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Abstract Using composition procedures, we build up high order splitting methods to solve evolution equa-
tions posed in finite or infinite dimensional spaces. Since high-order splitting methods with real time are
known to involve large and/or negative time steps, which destabilizes the overall procedure, the key point
of our analysis is, we develop splitting methods that usecomplextime steps havingpositive real part: going
to the complex plane allows to considerably increase the accuracy, while keeping small time steps; on the
other hand, restricting our attention to time steps with positive real part makes our methods more stable, and
in particular well adapted in the case when the considered evolution equation involves unbounded operators
in infinite dimensional spaces, like parabolic (diffusion)equations.

We provide a thorough analysis in the case of linear equations posed in general Banach spaces. We also
numerically investigate the nonlinear situation. We illustrate our results in the case of (linear and nonlinear)
parabolic equations.
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Note: Similar results are derived independently by E. Hansen & A. Ostermann in [15].

1 Introduction

The goal of the present text is to derivehigh-ordersplitting methods, obtained by usingcomplextime steps.
These methods are obtained through composition procedures. For stability purposes, the retained methods
only involve time steps that have positive real part: our motivation is to recover methods which can be used
in the case when unbounded operators are involved, associated with propagators that areC0 semi-groups
only (instead ofC0 groups). Our paradigm is the case of diffusion equations.
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Let us make our statement precise.
Consider a linear evolution equation of the form

d
dt

u(t) = Au(t)+Bu(t), (1.1)

where the right-hand-side involves the sum of two well identified operatorsA andB. Here, the unknown
u(t) is assumed to belong to some finite or infinite dimensional Banach spaceX, while A andB are linear,
possibly unbounded, operators. In the case whenA and B are unbounded, we assumeA, B, andA+ B
generateC0 semi-groups of propagators overX, denoted byetA, etB andet(A+B), respectively, whenever
t ≥ 0. The prototype we have in mind is the linear heat equation with potential

∂tu(t,x) = ∆u(t,x)+V(x)u(t,x),

wheret ≥ 0 is time andx ∈ Rd (or x ∈ Td) is the space variable,∆ denotes the standard Laplacian inx,
while the potentialV(x) is assumed bounded. In that case one may chooseX = L2(Rd) and define the
unbounded operator(Au)(x) = ∆u(x) with domainD(A) = H2(Rd), together with the bounded operator
(Bu)(x) = V(x)u(x) (other choices are obviously possible for the Banach spaceX at this level, depending
on the assumed smoothness of the potential:X may as well measure Sobolev regularity, or Hölder regularity
of the solutionu).

It is well-known that a possible approach to numerically solve (1.1) is to use a splitting method,i.e.
to approximate the propagator of the full operatoru 7→ Au+ Bu by using an appropriate combination of
the propagatorsu 7→ Au andu 7→ Bu, both assumed to be numerically cheaper to evaluate. In the finite
dimensional setting, splitting methods basically rely on the identity

eh(A+B) = ehAehB+O
(
h2) ,

whereh is some small time-step. Higher order approximations may beobtained by writing

eh(A+B) = eb1hAea1hBeb2hAea2hB. . .ebshAeashB+O
(
hr+1) ,

wherea1, . . ., as andb1, . . ., bs are (to be chosen) real or complex numbers, ands is usually referred to as
the number of steps of the method. The exponentr depends on the chosen values of theai ’s andbi ’s.

The above procedure immediately extends to the case when theoperatorsA andB become nonlinear.
In this case indeed, the above formulae remain unchanged, provided the factorseh(A+B), eaihA, andebihB are
replaced by the true flowsΦA+B(h), ΦA(aih), andΦB(bih) respectively, or by appropriate approximations
of them. Here we have defined, for anyy0, the flowΦA(t)(y0) as the solution to the differential equation

d
dt

(ΦA(t)(y0)) = A(ΦA(t)(y0)) ,

supplemented with the initial conditionΦA(0)(y0) = y0 (and the similar definition is used to prescribe the
flows ΦA+B(t) andΦB(t)). In this context however, it needs to be assumed that the vector fieldsA andB
possess enough smoothness to have well-defined flowsΦA+B(h), ΦA(h), andΦB(h) for small values ofh.
Note also that ifai is complex, the definition ofΦA(aih) requires, say, that for anyy0 the differential equation
d
dt

(ΦA(t)(y0)) = A(ΦA(t)(y0)) be solvable along the complex linet = ait ′ (t ′ ∈ R) whenever 0≤ t ′ ≤ h

andh is small enough (and similarly forB).
The formal extension of all above formulae in the infinite dimensional setting is easy as well, keeping

in mind that the existence and well definiteness of all involved propagators over the retained Banach space
X should then be carefully checked. In the paradigmatic case when A = ∆ , for instance, we recall that
the propagatorez∆ (z∈ C) is well-defined, in any reasonable distribution sense, if and only if Re(z) ≥ 0.
Naturally, another key difficulty in the infinite dimensional situation is to check that the remainder terms
indeed have sizeO(h2) resp.O(hr+1) in the correct norm.

Now, the derivation ofhigh-ordersplitting methods is not straightforward in general, even in the finite
dimensional case. The simplest, high-order splitting methods involve large negative time steps alternating
with large positive time steps (i.e. large positive values of theai ’s or bi ’s alternating with large negative
values of the same coefficients), which eventually leads to poor accuracy in practice. Even more, a disap-
pointing result shows that all splitting methods (or composition methods – see below for the definition)
with real coefficients must have some negative coefficientsai andbi in order to achieve order 3 or more.
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The existence of at least one negative coefficient was shown in [20,21], and the existence of a negative
coefficient for both operators was proved in [12]. An elegantgeometric proof can also be found in [2]. As
a consequence, such high-order splitting methodscannotbe used in general when one operatorA or B has
large negative spectrum, or when it only generates aC0 semi-groupof propagators – and not a group (like
the Laplacian).

