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Abstract

Consider an ergodic Markov operator M reversible with respect to a probability measure µ on
a general measurable space. It is shown that if M is bounded from L

2pµq to L
ppµq, where p ą 2,

then it admits a spectral gap. This result answers positively a conjecture raised by Høegh-Krohn
and Simon [33] in a semi-group context. The proof is based on isoperimetric considerations and
especially on Cheeger inequalities of higher order for weighted finite graphs recently obtained by
Lee, Gharan and Trevisan [25]. It provides a quantitative link between hyperboundedness and an
eigenvalue different from the spectral gap in general. In addition, the usual Cheeger and Buser
inequalities are extended to higher eigenvalues in the compact Riemannian setting.

Keywords: Markov operators and semi-groups, hyperboundedness, spectral gap, Cheeger’s
inequalities, (Dirichlet) connectivity spectrum, Orlicz’s norms, hypercontractivity.

MSC2010: first: 60J25, secondary: 47A30, 46E30, 47A75, 37A30, 58J50, 05C50.

1



1 Introduction

The main purpose of this article is to show that hyperbounded, ergodic and self-adjoint Markov
operators admit a spectral gap. This property solves a conjecture raised by Høegh-Krohn and
Simon [33] in a semi-group context.

More precisely, let us start with a probability space pS,S, µq. A self-adjoint operator M :
L
2pµq Ñ L

2pµq is said to be Markovian if

@ f P L
2pµq, f ě 0 ñ M rf s ě 0

M r1s “ 1

where 1 is the function always taking the value 1 and where all the previous statements have to
be understood µ-almost surely.
In particular, M admits a spectral decomposition: there exists a projection-valued measure pElqlPr´1,1s

such that

M “
ż

1

´1

l dEl

(see e.g. the chapter 7 of the book of Reed and Simon [32]).
The Markov operator M is said to be ergodic if

@ f P L
2pµq, Mf “ f ñ f P Vectp1q

namely if pE1 ´ E1´qrL2pµqs is reduced to Vectp1q, the vector line generated by 1.
This property is implied by the following stronger requirement: M has a spectral gap if there

exists λ ą 0 such that pE1 ´E1´λqrL2pµqs “ Vectp1q and by definition the associated spectral gap
is the supremum of such λ.

Finally, the Markov operator M is said to be hyperbounded if there exists p ą 2 such that

}M}
L2pµqÑLppµq ă `8

We can now state the objective of this paper:

Theorem 1 If a self-adjoint Markovian operator is ergodic and hyperbounded then it admits a
spectral gap.

This result was conjectured by Høegh-Krohn and Simon [33], who rather believed it to be wrong,
in the more restricted context of semi-groups. They started with a continuous family of self-adjoint
Markovian operators P ≔ pPtqtě0 defined on L

2pµq and satisfying the semi-group property: P0 is
the identity operator and

@ t, s ě 0, PtPs “ Pt`s

The semi-group P is said to be ergodic if for any f P L
2pµq, Ptrf s converges in L

2pµq toward
µrf s (seen as the function µrf s1). It is said to have a spectral gap if the previous convergence is
uniform over the unit ball of L2pµq. These properties can be characterized through the associated
generator L (see for instance the book of Yosida [39]): it is the self-adjoint operator defined on the
dense domain DpLq of functions f P L

2pµq such that pPtrf s ´ fq{t converges in L
2pµq as t goes to

0`. By definition, the limit is Lrf s. The self-adjoint operator L is non-positive definite and can
be spectrally decomposed: there exists a projection-valued measure pFlqlPR` such that

L “ ´
ż

R`

l dFl
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By functional calculus, we then have

@ t ě 0, Pt “
ż

R`

expp´tlq dFl (1)

Ergodicity and the existence of a spectral gap respectively amount to F0rL2pµqs “ Vectp1q and
to the existence of λ ą 0 such that FλrL2pµqs “ Vectp1q. By definition, the spectral gap is the
supremum of such λ. It can also be computed via the corresponding Dirichlet form: for any
f P L

2pµq, the mapping R
˚
` Q t ÞÑ µrfpId ´ Ptqrf ss{t is nonincreasing, designate by Epfq its limit

in 0`, which belongs to R̄`. This quantity is called the energy of f and let DpEq ≔ tf P L
2pµq :

Epfq ă 8u (it appears that DpLq Ă DpEq and for f P DpLq, Epfq “ ´µrfLrf ss). The mapping
DpEq Q f ÞÑ Epfq is referred to as the Dirichlet form associated to P (see for instance the book
[13] of Fukushima, Ōshima and Takeda). The semi-group P admits a spectral gap if and only if
the following quantity λ2 is nonzero, in which case it is the spectral gap of P :

λ2 ≔

˜
sup

fPL2pµq

Varpf, µq
Epfq

¸´1

where Varpf, µq ≔ µrf2s ´ pµrf sq2 is the variance of f with respect to µ. In the above expression,
the convention 0¨8 ≔ 0 is enforced as usual. Finally, the semi-group P is said to be hyperbounded,
if there exists a time T ě 0 such that the Markov operator PT is hyperbounded in the previous
sense.

Høegh-Krohn and Simon [33] were wondering if hyperbounded, ergodic and continuous self-
adjoint Markov semi-groups admit a spectral gap. Theorem 1 enables to answer positively to this
question. It is sufficient to apply it to an element PT of the semi-group which is hyperbounded.
The Markov operator PT is seen to be ergodic via the representation (1).

Let us mention that the Høegh-Krohn and Simon’s conjecture is easy to solve, if the hy-
perboundedness assumption is strengthened into hypercontractivity: the continuous self-adjoint
Markov semi-group is said to be hypercontractive, if there exist p ą 2 and a time T ě 0 such that
the norm of PT from L

2pµq to L
ppµq is 1. It is well-known that such a semi-group admits a spectral

gap, and better, its generator satisfies a logarithmic Sobolev inequality, property in fact equivalent
to hypercontractivity. Hyperboundedness is itself equivalent to a non-tight logarithmic Sobolev
inequality. The existence of a spectral gap enables to tight such an inequality (for all the previous
assertions, see for instance the book of Ané, Blachère, Chafäı, Fougères, Gentil, Malrieu, Roberto
and Scheffer [4]). Thus Theorem 1 shows that for semi-groups, hyperboundedness is equivalent of
hypercontractivity, but as it will appear in Proposition 12 of Section 6, there is no quantitative
way to go from the former to the latter in general.

Several attempts have been made to find a counterexample or to prove Høegh-Krohn and
Simon’s conjecture, but extra assumptions were always needed, see for instance the papers of Aida
[1], Mathieu [27], Wu [38], Hino [20, 21], Cattiaux [9], Wang [36], Gong and Wu [14] and the
bibliographical comments given in section 5.9 of the book [37] of Wang for further motivations.
The latter author has also shown in [36] that Theorem 1 is true if }M}4

L2pµqÑL4pµq ă 2 and that it is
wrong if the Markovian (or the ergodicity) assumption is removed. It provides a glimpse of the deep
connection between Markovianity and isoperimetry, on which is based our approach. It is different
from the various methods proposed by the above mentioned articles. A crucial ingredient is the
Cheeger inequalities of higher order recently proven by Lee, Gharan and Trevisan [25] for weighted
finite graphs. They are recalled in the next section, where we are to work on estimates in the finite
framework. The approximation procedure enabling to treat the general situation is presented in
the third section. The three last sections are devoted to further observations, respectively about
general higher order Cheeger’s inequalities, the extension to Orlicz spaces and a quantitative version
of Theorem 1. An appendix adapts to principal Dirichlet eigenvalues some estimates of Holley,
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Kusuoka and Stroock [22] relative to spectral gaps at small temperature. They are required by an
illustration of the interest of the Dirichlet connectivity spectra defined in Section 4.

2 Higher order Cheeger inequalities in the finite set-

ting

Here we deduce a lower bound on the L
2 to L

p operator norm of finite Markov kernels in terms of
their spectrum, for p ą 2.

