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Abstract

This paper deals with the equilibria and stability analysis of the two step

anaerobic model initially proposed by [12] to describe the dynamical behav-

ior of an anaerobic fixed-bed wastewater treatment process. In a first part,

the model is analyzed: its equilibria and their stability are established con-

sidering qualitative properties of the kinetics. In a second part, it is shown

that the overloading tolerance (denoted herein OT), a parameter proposed in

[9] to monitor anaerobic processes on-line, may not be suitable for monitoring

the system and even causes serious problems under certain functioning con-

ditions. Based on the analysis results established in the first part, a modified

OT is proposed and evaluated in simulation.
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equilibrium, model approximation, risk analysis

1. Introduction

Depending on the objective for which they have been developed, anaer-

obic digestion models can be classified in two main groups. On one hand,

there are high dimensional models developed by practioners to capture accu-

rately the phenomenologic behavior of anaerobic digestion systems following

the idea that all the available information and knowledge should be included

in the models. The famous ADM1 model typically falls into this class of

models, cf. ([7]). On the other hand, simplified models are developed for

monitoring and control design purposes by control engineers for optimizing

the functioning of bioprocesses. If it is quite obvious that a deep mathe-

matical analysis of complex models is very difficult to tackle, for not saying

impossible. As surprising as it may appear the analysis of simple models

such as the two step anaerobic model proposed by [12] (hereafter denoted

as the AM2 model) has never been realized in a generic way. Two steps

models have been nonetheless widely used for on-line monitoring anaerobic

processes because of both its relative simplicity and its high capacity to re-

produce the dynamical behaviour of the main operational parameters of the

process. To derive specific monitoring and control strategies, a number of

authors performed more or less deep analyses of simple anaerobic models.

S. Shen and G.C. Premier [14] analyzed the stability of equilibria and

presented a bifurcation analysis of an anaerobic digestion model according

to some operating parameters. They derived from a six dimensional model

[15] a two dimensional model including only the methanogenesis step by
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reducing and/or eliminating the stable and rapid dynamics.

To study the AM2 model, J. Hess and O. Bernard [9] proposed to use a

reduced model in considering that what enters the second step of the process

(the methanogenesis step) is what comes “in the worst case” from the aci-

dogenesis process. Using their results, they proposed a monitoring strategy

based on a stability criteria named “overloading tolerance” in monitoring a

“destabilization risk index”, cf. [8].

M. Sbarciog et al [10] proposed a methodology to estimate the separatrix

between the stable attraction basins of the equilibria. However, their analysis

was based on specific kinetics. In addition, it was not realized in the original

coordinates and their results are thus quite a bit difficult to interpret.

N. Dimitrova and M. Krastanov [11] studied the equilibria stability and

performed a bifurcation analysis of the AM2 model according to the dilution

rate (control variable). However, they restricted their attention to specific

kinetics and conditions depending on the influent substrate concentration.

Recently, I. Simenov and S. Diop [6] analyzed the local stability of some

anaerobic digestion models. They initially studied a two dimensional simple

model restricting their attention to the methanogenic step, by considering

specific kinetics (Monod, Contois or Haldane). Furthermore, they also con-

sidered a four dimensional anaerobic digestion model (including acidogenesis

and methanogenesis). However, in this last case, they restricted their atten-

tion to Monod kinetics excluding the inhibition by the Volatile Fatty Acids.

To summarize the state on the art about the mathematical analysis of two

step models of anaerobic systems, one may say that all available studies used

specific kinetics and authors restricted their attention to a limited number
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of functioning conditions.

In the present paper, we propose a mathematical analysis of equilibria

and their stability of a two steps model (AM2). The proposed analysis can

be said to be “generic” in the sense we do not specify kinetics but rather de-

fine qualitative hypotheses on which we base our results. It should be noticed

that this genericity provides the possibility of extending our results to the

analysis of any 2 step bioprocesses where the second step can be inhibited

by its own substrate. In addition, we revisit the “overloading tolerance” pa-

rameter (denoted OT herein) within this general analysis framework in order

to be able to monitor anaerobic processes under more general functioning

conditions that those initially considered in [9] that are not valid in the case

of equilibria bistability.

The paper is organized as follows. First, the AM2 model is recalled. De-

pending on the model and input parameters, equilibria are characterized and

their stability is analyzed. Then, the overloading parameter initially pro-

posed by [9] is revisited and a modified version is proposed at the light of the

previous performed mathematical analysis. Then, we illustrate and discuss

our results in simulation before conclusions and perspectives are drawn.

2. Mathematical model

We consider the mathematical model of the anaerobic process based on 2

main reactions, where substrate S1 is degraded into substrate S2 by bacteria

X1 and then S2 is degraded by bacteria X2. This model, initially proposed

by [12] and partially analyzed in [9] is given by:

Ṡ1 = D (S1in − S1)− k1μ1(S1)X1, (1)

4
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Ẋ1 =
(
μ1(S1)− αD

)
X1, (2)

Ṡ2 = D (S2in − S2) + k2μ1(S1)X1 − k3μ2(S2)X2, (3)

Ẋ2 =
(
μ2(S2)− αD

)
X2, (4)

where D is the dilution rate, while S1in and S2in are the input substrate con-

centrations respectively. Parameters ki are pseudo-stochiometric coefficients

associated to the bioreactions. α ∈ [0, 1] is a parameter allowing us to de-

couple the HRT (Hydraulic Retention Time) and the SRT (Solid Retention

Time). The kinetics μ1 and μ2 are of Monod and Haldane type, respectively.

However, in the sequel, we will consider generic kinetics μ1 and μ2, satisfying

the following qualitative properties:

Hypothesis 1. μ1(S1) is an increasing function for S1 ≥ 0, with μ1(0) = 0

and μ1(+∞) = m1. We assume that the derivative μ′
1(S1) of μ1(S1) with

respect to S1 satisfies the property : μ′
1(S1) > 0 for all S1 ≥ 0.

Hypothesis 2. μ2(S2) is an increasing function for 0 ≤ S2 < SM
2 , has a

maximum μ2

(
SM
2

)
> 0 for S2 = SM

2 and then decreasing for S2 > SM
2 , with

μ2 (0) = 0 and μ2(+∞) = 0. We assume that the derivative μ′
2(S2) of μ2(S2)

with respect to S2 satisfies the property : μ′
2 (S2) > 0 for 0 ≤ S2 < SM

2 , and

μ′
2 (S2) < 0 for S2 > SM

2 .

