of dimension 1 for λ ą 0 small enough.

From now on, we assume that the ergodic self-adjoint Markov operator M has no spectral gap. For any n P N, let 0 ă ǫ n ă 1 ^pcpnq{32q be given, where cpnq is defined in Theorem 2. By the above lemma, we can find f 1 , ..., f n P L 2 pµq, which are normalized, mutually orthogonal and so that

µrf i M f j s " " 0 , if i " j ě p1 ´ǫn q , if i " j
Indeed, we can first take f 1 " 1. Next we choose f 2 among the normalized functions of the infinite dimensional space tg P pE 1 ´E1´λ qrL 2 pµqs : µrgf 1 s " 0 and µrgM rf 1 ss " 0u Iterating this procedure leads to functions f 1 , ..., f n satisfying the wanted properties.

To come back to the finite case, consider a non-decreasing family pS N q N PN of finite sub-σalgebras of S such that ł

N PN S N " σpf 1 , ..., f n q
This is possible, because the σ-algebra generated by f 1 , ..., f n is separable. Fixing N P N, we consider µ N the restriction of µ to S N , I N the natural injection of L 2 pµ N q into L 2 pµq and E N the conditional expectation (projection operator) with respect to S N . Define furthermore the operator

M N ≔ E N M I N , on pS N , S N , µ N q
, where S N is the finite set of atoms of S N . The kernel M N is Markovian, because the three operators I N , M and E N preserve the function 1 and the positivity of the functions (on their respective initial and final spaces). It is reversible, since for all functions f, g defined on S N , we have

µ N rf M N rgss " µrI N rf sE N rM rI N rgssss " µrI N rf sM rI N rgsss " µrM rI N rf ssI N rgss " µrE N rM rI N rf sssI N rgss " µ N rM N rf sgs
By Jensen's inequality, we have for any p ą 2 and g P L 2 pµ N q,

µ N r|M N rgs| p s ď µ N rE N r|M I N rgs| p ss " µr|M I N rgs| p s (9) 
Similarly, we have µ N rg 2 s " µrpI N rgsq 2 s, so it follows that

}M N } p L 2 pµ N qÑL p pµ N q ď sup µr|M rf s| p s : f P I N rL 2 pµ N qs, µrf 2 s " 1 ( ď }M } p L 2 pµqÑL p pµq (10) 
Furthermore by the martingale convergence theorem, for any f P L 2 pσpf 1 , ..., f n q, µq, we have in

L 2 pµq, lim N Ñ8 E N rf s " f
and taking into account the continuity of M , lim

N Ñ8 M rE N rf ss " M rf s
We deduce the convergence of the matrices lim

N Ñ8 pµ N rE N rf i sE N rf j ssq i,jP N " Id N lim N Ñ8 pµ N rE N rf i sM N rf j ssq i,jP N " pµrf i M f j sq i,jP N
where Id N is the pN ˆN q-identity matrix. It follows that for N sufficiently large,

dimpVectpE N rf 1 s, E N rf 2 s, ..., E N rf n sqq " n
and for all g P VectpE N rf 1 s, E N rf 2 s, ..., E N rf n sq,

µ N rgM N rgss ě p1 ´2ǫ n qµ N rg 2 s
In particular M N has n eigenvalues above 1 ´2ǫ n . We can now apply Proposition 3 with δ n ≔ a 2ǫ n {cpnq ď 1{4, to get

}M N } p L 2 pµ N qÑL p pµ N q ě p1 ´2δ n q p 2 n p 2 ´1 ě 2 ´p´1 n p 2

´1

It follows from [START_REF] Cattiaux | A pathwise approach of some classical inequalities[END_REF] that

}M } p L 2 pµqÑL p pµq ě 2 ´p´1 n p 2 ´1
and since this is true for all n P N, M cannot be hyperbounded.

General higher order Cheeger's inequalities

Instead of first obtaining a hyperboundedness estimate in the finite setting and proceeding next to the approximation of the general case, the order of these two steps can be reversed. Several consequences of this observation are brought together here. As in the introduction, let M be a self-adjoint Markov operator in L 2 pµq, where pS, S, µq is a probability space. For any n P N, define

λ n pM q ≔ inf H : dimpHq"n max " µrf pId ´M qrf ss µrf 2 s : f P Hzt0u * ( 11 
)
where the infimum is taken over all subspaces H of L 2 pµq of dimension n (by usual conventions, λ n " `8 for n is strictly larger than the dimension of L 2 pµq). In the general framework, these quantities are no longer necessarily counting the ordered eigenvalues of Id ´M with their multiplicities, for instance if M is ergodic and has no spectral gap, then λ n pM q " 0 for all n P N, whereas the dimension of the eigenspace associated to 0 is 1. As a rule, these quantities count the eigenvalues with multiplicities until the top of the essential spectrum of M is reached and next all the remaining λ n pM q are equal to this top value. Definition (3) can be extended to all non-negligible and measurable A P S:

jpAq ≔ µp1 A M p1 A c qq µpAq
which in turn leads to introduce the connectivity spectrum pι n pM qq nPN through (5) (where D n stands now for set of n-tuples of disjoint and non-negligible elements of S).

Let us also consider

|M | ≔ esssup xPS max APS : xRA M r1 A spxq
(where the essential supremum is relative to µ). Under mild regularity assumptions, this quantity takes the form sup xPS M px, Sztxuq, which in continuous settings is often equal to 1 and thus can be removed from the following result.