In this section S is a finite set of cardinal N P Nzt1u (endowed with the trivial σ-field) and µ is
a (strictly) positive probability measure on S. We start with a Markovian generator L, namely a
matrix pLpx, yqqx,yPS whose off-diagonal entries are non-negative and whose lines sum up to zero.
We assume that µ is reversible with respect to L, in the sense that

@ x, y P S, µpxqLpx, yq “ µpyqLpy, xq

It means that seen as an operator, L is symmetric in L
2pµq. It is also well-known to be non-positive

definite, so let us write down the spectrum of ´L as

0 “ λ1 ď λ2 ď ¨ ¨ ¨ ď λN (2)

(the first equality comes from the fact that the kernel of L contains at least Vectp1q).
Cheeger’s inequality in the finite setting relates λ2 to an isoperimetric quantity. To recall it,

we introduce the conductance associated to any subset A Ă S with A “ H:

jpAq ≔

µp1ALp1Acqq
µpAq (3)

(where 1A is the indicator function of A). This quantity if of “isoperimetric” nature, since the
numerator is a measurement of the frontier between A and Ac, its value is

ř
xPA,yRA µpxqLpx, yq,

while the denominator is the volume of A. The connectivity constant of L is then defined by

ι2 ≔ min
A “H,S

maxtjpAq, jpAcqu “ min
A : 0ăµpAqď1{2

jpAq (4)

The Cheeger’s inequality states that

ι2
2

8 |L| ď λ2 ď ι2

with |L| ≔ maxxPS |Lpx, xq| (if |L| happens to vanish, it means that L “ 0, so we can assume
that |L| ą 0 to avoid trivial statements). They were first obtained by Cheeger [10] in a compact
Riemannian manifold setting. In the context of finite weighted graphs or equivalently of finite
reversible Markov processes, it is due to Alon and Milman [3], Alon [2], Lawler and Sokal [23] and
Sinclair and Jerrum [34].

It is natural to wonder if a variant of this result would hold for the other eigenvalues λ3, ...,
λN . It leads to introduce the following connectivity spectrum pιnqnPJNK. For n P N, let Dn be the
set of n-tuples pA1, ..., Anq of disjoint and non-empty subsets of S. Define

@ n P JNK, ιn ≔ min
pA1,...,AnqPDn

max
kPJnK

jpAkq (5)

Clearly ι1 “ 0 “ λ1 and it is not difficult to check that for n “ 2, one recovers the quantity defined
in (4): D2 can be replaced by its subset containing only the partitions of S into two proper subsets.
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In [29] (see also [11]), we made the conjecture that there exists a mapping c : N Ñ R
˚
` such

that for all pS, µ, Lq as above,

cpnq ι
2
n

|L| ď λn ď ιn (6)

The second inequality is immediate, it amounts to consider the vector space generated by the
indicator functions of n disjoints subsets in the variational characterization of λn through Rayleigh
quotients.

The first inequality was recently shown by Lee, Gharan and Trevisan [25] (a related result
was obtained by Louis, Raghavendra, Tetali and Vempala [26], it could also be used to prove
Høegh-Krohn and Simon’s conjecture by slightly modifying the arguments that will follow):

Theorem 2 ([25]) There exists a universal constant η ą 0 such that (6) is satisfied with

@ n P N, cpnq ≔ η

n8

Proof

It is just a rewriting of Theorem 3.8 of [25], where the authors rather work with weighted finite
graphs pV,E, ωq: V is the finite set of vertices, E is the set of undirected edges (which may contain
loops) and ω : E Ñ R` is the weight. The mapping ω is extended to V by

@ v P V, ωpvq ≔
ÿ

uPV : tv,uuPE

ωptv, uuq

Lee, Gharan and Trevisan are interested in the normalized Laplacian L which corresponds to the
pV ˆV q-symmetric matrix

L ≔ Id ´ D´1{2AD´1{2

where D is the diagonal matrix with entries pωpvqqvPV and A is the weighted adjacency matrix
pωpu, vqqu,vPV . Denote by 0 “ rλ1 ď rλ2 ď ¨ ¨ ¨ ď rλN its eigenvalues, where N is the cardinal of
V . Lee, Gharan and Trevisan also consider the connectivity spectrum prιnqnPJNK, which is defined
similarly to (5), but with the mapping j replaced by

@ A Ă V, A “ H, ̃pAq ≔
ř

uPA, vRA : tu,vuPE ωptu, vuq
ř

wPA ωpwq

Then Theorem 3.8 of [25] states that there exists a universal constant η ą 0 such that

@ n P JNK,
η

n8
rι2n ď rλn ď 2rιn (7)

To come back to the setting of Theorem 2, consider the following allocations

V ≔ S

E ≔ ttx, yu : Lpx, yq ą 0 or x “ yu

@ e P E, ωpeq ≔
"

µpxqLpx, yq , if e “ tx, yu with x “ y

|L| ` Lpx, xq , if e “ tx, xu

We get that

@ x P S, ωpxq “ |L|µpxq
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and it follows that for all n P JNK, rιn “ ιn{ |L|. Furthermore, by the variational characterization
of the eigenvalues (see Equation (9) of [25]), we have

rλn “ 1

2
min

H : dimpHq“n
max

#ř
x,yPS ωptx, yuqpfpyq ´ fpxqq2

ř
zPS ωpzqf2pzq : f P Hzt0u

+

“ λn

|L|

(where the minimum is taken over all subspaces H of dimension n of L2pµq). The announced result
is now an immediate consequence of (7).

�

Lee, Gharan and Trevisan [25] have proposed several improvements of (7), see Remark 10 and
Theorem 14 below. Nevertheless, as it will be clear in the next section, the exact expression of
cpnq for n P N is not important for the purpose of proving Theorem 1, what really matters is that
cpnq ą 0. But we will come back to this question in Section 6 below.

Even if at first view hyperboundedness does not seem a very pertinent notion in the finite
setting, let us derive from Theorem 2 a quantitative bound for this property. As in the introduction,
we consider on the finite set S a Markov kernelM which is symmetric in L

2pµq. Denote its spectrum
by

1 “ θ1 ě θ2 ě ¨ ¨ ¨ ě θN ě ´1

Proposition 3 Assume that for some n P JNK, we have θn ě 1 ´ cpnq{4. Then we can deduce
that for any p ą 2,

}M}p
L2pµqÑLppµq

ě p1 ´ 2δnqp
2

n
p
2

´1

where δn ≔
a

p1 ´ θnq{cpnq ď 1{2.

Proof

To come back to the situation of Theorem 2, we introduce the Markovian generator L “ M ´ Id,
where Id is the pSˆSq-identity matrix. We have |L| ď 1 and the spectrum of ´L defined in (2) is
given by

@ m P JNK, λm “ 1 ´ θm

Next consider n P JNK as in the statement of the above proposition. According to Theorem 2, we
have

ιn ď
a

|L|λn{cpnq ď
a

λn{cpnq “ δn

so we can find pA1, ..., Anq P Dn satisfying,

@ k P JnK, δnµpAkq ě µr1Ak
Lr1Ac

k
ss

Taking into account that

Lr1Ac

k
s “ M r1Ac

k
s ´ 1Ac

k

“ M r1 ´ 1Ak
s ´ 1Ac

k

“ 1 ´ M r1Ak
s ´ 1Ac

k

6



we deduce that for any k P JnK,

p1 ´ δnqµpAkq ď µr1Ak
M r1Ak

ss

For any k P JnK, consider the set Bk ≔ tx P Ak : M r1Ak
s ě 1 ´ 2δnu. We compute that

µr1Ak
M r1Ak

ss “ µr1Bk
M r1Ak

ss ` µr1AkzBk
M r1Ak

ss
ď µpBkq ` p1 ´ 2δnqpµpAkq ´ µpBkqq

It follows from the two last bounds that

1

2
µpAkq ď µpBkq ď µpAkq

Since the sets A1, ..., An are disjoint, there exists k P JnK such that µpAkq ď 1{n. Consider
f “ 1Ak

, it appears that

µrf2s “ µpAkq

and since by assumption 1 ´ 2δn ě 0, we get by definition of Bk,

µr|M rf s|ps ě p1 ´ 2δnqpµpBkq

ě p1 ´ 2δnqp
2

µpAkq (8)

In particular, we obtain that

}M}p
L2pµqÑLppµq

ě µr|M rf s|ps
µrf2s p

2

ě p1 ´ 2δnqp

2µpAkq p
2

´1

ě p1 ´ 2δnqp
2

n
p
2

´1

as announced.
�

3 An approximation procedure

We come back to the Høegh-Krohn and Simon’s conjecture framework and approximate it by finite
sets.

