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Abstract Using composition procedures, we build up high order spijtmethods to solve evolution equa-
tions posed in finite or infinite dimensional spaces. Singdurder splitting methods with real time are
known to involve large and/or negative time steps, whichatskzes the overall procedure, the key point
of our analysis is, we develop splitting methods thatam®plexime steps havingositive real partgoing
to the complex plane allows to considerably increase tharacy, while keeping small time steps; on the
other hand, restricting our attention to time steps withtp@sreal part makes our methods more stable, and
in particular well adapted in the case when the considereldigon equation involves unbounded operators
in infinite dimensional spaces, like parabolic (diffusi@auations.

We provide a thorough analysis in the case of linear equsifiosed in general Banach spaces. We also
numerically investigate the nonlinear situation. We ilifate our results in the case of (linear and nonlinear)
parabolic equations.

Keywords splitting - complex time stepscomposition methodhigher order parabolic equations
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Note: Similar results are derived independently by E. Harg&s@é. Ostermann in [15].

1 Introduction

The goal of the present text is to derivigh-ordersplitting methods, obtained by usiogmplexime steps.
These methods are obtained through compaosition procedtmestability purposes, the retained methods
only involve time steps that have positive real part: ourivadion is to recover methods which can be used
in the case when unbounded operators are involved, assoaidih propagators that a@® semi-groups
only (instead of2? groups). Our paradigm is the case of diffusion equations.
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Let us make our statement precise.
Consider a linear evolution equation of the form

d
au(t) =Au(t) +Bu(t), (1.2)
where the right-hand-side involves the sum of two well iffeed operatorsA andB. Here, the unknown
u(t) is assumed to belong to some finite or infinite dimensionakbBhrspacé, while A andB are linear,
possibly unbounded, operators. In the case wheand B are unbounded, we assume B, andA+ B
generateC® semi-groups of propagators ovkér denoted byd”, B and&(AtB), respectively, whenever
t > 0. The prototype we have in mind is the linear heat equatioh potential

au(t,x) = Au(t,x) +V(x)u(t,x),

wheret > 0 is time andx € RY (or x € T9) is the space variablé) denotes the standard Laplacianxin
while the potentiaV (x) is assumed bounded. In that case one may ch¥osel?(RY) and define the
unbounded operatdAu)(x) = Au(x) with domainD(A) = H2(RY), together with the bounded operator
(Bu)(x) =V (x)u(x) (other choices are obviously possible for the Banach siaagthis level, depending
on the assumed smoothness of the poterKiattay as well measure Sobolev regularity, or Holder regiylari
of the solutioru).

It is well-known that a possible approach to numericallyweq[l.1) is to use a splitting methoie.
to approximate the propagator of the full operator» Au+ Bu by using an appropriate combination of
the propagators — Au andu — Bu, both assumed to be numerically cheaper to evaluate. Innhe fi
dimensional setting, splitting methods basically rely loa identity

eh(A+B) — ehAehB+ o (hZ) ’
whereh is some small time-step. Higher order approximations magtiteined by writing

eh(A+B) — eblhAealhBebzhAeath' . ebshAeashB+ Vi (hr+1) ,

whereay, ..., as andby, ..., bs are (to be chosen) real or complex numbers, sisdusually referred to as
the number of steps of the method. The exponatgpends on the chosen values ofétie andb;’s.

The above procedure immediately extends to the case whesptratorsA andB become nonlinear.
In this case indeed, the above formulae remain unchangedded the factorg"(A+8), edhA andehB are
replaced by the true flon®a . g(h), ®a(aih), anddg(bih) respectively, or by appropriate approximations
of them. Here we have defined, for ayy the flow ®@4(t)(yo) as the solution to the differential equation

2 (@0)¥0)) = A(@a(1)30).

supplemented with the initial conditio®a(0)(yo) = Yo (and the similar definition is used to prescribe the
flows @ag(t) and @g(t)). In this context however, it needs to be assumed that thieovéeldsA andB
possess enough smoothness to have well-defined flaws(h), @a(h), and®g(h) for small values oh.

Note also thatify is complex, the definition ofa(a;h) requires, say, that for aryy the differential equation

%(CDA(t)(yo)) = A(®a(t)(yo)) be solvable along the complex lie= at’ (' € R) whenever 0<t’ <h

andh is small enough (and similarly fds).

Theformal extension of all above formulae in the infinite dimensioretiag is easy as well, keeping
in mind that the existence and well definiteness of all inedlpropagators over the retained Banach space
X should then be carefully checked. In the paradigmatic casenw = A, for instance, we recall that
the propagatoe® (z € C) is well-defined, in any reasonable distribution sensendf anly if Rg(z) > 0.
Naturally, another key difficulty in the infinite dimensidrsituation is to check that the remainder terms
indeed have siz&'(h?) resp.¢’(h*1) in the correct norm.

Now, the derivation ohigh-ordersplitting methods is not straightforward in general, evethie finite
dimensional case. The simplest, high-order splitting méshinvolve large negative time steps alternating
with large positive time steps.€. large positive values of tha’s or bj’s alternating with large negative
values of the same coefficients), which eventually leadsotar pccuracy in practice. Even more, a disap-
pointing result shows that all splitting methods (or conipos methods — see below for the definition)
with real coefficients must have some negative coefficien@ndb; in order to achieve order 3 or more.
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The existence of at least one negative coefficient was shoyR0,21], and the existence of a negative
coefficient for both operators was proved in [12]. An eleggadmetric proof can also be found in [2]. As
a consequence, such high-order splitting metheaadsotbe used in general when one operaiar B has
large negative spectrum, or when it only generat€8 aemi-groupof propagators — and not a group (like
the Laplacian).

