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Abstract

Consider an ergodic Markov operator M reversible with respect to a probability measure p on
a general measurable space. It is shown that if M is bounded from L2(u) to LP(u), where p > 2,
then it admits a spectral gap. This result answers positively a conjecture raised by Hgegh-Krohn
and Simon [36] in the more restricted semi-group context. The proof is based on isoperimetric
considerations and especially on Cheeger inequalities of higher order for weighted finite graphs
recently obtained by Lee, Gharan and Trevisan [27]. It provides a quantitative link between
hyperboundedness and an eigenvalue different from the spectral gap in general. In addition, the
usual Cheeger inequality is extended to the higher eigenvalues in the compact Riemannian setting
and the exponential behaviors of the small eigenvalues of Witten Laplacians at small temperature
are recovered.

Keywords: Markov operators and semi-groups, hyperboundedness, spectral gap, Cheeger’s
inequalities, (Dirichlet) connectivity spectrum, Orlicz’s norms, hypercontractivity.
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1 Introduction

The main purpose of this article is to show that hyperbounded, ergodic and self-adjoint Markov
operators admit a spectral gap. This property solves a conjecture raised by Hgegh-Krohn and
Simon [36] in a semi-group context.

More precisely, let us start with a probability space (S,S,u). A self-adjoint operator M :
L2(p) — L2(p) is said to be Markovian if

Y fel?(n), f=0 = M[f]=0

where 1 is the function always taking the value 1 and where all the previous statements have to
be understood p-almost surely.

In particular, M admits a spectral decomposition: there exists a projection-valued measure (E;) le[~1,1]
such that

1
M = j ldE;
-1

(see e.g. the chapter 7 of the book of Reed and Simon [35]).
The Markov operator M is said to be ergodic if

V fel?(pn), Mf=f = fe Vect(l)

namely if (F; — Ey_)[IL?(u)] is reduced to Vect(1), the vector line generated by 1.

This property is implied by the following stronger requirement: M has a spectral gap if there
exists A > 0 such that (E; — E;_,)[L?(u)] = Vect(1) and by definition the associated spectral gap
is the supremum of such .

Finally, the Markov operator M is said to be hyperbounded if there exists p > 2 such that

HMH]Lz(/J,)H]LP(“) < 4o

We can now state the objective of this paper:

Theorem 1 If a self-adjoint Markovian operator is ergodic and hyperbounded then it admits a
spectral gap.

This result was conjectured by Hpegh-Krohn and Simon [36], who rather believed it to be wrong,
in the more restricted context of semi-groups. They started with a continuous family of self-adjoint
Markovian operators P := (P,;);o defined on L2(x) and satisfying the semi-group property: P is
the identity operator and

Vt,S}O, PtPS = Pt+8

The semi-group P is said to be ergodic if for any f € L2(u), P;[f] converges in L2(u) toward
wulf] (seen as the function u[f]1). It is said to have a spectral gap if the previous convergence is
uniform over the unit ball of L?(x). These properties can be characterized through the associated
generator L (see for instance the book of Yosida [43]): it is the self-adjoint operator defined on the
dense domain D(L) of functions f € L?(u) such that (P;[f] — f)/t converges in L2(u) as t goes to
0.. By definition, the limit is L[f]. The self-adjoint operator L is non-positive definite and can
be spectrally decomposed: there exists a projection-valued measure (£7);cg, such that

L = —f ldF
R
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By functional calculus, we then have
Vt=0, P = j exp(—tl) dF; (1)
Ry

Ergodicity and the existence of a spectral gap respectively amount to Fy[LL?(1)] = Vect(1) and
to the existence of A > 0 such that F\[L?(u)] = Vect(1). By definition, the spectral gap is the
supremum of such A. It can also be computed via the corresponding Dirichlet form: for any
f € L?(u), the mapping R% 3¢ — u[f(Id — P;)[f]]/t is nonincreasing, designate by E(f) its limit
in 0, which belongs to R, . This quantity is called the energy of f and let D(E) := {f € L2(u) :
E(f) < o} (it appears that D(L) < D(€) and for f € D(L), E(f) = —u[fL[f]]). The mapping
D(E) > f — E(f) is referred to as the Dirichlet form associated to P (see for instance the book
[14] of Fukushima, Oshima and Takeda). The semi-group P admits a spectral gap if and only if
the following quantity Ag is nonzero, in which case it is the spectral gap of P:

-1
Var(f, 1)

Ay = —_—

’ (,ffﬁl?m £(f) )

where Var(f, p) := u[f%] — (u[f])? is the variance of f with respect to . In the above expression,
the convention 0-00 = 0 is enforced as usual. Finally, the semi-group P is said to be hyperbounded,
if there exists a time 1" > 0 such that the Markov operator Pr is hyperbounded in the previous
sense.

Hgegh-Krohn and Simon [36] were wondering if hyperbounded, ergodic and continuous self-
adjoint Markov semi-groups admit a spectral gap. Theorem 1 enables to answer positively to this
question. It is sufficient to apply it to an element Pr of the semi-group which is hyperbounded.
The Markov operator Pr is seen to be ergodic via the representation (1).

Let us mention that the Hgegh-Krohn and Simon’s conjecture is easy to solve, if the hy-
perboundedness assumption is strengthened into hypercontractivity: the continuous self-adjoint
Markov semi-group is said to be hypercontractive, if there exist p > 2 and a time 7" = 0 such that
the norm of Pr from L2(u) to LP(u) is 1. It is well-known that such a semi-group admits a spectral
gap, and better, its generator satisfies a logarithmic Sobolev inequality, property in fact equivalent
to hypercontractivity. Hyperboundedness is itself equivalent to a non-tight logarithmic Sobolev
inequality. The existence of a spectral gap enables to tight such an inequality (for all the previous
assertions, see for instance the book of Ané, Blachere, Chafal, Fougeres, Gentil, Malrieu, Roberto
and Scheffer [4]). Thus Theorem 1 shows that for semi-groups, hyperboundedness is equivalent of
hypercontractivity, but as it will appear in Proposition 11 of Section 6, there is no quantitative
way to go from the former to the latter in general.

Several attempts have been made to find a counterexample or to prove Hgegh-Krohn and
Simon’s conjecture, but extra assumptions were always needed, see for instance the papers of Aida
[1], Mathieu [30], Wu [42], Hino [22, 23], Cattiaux [10], Wang [39], Gong and Wu [16] and the
bibliographical comments given in section 5.9 of the book [40] of Wang for further motivations.
The latter author has also shown in [39] that Theorem 1 is true if | M| » (0)—LA(u) < 2 and that it is
wrong if the Markovian (or the ergodicity) assumption is removed. It provides a glimpse of the deep
connection between Markovianity and isoperimetry, on which is based our approach. It is different
from the various methods proposed by the above mentioned articles. A crucial ingredient is the
Cheeger inequalities of higher order recently proven by Lee, Gharan and Trevisan [27] for weighted
finite graphs. They are recalled in the next section, where we are to work on estimates in the finite
framework. The approximation procedure enabling to treat the general situation is presented in
the third section. The three last sections are devoted to further observations, respectively about
general higher order Cheeger’s inequalities, the extension to Orlicz spaces and a quantitative version
of Theorem 1. An appendix adapts to principal Dirichlet eigenvalues some estimates of Holley,



Kusuoka and Stroock [24] relative to spectral gaps at small temperature. They are required by an
illustration of the interest of the Dirichlet connectivity spectra defined in Section 4.