In order to circumvent this order-barrier, there are two possibilities. One can use a linear, convex com-
bination (see [10,11,1] for methods of orders 3 and 4) or non-convex combination (see [19,6] where an
extrapolation procedure is exploited), of elementary, loworder splitting methods (some of the above men-
tioned works use elementary methods which involve one or twocomplex time steps). Another possibility
is to systematically consider splitting methods withcomplexcoefficientsai andbi , having yetpositive real
parts(see [3] in celestial mechanics). In 1962/1963, Rosenbrock[18] considered complex coefficients in a
similar context. We may also quote the text [24] – see also [1]–, where some low order methods with com-
plex coefficients are derived (one can find here an alternative proof of the existence of negative coefficients
when only real time steps are allowed).

This is the route we chose here.

In this article, we consider splitting methods of the form

eh(A+B) =
s

∏
i=1

ebihAeaihB+O
(
hr+1) ,

and we derive new high-order splitting methods (up to order fourteen), which involve complex time steps
having positive real part. We state and prove error estimates that are valid both in the finite and in the infinite
dimensional setting. We last investigatenumericallythe behaviour of the retained methods both in the case
of the linear heat equation with bounded potential (the setting is one-dimensional with periodic boundary
conditions), and in the case of nonlinear versions of the heat equation (in the similar setting).

Our derivation uses composition techniques that were originally developed for the geometric numerical
integration of ordinary differential equations [13].

The main advantages of our approach are the following:

– the splitting method inherits the stability property of exponential operators;
– in the retained methods, we can always replace the costly exponentials of the operatorsehA etc. by cheap

low order approximations of the latter, without altering the overall order of accuracy;
– using complex coefficients allows to reduce the number of compositions needed to achieve any given

order;

This paper is organized as follows. In Sect. 2, we derive new high-order splitting methods. In Sect. 3 we
give a rigorous order estimate in the linear case, obtained as a direct consequence of the recent results by
Hansen & Ostermann [14]. Sect. 4 presents several numericalsimulations, confirming the formally expected
order of accuracy in the non-linear case.

2 Deriving high order splitting/composition methods

2.1 Composition methods in the finite dimensional case

Composition methods were mainly developed in the 90’s in thepapers of Suzuki [22], Yoshida [23] and
McLachlan [16] in the context of ordinary differential equations. They rely on the following observation.

Consider a (linear or nonlinear) ordinary differential equation of the form

d
dt

u(t) = f (u(t))

whereu(t) ∈ Rd belongs to some finite dimensional space. Denote byφ(t) the flow of the above equation,
namelyφ(t) : Rd → Rd satisfies

u(t) = φ(t)(u(0)) .
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On the other hand take a time steph > 0, and consider any approximationφh of φ(h) at orderp, for some
value ofp∈ N. In other words,φh : Rd → Rd is assumed to satisfy

φh = φ(h)+O(hp+1).

The above identity is assumed to hold between mappings onRd. It means that wheneverK ⊂ Rd is a
compact set, there is a constantC > 0 and a smallh0 > 0, such that for anyu∈ K, and any 0< h < h0, we
have‖φh(u)−φ(h)(u)‖ ≤Chp+1,

Lastly, take an integersand choose (real or complex) coefficientsγ1, . . . ,γs (in the classical theory, only
real coefficients were considered).

Under these circumstances, a composition method is defined as the operator

ψh = φγsh◦ . . .◦φγ1h, (2.1)

i.e.as the composition of the methodφh, successively used with time stepsγ1h,γ2h, . . .γsh. Naturally, if the
γi ’s are complex, we implicitly assume here that the operatorsφγi h are well-defined for small values ofh> 0,
in the following sense: for any compact setK ⊂ Rd, there is anh0 > 0 such that the operatorφγi h is well-
defined overK whenever 0< h < h0. Similarly, we also assume that the operatorsφ(γih) are well-defined
for small values ofh > 0, and that the estimatesφγi h = φ(γih)+O(hp+1) hold for smallh > 0 as well (in
the above sense).

The following classical result in numerical integration illustrates that the composition procedure allows
to transform a methodφh of orderp, into a higher-order methodψh of orderp+1.

Theorem 2.1 (see [13, Theorem II.4.1]) With the above notation and assumptions, letφh be an approxi-
mation ofφ(h) of order p, namely

φh = φ(h)+O(hp+1).

If the γi ’s satisfy
γ1 + . . .+ γs = 1 and γ p+1

1 + . . .+ γ p+1
s = 0, (2.2)

then the composition methodψh = φγsh◦ . . .◦φγ1h approximatesφ(h) at order p+1, i.e.

ψh = φ(h)+O(hp+2).

Remark 2.1Wheneverp is even and the composition is symmetric (i.e. γs−i+1 = γi for any i), thenψh is of
orderp+2.

Proof.
The idea of proof is to show that if the basic method has orderp, i.e.

φh(y) = φ(h)(y)+C(y)hp+1+O(hp+2),

whereφ(h) denotes the exact flow, then, using the fact that the sum of theγi ’s is one, we have

φγsh ◦ . . .◦φγ1h(y) = φ(h)(y)+C(y)(γ p+1
1 + . . .+ γ p+1

s )hp+1 +O(hp+2).

Here, the constantC(y) denotes a quantity that remains bounded whenevery belongs to a given compact
set. The result follows. ⊓⊔

Given the above theorem, a classical idea is the following. Starting from a low order methodφh, we may
increase the order by one, by appropriately choosing theγi ’s ; iterating the process, and choosing therefore
possibly differentγi ’s at each stage of the whole procedure, we may eventually come up with a high-order
method.

This is the program we intend to follow, in the very case of splitting methods. The point is, such a
program fails past order 2 when theγi ’s are restricted to only take real values: past order 2 indeed, negative
γi ’s, as well as largeγi ’s come up in the analysis, which makes the so-obtained methods have poor accuracy
in practice.

We therefore rely on the use of complexγi ’s. In that perspective, our main constraint is to obtain high-
order method for which theγi ’s all have positive real part: our goal is to eventually apply the methods in
the case of diffusion equations. Secondarily, we try to keepthe number of stages (the integers in formula
(2.1)) reasonably small (to reduce the computational cost), and the moduli|γi | as small as possible as well
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(to reduce the size of the time steps). Lastly, we also try to keep the quantities|arg(γi)| as small as possible.
In the context of splitting methods, all these constraints are fairly natural, since the reader should keep in
mind that one step of the full evolution equation ˙y = A(y)+B(y), along a time steph, is here approximated
by s steps of either ˙y = A(y) or ẏ = B(y), along the successive time stepsγ1h, . . ., γsh (seee.g.figure 2.1
below).