In [11], one considered model (1-4) in the case when μ1 is a Monod kinetics,

μ2 is a Haldane kinetics and S2in ≥ SM
2 . They studied the equilibria of the

system and their local one-parameter bifurcations (according to the dilution

rate). Here we consider the general case of μ1 and μ2 satisfying Hypotheses

1 and 2 and without the restriction S2in ≥ SM
2 .

5
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2.1. Equilibria of model

We use the following notations. Let αD < m1, we denote:

S∗
1(D) = μ−1

1 (αD)

the root of equation μ1 (S1) = αD.

If αD ≥ m1, this equation has no solution and we let S∗
1(D) = +∞.

If S1in ≥ S∗
1(D) we denote:

S∗
2in(D) = S2in +

k2
k1

(
S1in − S∗

1(D)
)
, X∗

1 (D) =
1

k1α

(
S1in − S∗

1(D)
)
.

Let αD < μM
2 := μ2

(
SM
2

)
. We denote S1∗

2 (D) < S2∗
2 (D) the roots of equation

μ2 (S2) = αD.

If αD = μM
2 , this equation has only one solution and we let S1∗

2 (D) = S2∗
2 (D).

If αD > μM
2 , this equation has no solution and we let S1∗

2 (D) = +∞.

If S2in ≥ Si∗
2 (D) we denote:

X i
2(D) =

1

k3α

(
S2in − Si∗

2 (D)
)
, i = 1, 2.

If S1in ≥ S∗
1(D) and S∗

2in(D) ≥ Si∗
2 (D) we denote:

X i∗
2 (D) =

1

k3α

(
S∗
2in(D)− Si∗

2 (D)
)
, i = 1, 2.

Lemma 1. The function S∗
1(D) is increasing and the functions X∗

1 (D) and

S∗
2in(D) are decreasing on their domains of definition. The functions S1∗

2 (D)

and S2∗
2 (D) are increasing and decreasing respectively. The functions X1

2 (D)

and X1∗
2 (D) are decreasing on their domains of definition. The function

X2
2 (D) is increasing. The function X2∗

2 (D) is not monotonous in general.

Proof 1. See proof in Appendix A.1.
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These properties of the functions are illustrated in Fig. 1. The functions

S∗
1(D), Si∗

2 (D), X∗
1 (D), X i

2(D) and X i∗
2 (D) are depicted in this figure in the

particular case of Monod and Haldane kinetics

μ1 (S1) =
m1S1

K1 + S1

, μ2 (S2) =
m2S2

K2 + S2 +
S2
2

KI

, (5)

with the parameter values given in Table 1. The bifurcations values D1, D2,

m1 = 1.2 K1 = 2 m2 = 1.1 K2 = 10 KI = 40 k1 = 25

k2 = 250 k3 = 268 α = 0.5 S1in = 8 S2in = 50

Table 1: Nominal parameters values used for the generation of Figs. 1, 3 and 4.

D3 and D4 which appear in the figure are defined by:

D1 =
μ1 (S1in)

α
, D2 =

μM
2

α
, D3 =

μ2 (S2in)

α
, S2∗

2 (D4) = S∗
2in(D4).

D DD D
D1 D4D3D2 D1D1 D4 D3D2

S1in

S2in

SM
2

S1 S2X1 X2

S∗
1(D) X∗

1(D)

S1∗
2 (D)

S2∗
2 (D)

S∗
2in(D)

X1
2(D)

X2
2(D)

X1∗
2 (D)

X2∗
2 (D)

Figure 1: The graphs of the functions S∗
1 (D), X∗

1 (D), Si∗
2 (D), S∗

2in(D), Xi
2(D), Xi∗

2 (D),

i = 1, 2. Here D1 = 1.92, D2 = 1.1, D3 � 0.89 and D4 � 0.52.

The equilibria of system (1-4) are solutions of the nonlinear algebraic

system (6-9) obtained from (1-4) by setting the right-hand sides equal to

zero:

0 = D (S1in − S1)− k1μ1 (S1)X1, (6)
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0 =
(
μ1 (S1)− αD

)
X1, (7)

0 = D (S2in − S2) + k2μ1 (S1)X1 − k3μ2 (S2)X2, (8)

0 =
(
μ2 (S2)− αD

)
X2. (9)

The calculation of the solutions of this set of equations is summarized in

Fig. 2, (the details of the calculation is given in Appendix A.2).

(7)

(6)

(9) (9)

(8) (8)

X1 = 0

S1=S1in

S1 = S∗
1

X1=X∗
1

X2 = 0

S2=S2in

X2 = 0

S2=S∗
2in

S2=Si∗
2

X2=Xi
2

i = 1, 2

S2=Si∗
2

X2=Xi∗
2

i = 1, 2

E0
1 = (S1in, 0, S2in, 0) Ei

1=(S1in, 0, S
i∗
2 , Xi

2)
i = 1, 2

E0
2 = (S∗

1 , X
∗
1 , S

∗
2in, 0) Ei

2=(S∗
1 , X

∗
1 , S

i∗
2 , Xi∗

2 )
i = 1, 2

Figure 2: Diagram summarizing the equilibria of system (1-4). Hence, the system has at

most six equilibrium points, see Proposition 1.

Proposition 1. System (1-4) has at most six equilibrium points:

E0
1=

(
S1in, 0, S2in, 0

)
, which always exists and does not depend on D.

E1
1(D)=

(
S1in, 0, S

1∗
2 (D), X1

2 (D)
)
, which exists if and only if S2in ≥ S1∗

2 (D).

E2
1(D)=

(
S1in, 0, S

2∗
2 (D), X2

2 (D)
)
, which exists if and only if S2in ≥ S2∗

2 (D).

E0
2(D)=

(
S∗
1(D), X∗

1 (D), S∗
2in(D), 0

)
, which exists if and only if S1in ≥ S∗

1(D).
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E1
2(D)=

(
S∗
1(D), X∗

1 (D), S1∗
2 (D), X1∗

2 (D)
)
, which exists if and only if S1in ≥

S∗
1(D) and S∗

2in(D) ≥ S1∗
2 (D).

E2
2(D)=

(
S∗
1(D), X∗

1 (D), S2∗
2 (D), X2∗

2 (D)
)
, which exists if and only if S1in ≥

S∗
1(D) and S∗

2in(D) ≥ S2∗
2 (D).