The approximation procedure described in the previous section then leads without difficulty to:

Proposition 5 With η ą 0 the universal constant of Theorem 2, we have

@ n P N, η n 8 ι 2 n pM q |M | ď λ n pM q ď ι n pM q
As a consequence, Proposition 3 can be proven in the general setting by the same arguments and Theorem 1 follows directly.

It is tempting to extend the above proposition to Markovian generators. So let pP t q tě0 be a continuous self-adjoint Markovian semi-group, as after the statement of Theorem 1. Denote by L its generator (in L 2 pµq). Since it is a non-positive self-adjoint (but in general non-bounded) operator, we can apply spectral functional calculus to see that if we define for any n P N,

λ n pLq ≔ inf H : dimpHq"n max " µrf p´Lqrf ss µrf 2 s : f P Hzt0u *
(where the infimum is taken over subspaces H of the domain DpLq Ă L 2 pµq of L), then we have

@ n P N, λ n pLq " lim tÑ0 `1 ´expp´tλ n pLqq t " lim tÑ0 `λn pP t q t
A priori, the definition of a connectivity spectrum pι n pLqq nPN associated to L is less obvious. First we note that for any A P S, the mapping

p0, `8q Q t Þ Ñ 1 t µr1 A P t r1 A c ss " 1 t µr1 A pId ´Pt qr1 A ss
is non-increasing, so we could consider its limit at 0 `. Unfortunately, this limit is `8 if 1 A is not in the domain DpEq of the Dirichlet form E corresponding to L. This is very restrictive in the continuous framework, because for 1 A P DpEq, 1 A must be quasi-continuous: for instance if L is the Laplacian on r0, 1s with Neumann boundary conditions, then only A " H and A " r0, 1s satisfy this condition. To avoid these problems, it is convenient to introduce the Dirichlet connectivity spectrum, which in some sense is intermediary between the usual spectrum and the connectivity spectrum. It was considered in the finite setting in [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF][START_REF] Daneshgar | On nodal domains and higherorder Cheeger inequalities of finite reversible Markov processes[END_REF] and in the continuous setting for Laplace-Beltrami operators on Euclidian or Riemannian subdomains with Dirichlet boundary conditions, for instance by Helffer, Hoffmann-Ostenhof and Terracini [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] (see also the references therein). So let us come back to a general self-adjoint Markov operator M as in the beginning of this section. To any non-negligible A P S, we associate its first Dirichlet eigenvalue λ 0 pM, Aq given by

# λ 0 pM, Aq ≔ inf f PDpAq µrf pId´M qrf ss µrf 2 s DpAq ≔ f P L 2 pµq : f " 0 µ-a.s. on A c ( (12) 
Replacing jpAq by λ 0 pM, Aq in (5), we define the Dirichlet connectivity spectrum pΛ n pM qq nPN of M via

@ n P N, Λ n pM q ≔ min pA 1 ,...,AnqPDn max kP n λ 0 pM, A k q
(again D n stands now for set of n-tuples of disjoint and non-negligible elements of S).

In the finite setting, as in Section 2, we can deduce from Theorem 3.7 of Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]: Theorem 6 ( [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]) There exists a universal constant p η ą 0 such that for any finite self-adjoint Markov operator M , we have

@ n P N, p η n 6 Λ n pM q ď λ n pM q ď Λ n pM q
The approximation procedure described in the previous section can easily be applied to the Dirichlet connectivity spectrum, so that the finiteness assumption can be removed from the above theorem.

We now come back to the situation of a continuous self-adjoint Markovian semi-group pP t q tě0 . For any non-negligible A P S and t ě 0, define the operator

P A,t : L 2 pµq Q f Þ Ñ 1 A P t r1 A f s
and consider µ A the conditional expectation of µ on A (for any B P S, µ A pBq " µpB X Aq{µpAq). It appears that pP A,t q tě0 is a continuous self-adjoint semi-group in L 2 pµ A q, which is subMarkovian in the sense that for all t ě 0, P A,t r1s ď 1. It admits a generator L A , self-adjoint in L 2 pµ A q and densely defined on a domain DpL A q. It follows that lim

tÑ0 `λ0 pP t , Aq t " lim tÑ0 `1 ´expp´tλ 0 pL A qq t (13) 
" λ 0 pL A q where

λ 0 pL A q " inf f PDpL A qzt0u µ A rf p´L A qrf ss µ A rf 2 s
Note that the convergence in ( 13) is non-decreasing (as t is decreasing to 0 `), so that it is not difficult to deduce that for any n P N,

lim tÑ0`Λ n pP t q t " Λ n pLq (14) 
≔ min

pA 1 ,...,AnqPDn max kP n λ 0 pL A k q
Let us point out that the quantities λ 0 pL A q can be related more directly to L and A: DpL A q is just the subspace of functions f from DpLq which vanish on A c and for such functions, L A rf s " 1 A Lrf s. So similarly to [START_REF] Daneshgar | On nodal domains and higherorder Cheeger inequalities of finite reversible Markov processes[END_REF], we have λ 0 pL A q " λ 0 pL, Aq with # λ 0 pL, Aq ≔ inf f PDpL,Aq