In order to circumvent this order-barrier, there are twosjtmbties. One can use a linear, convex com-
bination (see [10,11,1] for methods of orders 3 and 4) or comvex combination (see [19,6] where an
extrapolation procedure is exploited), of elementary, toder splitting methods (some of the above men-
tioned works use elementary methods which involve one ordmraplex time steps). Another possibility
is to systematically consider splitting methods wéttmplexcoefficientsa; andb;, having yetpositive real
parts(see [3] in celestial mechanics). In 1962/1963, Rosenbfb8kconsidered complex coefficients in a
similar context. We may also quote the text [24] — see alse-[Where some low order methods with com-
plex coefficients are derived (one can find here an altematigof of the existence of negative coefficients
when only real time steps are allowed).

This is the route we chose here.

In this article, we consider splitting methods of the form
S
h(A+B) _ [ PihAGNB | ;5 (hr+1
€ + ,
i )

and we derive new high-order splitting methods (up to orderteen), which involve complex time steps
having positive real part. We state and prove error estisithg are valid both in the finite and in the infinite
dimensional setting. We last investigatiemericallythe behaviour of the retained methods both in the case
of the linear heat equation with bounded potential (thergpts one-dimensional with periodic boundary
conditions), and in the case of nonlinear versions of the égaation (in the similar setting).

Our derivation uses composition techniques that werertallyi developed for the geometric numerical
integration of ordinary differential equations [13].

The main advantages of our approach are the following:

— the splitting method inherits the stability property operential operators;

— in the retained methods, we can always replace the cogilyrentials of the operatoe8” etc. by cheap
low order approximations of the latter, without altering thverall order of accuracy;

— using complex coefficients allows to reduce the number afusitions needed to achieve any given
order;

This paper is organized as follows. In Sect. 2, we derive rigi-brder splitting methods. In Sect. 3 we
give a rigorous order estimate in the linear case, obtaisetldirect consequence of the recent results by
Hansen & Ostermann [14]. Sect. 4 presents several numsitigalations, confirming the formally expected
order of accuracy in the non-linear case.

2 Deriving high order splitting/composition methods
2.1 Composition methods in the finite dimensional case

Composition methods were mainly developed in the 90's inpdugers of Suzuki [22], Yoshida [23] and
McLachlan [16] in the context of ordinary differential ediams. They rely on the following observation.
Consider a (linear or nonlinear) ordinary differential ajon of the form

L) = f(u)

whereu(t) € RY belongs to some finite dimensional space. Denote(bythe flow of the above equation,
namelyg(t) : RY — RY satisfies
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On the other hand take a time step- 0, and consider any approximatign of ¢(h) at orderp, for some
value ofp € N. In other wordsg, : RY — RY is assumed to satisfy

¢ =g(h)+o(hP*).

The above identity is assumed to hold between mappingR%brt means that whenevé¢ ¢ RY is a
compact set, there is a constént- 0 and a smalhy > 0, such that for any € K, and any 0< h < hg, we
have||gh(u) — @(h)(u)]| < ChP+,

Lastly, take an integexand choose (real or complex) coefficieps. . ., ys (in the classical theory, only
real coefficients were considered).

Under these circumstances, a composition method is defmtitbaperator

Uh= @eho ... 0 Py, (2.1)

i.e.as the composition of the methagd, successively used with time step$), y»h, . .. ysh. Naturally, if the
yi's are complex, we implicitly assume here that the operagpysire well-defined for small values bf> 0,
in the following sense: for any compact $et- RY, there is arhg > 0 such that the operataqy, is well-
defined oveK whenever O< h < hy. Similarly, we also assume that the operatpfgh) are well-defined
for small values oh > 0, and that the estimategn = @(yh) + ¢ (hP*1) hold for smallh > 0 as well (in
the above sense).

The following classical result in numerical integratiogtrates that the composition procedure allows
to transform a methodg, of orderp, into a higher-order methogi, of orderp+ 1.

Theorem 2.1 (see [13, Theorem 11.4.1]) With the above notation and aggions, let@, be an approxi-
mation of¢(h) of order p, namely
@ = @(h)+ O(hPHh).

If the y’s satisfy
Vit...+¥=1 and Y4 . +yPti=0, (2.2)

then the composition methag = @gno ... o @,n approximatesp(h) at order p+ 1, i.e.
n = @(h) + O (hP*2).

Remark 2.1Wheneverp is even and the composition is symmetiie (ys—i+1 = y for anyi), thenyy, is of
orderp+2.

Proof.
The idea of proof is to show that if the basic method has opglee.

@(y) = @(h)(y) +C(y)hPTt+ o(hP*2),

whereg(h) denotes the exact flow, then, using the fact that the sum of s one, we have

Ben© -0 Ban(y) = @(N)(Y) +CY) (Y + ...+ Y HhPHL 1 g(hPH2),

Here, the constar@(y) denotes a quantity that remains bounded whengw@iongs to a given compact
set. The result follows. O

Given the above theorem, a classical idea is the followitayti®g from a low order methog,, we may
increase the order by one, by appropriately choosingitheiterating the process, and choosing therefore
possibly differenty’s at each stage of the whole procedure, we may eventuallyegmwith a high-order
method.