Proof 2. See proof in Appendix A.2.

The trivial equilibrium E0
1 corresponds to the washout of X1 and X2. The

trivial equilibria Ei
1(D), i = 1, 2 correspond to the washout of X1 but not of

X2. The trivial equilibrium E0
2(D) corresponds to the washout of X2 but not

ofX1. The equilibria E
i
2(D), i = 1, 2 are positive. The first one, E1

2(D), is the

nominal operating point, since it is locally stable. The second one, E2
2(D),

is always unstable as shown in the following section. Since the nonconstant

components of the equilibria are given by functions illustrated in Fig. 1, this

figure represents also the equilibria of the system (see Figs. 3 and 4).

2.2. Hyperbolic and Non-Hyperbolic equilibria

The study of equilibria local stability follows easily from the study of

the Jacobian matrix of system (1-4). Since there is no risk of confusion

we drop the variable D in the equilibria Ei
1(D), E0

2(D) and of Ei
2(D) and

their components. The existence and stability of the equilibria depend only

on the relative positions of the values of S1in and S∗
1 and of the values of

S1∗
2 , S2∗

2 , S2in, and S∗
2in. In the hyperbolic case, where the Jacobian matrix

has eigenvalues whose real parts are different from 0, the results on the

existence and stability of the equilibria are summarized in Theorem 1 (cases

1.1 to 1.3 and 2.1 to 2.6). We list in each case the existing equilibria and

their nature (where SE and UE stand for stable equilibrium and unstable

9

Author-produced version of the article published in Journal of Process Control, 2012, 22 (6),1008-1019. 
The original publicatioin is available at http://www.sciencedirect.com 
doi:10.1016/j.jprocont.2012.04.012



D1D2D3D4 D1D2D3D4 D1D2D3D4 D1D2D3D4

E0
1

E1
1

E2
1

S1in

S1in

S1in

S2in

S2in

S2in

S1 X1 S2 X2

Figure 3: The components of the equilibrium points E0
1 (in black), E1

1(D) (in cyan) and

E2
1(D) (in blue) with respect to D. The vertical lines correspond to the values D1, D2,

D3 and D4 used in Fig. 1.

equilibrium respectively).

When two of the four values S1∗
2 (D), S2∗

2 (D), S2in, and S∗
2in(D) are equal,

then at least one of the eigenvalues of the Jacobian matrix has 0 as real

part and we have a coalescence of equilibria. These cases are summarized in

Theorem 1 (cases 1.4 to 1.6 and 2.7 to 2.15, where NH and H stand for

Non Hyperbolic and Hyperbolic respectively).

Theorem 1. Hyperbolic equilibria:

If S1in < S∗
1 then we have 3 sub-cases:

10

Author-produced version of the article published in Journal of Process Control, 2012, 22 (6),1008-1019. 
The original publicatioin is available at http://www.sciencedirect.com 
doi:10.1016/j.jprocont.2012.04.012



D1D2D3D4 D1D2D3D4 D1D2D3D4 D1D2D3D4

E0
2

E1
2

E2
2

S1in

S1in

S1in

S2in

S2in

S2in

S1 X1 S2 X2

Figure 4: The components of the equilibrium points E0
2 (in green), E1

2(D) (in red) and

E2
2(D) (in magenta) with respect to D. The vertical lines correspond to the values D1,

D2, D3 and D4 used in Fig. 1.

case Condition
Equilibria and nature

E0
1 E1

1 E2
1

1.1 S2in < S1∗
2 < S2∗

2 SE

1.2 S1∗
2 < S2in < S2∗

2 UE SE

1.3 S1∗
2 < S2∗

2 < S2in SE SE UE

If S1in > S∗
1 then we have 6 sub-cases:
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case Condition
Equilibria and nature

E0
1 E1

1 E2
1 E0

2 E1
2 E2

2

2.1 S2in < S∗
2in < S1∗

2 < S2∗
2 UE SE

2.2 S2in < S1∗
2 < S∗

2in < S2∗
2 UE UE SE

2.3 S2in < S1∗
2 < S2∗

2 < S∗
2in UE SE SE UE

2.4 S1∗
2 < S2in < S∗

2in < S2∗
2 UE UE UE SE

2.5 S1∗
2 < S2in < S2∗

2 < S∗
2in UE UE SE SE UE

2.6 S1∗
2 < S2∗

2 < S2in < S∗
2in UE UE UE SE SE UE

Non Hyperbolic equilibria:

If S1in < S∗
1 , then we have 3 sub-cases:

Case Condition NH Equilibria H Equilibria

1.4 S2in = S1∗
2 < S2∗

2 E0
1 = E1

1

1.5 S1∗
2 < S2in = S2∗

2 E0
1 = E2

1 E1
1

1.6 S1∗
2 = S2∗

2 < S2in E1
1 = E2

1 E0
1

If S1in > S∗
1 , then we have 9 sub-cases:

12
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Case Condition NH Equilibria H Equilibria

2.7 S2in < S∗
2in = S1∗

2 < S2∗
2 E0

2 = E1
2 E0

1

2.8 S2in = S1∗
2 < S∗

2in < S2∗
2 E0

1 = E1
1 E0

2 , E
1
2

2.9 S2in = S1∗
2 < S2∗

2 < S∗
2in E0

1 = E1
1 E1

2 ,E
2
2 , E

0
2

2.10 S2in = S1∗
2 < S∗

2in = S2∗
2 E0

1 = E1
1 E1

2

E0
2 = E2

2

2.11 S2in < S1∗
2 = S2∗

2 < S∗
2in E1

2 = E2
2 E0

1 , E
0
2

2.12 S1∗
2 < S2in < S∗

2in = S2∗
2 E0

2 = E2
2 E0

1 , E
1
1 , E

1
2

2.13 S1∗
2 < S2in = S2∗

2 < S∗
2in E0

1 = E2
1 E1

1 , E
1
2 , E

0
2 , E

2
2

2.14 S1∗
2 = S2∗

2 < S2in < S∗
2in E1

1 = E2
1 E0

1 , E
0
2

E1
2 = E2

2

2.15 S2in < S1∗
2 < S∗

2in = S2∗
2 E0

2 = E2
2 E0

1 , E
1
2

Proof 3. See proof in Appendix A.3.