µrf p´Lqrf ss µrf 2 s
DpL, Aq ≔ tf P DpLq : f " 0 µ-a.s. on A c u With these definitions, Theorem 6 extends to the generator L. From there it is possible to go in the direction of corresponding higher-order Cheeger inequalities. But for this paper, let us escape from the technicalities of the general Dirichlet forms and return to the original Riemannian setting of Cheeger [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF]. The state space S is now a compact Riemannian manifold and L is the associated Laplacian △ operator, so up to a scaling 1{2 in time, pP t q tě0 is the heat semi-group. Due to its regularizing properties, for any t ą 0, to compute Λ n pP t q we can replace D n by p D n the set of ntuples of disjoint and open subsets of S whose boundaries are smooth. For n ě 2, we furthermore impose on p D n the following restrictions, which does not modify the computation of Λ n p△q and will be convenient later on: each n-tuple pA 1 , ..., A n q P p D n is such that for all k P n , A k is connected (otherwise replace A k by its connected component B k satisfying λ 0 p△, A k q " λ 0 p△, B k q) and each connected component of A c k contains at least one of the subsets A l , with l P n ztku (otherwise replace A k by its union with the connected components of A c k not intersecting \ lP n ztku A l and note that the obtained subset is still smooth and connected and its first Dirichlet eigenvalue has not increased). For n " 1, we just assume that A 1 P p D 1 is connected and that its complementary set has only a finite number of connected components.

It follows from the approximation procedure ( 14) that the eigenvalues pλ n p△qq nPN of ´△ satisfy The advantage of considering regular domains is that for any A P p D 1 , it is well-known that there exists a function non-negative f " 0 in the usual Dirichlet-Sobolev space H 1 0 pAq such that λ 0 p△, Aq "

@ n P N, p η n 6 Λ n p△q ď λ n p△q ď Λ n
ş A |∇f | 2 dµ ş A f 2 dµ
where µ is the Riemannian probability. Up to a regularization of pf ´ǫq `for ǫ ą 0 sufficiently small, we can then find a smooth non-negative function g " 0 whose support is included in

A such that ş A |∇g| 2 dµ ş A g 2 dµ ď 2λ 0 p△, Aq
Next the traditional proof of the Cheeger inequality via the co-area formula and Sard's theorem enable to find a subset of the form B " tg ą au with a P p0, max A gq such that ˆσpBBq µpBq ˙2 ď 4λ 0 p△, Aq where BB is the boundary of B and σ is the pdimpSq ´1q-dimensional measure associated to µ. This observation leads to define the connectivity spectrum pι n p△qq nPN of △ through @ n P N , ι n p△q ≔ min pA 1 ,...,AnqP p Dn max kP n σpBA k q µpA k q since we deduce from the above discussion the following Riemannian higher order Cheeger inequalities:

Theorem 7 There exists a universal constant p η ą 0 such that for any compact Riemannian manifold S, we have

@ n P N, λ n p△q ě p η n 6 ι 2 n p△q
By the same arguments, this result is equally valid for generators of the form L¨" △ ¨´x∇U, ∇¨y, where U is a regular potential defined on S (x¨, ¨y and ∇ stand for the scalar product and the gradient operator corresponding to its Riemannian structure), which are called Witten Laplacians (see for instance the book of Helffer [START_REF] Helffer | Semiclassical analysis, Witten Laplacians, and statistical mechanics[END_REF]). The associated reversible probability µ admits the density proportional to expp´U q with respect to the Riemannian measure. But let us mention why the higher order Cheeger inequalities described in Theorem 7 could turn out to be a less interesting tool than the preceding inequalities

@ n P N, p η n 6 Λ n pLq ď λ n pLq ď Λ n pLq (15) 
at least at "small temperature". Still in the setting of Witten Laplacian, introduce the parameter β ě 0, seen as an inverse temperature, and consider the operator L β " △ ¨´β x∇U, ∇¨y and the associated reversible probability µ β whose density is proportional to expp´βU q. Our goal is to recover that the following convergences take place and to describe geometrically the corresponding limits pl n q nPN @ n P N,

l n ≔ ´lim βÑ`8 β ´1 lnpλ n pL β qq (16) 
When U has a finite number of connected components of critical points, this result is due to Freidlin and Wentzell (cf. Chapter 6 of their book [START_REF] Freidlin | of Grundlehren der Mathematischen Wissenschaften[END_REF]), see also [START_REF] Miclo | Comportement de spectres d'opérateurs de Schrödinger à basse température[END_REF] for the general case, obtained by extending the approach due to Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], which derived ( 16) for the spectral gap, namely for n " 1. More precise descriptions of the behavior of the small eigenvalues λ n pL β q (i.e. those for which l n ą 0), such as the expansion of the pre-exponential factors, were proven for instance in Helffer and Nier [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] (see also Helffer, Klein and Nier [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF] or Bovier, Gayrard and Klein [START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF] and the references given therein), but they require more work and stronger hypotheses (assuming for instance that U is a Morse function). Due to (15) (and Theorem 7 is not enough in this respect, because of the square in the r.h.s.), it is now more straightforward to deduce [START_REF] Gong | Spectral gap of positive operators and applications[END_REF]: it is sufficient to understand the behavior of λ 0 pL β , Aq, for large β ě 0, at least if this can be done in a relatively uniform manner over A P p D 1 . To proceed in this direction, we need some notations. First we remark that up to a scaling in β ą 0, we can and will assume from now on that }∇U } 8 ď 1 (the following arguments show that only a C 1 regularity of U is needed for ( 16)). For x, y P Ā ≔ A\BA, let C Ā x,y be the set of continuous paths c : r0, 1s Ñ Ā going from cp0q " x to cp1q " y. The elevation of such a path c P C Ā x,y is epcq ≔ max tPr0,1s U pcptqq and the communication height from x to y in Ā is defined by Hpx, yq ≔ min cPC Ā

x,y epcq. Finally the height of A is hpAq ≔ max xPA,yPBA Hpx, yq. It is the height of the more profound well inside Ā (with respect to U ): an open and connected set B Ă S is said to be a well, if U is constant on BB and if for any x P B, U pxq ă U pBBq. The height of a well B is given by hpBq " U pBBq ´min B U . Note that A P p D 1 does not contain a well if and only if hpAq " 0. It will be shown in the appendix how the arguments of Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] can be modified to get that there exists a constant k S ą 0, depending only on the Riemannian structure of S, such that for all β ě 1 and