A last, important remark is in order. Throughout this text, we will restrict our attention to the case of
symmetricmethods. The reason for this choice is, as stated in Remark 2.1, that symmetric composition
methods applied to symmetric procedures allow to gain two orders of accuracy each time one applies The-
orem 2.1. We nevertheless stress that this choice is arbitrary, and considering non-symmetric methods is
relevant as well. For instance, we may quote the work of Hansen and Ostermann [15] where non-symmetric
methods are considered.

2.2 Buliding up high-order splitting/composition methodswith complex coefficients - the linear,
finite-dimensional case

Throughout this paragraph, we take fixed matricesA andB acting onRd, and introduce new splitting/com-
position methods to solve the linear ODE

ẏ = Ay+By.

ThoughA andB are finite dimensional matrices here, the reader may keep in mind that we will eventually
consider the infinite dimensional situation whereA is the Laplace operator, whileB denotes the multipli-
cation by a bounded potentialV (see introduction). HenceA may be typically thought of as a matrix with
’large’ negative eigenvalues.

Following the general methodology described in the previous paragraph, we first need to choose some
low-order approximation of the true propagator exp(h(A+B)). We retain the simplest symmetric splitting
algorithm, namely the Strang splitting operator, and we set

Φh = exp

(
hB
2

)
exp(hA) exp

(
hB
2

)
, (2.3)

a symmetric second order approximation of exp(h(A+B)). While the methods we propose below are all
based on this particular choice of a basic low order method, we readily mention that the analysis we pro-
vide remains unchanged when starting fromanyother symmetric second order method. For instance, the
following

ΦP
h =

(
Id−

h
2

B

)−1

︸ ︷︷ ︸
implicit Euler

[(
Id−

h
2

A

)−1 (
Id+

h
2

A

)]

︸ ︷︷ ︸
implicit midpoint

(
Id+

h
2

B

)
.

︸ ︷︷ ︸
explicit Euler

(2.4)

would provide such a basic choice. In the infinite dimensional setting and when formally choosingA as the
Laplace operator whileB is the multiplication by the bounded potentialV, the methodΦP

h coincides with
the Peaceman-Rachford formula [17] originally developed for the heat equation, and extended to reaction-
diffusion problems in [7]. Note that the use of an implicit midpoint approximation for the operatorA corre-
sponds to a standard Crank-Nicolson scheme whenA is the Laplace operator, a standard choice.

2.2.1 Triple Jump procedures

Starting from the basic, second order, Strang splitting algorithmΦh, we wish to derive various higher order
symmetricmethods by applying Theorem 2.1. Since the symmetry requirement anyhow prevents the choice
s= 2 in Theorem 2.1 (system (2.2) fors= 2 and symmetricγi ’s imposesγ1 = γ2 = 0), the simplest choice
is to sets = 3 in Theorem 2.1 and to look for a three steps, symmetric composition procedure. Such a
method is usually called ’Triple jump composition procedure’. Note in passing that double jump compo-
sition procedures (with complex time steps) have been considered in [14], where methods of order 6 are
derived.
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In the case whens= 3, and starting from an arbitrary, symmetric methodφh of orderp (p is an arbitrary
even integer here), a triple jump composition procedure is provided by a triple(γ1,p,γ2,p,γ3,p) ∈ C3 such
that

γ1,p = γ3,p (symmetry),

γ1,p + γ2,p+ γ3,p = 1, γ p+1
1,p + γ p+1

2,p + γ p+1
3,p = 0 (Theorem 2.1), (2.5)

and the associated improved method isψh = φγ3,ph ◦φγ2,ph ◦φγ1,ph. The set of all complex solutions to (2.5)
is given by thep+1 values

γ(k)
1,p = γ(k)

3,p =
1

2−21/(p+1)e2ikπ/(p+1)
,

γ(k)
2,p = −

21/(p+1)e2ikπ/(p+1)

2−21/(p+1)e2ikπ/(p+1)
(k = 0, . . . , p) . (2.6)

Settingk = 0 above provides the uniquereal solution to (2.5), namely

γ(0)
1,p = γ(0)

3,p =
1

2−21/(p+1)
, γ(0)

2,p = −
21/(p+1)

2−21/(p+1)
. (2.7)

Unsurprisingly, the coefficientγ(0)
2,p is negative. In any circumstance, ifφh has order 2, then the method

ψ(4)
h := φ

γ(0)
3,2 h

◦ φ
γ(0)
2,2 h

◦ φ
γ(0)
1,2 h

reaches order 4 using three steps ofφh, while, repeating the method at any

order, the methodψ(6)
h := ψ(4)

γ(0)
3,4 h

◦ψ(4)

γ(0)
2,4 h

◦ψ(4)

γ(0)
1,4 h

reaches order 6 with 9 steps ofφh, and so on. These methods

are originally due to Creutz & Gocksch [4], Forest [9], Suzuki [22], Yoshida [23], the name ‘Triple Jump

composition methods’ was given in [13, Example II.4.2]. However, sinceγ(0)
2,p < 0, these methods cannot

be extended, in the infinite dimensional situation, to problems whereA only generates aC0 semi-group of
propagators, and where the basic method of choiceφh coincides with the Strang splitting methodΦh, or
with any low order splitting method. On top of that, and even in the finite dimensional setting, the estimate∣∣∣γ(0)

j ,p

∣∣∣ > 1, valid for any j = 1,2,3, implies a terrible zig-zag in the coefficients of the methods. Thus, the

above technique is not even very efficient in the finite dimensional case.