The techniques presented here were extended in several directions. In [41], Wang characterizes
the existence of the spectral gap of the symmetric Markovian operator M in L?(j), via the uniform
integrability condition

lim sup p[f(M[f]-R)*] < 1
R=0(r2)<1

In [28], Liu introduces a set of multi-way dual Cheeger constants and proves universal higher-order
dual Cheeger inequalities for the eigenvalues of normalized Laplace operators on weighted finite
graphs, with applications to the essential spectrum of general Markov operators.

2 Higher order Cheeger inequalities in the finite set-
ting

In this section we deduce a lower bound on the L? to LP operator norm of finite Markov kernels
in terms of their spectrum, for p > 2.

So here S is a finite set of cardinal N € N\{1} (endowed with the trivial o-field) and u is a
(strictly) positive probability measure on S. We start with a Markovian generator L, namely a
matrix (L(x,y))syes whose off-diagonal entries are non-negative and whose lines sum up to zero.
We assume that p is reversible with respect to L, in the sense that

Vz,ye S,  plx)l(z,y) = w(y)L(y,z)

It means that seen as an operator, L is symmetric in L2(x). It is also well-known to be non-positive
definite, so let us write down the spectrum of —L as

0=XM < X < < Ay (2)

(the first equality comes from the fact that the kernel of L contains at least Vect(1)).
Cheeger’s inequality in the finite setting relates A9 to an isoperimetric quantity. To recall it,
we introduce the conductance associated to any subset A — S with A = &:

) p(LaL(14¢))
JA) = ——— (3)
p(A)
(where 14 is the indicator function of A). This quantity if of “isoperimetric” nature, since the
numerator is a measurement of the frontier between A and A€, its value is 3} 4 ¢4 #(2)L(2,y),
while the denominator is the volume of A. The connectivity constant of L is then defined by

g = AglgfsmaX{J(A),J(A )} = Aomn T

(4)

The Cheeger’s inequality states that
2

—— < M\ <

with |L| := max,eg |L(z,x)| (if |L| happens to vanish, it means that L = 0, so we can assume that
|L| > 0 to avoid trivial statements). The left-most inequality was first obtained by Cheeger [11] in
a compact Riemannian manifold setting. Its extension to finite weighted graphs, or equivalently



to finite reversible Markov processes, is due to Alon and Milman [3], Alon [2], Lawler and Sokal
[25] and Sinclair and Jerrum [37].

It is natural to wonder if a variant of this result would hold for the other eigenvalues As, ...,
An. It leads to introduce the following connectivity spectrum (Ln)ne[[ N]- For n e N, let D,, be the
set of n-tuples (Aj, ..., A;,) of disjoint and non-empty subsets of S. Define

Vnel[N lp = min max j(A 5

[ND, " (At,....,An)eDp keﬂnﬂj( ) (5)
Clearly ¢v; = 0 = A1 and it is not difficult to check that for n = 2, one recovers the quantity defined
in (4): D9 can be replaced by its subset containing only the partitions of S into two proper subsets.

In [32] (see also [12]), we made the conjecture that there exists a mapping ¢ : N — R* such
that for all (S, u, L) as above,

2

c(n)ﬁ < M <ty (6)

The second inequality is immediate, it amounts to consider the vector space generated by the
indicator functions of n disjoints subsets in the variational characterization of \,, through Rayleigh
quotients.

The first inequality was recently shown by Lee, Gharan and Trevisan [27] (a related result
was obtained by Louis, Raghavendra, Tetali and Vempala [29], it could also be used to prove
Hgegh-Krohn and Simon’s conjecture by slightly modifying the arguments that will follow):

Theorem 2 ([27]) There exists a universal constant n > 0 such that (6) is satisfied with

VneN, cln) = —

Proof

It is just a rewriting of Theorem 3.8 of [27], where the authors rather work with weighted finite
graphs (V, E,w): V is the finite set of vertices, F is the set of undirected edges (which may contain
loops) and w : F — Ry is the weight. The mapping w is extended to V' by

VoveV, w) = Z w({v,u})

ueV:{v,u}eF

Lee, Gharan and Trevisan are interested in the normalized Laplacian £ which corresponds to the
(V x V)-symmetric matrix

L = Id— D Y2Ap~Y2

where D is the diagonal matrix with entries (w(vl)vev and A is the weighted adjacency matrix
(w(u, v))ywev. Denote by 0 = A\; < Ag < -+ < Ay its eigenvalues, where N is the cardinal of
V. Lee, Gharan and Trevisan also consider the connectivity spectrum (Tn)ne[[ N]» Which is defined
similarly to (5), but with the mapping j replaced by

ZueA, vgA: {u,v}eF w({u7 U})

ZweA CU(’[U)

Then Theorem 3.8 of [27] states that there exists a universal constant 7 > 0 such that

VAcV.A=@, j4)

Vnel[N], 22 < i < 20, (7)

ns'n



To come back to the setting of Theorem 2, consider the following allocations

|4
E

S
{{z;y} : L(z,y) >0 or x =y}

{ p(x)L(z,y) ,ife={z,y} withz =y
|L| + L(z,z) ,ife={z,x}

VeekE, w(e)

We get that
VeesS, — w@) = [Llp()

and it follows that for all n € [N], 7,, = ¢,/|L|. Furthermore, by the variational characterization
of the eigenvalues (see Equation (9) of [27]), we have

N T {zx,yeswa:c,y})(f(y) — J(@))?

H :dim(H)= Desw(2)f3(2) e H\{O}}

> N

n

(where the minimum is taken over all subspaces H of dimension n of L?(x)). The announced result
is now an immediate consequence of (7).

Lee, Gharan and Trevisan [27] have proposed several improvements of (7), see Remark 9 and
Theorem 13 below. Nevertheless, as it will be clear in the next section, the exact expression of
¢(n) for n € N is not important for the purpose of proving Theorem 1, what really matters is that
¢(n) > 0. But we will come back to this question in Section 6 below.

Even if at first view hyperboundedness does not seem a very pertinent notion in the finite
setting, let us derive from Theorem 2 a quantitative bound for this property. As in the introduction,
we consider on the finite set S a Markov kernel M which is symmetric in L2(;). Denote its spectrum
by

1 =6, =260, = - =0y = —1

Proposition 3 Assume that for some n € [N], we have 6, > 1 — c¢(n)/4. Then we can deduce
that for any p > 2,

(1 - 25”)1) £-1

IMIEe(yorgy >

where 0, = /(1 —0,)/c(n) < 1/2.