The proof of Theorem 1 relies on a contradictory argument, explaining why it does not provide
a quantitative estimation of the spectral gap in terms of the hyperbounded operator norm. Indeed
this is not possible, as it will be seen in the last section. With the notations of the introduction,
our starting observation is:

Lemma 4 The ergodic self-adjoint Markov operator M has no spectral gap if and only if for any
λ ą 0, pE1 ´ E1´λqrL2pµqs is of infinite dimension.

Proof

By the requirements imposed on the projection-valued family pEλqλPr´1,1s in the spectral Theorem
(see for instance the chapter 7 of the book of Reed and Simon [32]), for any f P L

2pµq, the
mapping r´1, 1s Q λ ÞÑ µrfEλrf ss is non-decreasing. It follows that the mapping r0, 2s Q λ ÞÑ
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µrfpE1 ´ E1´λqrf ss is non-decreasing. Since for any λ P r0, 2s, E1 ´ Eλ is a projection operator,
we get that the mapping r0, 2s Q λ ÞÑ dimppE1 ´ E1´λqrL2pµqsq is non-decreasing. So if for some
λ P p0, 2s, we have that dimppE1 ´ E1´λqrL2pµqsq ă `8, it appears that the Z`-valued mapping
r0, λs Q l ÞÑ dimpE1 ´ E1´lq has a finite number of jumps, say 0 “ l1 ă l2 ă ¨ ¨ ¨ lr ď λ. Each of
them corresponds to an eigenvalue 1 ´ li, i P JrK, whose multiplicity is given by the height of the
jump (the first one is 1 “ dimppE1 ´ E1´qrL2pµqsq, due to the ergodicity assumption). Then M

admits l2 ą 0 as spectral gap.
Conversely if the ergodic self-adjoint Markov operator M has a spectral gap, then pE1 ´

E1´λqrL2pµqs is of dimension 1 for λ ą 0 small enough.
�

From now on, we assume that the ergodic self-adjoint Markov operator M has no spectral gap.
For any n P N, let 0 ă ǫn ă 1 ^ pcpnq{8q be given, where cpnq is defined in Theorem 2. By the
above lemma, we can find f1, ..., fn P L

2pµq, which are normalized, mutually orthogonal and so
that

µrfiMfjs
"

“ 0 , if i “ j

ě p1 ´ ǫnq , if i “ j

Indeed, we can first take f1 “ 1. Next we choose f2 among the normalized functions of the infinite
dimensional space

tg P pE1 ´ E1´λqrL2pµqs : µrgf1s “ 0 and µrgM rf1ss “ 0u

Iterating this procedure leads to functions f1, ..., fn satisfying the wanted properties.
To come back to the finite case, consider a non-decreasing family pSN qNPN of finite sub-σ-

algebras of S such that

ł

NPN

SN “ σpf1, ..., fnq

This is possible, because the σ-algebra generated by f1, ..., fn is separable. Fixing N P N, we
consider µN the restriction of µ to SN , IN the natural injection of L2pµN q into L

2pµq and EN

the conditional expectation (projection operator) with respect to SN . Define furthermore MN ≔

ENMIN , which is a reversible Markov kernel on pSN ,SN , µN q, where SN is the finite set of atoms
of SN .

By Jensen’s inequality, we have for any p ą 2 and g P L
2pµN q,

µN r|MN rgs|ps ď µN rEN r|MIN rgs|pss
“ µr|MIN rgs|ps (9)

Similarly, we have µN rg2s “ µrpIN rgsq2s, so it follows that

}MN}p
L2pµN qÑLppµN q

ď sup
 
µr|M rf s|ps : f P IN rL2pµN qs, µrf2s “ 1

(

ď }M}p
L2pµqÑLppµq

(10)

Furthermore by the martingale convergence theorem, for any f P L
2pσpf1, ..., fnq, µq, we have in

L
2pµq,

lim
NÑ8

EN rf s “ f

and taking into account the continuity of M ,

lim
NÑ8

M rEN rf ss “ M rf s
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We deduce the convergence of the matrices

lim
NÑ8

pµN rEN rfisEN rfjssqi,jPJNK “ IdN

lim
NÑ8

pµN rEN rfisMN rfjssqi,jPJNK “ pµrfiMfjsqi,jPJNK

where IdN is the pNˆNq-identity matrix. It follows that for N sufficiently large,

dimpVectpEN rf1s,EN rf2s, ...,EN rfnsqq “ n

and for all g P VectpEN rf1s,EN rf2s, ...,EN rfnsq,

µN rgMN rgss ě p1 ´ 2ǫnqµN rg2s

In particular MN has n eigenvalues above 1 ´ 2ǫn. We can now apply Proposition 3 with δn ≔a
2ǫn{cpnq ď 1{2, to get

}MN }p
L2pµN qÑLppµN q

ě p1 ´ 2δnqp
2

n
p
2

´1

ě 2´p´1n
p
2

´1

It follows from (10) that

}M}p
L2pµqÑLppµq

ě 2´p´1n
p
2

´1

and since this is true for all n P N, M cannot be hyperbounded.

4 General higher order Cheeger’s inequalities

Instead of first obtaining a hyperboundedness estimate in the finite setting and proceeding next
to the approximation of the general case, the order of these two steps can be reversed. Several
consequences of this observation are brought together here.

As in the introduction, let M be a self-adjoint Markov operator in L
2pµq, where pS,S, µq is a

probability space. For any n P N, define

λnpMq ≔ inf
H : dimpHq“n

max

"
µrfpId ´ Mqrf ss

µrf2s : f P Hzt0u
*

(11)

where the infimum is taken over all subspaces H of L2pµq of dimension n (by usual conventions,
λn “ `8 for n is strictly larger than the dimension of L2pµq). In the general framework, these
quantities are no longer necessarily counting the ordered eigenvalues of Id ´ M with their multi-
plicities, for instance if M is ergodic and has no spectral gap, then λn “ 0 for all n P N, whereas
the dimension of the eigenspace associated to 0 is 1.
Definition (3) can be extended to all non-negligible and measurable A P S:

jpAq ≔

µp1AMp1Acqq
µpAq

which in turn leads to introduce the connectivity spectrum pιnpMqqnPN through (5) (where Dn

stands now for set of n-tuples of disjoint and non-negligible elements of S).
Let us also consider

|M | ≔ esssupxPS max
APS : xRA

M r1Aspxq

(where the essential supremum is relative to µ). Under mild regularity assumptions, this quantity
takes the form supxPS Mpx, Sztxuq, which in continuous settings is often equal to 1 and thus can
be removed from the following result.

The approximation procedure described in the previous section then leads without difficulty to:

9



Proposition 5 With η ą 0 the universal constant of Theorem 2, we have

@ n P N,
η

n8

ι2npMq
|M | ď λnpMq ď ιnpMq

As a consequence, Proposition 3 can be proven in the general setting by the same arguments
and Theorem 1 follows directly.