Another choice ofk is therefore in order in (2.6).
Settingk=±p/2 (recall thatp is even), provides the two conjugate solutions of (2.5)which minimize the

quantity
∣∣∣γ(k)

1,p

∣∣∣+
∣∣∣γ(k)

2,p

∣∣∣+
∣∣∣γ(k)

3,p

∣∣∣ . These two conjugate solutions also minimize the quantity maxi=1,2,3

∣∣∣arg(γ(k)
i,p )
∣∣∣.

In order to keep notation simple, we drop the upper index ”±p/2” for the associated coefficients, and simply
define(γ1,p,γ2,p,γ3,p) as

γ1,p = γ3,p =
eiπ/(p+1)

2eiπ/(p+1) +21/(p+1)
, γ2,p =

21/(p+1)

2eiπ/(p+1) +21/(p+1)
. (2.8)

Needless to say, theseγi ’s have positive real part.

A triple jump composition strategy: reaching order 8

Symmetric composition methodsΦ(p)
h of orderp (p even) can be constructed by induction, setting

Φ(2)
h = Φh, Φ(p+2)

h = Φ(p)
γ3,ph◦Φ(p)

γ2,ph ◦Φ(p)
γ1,ph for p≥ 2, (2.9)

whereγ1,p,γ2,p,γ3,p are given in (2.8). The methodΦ(p)
h requiress = 3p/2−1 compositions of the basic

methodΦh. Taking care of the non-commuting products (product signs should be read from the right to the
left), we may write

Φ(2)
h = Φh = exp

(
hB
2

)
exp(hA) exp

(
hB
2

)
,
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together with

Φ(4)
h =

3

∏
j=1

Φγ j,2h,
(
= Φγ3,2h◦Φγ2,2h◦Φγ1,2h

)
,

Φ(6)
h =

3

∏
k=1

(
3

∏
j=1

Φγk,4γ j,2h

)
,

Φ(8)
h =

3

∏
ℓ=1

(
3

∏
k=1

(
3

∏
j=1

Φγℓ,6γk,4γ j,2h

))
,

and so on. In summary, each methodΦ(p)
h reads

Φ(p)
h =

3(p/2)−1

∏
j=1

Φα j,ph,

for somecoefficientsα j ,p that are obtained as products of theγk,p−2’s, γk,p−4’s, ..., γk,2’s. This defines the
coefficientsα j ,p.

Remark 2.2Coming back to the value ofΦh in turn allows to write

Φ(p)
h =

3(p/2)−1

∏
j=1

exp(b j ,phA) exp(a j ,phB) ,

wherea1,p = α1,p/2,b1,p = α1,p, whilea j ,p = (α j ,p+α j−1,p)/2,b j ,p = α j ,p whenever 2≤ j ≤ 3(p/2)−1−1,
and lastlya j ,p = α j ,p/2, b j ,p = 0 in the particular case whenj = 3(p/2)−1.

Now, the important point is

Proposition 2.1 The above defined methodΦ(p)
h has order p.

Besides, for p= 2,4,6,8, the coefficientsα j ,p ( j = 1, . . . ,3(p/2)−1) satisfy

Re(α j ,p) > 0.

This property ceases to hold whenever p≥ 10.

Remark 2.3The fact that the methodΦ(p)
h reaches orderp is here presented in the case of a linear equation

ẏ= Ay+By, and when the basic methodΦh is the Strang splitting algorithm. Naturally the same result holds
when the chosen basic method is any symmetric method of order2. Mutatis mutandis(see introduction),
and provided the appropriate assumptions described in the introduction are met, the same result holds in the
nonlinear setting as well, wherey 7→ A(y) andy 7→ B(y) become nonlinear operators.

As a consequence, starting from a second order symmetric methodφh (be it the Strang splitting algorithm
Φh as above, or any symmetric second order algorithm), the present composition technique can only improve
numerical accuracy up to order 8, while preserving the use oftime stepsα j ,ph that all have non-negative real
part. This property may be somewhat precised. We observe in Figure 2.2 that the quantity maxj

∣∣arg(α j ,p)
∣∣

increases with the orderp of the composition methods in (2.9). For the method (2.9) of order p = 10 this
quantity is greater thanπ/2: it involves 81 factorsΦα j,10 and the middle coefficientα41,10 has a negative real

part, namely Re(α41,10) ≈ −5 ·10−5 < 0. Thus, this method cannot be used, in general, when the operator
A or B has large negative eigenvalues, nor can it be extended, in the infinite dimensional case, when the
operatorA coincides with the Laplacian.

Another triple jump composition strategy: reaching order 14
Before concluding this paragraph about triple jump procedures, we mention an improvement of the

above method.
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methodΨ (4)
h

order 4order 4

methodΨ (6)
h

order 6order 6

methodΨ (8)
h

order 8order 8

methodΦ̃h
(4)

γ1 γ2 γ1

order 4

methodΦ̃h
(6)

order 6

methodΦ̃h
(8)

order 8

Fig. 2.1 Diagrams of coefficients for compositions methods (2.10) and (2.13)

To reduce the quantity maxi=1...s
∣∣arg(αi,p)

∣∣, an idea is to alternate the coefficients(γ1,p,γ2,p,γ3,p) by
(γ1,p,γ2,p,γ3,p) in (2.9). In other words, we propose here to set

Φ̃h
(2)

= Φh,

Φ̃h
(p+2)

= Φ̃γ3,ph
(p)

◦ Φ̃γ2,ph
(p)

◦ Φ̃γ1,ph
(p)

if p/2 odd, (2.10)

Φ̃h
(p+2)

= Φ̃γ3,ph
(p)

◦ Φ̃γ2,ph
(p)

◦ Φ̃γ1,ph
(p)

else.

This yields a family of composition methods which again reads

Φ̃h
(p)

=
3(p/2)−1

∏
j=1

Φα̃ j,ph,

for some coefficients̃α j ,p that can be explicitely computed. In that situation we have

Proposition 2.2 The above defined method̃Φh
(p)

has order p.
Besides, for p= 2,4,6,8,10,12,14, the coefficients̃α j ,p ( j = 1, . . . ,3(p/2)−1) satisfy

Re
(
α̃ j ,p

)
> 0.

This property ceases to hold whenever p≥ 16.