Remark 1. [11] restricted their study to the case S2in ≥ SM
2 (1) arguing that

otherwise, μ2(S2) should be monotonically increasing for S2 ≥ 0. Actually,

the condition S2in < SM
2 can lead to interesting phenomena, as the bistability

of the system, which is not possible if μ2(S2) was monotonically increasing.

The reason is that the bistability can arise if S∗
2in > SM

2 , even if S2in < SM
2

(see case 2.3 in Theorem 1).

1The authors mentioned that the Haldane model function μ2(S2) achieves a maximum

at the point SM
2 , and they assumed that SM

2 ≤ S2in, (S
M
2 and S2in are noted s̃2 and si2

respectively in their paper). They noted that otherwise μ2(S2) would be monotonically

increasing for S2 ≥ 0 as Monod law μ1(S1) for S1 ≥ 0 does.

13

Author-produced version of the article published in Journal of Process Control, 2012, 22 (6),1008-1019. 
The original publicatioin is available at http://www.sciencedirect.com 
doi:10.1016/j.jprocont.2012.04.012



2.3. Number of equilibria with respect to D

From Theorem 1, we can easily deduce the number and nature of equilib-

ria of the system with respect of the operating parameter D. For instance,

Figs. 3 and 4 show the numbers of equilibria of (1-4) for the parameters

values given in Table 1.

Of course, for other values of the parameters, the bifurcational values Di are

not ranged as in the cases depicted in Fig. 1. For instance if all the parame-

ters are as in Fig. 1 except for K2, KI and S1in which are set equal to 1, 15

and 2 instead of 10, 40 and 8 respectively, then we have D4 < D3 < D1 < D2

and not D4 < D3 < D2 < D1, see Fig. 5.

D DD DD
4

D
3

D
2

D
1

D
4

D
3

D
2

D
1

D
4

D
3

D
2

D
1

D
4

D
3

D
2

D
1

S1in

S2in

S1 S2X1 X2

Figure 5: The components of the equilibrium points E0
1 (in black), E1

1(D) and E2
1(D) (in

cyan and blue respectively), E0
2(D) (in green) and E1

2(D) and E2
2(D) (in red and magenta

respectively) with respect to D. Here K2 = 1, KI = 15 and S1in = 2 and hence D1 = 1.2,

D2 � 1.45, D3 � 0.50 and D4 � 0.40.

We see on Fig. 5 that for D = D1, there is an equilibria bifurcation:

E1
2(D1) = E1

1(D1), E2
2(D1) = E2

1(D1).

This bifurcation was not considered in Theorem 1, since we assumed in this

theorem that S1in �= S∗
1 .
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2.4. Global behavior of model (1-4)

Model (1-4) has a cascade structure which renders its analysis easy. We

will take benefit of this structure to discuss the global behavior of the system.

Following [12], page 430, we first remark that the system:⎧⎪⎨
⎪⎩

Ṡ1 = D (S1in − S1)− k1μ1 (S1)X1,

Ẋ1 =
(
μ1(S1)− αD

)
X1,

(10)

composed by (1) and (2) can be run autonomously. In other terms, S1 and

X1 are not influenced by the other variables. Similarly the system composed

by (3) and (4) can also be considered independently as a system taking its

input from (10): ⎧⎪⎨
⎪⎩

Ṡ2 = D
(
f(t)− S2

)
− k3μ2 (S2)X2,

Ẋ2 =
(
μ2(S2)− αD

)
X2,

(11)

with

f(t) = S2in +
k2
D
μ1

(
S1(t)

)
X1(t), (12)

where (S1(t), X1(t)) is a solution of (10).

System (10) corresponds to a classical chemostat model with Monod-

kinetics type and specific mortality rate for X1. The behavior of this system

is well-known (cf. [4]). When S1in > S∗
1(D), the nontrivial equilibrium

is globally stable and the washout equilibrium (X1 = 0) is unstable. We

restrict our analysis to this case. The case where the washout equilibrium is

globally stable can be treated in the same way. Since the limit of f(t) when

t → +∞ exists and is equal to S∗
2in, system (11) converges to:⎧⎪⎨

⎪⎩
Ṡ2 = D (S∗

2in − S2)− k3μ2 (S2)X2,

Ẋ2 =
(
μ2 (S2)− αD

)
X2.

(13)
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System (13) corresponds to a classical chemostat model with Haldane-type

kinetics and specific mortality rate for X2. The behavior of such a system

is also well-known (cf. [4]). In the general case, it has three equilibria:

the first one is positive and locally stable, the second one is positive and

unstable and the third one is the locally stable trivial equilibrium (washout

which corresponds to X2 = 0). Now, the behavior of (1-4) follows from the

following heuristic. Once the system (10) has converged to its equilibrium,

the system (11) will also converge towards one of the two stable equilibria of

(13) as it is illustrated in Fig. 6. This argument can be rigorously justified

by using [5] results on asymptotically autonomous systems, see also [4] for

the details of this kind of arguments.

Theorem 2. Assume that S1in > S∗
1 and S1∗

2 < S2∗
2 < S∗

2in, then all solutions

of system (1-4) converge to either E0
2 , E

1
2 or E2

2 and the set of initial con-

ditions of solutions converging towards the saddle point E2
2 is of measure 0.

More precisely, the attractive stable manifold of E2
2 is a 3-dimensional hyper-

surface which separates the phase space of (1-4) into the basins of attractions

of the stable equilibria E0
2 and E1

2 .

Proof 4. See proof in Appendix A.4.

We show in the next section how the previous generic analysis, can be used

to revisit an interesting monitoring tool initially proposed by [9].

3. Overloading tolerance

3.1. The overloading tolerance of Hess and Olivier

In their paper on the analysis of the system (1-4), J. Hess and O. Bernard

[9] noticed that for all solutions (S1(t), X1(t)) of (10) we have f(t) � S̃2in,
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X2
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2
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2
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2 separatrix
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Figure 6: Left: Equilibria of system (10) where E0 corresponds to the washout of X1 and

E1 is the operating equilibrium (S∗
1 < S1in). Right: Equilibria of system (13) where E0

2

corresponds to the stable washout equilibrium ofX2, E
2
2 is the interior unstable equilibrium

and E1
2 is the interior stable equilibrium

where

S̃2in = S2in +
k2
k1

S1in,

and where f(t) is defined by (12). Thus, the total input substrate concen-

tration available for (11) is bounded by S̃2in. In order to study the behavior

of (11) they considered S̃2in as the “worst-case” upper bound of the total

influent concentration in the reactor. Thus, they studied the equilibria of

the system: ⎧⎪⎨
⎪⎩

Ṡ2 = D
(
S̃2in − S2

)
− k3μ2 (S2)X2,

Ẋ2 =
(
μ2 (S2)− αD

)
X2.