It is tempting to extend the above proposition to Markovian generators. So let pPtqtě0 be a
continuous self-adjoint Markovian semi-group, as after the statement of Theorem 1. Denote by
L its generator (in L

2pµq). Since it is a non-positive self-adjoint (but in general non-bounded)
operator, we can apply spectral functional calculus to see that if we define for any n P N,

λnpMq ≔ inf
H : dimpHq“n

max

"
µrfp´Lqrf ss

µrf2s : f P Hzt0u
*

(where the infimum is taken over subspaces H of the domain DpLq Ă L
2pµq of L), then we have

@ n P N, λnpLq “ lim
tÑ0`

1 ´ expp´tλnpLqq
t

“ lim
tÑ0`

λnpPtq
t

A priori, the definition of a connectivity spectrum pιnpLqqnPN associated to L is less obvious. First
we note that for any A P S, the mapping

p0,`8q Q t ÞÑ 1

t
µr1APtr1Acss “ 1

t
µr1ApId ´ Ptqr1Ass

is non-increasing, so we could consider its limit at 0`. Unfortunately, this limit is `8 if 1A is
not in the domain DpEq of the Dirichlet form E corresponding to L. This is very restrictive in the
continuous framework, because for 1A P DpEq, 1A must be quasi-continuous: for instance if L is
the Laplacian on r0, 1s with Neumann boundary conditions, then only A “ H and A “ r0, 1s satisfy
this condition. To avoid these problems, it is convenient to introduce the Dirichlet connectivity
spectrum, which in some sense is intermediary between the usual spectrum and the connectivity
spectrum. It was considered in the finite setting in [29, 11] and in the continuous setting for Laplace-
Beltrami operators on Euclidian or Riemannian subdomains with Dirichlet boundary conditions,
for instance by Helffer, Hoffmann-Ostenhof and Terracini [16] (see also the references therein).

So let us come back to a general self-adjoint Markov operator M as in the beginning of this
section. To any non-negligible A P S, we associate its first Dirichlet eigenvalue λ0pM,Aq given by

#
λ0pM,Aq ≔ inffPDpAq

µrfpId´Mqrfss
µrf2s

DpAq ≔
 
f P L

2pµq : f “ 0 µ-a.s. on Ac
( (12)

Replacing jpAq by λ0pM,Aq in (5), we define the Dirichlet connectivity spectrum pΛnpMqqnPN of
M via

@ n P N, ΛnpMq ≔ min
pA1,...,AnqPDn

max
kPJnK

λ0pM,Akq

(again Dn stands now for set of n-tuples of disjoint and non-negligible elements of S).
In the finite setting, as in Section 2, we can deduce from Theorem 3.7 of Lee, Gharan and

Trevisan [25]:

Theorem 6 ([25]) There exists a universal constant pη ą 0 such that for any finite self-adjoint
Markov operator M , we have

@ n P N,
pη
n6

ΛnpMq ď λnpMq ď ΛnpMq

10



The approximation procedure described in the previous section can easily be applied to the
Dirichlet connectivity spectrum, so that the finiteness assumption can be removed from the above
theorem.

We now come back to the situation of a continuous self-adjoint Markovian semi-group pPtqtě0.
For any non-negligible A P S and t ě 0, define the operator

PA,t : L2pµq Q f ÞÑ 1APtr1Af s

and consider µA the conditional expectation of µ on A (for any B P S, µApBq “ µpB X Aq{µpAq).
It appears that pPA,tqtě0 is a continuous self-adjoint semi-group in L

2pµAq, which is subMarkovian
in the sense that for all t ě 0, PA,tr1s ď 1. It admits a generator LA, self-adjoint in L

2pµAq and
densely defined on a domain DpLAq. It follows that

lim
tÑ0`

λ0pPt, Aq
t

“ lim
tÑ0`

1 ´ expp´tλ0pLAqq
t

(13)

“ λ0pLAq

where

λ0pLAq “ inf
fPDpLAqzt0u

µApfp´LAqrf ss
µArf2s

Note that the convergence in (13) is non-decreasing (as t is decreasing to 0`), so that it is not
difficult to deduce that for any n P N,

lim
tÑ0`

ΛnpPtq
t

“ ΛnpLq (14)

≔ min
pA1,...,AnqPDn

max
kPJnK

λ0pLAk
q

Let us point out that the quantities λ0pLAq can be related more directly to L and A: DpLAq is just
the subspace of functions f from DpLq which vanish on Ac and for such functions, LArf s “ 1ALrf s.
So similarly to (12), we have λ0pLAq “ λ0pL,Aq with

#
λ0pL,Aq ≔ inffPDpL,Aq

µrfp´Lqrfss
µrf2s

DpL,Aq ≔ tf P DpLq : f “ 0 µ-a.s. on Acu

With these definitions, Theorem 6 extends to the generator L. From there it is possible to go in
the direction of corresponding higher-order Cheeger inequalities. But for this paper, let us escape
from the technicalities of the general Dirichlet forms and return to the original Riemannian setting
of Cheeger [10]. The state space S is now a compact Riemannian manifold and L is the associated
Laplacian △ operator, so up to a scaling 1{2 in time, pPtqtě0 is the heat semi-group. Due to its
regularizing properties, for any t ą 0, to compute ΛnpPtq we can replace Dn by pDn the set of n-
tuples of disjoint and open subsets of S whose boundaries are smooth. For n ě 2, we furthermore
impose on pDn the following restrictions, which does not modify the computation of Λnp△q and will
be convenient later on: each n-tuple pA1, ..., Anq P pDn is such that for all k P JnK, Ak is connected
(otherwise replace Ak by its connected component Bk satisfying λ0p△, Akq “ λ0p△, Bkq) and each
connected component of Ac

k contains at least one of the subsets Al, with l P JnKztku (otherwise
replace Ak by its union with the connected components of Ac

k not intersecting \lPJnKztkuAl and
note that the obtained subset is still smooth and connected and its first Dirichlet eigenvalue has
not increased). For n “ 1, we just assume that A1 P pD1 is connected and that its complementary
set has only a finite number of connected components.

It follows from the approximation procedure (14) that the eigenvalues pλnp△qqnPN of ´△ satisfy

@ n P N,
pη
n6

Λnp△q ď λnp△q ď Λnp△q

11



where

Λnp△q ≔ min
pA1,...,AnqP pDn

max
kPJnK

λ0p△, Akq

The advantage of considering regular domains is that for any A P pD1, it is well-known that there
exists a function non-negative f “ 0 in the usual Dirichlet-Sobolev space H1

0
pAq such that

λ0p△, Aq “
ş
A

|∇f |2 dµş
A
f2 dµ

where µ is the Riemannian probability. Up to a regularization of pf ´ ǫq` for ǫ ą 0 sufficiently
small, we can then find a smooth non-negative function g “ 0 whose support is included in A such
that

ş
A

|∇g|2 dµş
A
g2 dµ

ď 2λ0p△, Aq

Next the traditional proof of the Cheeger inequality via the co-area formula and Sard’s theorem
enable to find a subset of the form B “ tg ą au with a P p0,maxA gq such that

ˆ
σpBBq
µpBq

˙2

ď 4λ0p△, Aq

where BB is the boundary of B and σ is the pdimpSq ´ 1q-dimensional measure associated to µ.
This observation leads to define the connectivity spectrum pιnp△qqnPN of △ through

@ n P JNK, ιnp△q ≔ min
pA1,...,AnqP pDn

max
kPJnK

σpBAkq
µpAkq

since we deduce from the above discussion the following Riemannian higher order Cheeger inequal-
ities:

Theorem 7 There exists a universal constant pη ą 0 such that for any compact Riemannian
manifold S, we have

@ n P N, λnp△q ě pη
n6

ι2np△q

By the same arguments, this result is equally valid for generators of the form L¨ “ △ ¨ ´ x∇U,∇¨y,
where U is a regular potential defined on S (x¨, ¨y and ∇ stand for the scalar product and the
gradient operator corresponding to its Riemannian structure), which are called Witten Laplacians
(see for instance the book of Helffer [17]). The associated reversible probability µ admits the
density proportional to expp´Uq with respect to the Riemannian measure. But let us mention
why the higher order Cheeger inequalities described in Theorem 7 could turn out to be a less
interesting tool than the preceding inequalities

@ n P N,
pη
n6

ΛnpLq ď λnpLq ď ΛnpLq (15)

at least at “small temperature”. Still in the setting of Witten Laplacian, add the parameter β ě 0,
seen as an inverse temperature, and consider the operator Lβ “ △ ¨´β x∇U,∇¨y and the associated
reversible probability µβ whose density is proportional to expp´βUq. Our goal is to recover that
the following convergences take place and to describe geometrically the corresponding limits plnqnPN

@ n P N, ln ≔ ´ lim
βÑ`8

β´1 lnpλnpLβqq (16)

12



When U has a finite number of connected components of critical points, this result is due to
Freidlin and Wentzell (cf. Chapter 6 of their book [12]), see also [28] for the general case, obtained
by extending the approach due to Holley, Kusuoka and Stroock [22], which derived (16) for the
spectral gap, namely for n “ 1. More precise descriptions of the behavior of the small eigenvalues
λnpLβq (those for which ln ą 0), such as the expansion of the pre-exponential factors, were proven
for instance in Helffer and Nier [19] (see also Helffer, Klein and Nier [18] or Bovier, Gayrard and
Klein [7] and the references given therein), but they require more work and stronger hypotheses
(assuming for instance that U is a Morse function).