Remark 2.4Surprisingly, the sum of the moduli of coefficients
3(p/2)−1

∑
j=1

∣∣α j ,p
∣∣ and

3(p/2)−1

∑
j=1

∣∣α̃ j ,p
∣∣ in the con-

sidered composition methodsΦ(p)
h or Φ̃h

(p)
is bounded as the orderp goes to infinity. It is estimated by

∞

∏
k=1

(∣∣γ1,2k

∣∣+
∣∣γ2,2k

∣∣+
∣∣γ3,2k

∣∣)≤
∞

∏
k=1

2+21/(2k+1)

|2eiπ/(2k+1) +21/(2k+1)|

=
∞

∏
k=1

(
1+

π2

36k2 +O

( 1
k3

))
< +∞

This means that the length of the family of polygons in figure 2.1 is bounded (this limit is≈ 1.315).
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2 4 6 8 10 12 14 16

triple jumpΦ (p)
h (2.9)

triple jumpΦ̃h
(p)

(2.10)

quadruple jumpΨ (p)
h (2.13)

π/2

π/4

0

orderp

max
i=1...s

|arg(γi)|

Fig. 2.2 Values of maxi=1...s |argγi | for various composition methods.

2.2.2 Quadruple Jump composition methods

In the similar way we have derived symmetric, triple jump composition methods, we investigate here the
symmetric quadruple jump case. To do so, for any even integerp, we need to find complex quadruples
(γ1,p,γ2,p,γ3,p,γ4,p), still denoted by the lettersγ j ,p not to overweight notation, such that

γ1,p = γ4,p, γ2,p = γ3,p (symmetry),

γ1,p+ γ2,p+ γ3,p+ γ4,p = 1, γ p+1
1,p + γ p+1

2,p + γ p+1
3,p + γ p+1

4,p = 0 (Theorem 2.1). (2.11)

Starting from any basic symmetric methodφh of orderp, the symmetric methodφγ4,ph◦φγ3,ph◦φγ2,ph◦φγ1,ph

automatically has orderp+2. Now, the set of all complex solutions to (2.11) is given by the p values

γ(k)
1,p = γ(k)

2,p = γ(k)
3,p = γ(k)

4,p =
1

2−2e2kiπ/(p+1)
(k = 1, . . . , p). (2.12)

The two complex conjugate solutions with minimal sum of moduli are obtained withk = ±p/2. These

solutions also have minimal value of maxi=1,...,4

∣∣∣arg
(

γ(k)
i,p

)∣∣∣. Therefore, we set

γ1,p = γ2,p = γ3,p = γ4,p =
1
4

+ i
sin(π/(p+1))

4+4cos(π/(p+1))
.

With this notation we define the quadruple jump procedure

Ψ (2)
h = Φh,

Ψ (p+2)
h = Φ̃γ4,ph

(p)
◦ Φ̃γ3,ph

(p)
◦ Φ̃γ2,ph

(p)
◦ Φ̃γ1,ph

(p)
, (2.13)

where the method̃Φ(p)
h has been defined before in (2.10). Naturally, each methodΨ (p)

h reads

Ψ (p)
h =

4×3(p/2)−2

∏
j=1

Φβ j,ph,

for some coefficientsβ j ,p that can be explicitly computed. We draw the reader’s attention to the fact that

Ψ (p+2)
h is here defined recursively using̃Φh

(p)
as a building block (instead ofΨ (p)

h – in other words, we

do notdefineΨ (p+2)
h as the compositionΨ (p)

γ4,ph ◦Ψ (p)
γ3,ph ◦Ψ (p)

γ2,ph ◦Ψ (p)
γ1,ph). This choice is made to reduce the

total number of compositions of the basic methodΦh needed to build up the methodΨ (p)
h : in our case,Ψ (p)

h

requires 4×3(p/2)−2 compositions ofΦh (instead of 4(p/2)−1).

We have the

Proposition 2.3 The above defined methodΨ (p)
h has order p.

Besides, for p= 2,4,6,8,10,12, the coefficientsβ j ,p ( j = 1, . . . ,4×3(p/2)−2) satisfy

Re(β j ,p) > 0.

This property ceases to hold whenever p≥ 14.
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Another advantage of this composition procedure is that we obtain an accurate approximation of the
solution at intermediate time steps as well. More precisely, we have the

Proposition 2.4 Take an initial condition y0 and an even integer p. Define for any integer n the sequence

of vectors yn (n ≥ 0) by the recursion yn+1 = Ψ (p)
h (yn). Lastly, define y(t) as the solution to the ODE

ẏ(t) = Ay(t)+By(t) with initial condition y(0) = y0.
Then, yn approximates y(nh) to withinO(hp). Moreover, writing

Ψ (p)
h = Φ̃γ4,p−2h

(p−2)
◦ Φ̃γ3,p−2h

(p−2)
◦ Φ̃γ2,p−2h

(p−2)
◦ Φ̃γ1,p−2h

(p−2)
,

and setting

yn+1/2 = Φ̃γ2,p−2h
(p−2)

◦ Φ̃γ1,p−2h
(p−2)

(yn),

we also have that
yn+1/2 approximates y((n+1/2)h) to within O(hp).

More generally, the same result holds, with the obvious change of notation, takinganysymmetric method

φ (p−2)
h of order p−2 and defining the improved symmetric method of order p asψ(p)

h = φ (p−2)
γ4,p−2h ◦φ (p−2)

γ3,p−2h ◦

φ (p−2)
γ2,p−2h ◦φ (p−2)

γ1,p−2h.

The proof of this fact simply comes from observing thatγ1,p+ γ2,p = 1/2 for anyp, so that the two couples
(2γ1,p,2γ2,p) and(2γ2,p,2γ1,p) satisfy the order equations (2.2) withs= 2. Hence the recursionyn+1/2 =

Φ̃γ2,p−2h
(p−2)

◦ Φ̃γ1,p−2h
(p−2)

(yn) yields an approximation of the true solution at timet = nh+h/2 with local
errorO(hp). Since this error is not propagated (it is only an inner stage), we obtain an approximation of
orderp both foryn+1 at time(n+1)h and foryn+1/2 at time(n+1/2)h.