A P p D 1 p1{βq, k S β 2´4 dimpSq expp´βhpAqq ď λ 0 pL β , Aq (17) 
where for β ě 1, p D 1 p1{βq is the collection of subsets A P p D 1 such that in each connected component of A c , we can find a point x satisfying µpBpx, 1{βq X A c q ě µpBpx, 1{βqq 2 (Bpx, 1{βq stands for the Riemannian ball centered at x and of radius 1{β and recall that µ is the Riemannian probability of S). It is quite easy (see the appendix) to find an upper bound matching the exponential rate of (17): if for any A P p D 1 , we define kpAq ≔ maxtλ 0 pL 0 , Bq : B Ă A is a cycle with hpBq " hpAqu then we have

@ β ě 1, λ 0 pL β , Aq ď kpAq expp´βhpAqq ( 18 
)
This bound is empty if hpAq " 0, since then by convention kpAq " `8. In this situation, rather consider rpAq the largest radius of a ball included in A. Then there exists a constant k 1 S ą 0, depending only on the Riemannian structure of S, such that

@ β ě 1, λ 0 pL β , Aq ď k 1 S pr ´2pAq _ β 2 q (19)
It will be furthermore checked in the appendix that there exists another constant k 2 S ą 0, again depending only on the Riemannian structure of S, such that for any n ě 2, β ě 1 and pA 1 , ..., A n q P p D n ,

D k P n : A k R p D 1 p1{βq ùñ max kP n λ 0 pL β , A k q ě k 2 S β 2 (20) 
Define

@ n P N, p l n ≔ max pA 1 ,...,AnqP p Dn min kP n hpA k q
It follows from the bounds ( 18) and ( 20) that if n ě 2 is such that p l n ą 0, then for β ě 1 large enough, Λ n pL β q " min pA 1 ,...,AnqP p Dnp1{βq max kP n λ 0 pL β , A k q where p D n p1{βq is the subset of n-tuples pA 1 , ..., A n q of p D n consisting of elements all belonging to p D 1 p1{βq. It is then easy to deduce from ( 17) and [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] (which enables the choice of appropriate n-tupes from p D n ) that ( 16) holds and that

@ n P Nzt2u, l n " p l n (21) 
(this relation is also true for n " 1, in which case both sides are trivially equal to `8).

When n ě 2 is such that p l n " 0, we obtain that for any β ě 1 and A P p D 1 with hpAq " 0,

max ´kS β 2´4 dimpSq , k 2 S β 2 ¯ď λ 0 pL β , Aq ď k 1 S pr ´2pAq _ β 2 q
so that ( 21) is easily seen to be equally true. Thus generally, l n appears as the highest l ě 0 such that n disjoint wells of height l can be found in S. This geometric description is also valid in the finite setting (see for instance [START_REF] Miclo | Comportement de spectres d'opérateurs de Schrödinger à basse température[END_REF]) and it was the underlying motivation for the introduction of the Dirichlet connectivity spectrum in [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF], as an ersatz of "spatial localization in wells" for general Markov generators (i.e. without a small temperature parameter).

Remark 8

The isoperimetric upper bound on the spectral gap in the original Riemannian setting of Cheeger [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] requires other tools and Buser [START_REF] Buser | A note on the isoperimetric constant[END_REF] has shown that there exists a constant C depending only on the dimension of S such that for n " 1,

λ n p△q ď Cp ? Kι n p△q `ι2 n p△qq ( 22 
)
where ´K ď 0 is a lower bound on the Ricci curvature of S. It is natural to wonder if this bound could be extended to any n P N, with quantities C and K satisfying similar properties and independent of n P N. Funano obtained a result in this direction in Theorem 1.7 of [START_REF] Funano | Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds[END_REF], for the case of nonnegative Ricci curvature. In a first version of this paper and based on the analytical approach due to Ledoux [START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF], we proposed a proof of [START_REF] Hino | Exponential decay of positivity preserving semigroups on L p[END_REF], unfortunately it contained an error. What is missing is a lower bound on the curvature of the boundaries of the elements of a minimizing n-tuple in the definition of Λ n p△q, in terms of the Ricci curvature of the underlying compact Riemannian manifold S. Such a bound, even in the particular case of the flat torus of dimension 2, could lead to some progress in the hexagonal conjecture, stating that when S is a regular compact domain of R 2 , the elements of a minimizing n-tuple in the definition of Λ n p△q look like hexagons, at least those not too close to the boundary, cf. the recent paper of Bérard and Helffer [START_REF] Bérard | Remarks on the boundary set of spectral equipartitions[END_REF]. Remark 9 In their Theorem 3.7, Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] obtained several improvements of the factor p η{n 6 in Theorem 6. First by allowing the indices n of Λ n pM q and λ n pM q to be slightly different, they proved that there exists a universal constant η 1 ą 0 such that for any δ P p0, 1q and for any finite self-adjoint Markov operator M , @ n P N, η 1 δ 4 n 2 Λ rp1´δqns pM q ď λ n pM q (recall that rxs is the smallest integer larger or equal to x P R). As usual, by the above approximation procedure, the finiteness assumption can be removed from this bound. Next, Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] imposed some restrictions on the undirected graph G associated to M (the edges of G are the ti, ju with i, j P S such that M pi, jq ą 0): there exist universal constants η 2 ą 0 and η 3 ą 0 such that for any h P N, δ P p0, 1q and finite self-adjoint Markov operator M , ' if G excludes the complete graph on h elements as a minor, then @ n P N, η 2 δ 4 h 4 Λ rp1´δqns pM q ď λ n pM q ' if G has genus at most h, then @ n P N, η 3 δ 4 ln 2 p1 `hq Λ rp1´δqns pM q ď λ n pM q