Due to (15) (and Theorem 7 is not enough in this respect, because of the square in the r.h.s.), it
is now more straightforward to deduce (16): it is sufficient to understand the behavior of λ0pLβ , Aq,
for large β ě 0, at least if this can be done in a relatively uniform manner over A P pD1. To proceed
in this direction, we need some notations. First we remark that up to a scaling in β ą 0, we can and
will assume from now on that }∇U}8 ď 1 (the following arguments show that only a C1 regularity

of U is needed for (16)). For x, y P Ā ≔ A\BA, let CĀ
x,y be the set of continuous paths c : r0, 1s Ñ Ā

going from cp0q “ x to cp1q “ y. The elevation of such a path c P CĀ
x,y is epcq ≔ maxtPr0,1s Upcptqq

and the communication height from x to y in Ā is defined by Hpx, yq ≔ mincPCĀ
x,y

epcq. Finally the

height of A is hpAq ≔ maxxPA,yPBA Hpx, yq. It is the height of the more profound well inside Ā

(with respect to U): an open and connected set B Ă S is said to be a well, if U is constant on BB
and if for any x P B, Upxq ă UpBBq. The height of a well B is given by hpBq “ UpBBq ´ minB U .
Note that A P pD1 does not contain a well if and only if hpAq “ 0. It will be shown in the appendix
how the arguments of Holley, Kusuoka and Stroock [22] can be modified to get that there exists a
constant kS ą 0, depending only on the Riemannian structure of S, such that for all β ě 1 and
A P pD1p1{βq,

kSβ
2´4 dimpSq expp´βhpAqq ď λ0pLβ, Aq (17)

where for β ě 1, pD1p1{βq is the collection of subsets A P pD1 such that in each connected component
of Ac, we can find a point x satisfying

µpBpx, 1{βq X Acq ě µpBpx, 1{βqq
2

(Bpx, 1{βq stands for the Riemannian ball centered at x and of radius 1{β and recall that µ is the
Riemannian probability of S). It is quite easy (see the appendix) to find an upper bound matching
the exponential rate of (17): if for any A P pD1, we define

k̆pAq ≔ maxtλ0pL0, Bq : B Ă A is a cycle with hpBq “ hpAqu

then we have

@ β ě 1, λ0pLβ, Aq ď k̆pAq expp´βhpAqq (18)

This bound is empty if hpAq “ 0, since then by convention k̆pAq “ `8. In this situation, rather
consider rpAq the largest radius of a ball included in A. Then there exists a constant k1

S ą 0,
depending only on the Riemannian structure of S, such that

@ β ě 1, λ0pLβ, Aq ď k1
Spr´2pAq _ β2q (19)

It will be furthermore checked in the appendix that there exists another constant k2
S ą 0, again

depending only on the Riemannian structure of S, such that for any n ě 2, β ě 1 and pA1, ..., Anq P
pDn,

D k P JnK : Ak R pD1p1{βq ùñ max
kPJnK

λ0pLβ, Akq ě k2
Sβ

2 (20)

13



Define

@ n P N, pln ≔ max
pA1,...,AnqP pDn

min
kPJnK

hpAkq

It follows from the bounds (18) and (20) that if n ě 2 is such that pln ą 0, then for β ě 1 large
enough,

ΛnpLβq “ min
pA1,...,AnqP pDnp1{βq

max
kPJnK

λ0pLβ, Akq

where pDnp1{βq is the subset of n-tuples pA1, ..., Anq of pDn consisting of elements all belonging to
pD1p1{βq. It is then easy to deduce from (17) and (18) (which enables the choice of appropriate
n-tupes from pDn) that (16) holds and that

@ n P Nzt2u, ln “ pln (21)

(this relation is also true for n “ 1, in which case both sides are trivially equal to `8).
When n ě 2 is such that pln “ 0, we obtain that for any β ě 1 and A P pD1 with hpAq “ 0,

max
´
kSβ

2´4 dimpSq, k2
Sβ

2

¯
ď λ0pLβ, Aq

ď k1
Spr´2pAq _ β2q

so that (21) is easily seen to be equally true.
Thus generally, ln appears as the highest l ě 0 such that n disjoint wells of height l can be found
in S. This geometric description is also valid in the finite setting (see for instance [28]) and it
was the underlying motivation for the introduction of the Dirichlet connectivity spectrum in [29],
as an ersatz of “spatial localization in wells” for general Markov generators (i.e. without a small
temperature parameter).

The isoperimetric upper bound on the spectral gap in the original Riemannian setting of Cheeger
[10] requires other tools and Buser [8] has shown that there exists a constant C depending only on
the dimension of S such that for n “ 1,

λnp△q ď Cp
?
Kιnp△q ` ι2np△qq (22)

where ´K ď 0 is a lower bound on the Ricci curvature of S. In fact, this bound extends to any
n P N, with quantities C and K satisfying the same properties and independent of n P N. A simple
way to be convinced of this fact is to slightly modify the analytical proof given by Ledoux [24]
of the result of Buser [8]. Indeed, it enables to first get the corresponding version with Dirichlet
boundary conditions:

Lemma 8 With the quantities C and K of (22) coming from the proof of Ledoux [24] with n “ 1,
we have for any B P pD1,

λ0p△, Bq ď Cp
?
Kι0p△, Bq ` ι20p△, Bqq

where

ι0p△, Bq ≔ min
AP pD1 : ĀĂB

σpBAq
µpAq

Proof

14



The main modification with respect to the arguments of Ledoux [24] is that the heat semi-group
pPtqtě0 has to be replaced by the heat semi-group pPB,tqtě0 on B with Dirichlet boundary condition
on BB. The last side in Equation (7) of Ledoux [24] must now be changed into

2
´
µpAq ´

››PB,t{2r1As
››2
L2pµq

¯
ě 2

´
µpAq ´ expp´tλ0p△, Bqq }1A}2

L2pµq

¯

“ 2µpAqp1 ´ expp´tλ0p△, Bqqq

and the wanted result follows immediately
Supplementary preliminary modifications are also required in the middle of page 955 whereş
△Ptf dµ “ 0 and

ş
Ptf dµ “

ş
f dµ must be replaced by

ż

B

△PB,trf s dµ ď 0

ż

B

PB,trf s dµ ď
ż

B

f dµ

where f is a non-negative and smooth function on B vanishing on BB. The first inequality comes
from the integration by parts formula, since the l.h.s. can be rewritten ´

ş
BB x∇PB,trf s, νy dσ where

ν is the outward unit normal vector field on BB. By the above assumptions on f , we have that
x∇PB,trf s, νy is non-positive on BB. The second inequality is a consequence of the first, because
Bt
ş
B
Ptf dµ “

ş
B
△PB,trf s dµ.