3 Convergence analysis for unbounded operators

In this section, we extend the analysis of the previous paragraph, valid in the finite dimensional case, to the
infinite dimensional situation. We first give a general statement, next specify the assertions in the case of
splitting algorithms applied to linear diffusion equations.

3.1 A general statement

Hansen and Ostermann in [14] have provided an elegant and general framework, valid for linear equations,
and which allows to assert thatif a splitting method isp-th order accurate in the finite dimensional case,
thenthe same method isp-th order accurate in the infinite dimensional case as well, provided some natural
functional analytic assumptions are met.

The Hansen and Ostermann result states the following.

Theorem 3.1 (see Hansen and Ostermann [14])Let X be an arbitrary complex Banach space with norm
‖ ·‖. Denote by the same symbol‖.‖ the norm on the space of bounded linear operators over X. Consider s
linear unbounded operators Aj ( j = 1, . . . ,s). Lastly, take a time T≥ 0, an integer p, and an initial datum
u0 ∈ X. Assume that the following assumptions are met:

(i) (semi-group property).
The linear operators Aj ( j = 1, . . . ,s) and A1 + · · ·+ As generate C0 semigroups on X. Moreover there
exist a realω and s real numbersω j ( j = 1, . . . ,s) such that

∀t ≥ 0,
∥∥∥et(A1+···+As)

∥∥∥≤ eωt and
∥∥etA j

∥∥≤ eω j t . (3.1)

(ii) (smoothness assumption).
For any operator Ep+1 that is obtained as the product of exactly p+1 factors chosen amongst the Aj ’s,
there is a constant C> 0 such that

∀0≤ t ≤ T,
∥∥∥Ep+1et(A1+···+As) u0

∥∥∥≤C. (3.2)
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(iii) (splitting method).
Take a splitting method S of the form

S=
m

∏
j=1

(
eγ j,1hA1 eγ j,2hA2 . . . eγ j,shAs

)
,

whereγ j , 1 ≤ j ≤ m, are nonnegative reals, while m is an integer. Assume this splitting method is
a p-th order approximation of eh(A1+···+As). This means that whenever the Aj ’s are replaced by finite
dimensional matrices Mj , say, we have∏s

j=1

(
eγ j,1hM1 . . .eγ j,sMs

)
= eh(M1+···+Ms) +O(hp+1), in the sense

of matrix norms.

Under all these assumptions, the following holds. There exists a constant C> 0 such that for any integer
n≥ 0 and any time step h> 0 satisfying nh≤ T, we have,

∥∥∥
(

Sn−enh(A1+···+As)
)

u0

∥∥∥≤Chp.

Using this Theorem, the following is easily deduced

Corollary 3.1 (Banach space formulation)
Let X be an arbitrary complex Banach space with norm‖ · ‖. Denote by the same symbol‖.‖ the norm

on the space of bounded linear operators over X. Take two linear unbounded operators A and B. Lastly,
take a time T≥ 0, an integer p, and an initial datum u0 ∈ X. Assume that the following assumptions are
met:

(i) (semi-group property).
The operator A+ B generates a C0 semigroup on X. Besides, for any z∈ C such thatRe(z) > 0, the
linear operators zA and zB, generate C0 semigroups on X. Lastly, for any given z∈ C with Re(z) > 0,
there exists a real numberω such that

∀t ≥ 0,
∥∥∥et(A+B)

∥∥∥≤ eωt , and
∥∥etzA

∥∥+
∥∥etzB

∥∥≤ eω|z|t . (3.3)

(ii) (smoothness assumption).
For any operator Ep+1 that is obtained as the product of exactly p+1 factors chosen amongst A and B,
there is a constant C> 0 such that

∀0≤ t ≤ T,
∥∥∥Ep+1et(A+B) u0

∥∥∥≤C. (3.4)

(iii) (splitting method).
Next, consider s complex numbers a1, . . . as, b1, . . . , bs, and take a splitting method S of the form

S=
s

∏
j=1

eb j hAea j hB.

Assume this splitting method is a p-th order approximation of eh(A+B), meaning that whenever A and B
are replaced by finite dimensional matrices M and N we have∏s

j=1eb j hM ea j hN = eh(M+N) +O(hp+1),
in the sense of matrix norms.

Under all these assumptions, the following holds. There exists a constant C> 0 such that for any integer
n≥ 0 and any time step h> 0 satisfying nh≤ T, we have,

∥∥∥
(

Sn−enh(A+B)
)

u0

∥∥∥≤Chp. (3.5)

In particular, under the present assumptions on A, B, and u0, the methodsΦ(p)
h , Φ̃h

(p)
, andΨ (p)

h dis-

cussed in the previous paragraphs satisfy estimate (3.5) for 0 ≤ nh≤ T, with S replaced byΦ(p)
h , resp.

Φ̃h
(p)

, resp.Ψ (p)
h , whenever p= 2,4,6,8, resp. p= 2,4,6,8,10,12,14, resp. p= 2,4,6,8,10,12.
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Before ending this paragraph, we propose a slightly different formulation, adopting a Hilbert space
setting: so-called mα-dissipative operators are well-adapted in the present context, where we eventually
wish to derive splitting methods that are adapted to parabolic equations.

Let α belong to[0,π/2] and define the sectorSα in the complex plane by

Sα = {z∈ C,z= 0or|argz| ≤ α}.

0

α

Sα

LetH be a complex Hilbert space with scalar product denoted by(·, ·). Take a linear, unbounded operator
A on H, with domainD(A), a dense subspace ofH. We recall thatA is said mα-dissipative whenever for
all u in D(A), the quantity(−Au,u) belongs toSα , and if for all complexz /∈ Sα , the operatorzId + A is
an isomorphism fromD(A) to H. A nice introduction to mα-accretive operators1 can be found in [5]. It is
known that an mα-dissipative operator generates aC0 semigroup onH, denoted byetA (t ≥ 0), andetA is
a contraction operator fromH to H. Besides, if an operatorA is such that there exists a real numberc for
which A+ cId is mα-dissipative for someα ∈ [0,π/2], thenA generates aC0 semi-group as well, and we
have the estimate

∥∥etA
∥∥≤ e+ct whenevert ≥ 0.