This is the program we intend to follow, in the very case oft8py methods. The point is, such a
program fails past order 2 when tlgés are restricted to only take real values: past order 2 iddeegative
v's, as well as larg®;’s come up in the analysis, which makes the so-obtained rdethave poor accuracy
in practice.

We therefore rely on the use of complgss. In that perspective, our main constraint is to obtairhhig
order method for which thg’s all have positive real part: our goal is to eventually gpthle methods in
the case of diffusion equations. Secondarily, we try to kbepnumber of stages (the integan formula
(2.1)) reasonably small (to reduce the computational cast) the moduljy| as small as possible as well
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(to reduce the size of the time steps). Lastly, we also tryetepkhe quantitiefarg(y)| as small as possible.
In the context of splitting methods, all these constraimgsfairly natural, since the reader should keep in
mind that one step of the full evolution equatipe: A(y) + B(y), along a time step, is here approximated
by s steps of eithey = A(y) or y = B(y), along the successive time step$, ..., ysh (seee.g.figure 2.1
below).

A last, important remark is in order. Throughout this texg will restrict our attention to the case of
symmetricmethods. The reason for this choice is, as stated in Reméarkhat symmetric composition
methods applied to symmetric procedures allow to gain twieis of accuracy each time one applies The-
orem 2.1. We nevertheless stress that this choice is agpirad considering non-symmetric methods is
relevant as well. For instance, we may quote the work of Haase Ostermann [15] where non-symmetric
methods are considered.

2.2 Buliding up high-order splitting/composition methauth complex coefficients - the linear,
finite-dimensional case

Throughout this paragraph, we take fixed matriéesdB acting onRY, and introduce new splitting/com-
position methods to solve the linear ODE

y = Ay+ By.

ThoughA andB are finite dimensional matrices here, the reader may keeprid that we will eventually
consider the infinite dimensional situation wheyés the Laplace operator, whilg denotes the multipli-
cation by a bounded potentidl (see introduction). Henc& may be typically thought of as a matrix with
‘large’ negative eigenvalues.

Following the general methodology described in the previgaragraph, we first need to choose some
low-order approximation of the true propagator éxA+ B)). We retain the simplest symmetric splitting
algorithm, namely the Strang splitting operator, and we set

On = exp(%B) exp(hA) exp<h7B) : (2.3)

a symmetric second order approximation of &x@\+ B)). While the methods we propose below are all
based on this particular choice of a basic low order methe&dreadily mention that the analysis we pro-
vide remains unchanged when starting frany other symmetric second order method. For instance, the

following
h o\ ! h \*! h h
P —_— -_—— [R— — —
of = <Id > ) [<Id 2A> (|d+ 2A> (|d+ 25). (2.4)
——————
implicit Euler explicit Euler

implicit midpoint

would provide such a basic choice. In the infinite dimendisetting and when formally choosigas the
Laplace operator whil® is the multiplication by the bounded potential the method@,‘f coincides with
the Peaceman-Rachford formula [17] originally developmdlie heat equation, and extended to reaction-
diffusion problems in [7]. Note that the use of an implicitdpoint approximation for the operatarcorre-
sponds to a standard Crank-Nicolson scheme whisrthe Laplace operator, a standard choice.

2.2.1 Triple Jump procedures

Starting from the basic, second order, Strang splittingritlgm @, we wish to derive various higher order
symmetrianethods by applying Theorem 2.1. Since the symmetry reopging anyhow prevents the choice
s=2in Theorem 2.1 (system (2.2) fer= 2 and symmetrig;’s imposesy; = y» = 0), the simplest choice
is to sets= 3 in Theorem 2.1 and to look for a three steps, symmetric caitipo procedure. Such a
method is usually called 'Triple jump composition procezluNote in passing that double jump compo-
sition procedures (with complex time steps) have been densd in [14], where methods of order 6 are
derived.
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In the case whea= 3, and starting from an arbitrary, symmetric mettgaaf orderp (p is an arbitrary
even integer here), a triple jump composition proceduredsided by a triple(yi p, ¥o.p, Va.p) € C3 such
that

Yip=VYsp (Symmetry)

p+1

Vipt+Yept¥ap=1 Vip +yp+1+yp+1 0 (Theorem2.1) (2.5)

and the associated improved methodlis= @, ;ho @, ;ho @, ,h. The set of all complex solutions to (2.5)
is given by thep+ 1 values

W0 o 1
Lp B 2 21/(p+De2kn/(p+1)’
1/(p+1) 2k71/(p+1)
W___2 _
Vo= 3 gy (K0P (2.6)
Settingk = 0 above provides the uniqueal solution to (2.5), namely
0 (0 1 © 21/(p+1)
ip=Vap= 5 oiprny V2™ T o) (2.7)

Unsurprisingly, the coefficienyé?g is negative. In any circumstance, ¢k has order 2, then the method
Lp,(f) = qoy@h o (py<0)ho ® 0, reaches order 4 using three stepspgfwhile, repeating the method at any
32 2.2 12

(4)

order, the methoquh6 = (p(:g)hotp o
12)

) o Lp (0 reaches order 6 with 9 steps@f, and so on. These methods

are originally due to Creutz & Gocksch [4] Forest [9], SuiZ[@?], Yoshida [23], the name ‘Triple Jump
composition methods’ was given in [13, Example 11.4.2]. Hwver, smceyzﬁ < 0, these methods cannot

be extended, in the infinite dimensional situation, to peais whereA only generates &° semi-group of
propagators, and where the basic method of chgiceoincides with the Strang splitting methad,, or
with any low order splitting method. On top of that, and euvethie finite dimensional setting, the estimate

‘yj(f)g’ > 1, valid for anyj = 1,2, 3, implies a terrible zig-zag in the coefficients of the methorhus, the
above technique is not even very efficient in the finite dinems case.