Note that the previous approximation procedure is no longer sufficient to find an equivalent of these properties for the (Witten) Laplacian on a compact Riemannian manifold (a first guess would be that the latter estimate extends on surfaces with the corresponding notion of genus, at least if it is positive). This subject would deserve to be investigated further.

In the last section below, we will check that another improvement of Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] is of optimal order. 5

Other norms

The L p norms, p ą 2, entering Theorem 1 can be replaced by more general norms, provided they are stronger than the reference L 2 norm.

More precisely, let be given on F, the space of measurable functions on pS, Sq up to µ-negligible sets, a mapping N : F Ñ R `\ t`8u which is a norm once restricted to

L N ≔ tf P F : N pf q ă `8u
We assume that N is non-decreasing with respect to the natural order structure of L N `≔ tf P L N : f ě 0u, namely,

@ f 1 , f 2 P L N `, f 1 ď f 2 ñ N pf 1 q ď N pf 2 q
and that for any sub-σ-field T of S, the conditional expectation E T with respect to T is a bounded endomorphism of L N : there exists K P r1, `8q such that

@ f P L N , N pE T rf sq ď KN pf q (23) 
The first assumption enables us to replace (8) by

N pM r1 A k sq ě p1 ´2δ n qN p1 B k q ě p1 ´2δ n qkpnq }1 B k } L 2 pµq ě 1 ´2δ n ? 2 kpnq }1 A k } L 2 pµq
where kpnq ≔ sup

# N p1 B q a µpBq : 0 ă µpBq ď 1 n + (24) 
The second property plays the role of Jensen's inequality, so that instead of ( 9), we get for any

g P L 2 pµ N q, N pI N M N rgsq ď KN pM I N rgsq
Since these are the only features of the L p norms that we have used to prove Theorem 1, we deduce the following extension:

Theorem 10 Under the hypothesis that lim nÑ8 kpnq " `8, meaning in some sense that N is stronger than the L 2 norm, Theorem 1 is still valid if hyperboundedness is replaced by the fact that }M } L 2 pµqÑL N ă `8.

A typical instance of the above situation is given by Orlicz's norms (for a convenient summary, see e.g. Chapter 9 of Neveu [START_REF] Neveu | Martingales à temps discret[END_REF]). Let Φ : R `Ñ R `be a Young function: it is continuous, non-decreasing, convex and vanishes at 0. The corresponding norm N is given by

@ f P F, N pf q ≔ inf " a ą 0 : µ " Φ ˆ|f | a ˙ ď 1 *
The previous requirements on N are met, since Jensen's is also satisfied in this setting, namely 6 Quantitative links between hyperboundedness and spectrum

It will be checked that Theorem 1 does not admit a general quantitative version relative to the spectral gap, instead it is possible to give a bound on another eigenvalue. We will also see how the classical hypercontractivity of the Ornstein-Ulhenbeck process enables to recover that some estimates of Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] are optimal.

We begin by considering the L 2 to L 4 hypercontractivity. In [START_REF] Wang | Spectral gap for hyperbounded operators[END_REF], Wang has shown that if }M } 4 L 2 pµqÑL 4 pµq ă 2, then Theorem 1 is true and it is possible to deduce a lower bound on the spectral gap in term of }M } L 2 pµqÑL 4 pµq . In next result we show that this fact cannot be extended in general.

Proposition 11 For any K ě 2 and for any ǫ P p0, 1q, we can find a self-adjoint ergodic Markov operator M whose spectral gap is ǫ and which is such that }M } 4 L 2 pµqÑL 4 pµq " K.

As in Wang [START_REF] Wang | Spectral gap for hyperbounded operators[END_REF], we construct the example on the two points state space S ≔ t0, 1u, but we rather consider all the probability measures µ ≔ pη, 1 ´ηq, with η P p0, 1{2s. For ǫ P r0, 1s, we are interested in the self-adjoint Markov operator in L 2 pµq given by M ≔ p1 ´ǫqId `ǫµ (where µ is interpreted as the Markov operator associating µrf s1 to any function f P L 2 pµq). The spectrum of M is constituted of the two eigenvalues 1 and 1 ´ǫ, so that if ǫ ą 0, M is ergodic and its spectral gap of M is ǫ. We define @ pη, ǫq P p0, 1{2s ˆr0, 1s,

F pη, ǫq ≔ }M } 4 L 2 pµqÑL 4 pµq

Lemma 12

The above mapping F is continuous on p0, 1{2s ˆr0, 1s . Furthermore it satisfies maxtF p1{2, ǫq : ǫ P r0, 1su " 2 @ ǫ P p0, 1q, lim ηÑ0 `F pη, ǫq " `8