Proof

To come back to the situation of Theorem 2, we introduce the Markovian generator L = M — Id,
where Id is the (S x.S)-identity matrix. We have |L| < 1 and the spectrum of —L defined in (2) is
given by

Vme[N], Am = 1—0p

Next consider n € [N] as in the statement of the above proposition. According to Theorem 2, we
have

tn < AL\ /e(n) < A/An/e(n) = o,



so we can find (A4, ..., A,) € D, satisfying,

Vken],  onp(Ar) = plla,L[lag]]
Taking into account that
Llag] = M[Lag]—1ag
M1 —T4,] — T4
= 1 —M[]lAk] — ]IAZ

we deduce that for any k € [n],

(1 =0n)u(Ar) < p[la, M[La,]]

For any k € [n], consider the set By :={x e Ay : M[14,](z) >1—24,}. We compute that

plla, M[La ]l = p[lpM[La,]]+ p[la,ys,M[La,]]
< p(By) + (1 = 26,) (u(Ag) — p(By))
It follows from the two last bounds that
1

Sh(Ar) < p(Br) < pu(Ar)

Since the sets Aq, ..., A, are disjoint, there exists k € [n] such that u(Ax) < 1/n. Consider
f =14, it appears that

ulf?l = nlA)

and since by assumption 1 — 24,, = 0, we get by definition of By,

ullMFP] = (1 —260)P(Bi)
(1—26,)P

= fﬂ(Ak) (8)

In particular, we obtain that

p AL
=

as announced.

3 An approximation procedure

We come back to the Hgegh-Krohn and Simon’s conjecture framework and approximate it by finite
sets.

The proof of Theorem 1 relies on a contradictory argument, explaining why it does not provide
a quantitative estimation of the spectral gap in terms of the hyperbounded operator norm. Indeed
this is not possible, as it will be seen in the last section. With the notations of the introduction,
our starting observation is:



Lemma 4 The ergodic self-adjoint Markov operator M has no spectral gap if and only if for any
A>0, (By — E1_))[L?(u)] is of infinite dimension.

Proof

By the requirements imposed on the projection-valued family (E)) Ae[~1,1] in the spectral Theorem
(see for instance the chapter 7 of the book of Reed and Simon [35]), for any f € L2(u), the
mapping [—1,1] 3 A — p[fE\[f]] is non-decreasing. It follows that the mapping [0,2] 3 A —
ulf(Er — E1-x)[f]] is non-decreasing. Since for any A € [0,2], E; — E) is a projection operator,
we get that the mapping [0,2] 3 A +— dim((E; — E1_»)[L?(x)]) is non-decreasing. So if for some
A € (0,2], we have that dim((E; — F1_»)[L?(u)]) < +o0, it appears that the Z,-valued mapping
[0,\] 21— dim(F; — Ey_;) has a finite number of jumps, say 0 = [; < ls < ---1, < A. Each of
them corresponds to an eigenvalue 1 — [;, i € [r], whose multiplicity is given by the height of the
jump (the first one is 1 = dim((E; — F;_)[L?(u)]), due to the ergodicity assumption). Then M
admits [y > 0 as spectral gap.
Conversely if the ergodic self-adjoint Markov operator M has a spectral gap, then (E; —
Ey_,)[L?(u)] is of dimension 1 for A > 0 small enough.
[

From now on, we assume that the ergodic self-adjoint Markov operator M has no spectral gap.
For any n € N, let 0 < €, < 1 A (¢(n)/32) be given, where ¢(n) is defined in Theorem 2. By the
above lemma, we can find fi,..., f, € L?(u), which are normalized, mutually orthogonal and so
that

= 0 yifi=7
Indeed, we can first take f; = 1. Next we choose fo among the normalized functions of the infinite
dimensional space

{ge (By — E1_y)[L*(w)] : plgfi] = 0 and p[gM[f1]] = 0}

Iterating this procedure leads to functions f1, ..., f,, satisfying the wanted properties.
To come back to the finite case, consider a non-decreasing family (Sy)nen of finite sub-o-
algebras of § such that

\/ Sy = o(fi,s fn)

NeN

This is possible, because the o-algebra generated by fi,..., fn is separable. Fixing N € N, we
consider py the restriction of u to Sy, Iy the natural injection of L?(uy) into L2(u) and Ey the
conditional expectation (projection operator) with respect to Sy . Define furthermore the operator
My =EnMIy, on (Sy,Sn,un), where Sy is the finite set of atoms of Sy. The kernel My is
Markovian, because the three operators Iy, M and Epy preserve the function 1 and the positivity
of the functions (on their respective initial and final spaces). It is reversible, since for all functions
f, g defined on Sy, we have

pn[fMnlgl] = n



By Jensen’s inequality, we have for any p > 2 and g € L?(uy),

un[[My[g]lP] < wpn[Ex[|MINx[g]"]]
= ul|MIy[g]"] 9)

Similarly, we have pun[g?] = p[(In[g])?], so it follows that

| M |72 < sup{u[|M[fIF] : fe IN[L?(un)]. ulf?] =1}
< Mg,

(un)—LP(uw)
(1)—L () (10)

Furthermore by the martingale convergence theorem, for any f € L2(o(f1,..., fn), it), we have in
L?(u),

1. E ==
Nlnl ~lf] !
and taking into account the continuity of M,

lim M[En[f]] = M][f]

N—o0

We deduce the convergence of the matrices

Jim (un[EN[FIENT ey = Ty
Al,i_r)noo(l‘N[EN[fi]MN[fj]])i,je[[N]} = (ulfiM £i])i jeny

where Idy is the (N x N)-identity matrix. It follows that for N sufficiently large,

dim(Vect(Ex[f1],En[f2], ... En[fn])) = n
and for all g € Vect(En[f1],En[f2], -, En[fr]),
pnlgMnlgl]l = (1 2en)unlg’]
In particular My has n eigenvalues above 1 — 2¢,. We can now apply Proposition 3 with 4, :=

2e,/c(n) < 1/4, to get

”MNH]LZ (un)=LP(un) = 9

It follows from (10) that

1Mz

and since this is true for all n € N, M cannot be hyperbounded.

4 General higher order Cheeger’s inequalities

Instead of first obtaining a hyperboundedness estimate in the finite setting and proceeding next
to the approximation of the general case, the order of these two steps can be reversed. Several
consequences of this observation are brought together here.

As in the introduction, let M be a self-adjoint Markov operator in L2(u), where (S, S, i) is a
probability space. For any n € N, define

Id — M)[f]]
ulf?]

(M) = inf max {,u[f(
H:dim(H)=n

: fe H\{O}} (11)

9



where the infimum is taken over all subspaces H of L2(11) of dimension n (by usual conventions,
An = 4o for n is strictly larger than the dimension of L2(u1)). In the general framework, these
quantities are no longer necessarily counting the ordered eigenvalues of Id — M with their mul-
tiplicities, for instance if M is ergodic and has no spectral gap, then A\, (M) = 0 for all n € N,
whereas the dimension of the eigenspace associated to 0 is 1. As a rule, these quantities count the
eigenvalues with multiplicities until the top of the essential spectrum of M is reached and next all
the remaining A\, (M) are equal to this top value.