Another choice ok is therefore in order in (2.6).
Settingk = £ p/2 (recall thap is even), provides the two conjugate solutions of (&Bich minimize the

quantity’ yikg‘ + ’yékg,’ + ‘ yékg‘ . These two conjugate solutions also minimize the quantityma 3 ’arg(yi{‘g ) ‘ .
In order to keep notation simple, we drop the upper indep,2” for the associated coefficients, and simply
define(y p, ¥2.p, ¥5,p) as

gm/(p+1) 21/(p+1)
28D 4 2U(pD)’ V2P T Sgmi(prD) 4 oL/t

Yip=Vp= (2.8)

Needless to say, theggs have positive real part.

A triple jump composition strategy: reaching order 8
Symmetric composition methodggp) of orderp (p even) can be constructed by induction, setting

o = o, PP+ = cbg’iho cDg’ih o ch,fih forp> 2, (2.9)

wherey p, Vo p, V3.p are given in (2.8). The metho(ll?,gp> requiress = 3P/2-1 compositions of the basic

method®,. Taking care of the non-commuting products (product signosikl be read from the right to the
left), we may write

<D,(12) =¢,= exp<h?B> exp(hA) exp(h78> ,



Splitting methods with complex times 7

together with

3
4
J:

3 3
ol — kljl ( M cpymyj,zh) ,

=1

’ 3 ( 3 < 3 ))
¢ = By ey |
h J:ll kl:ll - 1,6Yk.4Y),2

and so on. In summary, each meth@b") reads

® 3(p/2)-1

p

®h = I_I1 (Dc{j'phv
J:

for somecoefficientsaj , that are obtained as products of & 'S, Yk p-4'S, ..., ¥k 2'S. This defines the
coefficientsaj.p.

Remark 2.2Coming back to the value @by in turn allows to write

3(p/2-1
o) — rl, exp(bj,phA) exp(a; phB),
J:

whereay p = a1,p/2, by p= 01 p, While aj p = (@ p+aj_1,)/2,bj p = aj p whenever X j <3(P/2-1_1,
and lastlyaj p = aj p/2, bj p = 0 in the particular case when= 3(P/2-1,

Now, the important point is

Proposition 2.1 The above defined methdliip> has order p.
Besides, for p=2,4,6,8, the coefficientsj p (j = 1,...,3(P/2~1) satisfy

Re(aj,p) > 0.
This property ceases to hold whenever Q0.

Remark 2.3The fact that the methotw,(]p> reaches ordep is here presented in the case of a linear equation
y = Ay+ By, and when the basic methd¥, is the Strang splitting algorithm. Naturally the same relsalds
when the chosen basic method is any symmetric method of @rdéutatis mutandigsee introduction),
and provided the appropriate assumptions described imtiaduction are met, the same result holds in the
nonlinear setting as well, wheye— A(y) andy — B(y) become nonlinear operators.

As a consequence, starting from a second order symmetrimiahgt (be it the Strang splitting algorithm
&, as above, or any symmetric second order algorithm), theptesmposition technique can only improve
numerical accuracy up to order 8, while preserving the usienaf stepsr; ph that all have non-negative real
part. This property may be somewhat precised. We observigiimd-2.2 that the quantity m@}arg(aj,pﬂ
increases with the ordgr of the composition methods in (2.9). For the method (2.9)rdeop = 10 this
quantity is greater tharm/2: itinvolves 81 factorsbam and the middle coefficierts1 10 has a negative real
part, namely Réa41 10) = —5- 10° < 0. Thus, this method cannot be used, in general, when thaimper
A or B has large negative eigenvalues, nor can it be extendedeimtimite dimensional case, when the
operatolA coincides with the Laplacian.

Another triple jump composition strategy: reaching order 14
Before concluding this paragraph about triple jump procesuwe mention an improvement of the
above method.
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order 4 order 6 order 8

Vi Y2 Vi ¢ ¢ ¢

method&%w method&l@ method&%@
order 4 order 4 order 6 order 6 order 8 order 8

methodWh(A) methodWh(G) methodWh(E”

Fig. 2.1 Diagrams of coefficients for compositions methods (2.1@) @13)

To reduce the quantity magq,_,s\arg(ai’p)\, an idea is to alternate the coefficieriig p, y».p, ¥3,p) by
(Vi,p: V2,p: V3,p) In (2.9). In other words, we propose here to set

On = &,
3 (P+2) P) P ——m
&, =®Puh oPyn 0By n if p/2 odd (2.10)
= (p+2) (P) (P —~—(p)
=@, n oP,n oPyn else

This yields a family of composition methods which again ead

3(p/2)-1

&P
= 1 %an

(Dh<p

for some coefficients| , that can be explicitely computed. In that situation we have

Proposition 2.2 The above defined meth&r@(p> has order p.
Besides, for p=2,4,6,8,10,12,14, the coefficients|  (j = 1,...,3P/2~1) satisfy

Re(ajp) > 0.

This property ceases to hold whenever 16.