(14)

Notice that the equilibria of system (10), together with the equilibria of

system (14) do not constitute the equilibria of the original system (1-4). In

other words, the study they propose does not correspond to the study of the

original system (1-4) as suggested in the literature. Notice also that there

is no rigorous link between the solutions of (11) and those of (14). We will
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show here-below that considering (14) instead of (11) for monitoring a real

process may be problematic under specific operating conditions. System (14)

can have at most three equilibria:

• The trivial equilibrium ξ02 =
(
S̃2in, 0

)
corresponding to the washout of

X2;

• The positive equilibria ξi2(D) =
(
Si∗
2 (D), X̃ i

2(D)
)
, i = 1, 2, where

X̃ i
2(D) = 1

k3α

(
S̃2in − Si∗

2 (D)
)
, which exists if and only if S̃2in > Si∗

2 (D).

The stability of these equilibria depends on the relative positions of the values

of S1∗
2 (D), S2∗

2 (D), and S̃2in, see Table 1 and Fig. 1 of [9]. A special case of

interest is obtained when:

S1∗
2 (D) < S2∗

2 (D) < S̃2in. (15)

Here ξ02 and ξ12(D) are both stable and ξ22(D) is a saddle point whose separa-

trix separates the phase plane into the basins of attraction of ξ02 and ξ12(D).

To evaluate the size of the locally stable working point ξ12(D), [9] defined the

overloading tolerance (OT) as the distance between the equilibria ξ12(D) and

ξ22(D):

MHB(D) = ‖ξ12(D)− ξ22(D)‖.
Notice that they explicitly calculatedMHB(D) only in the case of the Haldane

kinetics. In fact, we can evaluate it in a more general case. Indeed, it may

be shown that it depends only on the roots S1∗
2 (D) and S2∗

2 (D) of equation

μ2 (S2) = αD and on the parameters α and k3. More precisely, we have:

Proposition 2. The OT MHB(D) is given by:

MHB(D) = ‖ξ12(D)− ξ22(D)‖ =

√
1 +

1

k2
3α

2

(
S2∗
2 (D)− S1∗

2 (D)
)
.
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Proof 5. See proof in Appendix A.5.

The maximum value of the OT is denoted by McHB(D). It is obtained when

αD = μ2

(
S̃2in

)
. In this case we have:

S1∗
2 (D) = S̃2(D), S2∗

2 (D) = S̃2in,

and ξ22(D) coalesces with ξ02 . Hence:

McHB(D) = MHB

(
μ2(S̃2in)

α

)
=

√
1 +

1

k2
3α

2

(
S̃2in − S̃2(D)

)
.

[9] defined the relative overloading tolerance (ROT) as the ratioMHB(D)/McHB(D).

Then, they propose the following “risk-index” as an on-line indicator of the

destabilization of the process:

RHB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for αD > μM
2 ,

1− MHB(D)
McHB(D)

for μ2(S̃2in) ≤ αD ≤ μM
2 ,

0 for αD < μ2(S̃2in).

(16)

Notice that the relative overloading tolerance is:

MHB(D)

McHB(D)
=

S2∗
2 (D)− S1∗

2 (D)

S̃2in − S̃2(D)
.

Based on the formal analysis we have performed in the section 2, we show in

the next section that this risk criterion can be problematic if the system is

underloaded.

3.2. Comparison with the behavior of system (1-4)

Operating conditions 1: Assume that:

S1∗
2 (D) < S2∗

2 (D) < S∗
2in(D) < S̃2in. (17)
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This condition is compatible with (15). Thus, either the case 2.3, 2.5 or

2.6 holds and the system (1-4) has two stable equilibria E0
2(D) and E1

2(D),

and one unstable equilibrium E2
2(D). Notice that X̃ i

2(D) > X i∗
2 (D). If

one considers the equilibria ξ02 , ξ
1
2(D), and ξ22(D) of system (14) instead of

the actual equilibria E0
2(D), E1

2(D), and E2
2(D) of system (1-4), then at

equilibrium ξ02 the substrate S2 is overrated (since S̃2in > S∗
2in(D)) and at

equilibria ξ12(D) and ξ22(D) the biomass X2 is overrated (since X̃ i
2(D) >

X i∗
2 (D)), see Fig. 7.
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Figure 7: Equilibria E0
2(D), E1

2(D), and E2
2(D) of (1-4) and equilibria ξ02 , ξ

1
2(D), and

ξ22(D) of (14) under the condition (17).

We have X̃ i
2(D) − X i∗

2 (D) =
S̃2in−S∗

2in(D)

k3α
=

k2S∗
1

k1k3α
for i = 1, 2. Hence, the

distance between the equilibria E1
2(D) and E2

2(D) is the same as the distance

between the equilibria ξ12(D) and ξ22(D). Thus, the OT is also given by

M(D) = ‖E1
2(D)−E2

2(D)‖. The first conclusion we draw from this reasoning

is that if (17) holds, [9] would have obtained the same criterion if they had

considered the actual equilibria E1
2(D) and E2

2(D) of system (1-4) rather
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than equilibria ξ12(D) and ξ22(D) of system (14).

Operating conditions 2: Assume now that:

S1∗
2 (D) < S∗

2in(D) < S2∗
2 (D) < S̃2in. (18)

Either the case 2.2 or 2.4 holds and the system (1-4) has one stable equi-

librium E1
2(D) and one unstable equilibrium E0

2(D). However, the system

(14) has three equilibria ξ02 , ξ
1
2(D), and ξ22(D), see Fig. 8 on the left. In this

case the OT criterion, which has been developed for a bistable system, is not

appropriate since the actual system has only one stable equilibrium.

The following case is even more problematic if the process is operated on the

basis of the OT criterion.

Operating conditions 3: Let:

S∗
2in(D) < S1∗

2 (D) < S2∗
2 (D) < S̃2in. (19)

In practice, it means that there is an “underload” of S2 into the system. In

other words, there is not enough substrate S2 for X2 to grow. Thus, the

case 2.1 holds and the system (1-4) has only one stable equilibrium E0
2(D)

which corresponds to the washout of X2. However, the system (14) has three

equilibria ξ02 , ξ
1
2(D), and ξ22(D), see Fig. 8 on the right. In this case, the use

of the OT criterion to assess the management of the process would not give

the right information to the user. Indeed, the OT criterion asserts that the

system is functioning near the stable positive equilibrium while the actual

behavior of the real system leads to the washout of X2.