�

It follows from the definitions of Λnp△q and ιnp△q, for n P N, that

@ n P N, Λnp△q ď Cp
?
Kιnp△q ` ι2np△qq

The announced bound (22) is then a consequence of the easy relation λnp△q ď Λnp△q.
Remark 9 There is a more geometrical approach, suggested by Marc Arnaudon, to reduce
Lemma 8 to the result of Buser [8]. Let B P pD1 be given and consider the continuous manifold rB
obtained by gluing symmetrically along BB two copies of B. Even if the associated Riemannian
structure is not smooth on BB, it can be seen that λ0pLβ, Bq coincides with the spectral gap of rB
and that the Cheeger constant of rB is bounded above by ι0pLβ , Bq. Thus we would like to apply

the result of Buser [8] to rB. There is no problem for the constant C, since S and rB have the
same dimension. The trouble comes with the Ricci curvature, which could be infinite on BB (e.g.
consider for B a small skullcap on a sphere). Fortunately, Buser [8] only requires a lower bound on
the Ricci curvature, so up to a symmetrical regularization around BB, we can directly apply the
bound of Buser [8]. We can take advantage of the same trick (with a corresponding symmetrization
of the underlying potential) to see why the estimates of the spectral gap of Witten Laplacians due
to Holley, Kusuoka and Stroock [22] extend to first Dirichlet eigenvalues of regular subdomains
(the only drawback is that one has to be more precise about the description of kS in (17), to get
some uniformity of k rB over B P pD1).

˝

Remark 10 In their Theorem 3.7, Lee, Gharan and Trevisan [25] obtained several improvements
of the factor pη{n6 in Theorem 6. First by allowing the indices n of ΛnpMq and λnpMq to be slightly
different, they proved that there exists a universal constant η1 ą 0 such that for any δ P p0, 1q and
for any finite self-adjoint Markov operator M ,

@ n P N,
η1δ4

n2
Λrp1´δqnspMq ď λnpMq
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(recall that rxs is the smallest integer larger or equal to x P R). As usual, by the above approxi-
mation procedure, the finiteness assumption can be removed from this bound.
Next, Lee, Gharan and Trevisan [25] imposed some restrictions on the undirected graph G associ-
ated to M (the edges of G are the ti, ju with i, j P S such that Mpi, jq ą 0): there exist universal
constants η2 ą 0 and η3 ą 0 such that for any h P N, δ P p0, 1q and finite self-adjoint Markov
operator M ,
‚ if G excludes the complete graph on h elements as a minor, then

@ n P N,
η2δ4

h4
Λrp1´δqnspMq ď λnpMq

‚ if G has genus at most h, then

@ n P N,
η3δ4

ln2p1 ` hq
Λrp1´δqnspMq ď λnpMq

Note that the previous approximation procedure is no longer sufficient to find an equivalent of these
properties for the (Witten) Laplacian on a compact Riemannian manifold (a first guess would be
that the latter estimate extends on surfaces with the corresponding notion of genus, at least if it
is positive). This subject would deserve to be investigated further.
In the last section below, we will check that another improvement of Lee, Gharan and Trevisan
[25] is of optimal order.

˝

5 Other norms

The L
p norms, p ą 2, entering Theorem 1 can be replaced by more general norms, provided they

are stronger than the reference L
2 norm.

More precisely, let be given on F , the space of measurable functions on pS,Sq up to µ-negligible
sets, a mapping N : F Ñ R` \ t`8u which is a norm once restricted to

L
N
≔ tf P F : N pfq ă `8u

We assume that N is non-decreasing with respect to the natural order structure of LN
` ≔ tf P

L
N : f ě 0u, namely,

@ f1, f2 P L
N
` , f1 ď f2 ñ N pf1q ď N pf2q

and that for any sub-σ-field T of S, the conditional expectation ET with respect to T is a bounded
endomorphism of LN : there exists K P r1,`8q such that

@ f P L
N , N pET rf sq ď KN pfq (23)

The first assumption enables us to replace (8) by

N pM r1Ak
sq ě p1 ´ 2δnqN p1Bk

q
ě p1 ´ 2δnqkpnq }1Bk

}
L2pµq

ě 1 ´ 2δn?
2

kpnq }1Ak
}
L2pµq

where

kpnq ≔ sup

#
N p1Bqa
µpBq

: 0 ă µpBq ď 1

n

+
(24)
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The second property plays the role of Jensen’s inequality, so that instead of (9), we get for any
g P L

2pµN q,

N pINMN rgsq ď KN pMIN rgsq

Since these are the only features of the L
p norms that we have used to prove Theorem 1, we

deduce the following extension:

Theorem 11 Under the hypothesis that limnÑ8 kpnq “ `8, meaning in some sense that N is
stronger than the L

2 norm, Theorem 1 is still valid if hyperboundedness is replaced by the fact that
}M}

L2pµqÑLN ă `8.

A typical instance of the above situation is given by Orlicz’s norms (for a convenient summary,
see e.g. Chapter 9 of Neveu [31]). Let Φ : R` Ñ R` be a Young function: it is continuous,
non-decreasing, convex and vanishes at 0. The corresponding norm N is given by

@ f P F , N pfq ≔ inf

"
a ą 0 : µ

„
Φ

ˆ |f |
a

˙
ď 1

*

The previous requirements on N are met, since Jensen’s is also satisfied in this setting, namely
(23) is valid with K “ 1. The main hypothesis, limnÑ8 kpnq “ `8, of the above theorem then
amounts to

lim
rÑ`8

?
r

Φ´1prq “ `8

or equivalently,

lim
rÑ`8

Φprq
r2

“ `8

6 Quantitative links between hyperboundedness and

spectrum

It will be checked that Theorem 1 does not admit a general quantitative version relative to the
spectral gap, instead it is possible to give a bound on another eigenvalue. We will also see how
the classical hypercontractivity of the Ornstein-Ulhenbeck process enables to recover that some
estimates of Lee, Gharan and Trevisan [25] are optimal.

We begin by considering the L
2 to L

4 hypercontractivity. In [36], Wang has shown that if
}M}4

L2pµqÑL4pµq ă 2, then Theorem 1 is true and it is possible to deduce a lower bound on the
spectral gap in term of }M}

L2pµqÑL4pµq. In next result we show that this fact cannot be extended
in general.

Proposition 12 For any K ě 2 and for any ǫ P p0, 1q, we can find a self-adjoint ergodic Markov
operator M whose spectral gap is ǫ and which is such that }M}4

L2pµqÑL4pµq “ K.

As in Wang [36], we construct the example on the two points state space S ≔ t0, 1u, but we
rather consider all the probability measures µ ≔ pη, 1 ´ ηq, with η P p0, 1{2s. For ǫ P r0, 1s, we are
interested in the self-adjoint Markov operator in L

2pµq given by

M ≔ p1 ´ ǫqId ` ǫµ

(where µ is interpreted as the Markov operator associating µrf s1 to any function f P L
2pµq). The

spectrum of M is constituted of the two eigenvalues 1 and 1´ ǫ, so that if ǫ ą 0, M is ergodic and
its spectral gap of M is ǫ. We define

@ pη, ǫq P p0, 1{2s ˆ r0, 1s, F pη, ǫq ≔ }M}4
L2pµqÑL4pµq
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Lemma 13 The above mapping F is continuous on p0, 1{2s ˆ r0, 1s . Furthermore it satisfies

maxtF p1{2, ǫq : ǫ P r0, 1su “ 2

@ ǫ P p0, 1q, lim
ηÑ0`

F pη, ǫq “ `8

Proof

Let ϕ be the function defined on S by ϕp0q ≔ ´
a

p1 ´ ηqη and ϕp1q “
a

η{p1 ´ ηq, so that p1, ϕq
is an orthonormal basis of L2pµq diagonalizing M . Consider f ≔ x1 ` yϕ with x, y P R. Of course
we have µrf2s “ x2 ` y2 and we compute that

