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Abstract

In this paper, we are concerned with the numerical solution of highly-oscillatory Hamiltonian systems
with a stiff linear part. We construct an averaged system whose solution remains close to the exact one
over bounded time intervals, possesses the same adiabatic and Hamiltonian invariants as the original sys-
tem, and is non-stiff. We then investigate its numerical approximation through a method which combines
a symplectic integration scheme and an acceleration technique for the evaluation of time-averages devel-
opped in [CCC + 05]. Eventually, we demonstrate the efficiency of our approach on two test problems
with one or several frequencies.
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1 Introduction

There are many different systems in nature whose evolution is accurately described by Hamilton’s equations.
These are obtained from a variational principle and can be actually derived from a single scalar function,
called the Hamiltonian, which is an invariant of the problem. Physically, it represents the (constant) energy
of the system. Hamiltonian systems have the fundamental property that their exact flow is a symplectic
transformation (see for instance [HLW06]) and often behave in a very remarkable way (as explained by
the celebrated theory of Kolmogorov, Arnold and Moser [Arn63, Kol54, Mos62]). These features motivate,
in accordance with the aims of geometric integration, the introduction of symplectic numerical flows that
approximate the exact flow when, as it occurs in practice, no closed expression of the solution can be found.
Symplectic integration methods preserve the symplectic structure of the Hamiltonian system and it has been
shown that they also preserve a modified Hamiltonian function over exponentially long intervals of time. The
theory sustaining this remarkable result, known as backward error analysis [HL00a, Rei99], is the key to
many theoretical results describing the qualitative behaviour of numerical schemes applied to Hamiltonian
systems.
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In this paper, we are concerned more specifically with Hamiltonian systems whose solution is highly-
oscillatory. A simple yet representative model of Hamiltonian system whose solutions have highly-oscillatory
behaviour is given by the second-order differential system

ẍ(t) + Ω2x(t) = g(x(t)), (1.1)

where x(t) = (x1(t), x2(t)) ∈ Rm × Rd depends on time t ≥ 0 and Ω is a positive semi-definite
matrix with some large eigenvalues, while g(x) = −∇U(x) derives from a potential function U(x) . The
Hamiltonian associated with system (1.1) is

H(x, ẋ) =
1
2
‖ẋ‖2 +

1
2
‖Ωx‖2 + U(x).

Note that the reason for the above splitting x(t) = (x1(t), x2(t)) becomes clear later in this text.
Dealing with highly-oscillatory systems leads to the following difficulties. Firstly, and even in the purely

linear case ( g ≡ 0 ), getting a bounded error propagation by means of a given explicit numerical method,
requires the step size h be restricted according to

hω < C,

where C is a constant that depends on the numerical method, while ω is the largest eigenvalue of Ω . This
constraint ceases to be numerically realistic whenever ω becomes large. On top of that, in applications to
molecular dynamics for instance, fast forces are crudely modelized here by the harmonic term −Ω2x (short-
range interactions), and they are much cheaper to evaluate than slow forces deriving from U (long-range
interactions): in this case, it seems highly desirable to design numerical methods for which the number of
evaluations of slow forces is not (too much) affected by the presence of fast forces, and the constraint hω < C
becomes even more prohibitive. Lastly, backward error analysis, which is the basic tool for obtaining large
time error estimates in the present Hamiltonian situation, anyhow requires hω � 1 . Again, as ω increases,
this constraint cannot be fulfilled in practice, and one cannot draw any conclusion from the existence of a
modified Hamiltonian system (see above), in terms of error bounds or so. In any circumstance, an alternative
theory has to be proposed in the highly-oscillatory case.