Definition (3) can be extended to all non-negligible and measurable A € S:

p(LAM (T )
p(A4)
which in turn leads to introduce the connectivity spectrum (i,,(M))pen through (5) (where D,

stands now for set of n-tuples of disjoint and non-negligible elements of S).
Let us also consider

J(A) =

M| := esssu max M[14](x
M Pees ,max, M[L4](x)
(where the essential supremum is relative to p). Under mild regularity assumptions, this quantity
takes the form sup,cg M (z, S\{z}), which in continuous settings is often equal to 1 and thus can
be removed from the following result.
The approximation procedure described in the previous section then leads without difficulty to:

Proposition 5 With n > 0 the universal constant of Theorem 2, we have

0 (M)
n® |M]|

VneN, < (M) < (M)

As a consequence, Proposition 3 can be proven in the general setting by the same arguments
and Theorem 1 follows directly.

It is tempting to extend the above proposition to Markovian generators. So let (P;);>0 be a
continuous self-adjoint Markovian semi-group, as after the statement of Theorem 1. Denote by
L its generator (in LL?(u)). Since it is a non-positive self-adjoint (but in general non-bounded)
operator, we can apply spectral functional calculus to see that if we define for any n € N,

WFCDfY]
i e H\{O}}

(where the infimum is taken over subspaces H of the domain D(L) < L?(u) of L), then we have

(L) = inf max {
H :dim(H)=

VneN,  A(L) = lim ! _exp<t_M"(L))
—04

= lim An(P1)

t—04

A priori, the definition of a connectivity spectrum (i, (L))nen associated to L is less obvious. First
we note that for any A € S, the mapping

O +90) 3¢+ TplLaRIAL) = Tlla(d - R)L4]

is non-increasing, so we could consider its limit at 0. Unfortunately, this limit is +oo0 if 14 is
not in the domain D(&) of the Dirichlet form & corresponding to L. This is very restrictive in the
continuous framework, because for 14 € D(£), 14 must be quasi-continuous: for instance if L is
the Laplacian on [0, 1] with Neumann boundary conditions, then only A = ¢f and A = [0, 1] satisfy

10



this condition. To avoid these problems, it is convenient to introduce the Dirichlet connectivity
spectrum, which in some sense is intermediary between the usual spectrum and the connectivity
spectrum. It was considered in the finite setting in [32, 12] and in the continuous setting for Laplace-
Beltrami operators on Euclidian or Riemannian subdomains with Dirichlet boundary conditions,
for instance by Helffer, Hoffmann-Ostenhof and Terracini [18] (see also the references therein).

So let us come back to a general self-adjoint Markov operator M as in the beginning of this
section. To any non-negligible A € S, we associate its first Dirichlet eigenvalue A\o(M, A) given by

— FAd—M)[f
D(4) {f€L2(u) : f =0 p-as. on A%}
Replacing j(A) by Ag(M, A) in (5), we define the Dirichlet connectivity spectrum (A, (M))pen of
M via

VneN, Ay (M) = i Ao(M, 4
neN, (M) (Ar, A heln] ol g

(again D,, stands now for set of n-tuples of disjoint and non-negligible elements of S).
In the finite setting, as in Section 2, we can deduce from Theorem 3.7 of Lee, Gharan and
Trevisan [27]:

Theorem 6 ([27]) There exists a universal constant 11 > 0 such that for any finite self-adjoint
Markov operator M, we have

~

¥ neN, %Anw) < A(M) < An(M)

The approximation procedure described in the previous section can easily be applied to the
Dirichlet connectivity spectrum, so that the finiteness assumption can be removed from the above
theorem.

We now come back to the situation of a continuous self-adjoint Markovian semi-group (F;)¢=0-
For any non-negligible A € S and t > 0, define the operator

Py : L2(u) s f — 14P[1af]

and consider 4 the conditional expectation of p on A (for any B € S, pa(B) = u(B n A)/u(A)).
It appears that (Pa):>0 is a continuous self-adjoint semi-group in L?(u4), which is subMarkovian
in the sense that for all ¢ > 0, Pa[1] < 1. It admits a generator L4, self-adjoint in L2(j14) and
densely defined on a domain D(L4). It follows that

i oA 1 exp(=tho(La)) 13
t—0+ t t—0 t
= Xo(La)
where
Xo(Ly) = o Palf LA

feDLaN0y  palf?]

Note that the convergence in (13) is non-decreasing (as t is decreasing to 0. ), so that it is not
difficult to deduce that for any n € N,

lim = A, (L) (14)

= i Ao (L
(a0 max Mo(Lay)

11



Let us point out that the quantities A\g(L 4) can be related more directly to L and A: D(L4) is just
the subspace of functions f from D(L) which vanish on A and for such functions, L4[f] = 14L[f].
So similarly to (12), we have Ao(La) = Ao(L, A) with

{ Xo(L, A) ulf (=D

inffe’D(L,A) mEcl
D(L,A) {feD(L) : f=0 p-as. on A%}

With these definitions, Theorem 6 extends to the generator L. From there it is possible to go in
the direction of corresponding higher-order Cheeger inequalities. But for this paper, let us escape
from the technicalities of the general Dirichlet forms and return to the original Riemannian setting
of Cheeger [11]. The state space S is now a compact Riemannian manifold and L is the associated
Laplacian A operator, so up to a scaling 1/2 in time, (P})¢>0 is the heat semi-group. Due to its
regularizing properties, for any ¢ > 0, to compute A,,(P;) we can replace D,, by D,, the set of n-
tuples of disjoint and open subsets of S whose boundaries are smooth. For n > 2, we furthermore
impose on an the following restrictions, which does not modify the computation of A () and will
be convenient later on: each n-tuple (Ay,..., A,) € D, is such that for all k € [n], Ay is connected
(otherwise replace Ay by its connected component By, satisfying Ag(A, Ag) = A\o(4A, Bi)) and each
connected component of Af contains at least one of the subsets A;, with [ € [n]\{k} (otherwise
replace Ay by its union with the connected components of Aj not intersecting e, x34: and
note that the obtained subset is still smooth and connected and its first Dirichlet eigenvalue has
not increased). For n = 1, we just assume that A; € D; is connected and that its complementary
set has only a finite number of connected components.