3(p/2)-1 3(p/2)-1
Remark 2.4Surprisingly, the sum of the moduli of coefficientsy  |ajp| and 5 [ajp| in the con-
=1 =1

sidered composition methodzi(]p) or &;h(P) is bounded as the ordergoes to infinity. It is estimated by

) 0 24+ 21/(2k+1)
IDl(Wl-,ZK‘ +vea] + ) < |!:|1 262D | 21/(2k1)]

N (g (@) <

This means that the length of the family of polygons in figurki2 bounded (this limit isz 1.315).
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‘max|arg(y)| T ==

oL i=1.s el =

i/ /,/’/ =
- //// N
e triple jump th (2 9)
m/4 - r’/// ——— triple jump @, " (2.10)
s quadruple jumpH?) (2.13)
// orderp
o | | ! | | | \

2 4 6 8 10 12 14 16

Fig. 2.2 Values of max.1. s|argy| for various composition methods.

2.2.2 Quadruple Jump composition methods

In the similar way we have derived symmetric, triple jump g@asition methods, we investigate here the
symmetric quadruple jump case. To do so, for any even intpgere need to find complex quadruples
(YLp, Yo.p: Ya.ps Va.p), Still denoted by the letteng , not to overweight notation, such that

Yip=VYap, Yop=VYsp (Symmetry)
YiptVYopt+VaptVap=1, le;ler

Starting from any basic symmetric meth@gof orderp, the symmetric methoq\,4 o1 © B h © B oh © B ph
automatically has ordgy+ 2. Now, the set of all complex solutions to (2.11) is given Ihmb vaIues

pil yp+1+ yp+1 0 (Theorem2.1) (2.11)

(K —(k

—_(k
i =va0 =

(K _ k) _ 1 _
Vap=Yap=5 sy K=L1--P): (2.12)

The two complex conjugate solutions with minimal sum of modee obtained withk = +p/2. These
solutions also have minimal value of max__ 4 ’arg(yi(,';)) ’ Therefore, we set

o o o1 o sin(m/(p+1))
yl’p_yz*p_y3*p_y4’p_4+|4+4cos{rr/(p+1))'

With this notation we define the quadruple jump procedure
W = o,
——(p) () (P
P =, T o® 0Py 0By (2.13)

where the methodJr(]p) has been defined before in (2.10). Naturally, each me‘ﬁﬁ&jreads

® 4x3(p/2)-2

pP) _

o= I_ll Pp; oh>
J:

for some coefficient§; , that can be explicitly computed. We draw the reader’s &tiarib the fact that

Wh(p”) is here defined recursively usir@(m as a building block (instead Oﬂfp) — in other words, we
do notdefine® " as the compositiot, )ho WP ) h o Wy(zszho W)flpp)h). This choice is made to reduce the
total number of compositions of the basic methb(dneeded to build up the meth@k{fp): in our case,%fp)
requires 4x 3(P/2-2 compositions of®y, (instead of 4°/2-1),

We have the
Proposition 2.3 The above defined meth@ﬁp) has order p.

Besides, for p=2,4,6,8,10,12, the coefficient§j , (j = 1,...,4 x 3(P/2~2) satisfy

Re(B; p) > 0.

This property ceases to hold whenever 4.
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Another advantage of this composition procedure is that btaio an accurate approximation of the
solution at intermediate time steps as well. More precjsedyhave the

Proposition 2.4 Take an initial condition y and an even integer p. Define for any integer n the sequence
of vectors y (n > 0) by the recursion y,1 = Wh(p) (yn). Lastly, define §t) as the solution to the ODE
y(t) = Ay(t) + By(t) with initial condition y(0) = yo.

Then, y approximates ¢nh) to within &'(hP). Moreover, writing

) (p-2) (p-2) (p-2) (p-2)
W= (DV4,p—2h ° (D%,p—Zh ° (DVZ,p—Zh ° (Dyl,p—zh )

and setting

(p-2) —— (p-2)
yn+l/2 = (Dyzp,zh © (Dylvp,zh (yn)a
we also have that
Yni1/2 approximates y(n+1/2)h) towithin ¢&'(hP).
More generally, the same result holds, with the obvious gkasf notation, takinginy symmetric method
qargpfz) of order p— 2 and defining the improved symmetric method of order mff%: (p)(,f:z)h o (P;(/f:z)h o
(p-2) _ (P-2) ’ ’
q’yzpfzh © qoyl,p—Zh'
The proof of this fact simply comes from observing thag + y» , = 1/2 for anyp, so that the two couples
(2v1,p,2Y2.p) and (2y2,p,2y1 p) satisfy the order equations (2.2) wish= 2. Hence the recursioyy, 1/, =

p—2 p—2 . Lo . . ,
?,, p—zh( o d’yl,p,zh( : (Yn) yields an approximation of the true solution at titne nh+h/2 with local

errbrﬁ(hp). Since this error is not propagated (it is only an inner Stage obtain an approximation of
orderp both foryn 1 at time(n+1)h and fory,, 1/, at time(n+1/2)h.

3 Convergence analysis for unbounded operators

In this section, we extend the analysis of the previous pagdg valid in the finite dimensional case, to the
infinite dimensional situation. We first give a general staat, next specify the assertions in the case of
splitting algorithms applied to linear diffusion equation

3.1 A general statement

Hansen and Ostermann in [14] have provided an elegant aret@dramework, valid for linear equations,
and which allows to assert théita splitting method ig-th order accurate in the finite dimensional case,
thenthe same method is-th order accurate in the infinite dimensional case as walyided some natural
functional analytic assumptions are met.

The Hansen and Ostermann result states the following.