Recently, Hairer and Lubich [HL00b] have introduced the so-called modulated Fourier expansion, which
brings new light on the behaviour of highly-oscillatory Hamiltonian systems. In their approach they consider
the particular case when Ω is block-diagonal with two blocks, the first block corresponding to the zero
frequency and the other one being scaled by a large parameter, so that the original Hamiltonian system is
assumed to split into

d2

dt2

(
x1(t)
x2(t)

)
+

1
ε2

(
0 0
0 A

)(
x1(t)
x2(t)

)
= g(x1(t), x2(t)). (1.2)

Here A is given and positive definite, ε > 0 is a small scaling parameter, and x1 may be seen as the slow
component while x2 is the fast component in the original system. This setting will as well constitute our
framework in the present paper. The work [HL00b] has been later extended by Cohen, Hairer and Lubich
[CHL03, CHL05]. Their contribution explains the good behaviour of certain Gautschi type methods [Gau61,
Deu79, GASSS99, HL99, HL00b], as far as preservation of the total energy H , and almost invariance of
oscillatory energies (or adiabatic invariants) are concerned. Roughly speaking, the oscillatory energy in (1.2)
is the energy

‖ẋ2(t)‖2 +
1
ε2
‖A1/2x2(t)‖2
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of the harmonic oscillator attached with the fast component x2 in system (1.2). It somehow is the fast
oscillatory part of the total energy

H(x, ẋ) =
1
2
‖ẋ1(t)‖2 +

1
2
‖x2(t)‖2 +

1
2ε2
‖A1/2x2(t)‖2 + U(x1(t), x2(t)).

Even more, it turns out that rationally independent eigenvalues of A1/2 actually give rise to independent
oscillatory energies: they are obtained by decomposing x2 onto the various eigenspaces of A1/2 , or, equiv-
alently, by splitting the oscillatory signal x2(t) into components which oscillate at rationally independent
frequencies. The name adiabatic invariant then stems from the fact that these oscillatory energies are either
almost constant in time, or at least slowly varying functions of time when solving (1.2). As a last point of
terminology, let us mention that in this context, energy exchange refers to the exchange of energy between the
oscillatory energies, i.e. between the various components of x2(t) which oscillate at rationally independent
frequencies.

Now, a careful study (see [HLW06] Chapter XIII.2.) shows that none of the above mentioned methods
has perfect energy conservation: for values of the stepsize such that hω is close to a mutiple of π the errors
become large. This is due to a resonance effect between the step-size and the natural eigenfrequencies of
the system. Very recently, Grimm and Hochbruck have built up a new Gautschi type method which provably
carries no resonant stepsize [GH06]. Yet the counterpart of this favorable feature is a loose reproduction of
the energy exchange between oscillatory components.

In summary, an important challenge for a numerical method in this context is to approximate adequately
both the adiabatic invariants and the energy exchange, while avoiding resonances.

In this paper, we introduce a new numerical method based on an averaged version of the original equa-
tions. It stems from a preconditionning of the Hamiltonian by the fast variables. This introduces an explicit
representation of the highly oscillatory components, which can be averaged over a period (and somehow
filtered out), by artificially decoupling the two time-scales in the problem. In Section 2, we justify the pro-
cedure and give it a sound ground by comparing the exact solutions of the original system and the averaged
one. As expected, the error on the solution itself grows unbounded rather quickly as time increases. Besides,
the solution of the averaged system is an O(ε) perturbation of the true solution on bounded time intervals,
no matter how small the step size. But as usual in this context, the accuracy in terms of individual trajectories
is not the point. Quite strikingly, the error on the Hamiltonian remains bounded over infinite time. More-
over, the adiabatic invariants of the original system become true quadratic invariants of the averaged one.
This feature is the key to all further results since it allows for the construction of a numerical method that
preserves adiabatic invariants, which is our main purpose. The method we propose involves the computation
of a highly-oscillatory integral which constitutes the largest share of its cost and we address accordingly its
numerical approximation. In Section 3, we consider the extension of this procedure to the case of multiple
frequencies and show that all results carry on easily. Finally, in Section 4, we demonstrate on two simple test
problems the validity of our theoretical results and hopefully the potential of our method, which preserves
the total energy and the adiabatic invariants and does not suffer from any resonance.
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2 A simplified model with one frequency

As a first step, we consider, as it has become common in the litterature (see for instance [HLW06]), a Hamil-
tonian system of the form

ẍ1 = g1(x1, x2) = −∇1U(x1, x2),

ẍ2 +
1
ε2
x2 = g2(x1, x2) = −∇2U(x1, x2),

(2.1)

where x1 ∈ Rm and x2 ∈ Rd , the function U(x1, x2) is smooth1 and real-valued, while ε ∈ (0, ε0) is a
small parameter. To this system is associated the Hamiltonian2

H(x1, x2, ẋ1, ẋ2) =
‖x2‖2

2ε2
+
‖ẋ1‖2

2
+
‖ẋ2‖2

2
+ U(x1, x2).