3.3. Risk index and numerical simulations

To solve the problem we have just pointed out, we propose to modify

the OT and the risk-index originally proposed by [9] as follows. Assume that
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Figure 8: On the left, equilibria E0
2(D) and E1

2(D) of (1-4) under the condition (18). On

the right, equilibrium E0
2(D) of (1-4) under the condition (19).

S∗
2in(D) > SM

2 . Let αD ∈ [μ2 (S
∗
2in(D)) , μM

2 ]. Then (1-4) has three equilibria

E0
2(D), E1

2(D), and E2
2(D). We define the OT (noted hereafter M(D)) as

the distance between E1
2(D) and E2

2(D):

M(D) = ‖E1
2(D)− E2

2(D)‖.

More precisely, we have:

Proposition 3. The OT M(D) is given by:

M(D) = ‖E1
2(D)− E2

2(D)‖ =

√
1 +

1

k2
3α

2

(
S2∗
2 (D)− S1∗

2 (D)
)
.

Proof 6. See proof in Appendix A.6.

The maximum value of M(D) is denoted by Mc(D). It is obtained when

αD = μ2 (S
∗
2in(D)). In this case we have:

S1∗
2 (D) = S∗

2(D), S2∗
2 (D) = S∗

2in(D),

and E2
2(D) coalesces with E0

2(D). Hence:

Mc(D) = M

⎛
⎝μ2

(
S∗
2in(D)

)
α

⎞
⎠ =

√
1 +

1

k2
3α

2

(
S∗
2in(D)− S∗

2(D)
)
.
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In Fig. 9, we show the proposed and the modified margins.
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2S1∗

2 S̃2inS∗
2in

μM
2

αD

μ∗
2

μ̃2

M(D)

Mc(D)

McHB(D)

Figure 9: Proposed and modified OT with μ∗
2 = μ2(S

∗
2in) and μ̃2 = μ2(S̃2in).

We define the risk-index as follows:

R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for S∗
2in(D) < S1∗

2 (D) or αD > μM
2 ,

1− M(D)
Mc(D)

for S2∗
2 (D) < S∗

2in(D),

0 for S1∗
2 (D) < S∗

2in(D) < S2∗
2 (D).

(20)

Notice that the relative overloading tolerance is now given by:

M(D)

Mc(D)
=

S2∗
2 (D)− S1∗

2 (D)

S∗
2in(D)− S∗

2(D)
.

Let us illustrate our approach in simulation. In particular, we compare the

risk-index (16) of [9] and our risk-index (20) for the model (1-4) with Monod

and Haldane kinetics (5), and nominal parameter values close to the parame-

ters of [12], (cf. Table 2). Let us notice that we changed some values to have

the bistability behaviour of the system, because with the default values of

[12], the system is always working only around functional equilibrium. The

values of the operating parameters are

D = 0.8 d−1, S1in = 10 g/L, S2in = 5 mmol/L.
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Parameter Unit Value of [12] Standard Deviation Nominal value

m1 d−1 1.2 1.2 or 0.5

K1 g/L 7.1 5 2.1

m2 d−1 0.74 0.9 0.95

K2 mmol/L 9.28 13.7 24

Ki mmol/L 256 320 55

α 0.5 0.4 0.5

k1 42.14 18.94 25

k2 mmol/g 116.5 113.6 250

k3 mmol/g 268 52.31 268

Table 2: Nominal parameters values.

We consider a first period of time 0 ≤ t ≤ 50 such as m1 = 1.2 and, a second

period 50 ≤ t ≤ tfinal such as m1 changes its value to 0.5. The objective

is to illustrate different situations where R can change while RHB remains

constant.

When m1 = 1.2 we have, (see Fig. 10 on the left and Fig. 11 on the left),

S∗
1 = 1.05, S1∗

2 (D) = 27.33, S2∗
2 (D) = 48.29, S∗

2in(D) = 94.5.

Thus, case 2.3 holds and the system has four equilibria:

E0
1 = (10, 0, 5, 0), E0

2(D) = (1.05, 0.72, 94.5, 0),

E1
2(D) = (1.05, 0.72, 27.33, 0.5), E2

2(D) = (1.05, 0.72, 48.29, 0.34).

This is the bistability case. The value of the R index is 0.74 which indicates

that the destabilization risk is present. Notice that S̃2in = 105. The value of
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RHB = 0.77: System is still working around E1
2

R = 1: System is working around E0
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Figure 10: On the left, the function μ1 (S1) for m1 = 0.5 and m1 = 1.2. On the right, the

risks RHB and R according to t. At time t = 50, the parameter m1 changes from 1.2 to

0.5.
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Figure 11: On the left, the function μ2 (S2) for m1 = 1.2. On the right, the function

μ2 (S2) for m1 = 0.5. With μ∗
2 = μ2(S

∗
2in(D)) and μ̃2 = μ2(S̃2in)

the RHB index is 0.77 which leads also to the same conclusion. This is the

situation depicted in Fig. 7. When m1 = 0.5 we have (see Fig. 10 on the left

and Fig. 11 on the right),

S∗
1 = 8.4, S1∗

2 (D) = 27.33, S2∗
2 (D) = 48.29, S∗

2in(D) = 21.

Thus the case 2.1 holds and the system has only two equilibria:

E0
1 = (10, 0, 5, 0), E0

2(D) = (8.4, 0.13, 21, 0).

This is the washout case. The value of the R index is then 1 which indicates

that the destabilization risk is very important. Since the value of S̃2in = 105
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has not changed, the value of the RHB index is 0.77 which clearly leads to a

bad conclusion. This is the situation depicted in Fig. 8 on the right.

t50t50

t50t50

S1

X1

S2

X2

washout of X2

S∗
2

Figure 12: At time t = 50 the parameter m1 is changed from 1.2 to 0.5. The solutions

S1(t), X1(t), S2(t) and X2(t) according to t, showing that X2(t) → 0.

At time t = 50 the parameter m1 is changed from its nominal value 1.2 to

a nominal value 0.5, see Fig. 12. The simulation is carried out using initial

conditions:

S1(0) = 10, X1(0) = 0.1, S2(0) = 20, X2(0) = 1.