Theorem 3.1 (see Hansen and Ostermann [14]et X be an arbitrary complex Banach space with norm
I ||. Denote by the same symbjo|| the norm on the space of bounded linear operators over X.i@ens
linear unbounded operatorsjAj = 1,...,s). Lastly, take a time B 0, an integer p, and an initial datum
Up € X. Assume that the following assumptions are met:

(i) (semi-group property).
The linear operators A(j =1,...,s) and A + - - - + As generate @ semigroups on X. Moreover there
exist a realw and s real numberey; (j =1,...,s) such that

viz0,  [ghrterh <ot and ¢ < et (3.1)

(i) (smoothness assumption).
For any operator 1 that is obtained as the product of exactly-d factors chosen amongst thg's)
there is a constant G 0 such that

VO<t<T, HEpH gl(ArttAs) uOH <C. (3.2)
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(i) (splitting method).
Take a splitting method S of the form

m
S= I_L (eVJWlhAl e eVi,shA‘-‘) :
J:

wherey;, 1 < j <m, are nonnegative reals, while m is an integer. Assume fHittisg method is
a p-th order approximation of'€1+4s) This means that whenever the'share replaced by finite
dimensional matrices Msay, we havg]s_; (/1™ efisMs) = ghMut+Ms) 1 g (hPF1), in the sense
of matrix norms.

Under all these assumptions, the following holds. Therstexi constant G 0 such that for any integer
n > 0and any time step b 0 satisfying nh< T, we have,

H (§ - enh<A1+---+As>) uoH <Ch.

Using this Theorem, the following is easily deduced

Corollary 3.1 (Banach space formulation)

Let X be an arbitrary complex Banach space with ndrnj. Denote by the same symHp]| the norm
on the space of bounded linear operators over X. Take twalinebounded operators A and B. Lastly,
take a time T> 0O, an integer p, and an initial datumgue X. Assume that the following assumptions are
met:

(i) (semi-group property).
The operator A+ B generates a £semigroup on X. Besides, for anygzC such thatRe(z) > 0, the
linear operators zA and zB, generatg €emigroups on X. Lastly, for any giver L with Re(z) > 0,
there exists a real numbew such that

viz0,  |¢*B)| <e, and [|eP|+ ¢ < e (3.3)

(ii) (smoothness assumption).
For any operator k1 that is obtained as the product of exactly-f factors chosen amongst A and B,
there is a constant G 0 such that

VO<t<T, HE"“ (A+B) uoH <C. (3.4)
(i) (splitting method).
Next, consider s complex numbeis a . &, by, ..., b, and take a splitting method S of the form
S
S=[]iMeiM®.
1

Assume this splitting method is a p-th order approximatibe'@+8), meaning that whenever A and B
are replaced by finite dimensional matrices M and N we Hgje; e’i"™ aitN = 'M+N) . g(hP+1),
in the sense of matrix norms.

Under all these assumptions, the following holds. Therstexi constant G 0 such that for any integer
n> 0and any time step b 0 satisfying nh< T, we have,

S'— MAB)) ol < ChP. (3.5)
—~(p)

In particular, under the present assumptions on A, B, andhe methodsb,(]m, @, , and Wh(p) dis-

cussed in the previous paragraphs satisfy estimate (3r50 f6 nh < T, with S replaced byD,(]m, resp.

Eﬁh“’), resp.erp), whenever p=2,4,6,8, resp. p=2,4,6,8,10,12,14, resp. p=2,4,6,8,10,12.
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Before ending this paragraph, we propose a slightly diffefermulation, adopting a Hilbert space
setting: so-called m-dissipative operators are well-adapted in the preseneggnvhere we eventually
wish to derive splitting methods that are adapted to paraekguations.

Let o belong to[0, r1/2] and define the sect&; in the complex plane by

Sy ={zeC,z=0o0r|arg4 < a}.

o

>

Su

0

LetH be a complex Hilbert space with scalar product denoted,by Take a linear, unbounded operator
A onH, with domainD(A), a dense subspace ldf We recall thatA is said nur-dissipative whenever for
all uin D(A), the quantity(—Au,u) belongs toS,, and if for all complexz ¢ S, the operatoeld + A is
an isomorphism fronD(A) to H. A nice introduction to nx-accretive operatotscan be found in [5]. It is
known that an mx-dissipative operator generate€asemigroup orH, denoted byé” (t > 0), ande” is
a contraction operator frofd to H. Besides, if an operatdk is such that there exists a real numbdor
which A+ cld is ma-dissipative for somer € [0, 71/2], thenA generates &° semi-group as well, and we
have the estimatge'®|| < e whenevet > 0.

Corollary 3.2 (Hilbert space formulation) Let H be a complex Hilbert space with scalar prod(ct) and
associated nornjj.||. Take an initial datum gi€ H, atime T> 0, and an integer p. Assume the following:

(i) Let A resp. B be such that there exist two real numbers alafmt which A+ ald resp. B+ bld are
ma-dissipative resp. B-dissipative operator for some € [0, 11/2] resp.f8 € [0, 11/2]. Lastly, assume
that there is a real number c for which-AB + cld is my-dissipative for somg € [0, 11/2].