It follows from the approximation procedure (14) that the eigenvalues (A, (A))nen of —A satisfy

n
VneN, EA"(A) < (D) < A(D)
where

A (D) = min _ max A\g(A, Ag)
(Ay,...,An)eD,, k€[n]

The advantage of considering regular domains is that for any A € 751, it is well-known that there
exists a function non-negative f = 0 in the usual Dirichlet-Sobolev space H}(A) such that

§4 VS dp
S A f2du
where p is the Riemannian probability. Up to a regularization of (f — €); for e > 0 sufficiently

small, we can then find a smooth non-negative function g = 0 whose support is included in A such
that

(A, A) =

S A |V9 ‘2 dp
S a9 2dp
Next the traditional proof of the Cheeger inequality via the co-area formula and Sard’s theorem
enable to find a subset of the form B = {g > a} with a € (0, max 4 g) such that

() < e

where 0B is the boundary of B and o is the (dim(S) — 1)-dimensional measure associated to f.
This observation leads to define the connectivity spectrum (t,,(A))nen of A through

V ne [N], (D) = min _ max o(0Ak)
(A1, Ap)eD, keln] 11(Ag)

< 20(A, A)

since we deduce from the above discussion the following Riemannian higher order Cheeger inequal-
ities:

12



Theorem 7 There exists a universal constant n > 0 such that for any compact Riemannian
manifold S, we have

~

VneN, () = %Li(m

By the same arguments, this result is equally valid for generators of the form L- = A - —(VU, V"),
where U is a regular potential defined on S ({-,-) and V stand for the scalar product and the
gradient operator corresponding to its Riemannian structure), which are called Witten Laplacians
(see for instance the book of Helffer [19]). The associated reversible probability p admits the
density proportional to exp(—U) with respect to the Riemannian measure. But let us mention
why the higher order Cheeger inequalities described in Theorem 7 could turn out to be a less
interesting tool than the preceding inequalities

n
VneN, LAL)€ ML) < Ad(L) (15)

at least at “small temperature”. Still in the setting of Witten Laplacian, introduce the parameter
f =0, seen as an inverse temperature, and consider the operator Lg = A - —(VU,V-) and the
associated reversible probability pg whose density is proportional to exp(—gU). Our goal is to
recover that the following convergences take place and to describe geometrically the corresponding
limits (1,,)nen
VneN, I, = — 613300 B In(\u(Lp)) (16)
When U has a finite number of connected components of critical points, this result is due to
Freidlin and Wentzell (cf. Chapter 6 of their book [13]), see also [31] for the general case, obtained
by extending the approach due to Holley, Kusuoka and Stroock [24], which derived (16) for the
spectral gap, namely for n = 1. More precise descriptions of the behavior of the small eigenvalues
An(Lg) (i-e. those for which I, > 0), such as the expansion of the pre-exponential factors, were
proven for instance in Helffer and Nier [21] (see also Helffer, Klein and Nier [20] or Bovier, Gayrard
and Klein [8] and the references given therein), but they require more work and stronger hypotheses
(assuming for instance that U is a Morse function).
Due to (15) (and Theorem 7 is not enough in this respect, because of the square in the r.h.s.), it
is now more straightforward to deduce (16): it is sufficient to understand the behavior of A\g(Lg, A),
for large 8 = 0, at least if this can be done in a relatively uniform manner over A € 751. To proceed
in this direction, we need some notations. First we remark that up to a scaling in 8 > 0, we can and
will assume from now on that [VU| < 1 (the following arguments show that only a C' regularity
of U is needed for (16)). For x,y € A == ALiIdA, let Cuféy be the set of continuous paths ¢ : [0,1] — A
going from ¢(0) = x to ¢(1) = y. The elevation of such a path ¢ € C;;‘,y is e(c) = maxepo,11 U(c(t))
and the communication height from z to y in A is defined by H(z,y) := min ., a e(c). Finally the
height of A is h(A) = maxgzea yeoa H(z,y). It is the height of the more profound well inside A
(with respect to U): an open and connected set B < S is said to be a well, if U is constant on 0B
and if for any « € B, U(z) < U(0B). The height of a well B is given by h(B) = U(0B) —ming U.
Note that A € D; does not contain a well if and only if h(A) = 0. It will be shown in the appendix
how the arguments of Holley, Kusuoka and Stroock [24] can be modified to get that there exists a
constant kg > 0, depending only on the Riemannian structure of S, such that for all 8 > 1 and
AeDi(1/8),

ks B2~ ) exp(—Bh(A)) < Ao(Lg, A) (17)

where for 8 = 1, Dy (1/8) is the collection of subsets A € Dy such that in each connected component
of A°, we can find a point x satisfying

p(B(x,1/5))

H(B(z,1/8) n A9 > KT

13



(B(z,1/p) stands for the Riemannian ball centered at x and of radius 1/5 and recall that p is the
Riemannian probability of S). It is quite easy (see the appendix) to find an upper bound matching
the exponential rate of (17): if for any A € Dy, we define

E(A) = max{\(Lo,B) : B Ais a cycle with h(B) = h(A)}
then we have

VB=1, o(Lg,A) < k(A)exp(—Bh(4)) (18)

This bound is empty if h(A) = 0, since then by convention k(A) = +co. In this situation, rather
consider 7(A) the largest radius of a ball included in A. Then there exists a constant kg > 0,
depending only on the Riemannian structure of S, such that

VB=1,  X(Lg,A) < ks(r?(A)v B (19)

It will be furthermore checked in the appendix that there exists another constant k% > 0, again
depending only on the Riemannian structure of S, such that for any n > 2, 8 > 1 and (Ay,...,Ap) €
D,

Jkeln] : Ap¢ Di(1/8) = max Xo(Lg, Ap) = k%32 (20)
e|n
Define
VneN, L, = max _ min h(Ag)

(Aq,.. 7An)€D7L keln]

It follows from the bounds (18) and (20) that if n > 2 is such that I, > 0, then for 8 > 1 large
enough,

An(Lg) = min_ max \o(Lg, Ay)
(A1,...,An)eDy (1/8) k€ln]

where ﬁn(l/ B) is the subset of n-tuples (Ay,..., A,) of D,, consisting of elements all belonging to
Dy(1/8). It is then easy to deduce from (17) and (18) (which enables the choice of appropriate
n-tupes from D,,) that (16) holds and that

VneN{2}, 1, = I (21)

(this relation is also true for n =1, in which case both sides are trivially equal to +00).
When n > 2 is such that I,, = 0, we obtain that for any 8 > 1 and A € D; with h(A4) = 0,

max (kg2 S) KEB2) < N(Lg, A)
< Ks(r?(A) v B%)

so that (21) is easily seen to be equally true.

Thus generally, [, appears as the highest [ > 0 such that n disjoint wells of height I can be found
in S. This geometric description is also valid in the finite setting (see for instance [31]) and it
was the underlying motivation for the introduction of the Dirichlet connectivity spectrum in [32],
as an ersatz of “spatial localization in wells” for general Markov generators (i.e. without a small
temperature parameter).