µrpM rf sq4s “ µrpx1 ` p1 ´ ǫqyϕq4s
“ x4 ` Apη, ǫqx2y2 ` Bpη, ǫqxy3 ` Cpη, ǫqy4

where for any pη, ǫq P p0, 1{2s ˆ r0, 1s,

Apη, ǫq ≔ 6p1 ´ ǫq2

Bpη, ǫq ≔ 4p1 ´ ǫq3 2η ´ 1a
ηp1 ´ ηq

Cpη, ǫq ≔ p1 ´ ǫq4 1 ´ 3η ` 3η2

ηp1 ´ ηq

Thus we have

F pη, ǫq “ max
 
x4 ` Apη, ǫqx2y2 ` Bpη, ǫqxy3 ` Cpη, ǫqy4 : x2 ` y2 “ 1

(

The continuity of F is a direct consequence of the continuity of A, B and C and of the compactness
of the circle tpx, yq P R

2 : x2 ` y2 “ 1u. By considering its point px, yq “ p0, 1q, it appears that
F ě C, from which follows the last assertion of the lemma. Finally, we have

@ ǫ P r0, 1s, F p1{2, ǫq “ max
 
x4 ` 6p1 ´ ǫq2x2y2 ` p1 ´ ǫq4y4 : x2 ` y2 “ 1

(

The r.h.s. is increasing as a function of ǫ P r0, 1s, so that

maxtF p1{2, ǫq : ǫ P r0, 1su “ F p1{2, 1q
“ maxtx2 ` 6xp1 ´ xq ` p1 ´ xq2 : x P r0, 1su
“ 2

�

Proposition 12 is an immediate consequence of the above lemma: for any K ě 2 and ǫ P p0, 1q,
consider the mapping p0, 1{2s Q η ÞÑ F pη, ǫq to find η P p0, 1{2s such that F pη, ǫq “ K. The
corresponding Markov operator M satisfies the requirements of Proposition 12.

Returning to the general case, the proofs of the previous sections only provide a bound on a
certain eigenvalue, not necessarily the spectral gap. Since we are now looking for a quantitative
bound, we must use the sharpest result obtained by Lee, Gharan and Trevisan [25], namely their
Theorem 4.1, one consequence of which can be written as:

Theorem 14 ([25]) With the notations of Section 2, there exists a universal constant η ą 0 such
that if cpnq ≔ η{ lnp1 ` nq, then for any finite self-adjoint Markov operator,

@ n P N, λ2n ě cpnqι2n
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As it was explained in Sections 3 and 4, the finiteness assumption can be removed by approxima-
tion. Furthermore the above result admits an immediate extension to the compact Riemannian
framework as in Theorem 7.

We can now come back to the setting of Section 5 and consider a Young function Φ and the
corresponding quantities defined in (24) and whose values are given by

@ n P N, kpnq “
?
n

Φ´1pnq (25)

(at least if µ has no atom, otherwise only an inequality holds, but for our purposes we can take the
kpnq, n P N, to be the corresponding upper bounds). Revisiting the arguments of Section 2 (with
δn “ 1{4 for n P N) and taking into account the observations of Sections 4 and 5 and Theorem 14,
we get the following quantitative version of Theorem 1:

Theorem 15 Let M be a self-adjoint Markov operator. If n P N is such that kpnq ě 2
?
2 }M}

L2ÑLΦ ,
then we are assured of

λ2npMq ě cpnq
16

where for any m P N, the quantities kpmq, cpmq and λmpMq are defined in (25), Theorem 14 and
(11). Thus the top of the spectrum of M consists of 2n eigenvalues 1, 1 ´ λ2pMq, ..., 1 ´ λ2npMq
(with multiplicities: some of them can be equal). In particular, Theorem 1 is recovered if M is
furthermore assumed to be ergodic.

It is tempting to investigate what happens to this bound when we rather start with a self-
adjoint Markov semi-group pPtqtě0. Let us consider the most famous example of hypercontractive
semi-group, the Ornstein-Uhlenbeck process, first on R. Later on, we will tensorize it to verify
that in general the order of the estimate of Theorem 15 cannot be improved and by consequence
this is also true for Theorem 14. In Section 4.3 of [25], Lee, Gharan and Trevisan applied other
hypercontractivity results due to Bonami [6] and Beckner [5] to noisy hypercubes in order to check
that for large n P N the order of cpnq given in Theorem 14 is optimal.

So let pPtqtě0 be the self-adjoint Markov semi-group associated to the Ornstein-Uhlenbeck
generator defined by

@ f P C2

b pRq, @ x P R, Lrf spxq ≔ f2pxq ´ xf 1pxq

which is essentially self-adjoint on L
2pγq, where γ is the normal centered Gaussian distribution.

It is well-known (see Nelson [30] and Gross [15]) that for any p ą 2,

}Pt}L2pγqÑLppγq “
#

`8 , if t ă 1

2
lnpp ´ 1q

1 , if t ě 1

2
lnpp ´ 1q

(26)

Applying Theorem 15 with M “ Pt for t ą 0 and relatively to the usual Lebesgue space L
ppγq

with p ą 2, we get that for any n P N,
#

n
1

2
´ 1

p ě 2
?
2

t ě 1

2
lnpp ´ 1q

ñ 1 ´ expp´tλ2npLqq ě cpnq
16

where cpnq is defined in Theorem 14. This leads us to define for n P N,

pn ≔

2 lnpnq
lnpnq ´ 2 lnp2

?
2q

tn ≔

1

2
lnppn ´ 1q

“ 1

2
ln

ˆ
lnpnq ` 2 lnp2

?
2q

lnpnq ´ 2 lnp2
?
2q

˙
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and to consider n0 P N the smallest integer such that pn ą 2. Taking into account the convexity
bound s ě 1 ´ expp´sq for any s P R, we deduce that

@ n P N, n ě n0 ùñ λnpLq ě cpnq
16tn

(27)

Since for large n P N, tn „ 2 lnp2
?
2q{ lnpnq „ 2 lnp2

?
2qηcpnq, this result essentially means that

λnpLq is bounded below for n ě n0. It seems quite disappointing, since it is well-known that
λnpLq “ n ´ 1 for all n P N. So we could try to improve Theorem 14 by obtaining quantities cpnq,
n P N, satisfying limnÑ8 cpnq lnpnq “ `8, since it would lead to a lower bound in the r.h.s. of (27)
going to infinity as n Ñ 8.
But this is not possible, because the previous arguments are stable by tensorization. More precisely,
for N P N \ t8u, consider the semi-group pPbN

t qtě0 acting on L
2pγbN q. The same hypercontrac-

tivity property (26) is valid for this semi-group. The generator LpNq of pPbN
t qtě0 corresponds to

the sum of N copies of L, each acting on different coordinates of RN . In particular, we get

@ n P J2, N ` 1K, λnpLpNqq “ λ2pLq

This forbids the r.h.s. of (27) to be improved into a lower bound going to infinity with n. In
particular the lower bound of Lee, Gharan and Trevisan [25] presented in Theorem 14 is of optimal
order.

A On principal Dirichlet eigenvalues at small temper-

ature

The goal of this appendix is to check the assertions (17), (18), (19) and (20) presented in Section 4.
Concerning the three first relations, we will adapt the proofs of Holley, Kusuoka and Stroock [22]
for the corresponding results relative to the spectral gap of a Witten Laplacian on a compact
Riemannian manifold without boundary. Their computations are based on the following ideas.
The upper bound is obtained by considering a function approximating the indicator function of
a well whose height is maximum among those not intersecting a fixed global minimum of the
potential. For the Dirichlet eigenvalues, the argument is even simpler, by using a well of maximum
height included in A or a small ball if there is no such well. Concerning the lower bound, Holley,
Kusuoka and Stroock [22] consider paths with minimal elevation connecting generical points of the
manifold with a fixed global minimum of the potential. This approach can in principle be applied
to the Dirichlet eigenvalues by using paths with minimal elevation connecting generical points of
A to BA. But technically it requires some curvature bounds on BA, so we preferred to resort to
a modified elevation and to paths linking generical points of A to some nice interior points of Ac.
The advantage is that the existence of such points is not really restrictive when one is computing
Dirichlet connectivity spectra, as shown by (20).