(if) Assume that for any operator g that is obtained as the product of exactly+d factors chosen
amongst A and B, that there is a constant@ such that

VO<t<T, HEpHet(A*B) uOH <C. (3.6)

Then, the method@ép), @(p), andwh(p) discussed in the previous paragraphs satisfy estimate {&.5

0<nh<T,with S replaced by,”, resp.ah(p), resp.w?), whenever p- 2,4,6,8, resp. p=2, 4, 6, 8,
10, 12, 14, resp. p= 2,4, 6, 8, 10, 12

3.2 Application to linear diffusion equations

In this parapraph, we apply the above results in the caseedirtbar heat equation with potential
du(t,x) = Au(t,x) +V(xu(t, x), u(0,x) = up(Xx).

To fix ideas, consider the case whebelongs to the whole spa@®. There are many settings adapted to
this equation, and one may either seek solutiohsving Holder smoothness, bP(RY) smoothness, or
Sobolev regularity (in turn based either bh- p# 2 - or onL?). In order to keep a simple presentation, we
choose to work in ah?-based Sobolev space setting.

Therefore, we introduce the Hilbert spade= L2(RY), and the two operatora : u+— Au andB :
u— Vu. The operatoA with domainD(A) = H?(RY) is m0-dissipative oid. Whenevel/ € L*(RY), the
operatorB is bounded orH. Lastly, the operatoA+ B is such thatA+ B — ||V||.~Id is mO-dissipative.
Hence assumption (i) in corollary 3.2 is met.

To ensure assumption (ii), namely the smoothness assumpi®take an integep, and assume that
Ug € HA(PHD) (RY) andV € WP=(RY). This ensures that assumption (ii) in corollary 3.2 is met.

We are in position to state the

1 An operatorB is said mr-accretive whenevek = —B is ma-dissipative.
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Theorem 3.2 Under all these assumptions, considering either the medﬁ% (< p<8or Eﬂ](p) 2<
p <14 or Wh(p) (2 < p< 12), estimate (3.5) with S replaced by one of the above methalds true.

Needless to say, the similar result holds when the heat isquiatconsidered on the Torus as well, or
on a bounded domain with appropriate boundary conditiodssamoth enough boundary, etc.

4 Numerical results

In this section, we numerically illustrate the above cogeerce results.

4.1 The linear case
We consider the one-dimensional linear heat equation vatargial on the Toru¥ (identified with[0, 1])
Au(t,x) = Au(t,x) +VJu(t,x),  u(0,x) = ug(x),

where the potential is taken as
V(X) = 2+ sin(2mnx).

In order to discretize the equation in space, we take a (JargegerN and choose a finite differences
procedure on the regular gridyN,2/N,...,N/N. The original heat equation then becomes

u=Au+Bu,

where the vectou(t) belongs tdRN, and has the form

andul (t) is an approximation of (t, ﬁ) while the Laplaciam\ is approximated by th&l x N matrix A
given by

21 1
1-21

A= (N+1)? 1-21 ,
1 1-2

and the vectoBu stands for

_ 1\ 1 Y i NY

Bu= (V (N) u,...,V <N) u,...,vV (N) u >
We take theC™ initial conditionug(x) = sin(27x), and consider a spatial discretization with= 100 points.
In Figure 4.1, we compare the accuracy of the compositiohattintroduced in this article (“triple” (2.10)
and “quadruple” (2.13) jump compositions) on the time in&f0, T|, whereT = 0.2. We plot for many
stepsizes the solution error at timieas a function of the number of evaluations of the basic method
As a basic method, we consider (in solide lines) alternbtithe Strang splittingd;, involving exact flows
(where the termd"®/2 are replaced by half a time step of the exact flow of the noalidéferential equation
y=F(y)), and (in dashed lines) the Peaceman-Rachford meﬁﬁod’he ‘exact’ solution is computed with
a very small time step. We observe the expected orders @gingepes 24,6,8). Surprisingly, composition
methods using the Peaceman-Rachford formula are slightig eiccurate than the one using exponentials.

2 This number of discretization points is naturally arbirafhe fact that, with this value dfl, the extrapolation method (4.2)
diverges, as expected — see below —, while it converges fatlanvalues ofN, indicates that the valud = 100 is enough for our
purposes.
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10 éerror “Triple Jump” | 107 éerror “Quadruple Jump”
109F 10°5f
1075 108F
10710 ; 10710 ;
1072 Ef 10712 2 N
f Ffunction evals AN e
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Fig. 4.1 Plot: Linear potentiaV/ (x) = 24 sin(27x). Error (L? norm at timeT) of composition methods versus number of evaluations

of the basic metho@,. Left picture: “triple jump” composition methodsh(p), p=2,4,6,8. Right picture: “quadruple jump” compo-

sition methods#,(P, p = 2,4,6,8. For all these pictures, solid lines: basic method is tharBtsplitting with exponential maps (2.3)
—dashed lines: basic method is Peaceman-Rachford foridip. (

4.2 The nonlinear case

At leastformally, all above results immediately extend to the nonlineaasibm, provided all exponentials
e'A etc. are replaced by the appropriate nonlinear flows (seeduttion).

In that perspective, we consider the one-dimensional lime@r heat equation on the Torligidentified
with [0, 1])

au(t,x) = Au(t,x) + F(u(t,x)), u(0,x) = up(x),

whereF (u) is a non-linear reaction term and, for the purpose of testimgmethods, we have retained
Fisher’s potential

F(u)=u(1l-u).

The differential equation

Jdu
d_z:u(l_ ), u(0) = uo
can be solved analytically as
_ _ (-1
u(z) = up + Up(1 — up) TTwE—1)’

which is well defined for small complex time We discretize the equation in space as in the linear case.
The original nonlinear heat equation becomes

U= Au+F(u), 4.1)

where the vectou(t) is as in the linear case, the Laplaciaris approximated by the abo¥ex N matrix A,
and the vectoF (u) stands for

F(uy= (u'(1—ub),...,uN@2-uV)).