The index RHB does not change at time t = 50 and remains equal to its value

0.77 since this index does not depend on the parameters of the μ1 kinetics.

However, at time t = 50 the index R jumps from its value 0.74 to the value

1 (see Fig. 10 on the right), which indicates to the operator that something

bad is going to occur (see Fig. 12).

At this step, it may be argued that the actual proposed OT modification

requires an accurate monitoring and a quite important a-priori knowledge

about the system. In particular, regarding the definition of S∗
2in, accurate

information about the acidogenic step (the 1st reaction) is required. However,

we argue that it is only at this price that the process can be operated properly.
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4. Conclusion

The paper has presented a complete mathematical analysis of the two

step anaerobic model initially proposed by [12]. Under certain operating

conditions, we have highlighted that the overloading tolerance parameter

based on this model and initially proposed by [9] could lead to bad decisions

and thus could not be used. Based on our analysis, we revisited the OT in

order to capture the right information when the process is operating in a

bistable mode.

Perspectives of this work include (i) the search for observers to estimate

the required information for the new proposed monitoring strategy to be

applied from simple available on-line information and (ii) the extension of

these qualitative results to the model proposed in [1] to take into account the

presence of soluble microbial products which seem to play an important role

in a number of advanced treatment processes such as membranes biorectors.

Appendix A. Proofs

In this section we give the proofs of the mathematical results.

Appendix A.1. Proof of Lemma 1

Using the implicit function theorem one obtains that:

S∗
1
′(D) =

α

μ′
1 (S

∗
1)
.

Using Hypothesis 1 one obtains S∗
1
′(D) > 0. Thus S∗

1 is increasing. One has:

S∗
2in

′(D) = −k2
k1

S∗
1
′(D), X∗

1
′(D) = − 1

k1α
S∗
1
′(D).
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Thus X∗
1 (D) and S∗

2in(D) are decreasing. Similarly, using the implicit func-

tion theorem one obtains that:

Si∗
2

′
(D) =

α

μ′
2

(
Si∗
2 (D)

) .
Since 0 < S1∗

2 (D) ≤ SM
2 ≤ S2∗

2 (D) and using Hypothesis 2 one obtains

S1∗
2

′
(D) > 0 and S2∗

2
′
(D) < 0. Thus S1∗

2 (D) is increasing S2∗
2 (D) is decreas-

ing. One has:

X i
2

′
(D) = − 1

k3α
Si∗
2

′
(D), i = 1, 2;

X1∗
2

′
(D) = − 1

k3α

(
k2
k1

S∗
1
′(D) + S1∗

2
′
(D)

)
.

Thus X1
2 (D) and X1∗

2 (D) are decreasing and X2
2 (D) is increasing. Notice

that:

X2∗
2

′
(D) = − 1

k3α

(
k2
k1

S∗
1
′(D) + S2∗

2
′
(D)

)
.

is the sum of a positive and a negative function. Thus X2∗
2 (D) is not

monotonous. This ends the proof of the lemma.

Appendix A.2. Proof of Proposition 1

The equilibrium points are solutions of the nonlinear algebraic system

(6-9). We are looking for nonnegative solutions (S1, X1, S2, X2) of the above

system. Equation (7) possesses the trivial solution:

X1 = 0, (A.1)

and the nontrivial solution:

S1 = S∗
1(D). (A.2)
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Then solving (6) with (A.1) leads to:

S1 = S1in, (A.3)

and solving (6) with (A.2) leads to:

X1 =
1

k1α

(
S1in − S∗

1(D)
)
= X∗

1 (D), (A.4)

which is nonnegative if and only if S1in ≥ S∗
1(D). Equation (9) possesses the

trival solution:

X2 = 0, (A.5)

and the nontrivial solutions:

S2 = Si∗
2 (D), i = 1, 2. (A.6)

Then solving (8) with (A.1), (A.3) and (A.5) leads to:

S2 = S2in. (A.7)

The values (A.1), (A.3), (A.5) and (A.7) are the components of E0
1 . Similarly,

solving (8) with (A.1), (A.3) and (A.6) leads to:

X2 =
1

k3α

(
S2in − Si∗

2 (D)
)
= X i

2(D), i = 1, 2; (A.8)

which is nonnegative if and only if Si∗
2 (D) ≤ S2in. The values (A.1), (A.3),

(A.6) and (A.8) are the components of Ei
1(D). On the other hand, solving

(8) with (A.2), (A.4) and (A.5) leads to:

S2 = S2in + k2αX
∗
1 (D) = S∗

2in(D). (A.9)

The values (A.2), (A.4) and (A.5) and (A.9) are the components of E0
2(D).

Similarly, solving (8) with (A.2), (A.4) and (A.6) leads to:

X2 =
1

k3α

(
S∗
2in(D)− Si∗

2 (D)
)
= X i∗

2 (D), i = 1, 2, (A.10)
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which are nonnegative if and only if Si∗
2 (D) ≤ S∗

2in(D). The values (A.2),

(A.4), (A.6) and (A.10) are the components of Ei
2(D). This ends the proof

of the proposition.

Appendix A.3. Proof of Theorem 1

Hyperbolic equilibria:

We compute the Jacobian matrix of system (1-4). This matrix as a block-

diagonal structure:

J =

⎡
⎣ A 0

C B

⎤
⎦ ,

where:

A =

⎡
⎣ −D − k1μ

′
1 (S1)X1 −k1μ1 (S1)

μ′
1 (S1)X1 μ1 (S1)− αD

⎤
⎦ ,

B =

⎡
⎣ −D − k3μ

′
2 (S2)X2 −k3μ2 (S2)

μ′
2 (S2)X2 μ2 (S2)− αD

⎤
⎦ .

Hence, the eigenvalues of J are the eigenvalues of A and the eigenvalues of

B. Equilibria stability is summarized in Table A.3.

Non Hyperbolic equilibria:

Let us give the details of the proof in the case 2.12. The other cases can be

studied similarly (see Fig. A.13).