Corollary 3.2 (Hilbert space formulation) Let H be a complex Hilbert space with scalar product(·, ·) and
associated norm‖.‖. Take an initial datum u0 ∈ H, a time T≥ 0, and an integer p. Assume the following:

(i) Let A resp. B be such that there exist two real numbers a andb for which A+ aId resp. B+ bId are
mα-dissipative resp. mβ -dissipative operator for someα ∈ [0,π/2] resp.β ∈ [0,π/2]. Lastly, assume
that there is a real number c for which A+B+cId is mγ-dissipative for someγ ∈ [0,π/2].

(ii) Assume that for any operator Ep+1 that is obtained as the product of exactly p+ 1 factors chosen
amongst A and B, that there is a constant C> 0 such that

∀0≤ t ≤ T,
∥∥∥Ep+1et(A+B) u0

∥∥∥≤C. (3.6)

Then, the methodsΦ(p)
h , Φ̃h

(p)
, andΨ (p)

h discussed in the previous paragraphs satisfy estimate (3.5) for

0≤ nh≤ T, with S replaced byΦ(p)
h , resp.Φ̃h

(p)
, resp.Ψ (p)

h , whenever p= 2,4,6,8, resp. p= 2, 4, 6, 8,
10, 12, 14, resp. p= 2, 4, 6, 8, 10, 12.

3.2 Application to linear diffusion equations

In this parapraph, we apply the above results in the case of the linear heat equation with potential

∂tu(t,x) = ∆u(t,x)+V(x)u(t,x), u(0,x) = u0(x).

To fix ideas, consider the case whenx belongs to the whole spaceRd. There are many settings adapted to
this equation, and one may either seek solutionsu having Hölder smoothness, orLp(Rd) smoothness, or
Sobolev regularity (in turn based either onLp - p 6= 2 - or onL2). In order to keep a simple presentation, we
choose to work in anL2-based Sobolev space setting.

Therefore, we introduce the Hilbert spaceH = L2(Rd), and the two operatorsA : u 7→ ∆u and B :
u 7→Vu. The operatorA with domainD(A) = H2(Rd) is m0-dissipative onH. WheneverV ∈ L∞(Rd), the
operatorB is bounded onH. Lastly, the operatorA+ B is such thatA+ B−‖V‖L∞ Id is m0-dissipative.
Hence assumption (i) in corollary 3.2 is met.

To ensure assumption (ii), namely the smoothness assumption, we take an integerp, and assume that
u0 ∈ H2(p+1)(Rd) andV ∈Wp,∞(Rd). This ensures that assumption (ii) in corollary 3.2 is met.

We are in position to state the

1 An operatorB is said mα-accretive wheneverA = −B is mα-dissipative.
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Theorem 3.2 Under all these assumptions, considering either the methodΦ(p)
h (2≤ p≤ 8) or Φ̃h

(p)
(2≤

p≤ 14) or Ψ (p)
h (2≤ p≤ 12), estimate (3.5) with S replaced by one of the above methods holds true.

Needless to say, the similar result holds when the heat equation is considered on the Torus as well, or
on a bounded domain with appropriate boundary conditions and smooth enough boundary, etc.

4 Numerical results

In this section, we numerically illustrate the above convergence results.

4.1 The linear case

We consider the one-dimensional linear heat equation with potential on the TorusT (identified with[0,1])

∂tu(t,x) = ∆u(t,x)+V(x)u(t,x), u(0,x) = u0(x),

where the potentialV is taken as

V(x) = 2+sin(2πx).

In order to discretize the equation in space, we take a (large) integerN and choose a finite differences
procedure on the regular grid 0,1/N,2/N, . . . ,N/N. The original heat equation then becomes

u̇ = Au+Bu,

where the vectoru(t) belongs toRN, and has the form

u(t) = (u1(t), . . . ,uN(t)),

andu j(t) is an approximation ofu
(

t, j
N

)
, while the Laplacian∆ is approximated by theN×N matrix A

given by

A = (N+1)2




−2 1 1
1 −2 1

1 −2 1
...

...
.. .

1 1 −2




,

and the vectorBustands for

Bu=

(
V

(
1
N

)
u1, . . . ,V

(
j

N

)
u j , . . . ,V

(
N
N

)
uN
)

.

We take theC∞ initial conditionu0(x)= sin(2πx), and consider a spatial discretization withN = 100 points2.
In Figure 4.1, we compare the accuracy of the composition methods introduced in this article (“triple” (2.10)
and “quadruple” (2.13) jump compositions) on the time interval [0,T], whereT = 0.2. We plot for many
stepsizes the solution error at timeT as a function of the number of evaluations of the basic method.
As a basic method, we consider (in solide lines) alternatively the Strang splittingΦh involving exact flows
(where the termsehB/2 are replaced by half a time step of the exact flow of the nonlinear differential equation
ẏ= F(y)), and (in dashed lines) the Peaceman-Rachford methodΦP

h . The ‘exact’ solution is computed with
a very small time step. We observe the expected orders (linesof slopes 2,4,6,8). Surprisingly, composition
methods using the Peaceman-Rachford formula are slightly more accurate than the one using exponentials.

2 This number of discretization points is naturally arbitrary. The fact that, with this value ofN, the extrapolation method (4.2)
diverges, as expected – see below –, while it converges for smaller values ofN, indicates that the valueN = 100 is enough for our
purposes.
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Fig. 4.1 Plot: Linear potentialV(x) = 2+sin(2πx). Error (L2 norm at timeT) of composition methods versus number of evaluations

of the basic methodΦh. Left picture: “triple jump” composition methods̃Φh
(p)

, p= 2,4,6,8. Right picture: “quadruple jump” compo-
sition methodsΨh

(p), p = 2,4,6,8. For all these pictures, solid lines: basic method is the Strang splitting with exponential maps (2.3)
– dashed lines: basic method is Peaceman-Rachford formula (2.4) .