The experimental conditions are the ones we used to illigstine linear case. In Figure 4.2, we compare
the accuracy of the composition methods introduced in ttisla (“triple” (2.10) and “quadruple” (2.13)
jump compositions). We plot for many stepsizes the solugioor at timeT as a function of the number
of evaluations of the basic method. As a basic method, weidengn solid lines) alternatively the Strang
splitting @, involving exact flows (where the terne8®/2 are replaced by half a time step of the exact flow
of the nonlinear differential equatign= F(y)), and (in dashed lines) the Peaceman-Rachford formﬁla
(where the implicit Euler and explicit Euler operators agplaced by the appropriate nonlinear operators
obtained by applying the explicit and/or implicit Euler atghm to the nonlinear equatign= F (y)).
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10-4 ierror “Triple Jump” 1074 iefror “Quadruple Jump”
109 105f
10f 109

1010 2 10-10 2

10712 ? 1012 ?

é 11| ‘ é e ‘

103 10°

Fig. 4.2 Plot: Nonlinear case — Errot{ norm at timeT) of composition methods versus number of evaluations obttsic method

&y Left picture: “triple jump” composition methocfsvhm), p=2,4,6,8. Right picture: “quadruple jump” composition methdqfsn),

p=2,4,6,8. For all these pictures, solid lines: basic method is thartsplitting with exponential maps (2.3) — dashed linesid
method is the Peaceman-Rachford formula (2.4).

In Figure 4.3, we compare the “quadruple jump” compositiathnd of order 4 with two extrapolation
methods. We also give the results for the Strang splittingraer 2. We use the same initial data and
parameters as before. The first extrapolation formula wsidenis

1

4
§(Dh/20 ®h/2_§¢h (42)

where for the basic methody,, we take alternatively the Strang splittiry, with the exact flows, see

left picture in Figure 4.3, or the —conveniently adapteé, aeove— Peaceman-Rachford formula, see right
picture. However, as pointed outin [19, Sect. 6] this schismet stable and does not convergein the second
case (see dashed-dotted line in right picture). Anotheaprtation method (dashed lines) is considered in

[19] and taken from [8],

45 1 13

@‘Dh/so @30 B3+ é‘bh/zo P2 — a‘ph- (4.3)
Although the formal order of this method is 4, it is said in [18at the true order of convergence of this
method is not clearly understood, and in the numerical éwymts for linear problems in [8], “the formal
order in not reached ; the experimental precision is sméiber the theoretical precision, and the difference
is smaller that 1”.

Finally, and for a fair comparison in Figure 4.3, it shouldbentioned that computations using complex

numbers are actually about four times more expensive tharpatations with reals numbers (because of

the cost of a multiplication).

% error exponential mapsg % error / Peaceman-Rachford
104 3 104 = /
%\\}\Q ;*\ //
E ~ E /
1076 1070 < /
108F 108F
10710 f . 10710 f "
é function evals ~ é function evals
10—127 Lol Lol 10—127 Lol N
102 108 102 108

Fig. 4.3 Plot: Nonlinear case — Errok{ norm at timeT ) versus number of evaluations of the basic metitgdStrang splitting (dotted
lines), “quadruple jump” composition meth@{f“ (solid line), extrapolation method (4.2) (dashed-dotted)| extrapolation method
(4.3) (dashed lines). Left picture: Basic method is thertrsplitting with exponential maps (2.3). Right pictureaPeman-Rachford
formula (2.4).
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5 Conclusion

We have constructed new high-order compositions methodssplitting methods using complex coeffi-
cients for parabolic linear and non-linear parabolic paudifferential equations. Based on the results of
Hansen & Osterman [14], a convergence analysis is provit#uki linear case. The methods we have de-
rived are all based on a composition procedure with comjiex steps; they actually allow to build up high
order methods which are based on the composition of posditasp low order algorithms.
Going a bit further, we may stress here that it is also possdtonstruct high-ordeplitting methods

for which only one operator carries complex time steps. Soethods are howeveotbased on the com-
position technique we have presently developed. For instahe following splitting method is symmetric

and of order 4,
eb]_ hv ea]_ hAeb2 hv ea2 hAeb3 hv eazhAebz hv eal hAebth (5 . 1)

whereb; =1/10—i/30, by =4/15+2i/15,b3 =4/15—i/5are complex, andy =ax =ag=ay = 1/4 are

all reals. Such a decomposition is interesting when theutiosl alongA carries the most computational cost
and the evolution witlv is cheap to compute(g.when V is a diagonal matrix): in that case the extra cost
due to the complex numbers is marginal. This type of spijttimethod is also of great interest in the case
where one operator has its eigenvalues close to the imaganés, likee.g.the Ginzburg-Landau equation.
Note however that in this very case, and because this dhgoiig not based on a composition procedure,
the true exponentials cannot by replaced, in general, byloler approximations: the exponential needs to
be approximated to within the appropriate order in any cirstance here.

Independently, note that a systematic studgputimalcomposition methods (i.e. methods with optimal
error constants) is out of the scope of this paper and wilhbestibject of a future article by the same authors.
It requires the resolution i€ of the polynomial systems of order conditions for compositnethods and
splitting methods. Also, a theoretical analysis in the adsenon-linear source is in preparation.
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