Assume that S1∗
2 (D) < S2in < S2∗

2 (D) = S∗
2in(D) as shown in Fig. A.13,

case 2.12, then X2∗
2 (D) = 0, X1∗

2 (D) > 0 and X1
2 (D) > 0. Therefore

(see Proposition 1), the system has four equilibria E0
1 , E

1
1(D), E1

2(D) and

E2
2(D) = E0

2(D). Using the linearization as in proof of Hyperbolic Equilibria,

we obtain that E0
1 , E

1
1(D), E1

2(D) are hyperbolic.
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Equilibria Evaluated matrices A and B Conditions of stability

E0
1

A=

⎡
⎣−D −k1μ1 (S1in)

0 μ1 (S1in)− αD

⎤
⎦

B=

⎡
⎣−D −k3μ2 (S2in)

0 μ2 (S2in)− αD

⎤
⎦

tr(A) < 0 if S1in < S∗
1 , det(A) > 0

tr(B) < 0 if S2in < S1∗
2 or S2in > S2∗

2 , det(B) > 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E0
1 is stable if S1in < S∗

1 and

(S2in < S1∗
2 or S2in > S2∗

2 ),

E0
1 is unstable if S1in > S∗

1 or

(S1in < S∗
1 and S1∗

2 < S2in < S2∗
2 ).

Ei
1,

i = 1, 2

A=

⎡
⎣−D −k1μ1 (S1in)

0 μ1 (S1in)− αD

⎤
⎦

B=

⎡
⎣−D − k3μ

′
2

(
Si∗
2

)
Xi

2 −k3αD

μ′
2

(
Si∗
2

)
Xi

2 0

⎤
⎦

tr(A) < 0 and det(A) > 0 if S1in < S∗
1

tr(B) < 0 and det(B) > 0 at E1
1

det(B) < 0 at E2
1

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E1
1 is stable ,

E2
1 is unstable ,

Ei
1 are both unstable if S1in > S∗

1 .

E0
2

A=

⎡
⎣−D − k1μ

′
1 (S

∗
1 )X

∗
1 −k1αD

μ′
1 (S

∗
1 )X

∗
1 0

⎤
⎦

B=

⎡
⎣−D −k3μ2 (S

∗
2in)

0 μ2 (S
∗
2in)− αD

⎤
⎦

tr(A) < 0 and det(A) > 0

tr(B) < 0 and det(B) > 0 if S∗
2in < S1∗

2 or S∗
2in > S2∗

2

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E0
2 is stable if S1in > S∗

1 and

(S∗
2in < S1∗

2 or S∗
2in > S2∗

2 ).

E0
2 is unstable if S1in > S∗

1 and

S1∗
2 < S∗

2in < S2∗
2 .

Ei
2,

i = 1, 2

A=

⎡
⎣−D − k1μ

′
1 (S

∗
1 )X

∗
1 −k1αD

μ′
1 (S

∗
1 )X

∗
1 0

⎤
⎦

B=

⎡
⎣−D − k3μ

′
2

(
Si∗
2

)
Xi∗

2 −k3αD

μ′
2

(
Si∗
2

)
Xi∗

2 0

⎤
⎦

tr(A) < 0 and det(A) > 0

tr(B) < 0 and det(B) > 0 at E1
2

det(B) < 0 at E2
2

⇒
⎧⎨
⎩ E1

2 is stable ,

E2
2 is unstable .

Table A.3: Stability of hyperbolic equilibria of the system (1-4)
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S2S
2
in

S
∗2
in
=
S
2∗2

S
1∗2

μ2(S2)

αD

case 2.15

S2S
2
in

S
∗2
in

S
1∗2
=
S
2∗2

μ2(S2)

αD

case 2.14

S2S
2
in
=
S
2∗2

S
∗2
in

S
1∗2

μ2(S2)

αD

case 2.13

S2S
2
in

S
∗2
in
=
S
2∗2

S
1∗2

μ2(S2)

αD

case 2.12

S2S
2
in

S
∗2
in

S
1∗2
=
S
2∗2

μ2(S2)
αD

case 2.11

S2S
∗2
in
=
S
2∗2

S
2
in
=
S
1∗2

μ2(S2)

αD

case 2.10

S2S
∗2
in

S
2
in
=
S
1∗2

S
2∗2

μ2(S2)

αD

case 2.9

S2S
∗2
in

S
2
in
=
S
1∗2

S
2∗2

μ2(S2)

αD

case 2.8

S2S
∗2
in
=
S
1∗2

S
2
in

S
2∗2

μ2(S2)

αD

case 2.7

Figure A.13: Different cases when two of the four values S1∗
2 (D), S2∗

2 (D), S2in and S∗
2in(D)

are equal (coalescence of equilibria).
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Appendix A.4. Proof of Theorem 2

System (11) is an asymptotically autonomous system which converges to

(13). Since this last system has a finite number of hyperbolic equilibria and

has no polycycles, all solutions of (11) converge to the equilibria of (13) and

the set of solutions converging to E2
2 is of measure 0. This ends the proof of

the theorem.

Appendix A.5. Proof of Proposition 2

The equilibria ξ12 and ξ22 are ξ12(D) =
(
S1∗
2 (D), X̃1

2 (D)
)

and ξ22(D) =(
S2∗
2 (D), X̃2

2 (D)
)

respectively. The distance MHB(D) = ξ22(D) − ξ12(D) is

given by:

MHB(D) =

√(
S2∗
2 (D)− S1∗

2 (D)
)2

+
(
X̃2

2 (D)− X̃1
2 (D)

)2

=

√(
S2∗
2 (D)− S1∗

2 (D)
)2

+ 1
k23α

2

(
S̃2in − S2∗

2 (D)− S̃2in + S1∗
2 (D)

)2

.

Hence

MHB(D) =

√
1 +

1

k2
3α

2

(
S2∗
2 (D)− S1∗

2 (D)
)
.

Appendix A.6. Proof of Proposition 3

The equilibria E1
2 and E2

2 are E
1
2(D) =

(
S∗
1 , X

∗
1 (D), S1∗

2 (D), X1∗
2 (D)

)
and

E2
2(D) =

(
S∗
1 , X

∗
1 (D), S2∗

2 (D), X2∗
2 (D)

)
respectively.

The distance M(D) = E2
2(D)− E1

2(D) is given by:

M(D) =

√(
S2∗
2 (D)− S1∗

2 (D)
)2

+
(
X2∗

2 (D)−X1∗
2 (D)

)2

=

√(
S2∗
2 (D)− S1∗

2 (D)
)2

+ 1
k23α

2

(
S∗
2in(D)− S2∗

2 (D)− S∗
2in(D) + S1∗

2 (D)
)2

.
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Hence

M(D) =

√
1 +

1

k2
3α

2

(
S2∗
2 (D)− S1∗

2 (D)
)
.
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