4.2 The nonlinear case

At leastformally, all above results immediately extend to the nonlinear situation, provided all exponentials
ehA etc. are replaced by the appropriate nonlinear flows (see introduction).

In that perspective, we consider the one-dimensional, non-linear heat equation on the TorusT (identified
with [0,1])

∂tu(t,x) = ∆u(t,x)+F(u(t,x)), u(0,x) = u0(x),

whereF(u) is a non-linear reaction term and, for the purpose of testingour methods, we have retained
Fisher’s potential

F(u) = u(1−u).

The differential equation

∂u
∂z

= u(1−u), u(0) = u0

can be solved analytically as

u(z) = u0 +u0(1−u0)
(ez−1)

1+u0(ez−1)
,

which is well defined for small complex timez. We discretize the equation in space as in the linear case.
The original nonlinear heat equation becomes

u̇ = Au+F(u), (4.1)

where the vectoru(t) is as in the linear case, the Laplacian∆ is approximated by the aboveN×N matrixA,
and the vectorF(u) stands for

F(u) =
(
u1(1−u1), . . . ,uN(1−uN)

)
.

The experimental conditions are the ones we used to illustrate the linear case. In Figure 4.2, we compare
the accuracy of the composition methods introduced in this article (“triple” (2.10) and “quadruple” (2.13)
jump compositions). We plot for many stepsizes the solutionerror at timeT as a function of the number
of evaluations of the basic method. As a basic method, we consider (in solid lines) alternatively the Strang
splitting Φh involving exact flows (where the termsehB/2 are replaced by half a time step of the exact flow
of the nonlinear differential equation ˙y = F(y)), and (in dashed lines) the Peaceman-Rachford formulaΦP

h
(where the implicit Euler and explicit Euler operators are replaced by the appropriate nonlinear operators
obtained by applying the explicit and/or implicit Euler algorithm to the nonlinear equation ˙y = F(y)).
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Fig. 4.2 Plot: Nonlinear case – Error (L2 norm at timeT) of composition methods versus number of evaluations of thebasic method

Φh. Left picture: “triple jump” composition methods̃Φh
(p)

, p= 2,4,6,8. Right picture: “quadruple jump” composition methodsΨ (p)
h ,

p = 2,4,6,8. For all these pictures, solid lines: basic method is the Strang splitting with exponential maps (2.3) – dashed lines: basic
method is the Peaceman-Rachford formula (2.4).

In Figure 4.3, we compare the “quadruple jump” composition method of order 4 with two extrapolation
methods. We also give the results for the Strang splitting oforder 2. We use the same initial data and
parameters as before. The first extrapolation formula we consider is

4
3

Φh/2◦Φh/2−
1
3

Φh (4.2)

where for the basic methodΦh, we take alternatively the Strang splittingΦh with the exact flows, see
left picture in Figure 4.3, or the –conveniently adapted, see above– Peaceman-Rachford formula, see right
picture. However, as pointed out in [19, Sect. 6] this schemeis not stable and does not converge in the second
case (see dashed-dotted line in right picture). Another extrapolation method (dashed lines) is considered in
[19] and taken from [8],

45
64

Φh/3◦Φh/3◦Φh/3+
1
2

Φh/2◦Φh/2−
13
64

Φh. (4.3)

Although the formal order of this method is 4, it is said in [19] that the true order of convergence of this
method is not clearly understood, and in the numerical experiments for linear problems in [8], “the formal
order in not reached ; the experimental precision is smallerthan the theoretical precision, and the difference
is smaller that 1”.

Finally, and for a fair comparison in Figure 4.3, it should bementioned that computations using complex
numbers are actually about four times more expensive than computations with reals numbers (because of
the cost of a multiplication).

102 10310−12

10−10

10−8

10−6

10−4

102 10310−12

10−10

10−8

10−6

10−4
exponential mapserror

function evals

Peaceman-Rachforderror

function evals

Fig. 4.3 Plot: Nonlinear case – Error (L2 norm at timeT) versus number of evaluations of the basic methodΦh. Strang splitting (dotted

lines), “quadruple jump” composition methodΨ (4)
h (solid line), extrapolation method (4.2) (dashed-dotted line), extrapolation method

(4.3) (dashed lines). Left picture: Basic method is the Strang splitting with exponential maps (2.3). Right picture: Peaceman-Rachford
formula (2.4).
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5 Conclusion

We have constructed new high-order compositions methods and splitting methods using complex coeffi-
cients for parabolic linear and non-linear parabolic partial differential equations. Based on the results of
Hansen & Osterman [14], a convergence analysis is provided in the linear case. The methods we have de-
rived are all based on a composition procedure with complex time steps; they actually allow to build up high
order methods which are based on the composition of possiblycheap low order algorithms.

Going a bit further, we may stress here that it is also possible to construct high-ordersplitting methods
for which only one operator carries complex time steps. Suchmethods are howevernot based on the com-
position technique we have presently developed. For instance, the following splitting method is symmetric
and of order 4,

eb1hVea1hAeb2hVea2hAeb3hVea2hAeb2hVea1hAeb1hV (5.1)

whereb1 = 1/10− i/30, b2 = 4/15+2i/15, b3 = 4/15− i/5 are complex, anda1 = a2 = a3 = a4 = 1/4 are
all reals. Such a decomposition is interesting when the evolution alongA carries the most computational cost
and the evolution withV is cheap to compute (e.g.when V is a diagonal matrix): in that case the extra cost
due to the complex numbers is marginal. This type of splitting method is also of great interest in the case
where one operator has its eigenvalues close to the imaginary axis, likee.g.the Ginzburg-Landau equation.
Note however that in this very case, and because this algorithm is not based on a composition procedure,
the true exponentials cannot by replaced, in general, by loworder approximations: the exponential needs to
be approximated to within the appropriate order in any circumstance here.

Independently, note that a systematic study ofoptimalcomposition methods (i.e. methods with optimal
error constants) is out of the scope of this paper and will be the subject of a future article by the same authors.
It requires the resolution inC of the polynomial systems of order conditions for composition methods and
splitting methods. Also, a theoretical analysis in the caseof a non-linear source is in preparation.
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