Proof

Let ϕ be the function defined on S by ϕp0q ≔ ´ap1 ´ηqη and ϕp1q " a η{p1 ´ηq, so that p1, ϕq is an orthonormal basis of L 2 pµq diagonalizing M . Consider f ≔ x1 `yϕ with x, y P R. Of course we have µrf 2 s " x 2 `y2 and we compute that µrpM rf sq 4 s " µrpx1 `p1 ´ǫqyϕq 4 The continuity of F is a direct consequence of the continuity of A, B and C and of the compactness of the circle tpx, yq P R 2 : x 2 `y2 " 1u. By considering its point px, yq " p0, 1q, it appears that F ě C, from which follows the last assertion of the lemma. Finally, we have @ ǫ P r0, 1s, F p1{2, ǫq " max x 4 `6p1 ´ǫq 2 x 2 y 2 `p1 ´ǫq 4 y 4 : x 2 `y2 " 1 (

The r.h.s. is decreasing as a function of ǫ P r0, 1s, so that maxtF p1{2, ǫq : ǫ P r0, 1su " F p1{2, 0q

" maxtx 2 `6xp1 ´xq `p1 ´xq 2 : x P r0, 1su

" 2

Proposition 11 is an immediate consequence of the above lemma: for any K ě 2 and ǫ P p0, 1q, consider the mapping p0, 1{2s Q η Þ Ñ F pη, ǫq to find η P p0, 1{2s such that F pη, ǫq " K. The corresponding Markov operator M satisfies the requirements of Proposition 11.

Returning to the general case, the proofs of the previous sections only provide a bound on a certain eigenvalue, not necessarily the spectral gap. Since we are now looking for a quantitative bound, we must use the sharpest result obtained by Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF], namely their Theorem 4.1, one consequence of which can be written as: Theorem 13 ( [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]) With the notations of Section 2, there exists a universal constant η ą 0 such that if cpnq ≔ η{ lnp1 `nq, then for any finite self-adjoint Markov operator,

@ n P N, λ 2n ě cpnqι 2 n
As it was explained in Sections 3 and 4, the finiteness assumption can be removed by approximation. Furthermore the above result admits an immediate extension to the compact Riemannian framework as in Theorem 7.

We can now come back to the setting of Section 5 and consider a Young function Φ and the corresponding quantities defined in [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] and whose values are given by

@ n P N, kpnq " ? n Φ ´1pnq (25) 
(at least if µ has no atom, otherwise only an inequality holds, but for our purposes we can take the kpnq, n P N, to be the corresponding upper bounds). Revisiting the arguments of Section 2 (with δ n " 1{4 for n P N) and taking into account the observations of Sections 4 and 5 and Theorem 13, we get the following quantitative version of Theorem 1:

Theorem 14 Let M be a self-adjoint Markov operator. If n P N is such that kpnq ě 2 ? 2 }M } L 2 ÑL Φ , then we are assured of λ 2n pM q ě cpnq 16

where for any m P N, the quantities kpmq, cpmq and λ m pM q are defined in [START_REF] Lawler | Bounds on the L 2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality[END_REF], Theorem 13 and (11). Thus the top of the spectrum of M consists of 2n eigenvalues 1, 1 ´λ2 pM q, ..., 1 ´λ2n pM q (with multiplicities: some of them can be equal). In particular, Theorem 1 is recovered if M is furthermore assumed to be ergodic.

It is tempting to investigate what happens to this bound when we rather start with a selfadjoint Markov semi-group pP t q tě0 . Let us consider the most famous example of hypercontractive semi-group, the Ornstein-Uhlenbeck process, first on R. Later on, we will tensorize it to verify that in general the order of the estimate of Theorem 14 cannot be improved and by consequence this is also true for Theorem 13. In Section 4.3 of [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF], Lee, Gharan and Trevisan applied other hypercontractivity results due to Bonami [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p pGq[END_REF] and Beckner [START_REF] Beckner | Inequalities in Fourier analysis[END_REF] to noisy hypercubes in order to check that for large n P N the order of cpnq given in Theorem 13 is optimal.

So let pP t q tě0 be the self-adjoint Markov semi-group associated to the Ornstein-Uhlenbeck generator defined by

@ f P C 2 b pRq, @ x P R, Lrf spxq ≔ f 2 pxq ´xf 1 pxq
which is essentially self-adjoint on L 2 pγq, where γ is the normal centered Gaussian distribution.

It is well-known (see Nelson [START_REF] Nelson | The free Markoff field[END_REF] and Gross [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF]) that for any p ą 2,

}P t } L 2 pγqÑL p pγq " # `8 , if t ă 1 2 lnpp ´1q 1 , if t ě 1 2 lnpp ´1q (26) 
Applying Theorem 14 with M " P t for t ą 0 and relatively to the usual Lebesgue space L p pγq with p ą 2, we get that for any n P N, # n 

Since for large n P N, t n " 2 lnp2 ? 2q{ lnpnq " 2 lnp2 ? 2qηcpnq, this result essentially means that λ n pLq is bounded below for n ě n 0 . It seems quite disappointing, since it is well-known that λ n pLq " n ´1 for all n P N. So we could try to improve Theorem 13 by obtaining quantities cpnq, n P N, satisfying lim nÑ8 cpnq lnpnq " `8, since it would lead to a lower bound in the r.h.s. of [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] going to infinity as n Ñ 8. But this is not possible, because the previous arguments are stable by tensorization. More precisely, for N P N \ t8u, consider the semi-group pP bN t q tě0 acting on L 2 pγ bN q. The same hypercontractivity property [START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF] is valid for this semi-group. The generator L pN q of pP bN t q tě0 corresponds to the sum of N copies of L, each acting on different coordinates of R N . In particular, we get @ n P 2, N `1 , λ n pL pN q q " λ 2 pLq

This forbids the r.h.s. of ( 27) to be improved into a lower bound going to infinity with n. In particular the lower bound of Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] presented in Theorem 13 is of optimal order.