Remark 8 The isoperimetric upper bound on the spectral gap in the original Riemannian setting
of Cheeger [11] requires other tools and Buser [9] has shown that there exists a constant C' depending
only on the dimension of S such that for n =1,

ML) < C(WVEKu (D) +2(0)) (22)
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where —K < 0 is a lower bound on the Ricci curvature of S. It is natural to wonder if this
bound could be extended to any n € N, with quantities C and K satisfying similar properties
and independent of n € N. Funano obtained a result in this direction in Theorem 1.7 of [15],
for the case of nonnegative Ricci curvature. In a first version of this paper and based on the
analytical approach due to Ledoux [26], we proposed a proof of (22), unfortunately it contained
an error. What is missing is a lower bound on the curvature of the boundaries of the elements of
a minimizing n-tuple in the definition of A, (A), in terms of the Ricci curvature of the underlying
compact Riemannian manifold S. Such a bound, even in the particular case of the flat torus of
dimension 2, could lead to some progress in the hexagonal conjecture, stating that when S is a
regular compact domain of R?, the elements of a minimizing n-tuple in the definition of A, (A)
look like hexagons, at least those not too close to the boundary, cf. the recent paper of Bérard and
Helffer [6].

Remark 9 In their Theorem 3.7, Lee, Gharan and Trevisan [27] obtained several improvements of
the factor 7/n® in Theorem 6. First by allowing the indices n of A, (M) and \,(M) to be slightly
different, they proved that there exists a universal constant ' > 0 such that for any ¢ € (0,1) and
for any finite self-adjoint Markov operator M,

77/54
7’L2

Vne N, A[(l—é)n] (M) < )\n(M)

(recall that [x] is the smallest integer larger or equal to x € R). As usual, by the above approxi-
mation procedure, the finiteness assumption can be removed from this bound.

Next, Lee, Gharan and Trevisan [27] imposed some restrictions on the undirected graph G associ-
ated to M (the edges of G are the {i, j} with i,j € S such that M(i,j) > 0): there exist universal
constants " > 0 and n” > 0 such that for any h € N, § € (0,1) and finite self-adjoint Markov
operator M,

e if G excludes the complete graph on h elements as a minor, then

77// 54

vV neN, FA[(l_(g)n] (M) < )\n(M)

e if G has genus at most h, then

///54
Ao (M) < Aa(M)

VneN, 1%
ne m2(1+ k) N

Note that the previous approximation procedure is no longer sufficient to find an equivalent of these
properties for the (Witten) Laplacian on a compact Riemannian manifold (a first guess would be
that the latter estimate extends on surfaces with the corresponding notion of genus, at least if it
is positive). This subject would deserve to be investigated further.

In the last section below, we will check that another improvement of Lee, Gharan and Trevisan
[27] is of optimal order.

5 Other norms

The ILP norms, p > 2, entering Theorem 1 can be replaced by more general norms, provided they
are stronger than the reference L? norm.
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More precisely, let be given on F, the space of measurable functions on (S, S) up to u-negligible
sets, a mapping N : F — R, 1 {+00} which is a norm once restricted to

LN = {feF:N()<+xn}

We assume that N is non-decreasing with respect to the natural order structure of M\rf ={f €
LN : f = 0}, namely,

Ve,  fi<fo = N(fi) <N(fo)

and that for any sub-o-field 7 of S, the conditional expectation E with respect to T is a bounded
endomorphism of LV: there exists K € [1, +00) such that

v felN,  NEFf]) < KN(f) (23)

The first assumption enables us to replace (8) by

N(M[]lAk]) = (1 - 25n)N(]lBk)
> (1= 20,)k(0) 15,12,
1—-20,
= NG k(n) ”]lAan,z(M)
where
k(n) = sup{N/(jg)) : 0 < u(B) < %} (24)

The second property plays the role of Jensen’s inequality, so that instead of (9), we get for any
g€ L?(un),

N(nMylg]) < KN(MIylg])

Since these are the only features of the L? norms that we have used to prove Theorem 1, we
deduce the following extension:

Theorem 10 Under the hypothesis that lim, . k(n) = +00, meaning in some sense that N is
stronger than the L2 norm, Theorem 1 is still valid if hyperboundedness is replaced by the fact that
[ M2y —rn < +o0.

A typical instance of the above situation is given by Orlicz’s norms (for a convenient summary,
see e.g. Chapter 9 of Neveu [34]). Let ® : R, — R, be a Young function: it is continuous,
non-decreasing, convex and vanishes at 0. The corresponding norm A is given by

V feF, N(f) = inf{a>0:,u{<1><%‘>}<l}

The previous requirements on A are met, since Jensen’s is also satisfied in this setting, namely
(23) is valid with K = 1. The main hypothesis, lim,_,o k(n) = +00, of the above theorem then
amounts to

AT

A Gy Tt

or equivalently,

P
lim (;) = 40
r—4+o 7r
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6 Quantitative links between hyperboundedness and
spectrum

It will be checked that Theorem 1 does not admit a general quantitative version relative to the
spectral gap, instead it is possible to give a bound on another eigenvalue. We will also see how
the classical hypercontractivity of the Ornstein-Ulhenbeck process enables to recover that some
estimates of Lee, Gharan and Trevisan [27] are optimal.

We begin by considering the L? to L hypercontractivity. In [39], Wang has shown that if
| M \\iQ(M)_)L4(M) < 2, then Theorem 1 is true and it is possible to deduce a lower bound on the
spectral gap in term of | M| 2 (1)—LA(p)- 10 next result we show that this fact cannot be extended
in general.

Proposition 11 For any K > 2 and for any € € (0,1), we can find a self-adjoint ergodic Markov
operator M whose spectral gap is € and which is such that HM“?P(M)—%“(M) =K.

As in Wang [39], we construct the example on the two points state space S = {0,1}, but we
rather consider all the probability measures p = (7,1 —n), with n € (0,1/2]. For € € [0,1], we are
interested in the self-adjoint Markov operator in L.2(u) given by

M = (1—¢ld+eu

(where p is interpreted as the Markov operator associating u[f]1 to any function f € L?(u)). The
spectrum of M is constituted of the two eigenvalues 1 and 1 — €, so that if e > 0, M is ergodic and
its spectral gap of M is e. We define

v (777 E) € (07 1/2] X [07 1]7 F(Tlv 6) = ||M”]}4_,2(M)—>L4(u)
Lemma 12 The above mapping F' is continuous on (0,1/2] x [0,1] . Furthermore it satisfies

max{F(1/2,e) : e€[0,1]} = 2
Vee(0,1), lim F(n,e) = +w
n—04

Proof
Let ¢ be the function defined on S by ¢(0) := —+/(1 — n)n and ¢(1) = +/n/(1 —n), so that (1, )

is an orthonormal basis of L?(u) diagonalizing M. Consider f := 1 + yp with z,y € R. Of course
we have p[f?] = 2% + y? and we compute that

p[(MIDY = pl=l + (1 - eye)']
= '+ A(n,e)2*y* + B(n, e)zy® + C(n, e)y*

where for any (n,¢) € (0,1/2] x [0,1],

A(n,e) = 6(1—¢€)?