The notations are those introduced in Section 4. We begin by considering the simplest bounds:

Proof of (18) and (19)

It is based, on one hand on the observation that for any fixed β ě 0, the mapping pD1 Q A ÞÑ
λ0pA,Lβq is non-increasing, when pD1 is endowed with the inclusion order. And on the other hand

on the fact that for any β ě 0 and B P pD1,

expp´βpsup
B

U ´ inf
B

Uqqλ0pL0, Bq ď λ0pLβ, Bq ď exppβpsup
B

U ´ inf
B

Uqqλ0pL0, Bq

If B is a cycle, we have hpBq “ supB U ´ infB U , so (18) follows at once. If B is a ball of radius
r ą 0, supB U ´ infB U ď 2r }∇U}8 ď 2r, so that we get for any A P pD1,

λ0pLβ, Aq ď e2 maxtλ0pL0, Bq : B Ă A is a ball of radius less than 1{βu
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To conclude to (19), it remains to remark that by compactness of S, there exists a constant k
p3q
S ě 1,

depending only on the Riemannian structure of S, such that

@ x P S, @ r P p0, 1s, pkp3q
S q´1r´2 ď λ0pL0, Bpx, rqq ď k

p3q
S r´2

�

The following arguments mainly follow those of Holley, Kusuoka and Stroock [22]. We will adopt
their notations (sometimes with a A in index when the corresponding notions differ), so that we
can refer directly to their proof.

Proof of (17)

Let β ě 1 be fixed as well as a set A P pD1p1{βq. We modify the potential U by defining

@ x P S, UApxq ≔
"

Upxq , if x P A \ BA
´8 , otherwise

The elevation EApγq of a path γ P Cpr0, 1s, Sq is EApγq “ maxtPr0,1s UApγptqq and for x, y P S define

HApx, yq ≔ inftEApγq : γ P Cpr0, 1s, Sq, γp0q “ x, γp1q “ yu

There is no difficulty in checking that

hpAq “ maxtHApx, yq ´ Upxq : x P A, y R Au
“ max

xPA
min
jPJJK

HApx, yjq ´ Upxq

where J is the number of connected components of Ac (there are only a finite number of them by
the restrictions imposed on pD1) and where the yj, j P JJK, are any choice of points in each of them,
but we take them satisfying

µpBpyj, 1{βq X Acq ě µpBpyj, 1{βqq
2

For any β ě 1, there exists a finite cover of A by balls tBpxk, 1{βq : k P JNβKu, where the xk,

k P JNβK, are points of A, where Nβ ď k
p4q
S βdimpSq, with k

p4q
S ă `8 is a constant depending only

on S and not on A. Denote Zβ ≔
ş
expp´βUq dµ.

Considering any function φ P C1pSq vanishing on Ac, we can write

µβrφ2s ď 1

Zβ

ÿ

kPJNβK

ż

Bpxk ,1{βq
expp´βUpxqqφ2pxqµpdxq

“ 1

ZβµpBpyjpkq, 1{βq X Acq
ÿ

kPJNβK

ż

Bpxk ,1{βqˆpBpyjpkq,1{βqXAcq
expp´βUpxqqpφpxq ´ φpyqq2 µpdxqµpdyq

ď 2

ZβµpBpyjpkq, 1{βqq
ÿ

kPJNβK

ż

Bpxk ,1{βqˆBpyjpkq,1{βq
expp´βUpxqqpφpxq ´ φpyqq2 µpdxqµpdyq

ď 2ek
p5q
S βdimpSq

Zβ

ÿ

kPJNβK

expp´βUpxkqq
ż

Bpxk,1{βqˆBpyjpkq ,1{βq
pφpxq ´ φpyqq2 µpdxqµpdyq

where jpkq P JJK is such that

HApxk, yjpkqq “ min
jPJJK

HApxk, yjq
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and where k
p5q
S ě 1 is a constant only depending on the structure of S such that

@ x P S, @ r P p0, 1s, pkp5q
S q´1rdimpSq ď µpBpx, rqq ď k

p5q
S rdimpSq

With these preliminaries, the proof is now identical to that of Holley, Kusuoka and Stroock devel-

oped in pages 338 to 340 of [22]. They find a constant k
p6q
S ą 0, only depending on S, such that

for any β ě 1 and φ as above,

sup

#
expp´βUpxqq

ż

Bpx,1{βqˆBpy,1{βq
pφpwq ´ φpvqq2 µpdvqµpdwq : x P A, y R A

+

ď k
p6q
S β2pdimpSq´1qZβ exppβhpAqq

ż
x∇φ,∇φy dµβ

Putting together the above computations, we end up with the Poincaré inequality

µβrφ2s ď 2ek
p4q
S k

p5q
S k

p6q
S β4 dimpSq´2 exppβhpAqq

ż
x∇φ,∇φy dµβ

whose validity for all C1 functions φ vanishing outside A implies (17).
�

The proof of the remaining bound will justify the restrictions imposed on pDn, which could have
looked strange at first view.

Proof of (20)

So let be given n ě 2, β ě 1 and pA1, ..., Anq P pDn such that A1 does not belong to pD1p1{βq, we
are going to prove that there exists k P J2, nK with

λ0pLβ, Akq ě k2
Sβ

2 (28)

where k2
S ą 0 is a constant depending only on the Riemannian structure of S. Indeed, by definition

of pD1p1{βq, there exists a connected component of Ac which is such that all its points x satisfy

µpBpx, 1{βq X A1q ą µpBpx, 1{βqq
2

By definition of pDn, this connected component contains a subset Ak, with k P J2, nK, it is the

one that will satisfy (28). Consider pXpβq
t qtě0 a diffusion process of generator Lβ and denote

τ ≔ inftt ě 0 : X
pβq
t R Aku. Since Lβ is elliptic and Ak is a connected open set, λ0pLβ, Akq is the

asymptotic rate of getting out of Ak:

@ x P Ak, λ0pLβ , Akq “ ´ lim
tÑ`8

1

t
lnpPxrτ ą tsq

where the x in Px indicates that the diffusion is starting from x: Px-almost surely, X
pβq
0

“ x.
Thus taking into account the Markov property, to get (28), it is sufficient to find another constant

k
p7q
S ą 0 depending only on S such that

@ x P Ak, Pxrτ ď 1{β2s ě k
p7q
S

It is even enough to show that

@ x P Ak, PxrXpβq
1{β2 P A1s ě k

p7q
S
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Denote by pppβq
t px, yqqtą0,x,yPS the kernels corresponding to the semi-group associated to the gen-

erator Lβ, so we can write

PxrXpβq
1{β2 P A1s “

ż

A1

p
pβq
1{β2px, yqµpdyq

From Theorem 3.1 of Wang [35], we have that for any t ą 0, σ ą 0 and x, y P S,

p
pβq
t px, yq ě k

p8q
S p2πtq´ dimpSq{2 exp

„
´
ˆ

1

2t
` σ

3
?
t

˙
ρ2px, yq ´ b2t

8
´
ˆ
b2

4σ
` 2 dimpSqσ

3

˙?
t



where k
p8q
S ą 0 is the volume of S (with respect to the unnormalized Riemannian measure of S),

where ρpx, yq is the Riemannian distance between x and y and where b ≔ KS ` β, KS ě 0 being
such that the Ricci curvature of S is bounded below by ´KS . In particular if we choose σ “ β, it

appears there exists a constant k
p9q
S ą 0, only depending on S, such that

@ x P S, @ y P Bpx, 1{βq, p
pβq
1{β2px, yq ě k

p9q
S βdimpSq

It follows that for all x P Ak,
ż

A1

p
pβq
1{β2px, yqµpdyq ě

ż

A1XBpx,1βq
p

pβq
1{β2px, yqµpdyq

ě k
p9q
S βdimpSqµpA1 X Bpx, 1βqq

ě k
p9q
S

2
βdimpSqµpBpx, 1βqq

ě k
p9q
S

2k
p5q
S

as required.
�
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