A On principal Dirichlet eigenvalues at small temperature

The goal of this appendix is to check the assertions ( 17), ( 18), ( 19) and ( 20) presented in Section 4.

Concerning the three first relations, we will adapt the proofs of Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] for the corresponding results relative to the spectral gap of a Witten Laplacian on a compact Riemannian manifold without boundary. Their computations are based on the following ideas. The upper bound is obtained by considering a function approximating the indicator function of a well whose height is maximum among those not intersecting a fixed global minimum of the potential. For the Dirichlet eigenvalues, the argument is even simpler, by using a well of maximum height included in A or a small ball if there is no such well. Concerning the lower bound, Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] consider paths with minimal elevation connecting generical points of the manifold with a fixed global minimum of the potential. This approach can in principle be applied to the Dirichlet eigenvalues by using paths with minimal elevation connecting generical points of A to BA. But technically it requires some curvature bounds on BA, so we preferred to resort to a modified elevation and to paths linking generical points of A to some nice interior points of A c . The advantage is that the existence of such points is not really restrictive when one is computing Dirichlet connectivity spectra, as shown by [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF].

The notations are those introduced in Section 4. We begin by considering the simplest bounds:

Proof of ( 18) and ( 19) It is based, on one hand on the observation that for any fixed β ě 0, the mapping p To conclude to [START_REF] Helffer | Semiclassical analysis, Witten Laplacians, and statistical mechanics[END_REF], it remains to remark that by compactness of S, there exists a constant k p3q S ě 1, depending only on the Riemannian structure of S, such that @ x P S, @ r P p0, 1s, pk p3q S q ´1r ´2 ď λ 0 pL 0 , Bpx, rqq ď k p3q S r ´2

D 1 Q A Þ Ñ λ 0 pA, L β q is non-increasing,
The following arguments mainly follow those of Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF]. We will adopt their notations (sometimes with a A in index when the corresponding notions differ), so that we can refer directly to their proof.

Proof of (17)

Let β ě 1 be fixed as well as a set A P p D 1 p1{βq. We modify the potential U by defining

@ x P S, U A pxq ≔ " U pxq , if x P A \ BA ´8 , otherwise
The elevation E A pγq of a path γ P Cpr0, 1s, Sq is E A pγq " max tPr0,1s H A px, y j q ´U pxq where J is the number of connected components of A c (there are only a finite number of them by the restrictions imposed on p D 1 ) and where the y j , j P J , are any choice of points in each of them, but we take them satisfying µpBpy j , 1{βq X A c q ě µpBpy j , 1{βqq 2 where jpkq P J is such that H A px k , y jpkq q " min jP J

H A px k , y j q and where k p5q S ě 1 is a constant only depending on the structure of S such that @ x P S, @ r P p0, 1s, pk p5q S q ´1r dimpSq ď µpBpx, rqq ď k p5q

S r dimpSq

With these preliminaries, the proof is now identical to that of Holley, Kusuoka and Stroock developed in pages 338 to 340 of [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF]. They find a constant k whose validity for all C 1 functions φ vanishing outside A implies [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF].

The proof of the remaining bound will justify the restrictions imposed on p D n , which could have looked strange at first view.

Proof of (20)

So let be given n ě 2, β ě 1 and pA 1 , ..., A n q P p D n such that A 1 does not belong to p D 1 p1{βq, we are going to prove that there exists k P 2, n with

λ 0 pL β , A k q ě k 2 S β 2 (28) 
where k 2 S ą 0 is a constant depending only on the Riemannian structure of S. Indeed, by definition of p D 1 p1{βq, there exists a connected component of A c which is such that all its points x satisfy µpBpx, 1{βq X A 1 q ą µpBpx, 1{βqq 2

By definition of p D n , this connected component contains a subset A k , with k P 2, n , it is the one that will satisfy [START_REF] Liu | Multi-way dual Cheeger constants and spectral bounds of graphs[END_REF]. Consider pX pβq t q tě0 a diffusion process of generator L β and denote τ ≔ inftt ě 0 : X pβq t R A k u. Since L β is elliptic and A k is a connected open set, λ 0 pL β , A k q is the asymptotic rate of getting out of A k : @ x P A k , λ 0 pL β , A k q " ´lim tÑ`8 where k p8q S ą 0 is the volume of S (with respect to the unnormalized Riemannian measure of S), where ρpx, yq is the Riemannian distance between x and y and where b ≔ K S `β, K S ě 0 being such that the Ricci curvature of S is bounded below by ´KS . In particular if we choose σ " β, it appears there exists a constant k p9q S ą 0, only depending on S, such that @ x P S, @ y P Bpx, 1{βq, p 

  p△q where Λ n p△q ≔ min pA 1 ,...,AnqP p Dn max kP n λ 0 p△, A k q

when p D 1 1 U

 11 is endowed with the inclusion order. And on the other hand on the fact that for any β ě 0 and B P pD qqλ 0 pL 0 , Bq ď λ 0 pL β , Bq ď exppβpsup B U ´inf B U qqλ 0 pL 0 , BqIf B is a cycle, we have hpBq " sup B U ´inf B U , so (18) follows at once. If B is a ball of radius r ą 0, sup B U ´inf B U ď 2r }∇U } 8 ď 2r, so that we get for any A P p D 1 , λ 0 pL β , Aq ď e 2 maxtλ 0 pL 0 , Bq : B Ă A is a ball of radius less than 1{βu