2n—1
B(ne) = 4(1- e e
n(l—mn)
1—3n+3n2
C(ne) = (1—et—1—-L

(e = ==y

Thus we have
F(nye) = max{z® + A(n,€)z’y* + B(n,e)zy® + C(n,e)y* : 2> +y* = 1}
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The continuity of F'is a direct consequence of the continuity of A, B and C and of the compactness
of the circle {(z,y) € R? : 22 4+ y* = 1}. By considering its point (z,y) = (0,1), it appears that
F > C, from which follows the last assertion of the lemma. Finally, we have

vV ee[0,1], F(1/2,¢) = max {x4 +6(1—e)?2%y? + (1 —e)lyt : 2?2 442 = 1}
The r.h.s. is decreasing as a function of € € [0, 1], so that

max{F(1/2,¢) : e€[0,1]} = F(1/2,0)
= max{z? +62(1—2)+ (1 —2z)*: z€[0,1]}
= 2

Proposition 11 is an immediate consequence of the above lemma: for any K > 2 and € € (0, 1),
consider the mapping (0,1/2] 3 n — F(n,€) to find n € (0,1/2] such that F(n,e) = K. The
corresponding Markov operator M satisfies the requirements of Proposition 11.

Returning to the general case, the proofs of the previous sections only provide a bound on a
certain eigenvalue, not necessarily the spectral gap. Since we are now looking for a quantitative
bound, we must use the sharpest result obtained by Lee, Gharan and Trevisan [27], namely their
Theorem 4.1, one consequence of which can be written as:

Theorem 13 ([27]) With the notations of Section 2, there exists a universal constant n > 0 such
that if ¢(n) ==n/In(1 4+ n), then for any finite self-adjoint Markov operator,

VneN, Ao = c(n)i?

As it was explained in Sections 3 and 4, the finiteness assumption can be removed by approxima-
tion. Furthermore the above result admits an immediate extension to the compact Riemannian
framework as in Theorem 7.

We can now come back to the setting of Section 5 and consider a Young function ¢ and the
corresponding quantities defined in (24) and whose values are given by

\n
VneN, k = —— 25
(at least if u has no atom, otherwise only an inequality holds, but for our purposes we can take the
k(n), n € N, to be the corresponding upper bounds). Revisiting the arguments of Section 2 (with
dn, = 1/4 for n € N) and taking into account the observations of Sections 4 and 5 and Theorem 13,
we get the following quantitative version of Theorem 1:

Theorem 14 Let M be a self-adjoint Markov operator. Ifn € N is such that k(n) = 2v/2||M|12_ e,
then we are assured of

c(n)

16

where for any m € N, the quantities k(m), c¢(m) and A\, (M) are defined in (25), Theorem 13 and
(11). Thus the top of the spectrum of M consists of 2n eigenvalues 1, 1 — Xo(M), ..., 1 — Ag, (M)
(with multiplicities: some of them can be equal). In particular, Theorem 1 is recovered if M is
furthermore assumed to be ergodic.

It is tempting to investigate what happens to this bound when we rather start with a self-
adjoint Markov semi-group (F;);>0. Let us consider the most famous example of hypercontractive
semi-group, the Ornstein-Uhlenbeck process, first on R. Later on, we will tensorize it to verify
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that in general the order of the estimate of Theorem 14 cannot be improved and by consequence
this is also true for Theorem 13. In Section 4.3 of [27], Lee, Gharan and Trevisan applied other
hypercontractivity results due to Bonami [7] and Beckner [5] to noisy hypercubes in order to check
that for large n € N the order of ¢(n) given in Theorem 13 is optimal.

So let (P)i=0 be the self-adjoint Markov semi-group associated to the Ornstein-Uhlenbeck
generator defined by

VfeCR),YzeR,  L[flx) = f'(z)-zf(z)

which is essentially self-adjoint on L?(v), where v is the normal centered Gaussian distribution.
It is well-known (see Nelson [33] and Gross [17]) that for any p > 2,

+oo L ift<iln(p—1)

|Bl 2y roiy = { i
(M—-LP(v) 1 ,ift > 1In(p—1)

(26)

Applying Theorem 14 with M = P, for ¢t > 0 and relatively to the usual Lebesgue space LP(7)
with p > 2, we get that for any n € N,

1_1
n2 p
{ t

where ¢(n) is defined in Theorem 13. This leads us to define for n € N,

[\)

V2 = —exp(— @
%ln(p—l) 1 p( t)\2n<L)) = 16

VWV

_ 21In(n)
Pr = ) —2im(2v2)
tn, = %ln(pn -1)

_ lln <ln(n) + 2ln(2\/§)>
27 \Un(n) — 2In(2v2)

and to consider ng € N the smallest integer such that p,, > 2. Taking into account the convexity
bound s > 1 — exp(—s) for any s € R, we deduce that

c(n)
16t,,

VneN, n>=ny = M\J(L)> (27)
Since for large n € N, t,, ~ 2In(2v/2)/In(n) ~ 21In(2v/2)nc(n), this result essentially means that
An(L) is bounded below for n = ng. It seems quite disappointing, since it is well-known that
An(L) =n —1 for all n € N. So we could try to improve Theorem 13 by obtaining quantities ¢(n),
n € N, satisfying lim,,_,o ¢(n) In(n) = 400, since it would lead to a lower bound in the r.h.s. of (27)
going to infinity as n — 0.

But this is not possible, because the previous arguments are stable by tensorization. More precisely,
for N € N u {00}, consider the semi-group (P®");>0 acting on L2(v®N). The same hypercontrac-
tivity property (26) is valid for this semi-group. The generator L) of (Pt®N )i=0 corresponds to
the sum of N copies of L, each acting on different coordinates of RY. In particular, we get

Vne[2,N+1],  MEWM) = X(L)

This forbids the r.h.s. of (27) to be improved into a lower bound going to infinity with n. In
particular the lower bound of Lee, Gharan and Trevisan [27] presented in Theorem 13 is of optimal
order.
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A On principal Dirichlet eigenvalues at small temper-
ature

The goal of this appendix is to check the assertions (17), (18), (19) and (20) presented in Section 4.
Concerning the three first relations, we will adapt the proofs of Holley, Kusuoka and Stroock [24]
for the corresponding results relative to the spectral gap of a Witten Laplacian on a compact
Riemannian manifold without boundary. Their computations are based on the following ideas.
The upper bound is obtained by considering a function approximating the indicator function of
a well whose height is maximum among those not intersecting a fixed global minimum of the
potential. For the Dirichlet eigenvalues, the argument is even simpler, by using a well of maximum
height included in A or a small ball if there is no such well. Concerning the lower bound, Holley,
Kusuoka and Stroock [24] consider paths with minimal elevation connecting generical points of the
manifold with a fixed global minimum of the potential. This approach can in principle be applied
to the Dirichlet eigenvalues by using paths with minimal elevation connecting generical points of
A to 0A. But technically it requires some curvature bounds on JdA, so we preferred to resort to
a modified elevation and to paths linking generical points of A to some nice interior points of A°.
The advantage is that the existence of such points is not really restrictive when one is computing
Dirichlet connectivity spectra, as shown by (20).