For any β ě 1 ,ż

 1 there exists a finite cover of A by balls tBpx k , 1{βq : k P N β u, where the x k , k P N β , are points of A, where N β ď k p4q S β dimpSq , with k p4q S ă `8 is a constant depending only on S and not on A. Denote Z β ≔ ş expp´βU q dµ. Considering any function φ P C 1 pSq vanishing on A c , we can writeµ β rφ 2 s ď 1 Z β ÿ kP N β ż Bpx k ,1{βq expp´βU pxqqφ 2 pxq µpdxq " 1 Z β µpBpy jpkq , 1{βq X A c q ÿ kP N β ż Bpx k ,1{βqˆpBpy jpkq ,1{βqXA c q expp´βU pxqqpφpxq ´φpyqq 2 µpdxqµpdyq ď 2 Z β µpBpy jpkq , 1{βqq ÿ kP N β ż Bpx k ,1{βqˆBpy jpkq ,1{βq expp´βU pxqqpφpxq ´φpyqq 2 µpdxqµpdyq Bpx k ,1{βqˆBpy jpkq ,1{βq pφpxq ´φpyqq 2 µpdxqµpdyq

p6qS

  ą 0, only depending on S, such that for any β ě 1 and φ as above, sup # expp´βU pxqq ż Bpx,1{βqˆBpy,1{βq pφpwq ´φpvqq 2 µpdvqµpdwq : x P A, y R A + ď k p6q S β 2pdimpSq´1q Z β exppβhpAqq ż x∇φ, ∇φy dµ β Putting together the above computations, we end up with the Poincaré inequality µ β rφ 2 s ď 2ek p4q S k p5q S k p6q S β 4 dimpSq´2 exppβhpAqq ż x∇φ, ∇φy dµ β

pβq 1{β 2 S β dimpSq µpA 1 X

 21 px, yq ě k p9q S β dimpSq It follows that for all x P A k , ż Bpx

  , yu : Lpx, yq ą 0 or x " yu

	@ e P E,	ωpeq ≔	"	µpxqLpx, yq , if e " tx, yu with x " y |L| `Lpx, xq , if e " tx, xu
	We get that					
			@ x P S,		ωpxq " |L| µpxq
	and it follows that for all n P N , r ι n " ι n { |L|. Furthermore, by the variational characterization of the eigenvalues (see Equation (9) of [27]), we have
	r λ n " "	1 2 λ n H : dimpHq"n min |L|	max	# ř	x,yPS ωptx, yuqpf pyq ´f pxqq 2 ř zPS ωpzqf 2 pzq	+ : f P Hzt0u

  is valid with K " 1. The main hypothesis, lim nÑ8 kpnq " `8, of the above theorem then

	amounts to			
	lim rÑ`8	? r Φ ´1prq	"	`8
	or equivalently,			
	lim rÑ`8	Φprq r 2	"	`8

  s " x 4 `Apη, ǫqx 2 y 2 `Bpη, ǫqxy 3 `Cpη, ǫqy 4 ǫq " max x 4 `Apη, ǫqx 2 y 2 `Bpη, ǫqxy 3 `Cpη, ǫqy 4 : x 2 `y2 " 1 (

	where for any pη, ǫq P p0, 1{2s ˆr0, 1s,
	Apη, ǫq ≔ 6p1 ´ǫq 2 Bpη, ǫq ≔ 4p1 ´ǫq 3 2η a ηp1 ´ηq ´1 Cpη, ǫq ≔ p1 ´ǫq 4 1 ´3η `3η 2 ηp1 ´ηq
	Thus we have
	F pη,

  P N the smallest integer such that p n ą 2. Taking into account the convexity bound s ě 1 ´expp´sq for any s P R, we deduce that @ n P N, n ě n 0 ùñ λ n pLq ě cpnq 16t n

	1 2 ´1 p ě 2 ? t ě 1 2 lnpp ´1q 2	ñ 1 ´expp´tλ 2n pLqq ě	cpnq 16
	where cpnq is defined in Theorem 13. This leads us to define for n P N,
	p n ≔ t n ≔ "	2 lnpnq lnpnq ´2 lnp2 ? 1 2 lnpp n ´1q 1 2 ln ˆlnpnq `2 lnp2 2q ? lnpnq ´2 lnp2 ?	2q 2q	ȧnd
	to consider n 0			

  Thus taking into account the Markov property, to get[START_REF] Liu | Multi-way dual Cheeger constants and spectral bounds of graphs[END_REF], it is sufficient to find another constant k p7q S ą 0 depending only on S such that @ x P A k , P x rτ ď 1{β 2 s ě k yqq tą0,x,yPS the kernels corresponding to the semi-group associated to the generator L β , so we can write From Theorem 3.1 of Wang[START_REF] Wang | Sharp explicit lower bounds of heat kernels[END_REF], we have that for any t ą 0, σ ą 0 and x, y P S,

										p7q	
										S	
	It is even enough to show that									
		@ x P A k ,	P x rX 1{β 2 P A 1 s ě k pβq S p7q	
	Denote by pp									
					ż						
		P x rX 1{β 2 P A 1 s " pβq	A 1	p	pβq 1{β 2 px, yq µpdyq	
	p	pβq t px, yq ě k S p2πtq ´dimpSq{2 exp p8q	"	´ˆ1 2t `σ 3 ?	t	˙ρ2 px, yq	´b2 t 8	´ˆb 2 4σ	3 `2 dimpSqσ	˙?t	

1 t lnpP x rτ ą tsq where the x in P x indicates that the diffusion is starting from x: P x -almost surely, X pβq 0 " x. pβq t px,
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