The notations are those introduced in Section 4. We begin by considering the simplest bounds:

Proof of (18) and (19)

It is based, on one hand on the observation that for any fixed § > 0, the mapping Dy 5 A
Xo(A, Lg) is non-increasing, when D; is endowed with the inclusion order. And on the other hand
on the fact that for any 8 > 0 and B € Dy,

exp(—ﬂ(supU—i%fU)))\o(Lo,B) < Mo(Lg,B) < exp(ﬁ(supU—i%fU)))\o(Lo,B)
B B
If B is a cycle, we have h(B) = supg U — infp U, so (18) follows at once. If B is a ball of radius

r>0,supgU —infp U < 2r|VU|,, < 2r, so that we get for any A € Dy,

Mo(Lp, A) < e*max{\(Lo, B) : Bc Ais a ball of radius less than 1/3}

To conclude to (19), it remains to remark that by compactness of S, there exists a constant kg’) =1,
depending only on the Riemannian structure of S, such that

VaeS Vre(0,1], (kg3))717,—2 < Xo(Lo, B(z,7)) < kk(qg)riz

The following arguments mainly follow those of Holley, Kusuoka and Stroock [24]. We will adopt
their notations (sometimes with a A in index when the corresponding notions differ), so that we
can refer directly to their proof.

Proof of (17)
Let 8 =1 be fixed as well as a set A € 131(1/5). We modify the potential U by defining

U(x) ,ifre AudA

Vzes, Ualz) = { —oo , otherwise

The elevation E4(7) of a path v € C([0,1],.5) is Ea(y) = maxejo,1) Ua(7(t)) and for z,y € S define

Hy(x,y) = inf{Ea(y) : v€C([0,1],95), 7(0) =z, v(1) = y}
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There is no difficulty in checking that

h(A) = max{Ha(z,y) —U(z) : z€ A,y ¢ A}
= H -U
max min Al y;) —Ulx)
where J is the number of connected components of A¢ (there are only a finite number of them by

the restrictions imposed on 751) and where the y;, j € [J], are any choice of points in each of them,
but we take them satisfying

1(B(y;,1/8))

w(B(y;,1/8) n A®) = 5

For any 8 > 1, there exists a finite cover of A by balls {B(zy,1/8) : k € [Ng]}, where the zy,
k € [Ng], are points of A, where Ng < k(54)5dim(s), with k(54) < 40 is a constant depending only
on S and not on A. Denote Zg = {exp(—BU) dp.

Considering any function ¢ € C!(.S) vanishing on A, we can write

21 < i exp(—BU(2))o* (z dx
nald?] < M%ﬁﬂ fB(W) p(—BU ()62 () pu(da)

- ! 3 j exp(—U (2))(6(x) — 6(1))? p(dx)u(dy)

Zg(B (y](k 1/B) 0 A) | AR 1 IB@1/8)x (Bluj1/6) 0 4°)

S [ (80 — o) adeldy)

Zpu(B y](k ke[[N 1V B@k,1/B)x B(y;()-1/5)

N

2eks5 /Bdim(S)
Zp

N

exp(— AU (1)) f (6(x) — B(y))? p(da)a(dy)

ke[Ng] B(wk,1/8)x B(y;x),1/B)

where j(k) € [J] is such that

Ha(zk, yjny) = ]m[[lﬁ Ha(r,y5)

(5)

and where kg’ > 1 is a constant only depending on the structure of S such that

VaeesVre1, k)T < puB@r) < kSO

With these preliminaries, the proof is now identical to that of Holley, Kusuoka and Stroock devel-

oped in pages 338 to 340 of [24]. They find a constant krgﬁ) > 0, only depending on .S, such that
for any 8 > 1 and ¢ as above,

sup {exp(—ﬁU(:U)) fB ($(w) = ¢(v))? pldv)p(dw) = w € Ay ¢ A}

(z,1/8)x B(y,1/8)
< KBRS 2, exp(n(4) [ (V0.96) duy
Putting together the above computations, we end up with the Poincaré inequality

palé*] < 26k PRG3R exp(n(4) [ (90, V) dus

whose validity for all C! functions ¢ vanishing outside A implies (17).
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The proof of the remaining bound will justify the restrictions imposed on ﬁn, which could have
looked strange at first view.

Proof of (20)

So let be given n > 2, > 1 and (A44,...,A,) € D,, such that A; does not belong to 231(1/5), we
are going to prove that there exists k € [2, n] with

Xo(Lg, Ax) = K452 (28)

where k% > 0 is a constant depending only on the Riemannian structure of S. Indeed, by definition
of D1(1/p), there exists a connected component of A° which is such that all its points x satisfy

p(B(x,1/5))

p(B(x,1/8) n A1) > 5

By definition of ﬁn, this connected component contains a subset Ay, with k € [2,n], it is the
one that will satisfy (28). Consider (Xt(ﬁ ))t>0 a diffusion process of generator Lg and denote
T=inf{t >0 : Xt(ﬁ) ¢ Ai}. Since Lg is elliptic and Ay, is a connected open set, A\o(Lg, Ay) is the
asymptotic rate of getting out of Ayg:

o1
YV x € A, /\0(L5,Ak) = —tEElOO;IH(Px[T > t])
where the x in P, indicates that the diffusion is starting from z: P,-almost surely, XSB ) = 2.

Thus taking into account the Markov property, to get (28), it is sufficient to find another constant
k(57) > 0 depending only on S such that

Vaoed, Pfr<1/8%] = kY
It is even enough to show that

Yz e Ay, Pm[Xff‘gz eA] = &Y

Denote by (piﬁ ) (2,9))t>0,2,yes the kernels corresponding to the semi-group associated to the gen-

erator Lg, so we can write

PXC) e 4] - L PN (. y) uldy)
1

From Theorem 3.1 of Wang [38], we have that for any ¢ > 0, 0 > 0 and z,y € S,

2 2 :
8) (8) (5, — dim(S)/2 (1, TN bt v 2dim(S)o
p (@ y) = kg (2m) eXp{ <2t + 3\/z>p (2,9) - 3 P Vi

where k:g;) > 0 is the volume of S (with respect to the unnormalized Riemannian measure of S),
where p(z,y) is the Riemannian distance between x and y and where b := Kg + 8, Kg = 0 being
such that the Ricci curvature of S is bounded below by —Kg. In particular if we choose o = 3, it

)

appears there exists a constant k(sg > 0, only depending on .S, such that

vreS VyeB1/8), pa(y) = kK
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It follows that for all z € Ay,

(8) )]
Py e () p(dy) = J‘ Py (@) pldy
J\Al 1/B2< ) ( ) AlmB(xvlﬁ) 1/62( ) ( )
o OB, o B 19)
k‘ég) dim(S
> T’B im( )M(B(ﬂfa 13))
9
= —kg)
2k

as required.
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