In the whole paper, we will assume that the initial values x0
1 , ẋ0

1 , x0
2 , ẋ0

2 have bounded energy, in that
they satisfy the following condition, for some given positive ε0 :

∀ ε ∈ (0, ε0),
‖x0

2‖2

2ε2
+
‖ẋ0

1‖2

2
+
‖ẋ0

2‖2

2
≤ E, (2.2)

where E > 0 is a fixed number, independent of ε .
For the sake of conciseness, we will often work with the complex and rescaled variables

y1 = x1 + iẋ1, y2 =
x2√
ε

+ i
√
εẋ2,

for which the equations (2.1) can be rewritten as
ẏ1 = =(y1) + ig1 (<(y1), µ<(y2)) ,

ẏ2 = − i
ε
y2 + iµg2 (<(y1), µ<(y2)) ,

(2.3)

where < (resp. = ) denotes the real (resp. imaginary) part of a complex number, and where we have denoted
for convenience

µ =
√
ε.

To this system is associated3 the real-valued Hamiltonian with complex variables

HC(y1, y2) = ‖=(y1)‖2 +
‖y2‖2

ε
+ 2U (<(y1), µ<(y2)) , (2.4)

and the bounded energy condition (2.2) reads

‖=(y0
1)‖2 +

‖y0
2‖2

ε
≤ 2E. (2.5)

1Here and below, we shall not provide details on the regularity required for U in each specific intermediate result, since our final
and main result anyhow requires U possesses analytic regularity.

2Here and in the sequel, the norm used is the Euclidean norm in the spaces Rm and Rd or Cm and Cd .
3Through the equations ẏj = −i ∂HC

∂ȳj
, j = 1, 2 .
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Note that under assumption (2.5), the initial value y0 satisfies ‖y0
2‖ = O(µ) .

Eventually, we will sometimes use the “pre-conditionned” variables (in a similar spirit, see [BL07b,
BL07a])

z1 = y1, z2 = eit/εy2,

for which the system takes the simple form{
ż1 = =(z1) + ig1

(
<(z1), µ<(e−it/εz2)

)
,

ż2 = iµeit/εg2
(
<(z1), µ<(e−it/εz2)

)
,

(2.6)

and the bounded energy condition (2.2) reads

‖=(z0
1)‖2 +

‖z0
2‖2

ε
≤ 2E.

Equations (2.6) are non-stiff (the term in 1/ε has disappeared), yet non-autonomous. They are associated
with the time-dependent Hamiltonian

KC(t/ε; z1, z2) = ‖=(z1)‖2 + 2U
(
<(z1), µ<(e−it/εz2)

)
. (2.7)

For brevity, we also write system (2.6) as
ż = F (t/ε, z), (2.8)

where z = (z1, z2) ∈ Rm+d , and the periodic function4 F (τ, z) = (F1(τ, z), F2(τ, z)) ( τ ∈ T ) is defined
by {

F1(τ, z) = =(z1) + ig1
(
<(z1), µ<(e−iτz2)

)
,

F2(τ, z) = iµeiτg2
(
<(z1), µ<(e−iτz2)

)
.

(2.9)

The main ingredient in this paper is to replace the above system ż = F (t/ε, z) by the averaged one

Ż = 〈F 〉(Z), (2.10)

where the average value 〈F 〉 of F is defined by

〈F 〉(Z) := lim
T→∞

1
T

∫ T

0
F (τ, Z) dτ =

1
2π

∫ 2π

0
F (τ, Z) dτ.

System (2.10) is now a standard non-stiff system.
This replacement is relevant: it is indeed a well-known fact (which we actually prove below for the sake

of completeness) that systems of the form ż = F (t/ε, z) do converge towards Ż = 〈F 〉(Z) as ε→ 0 , the
order of convergence being of the order of O(ε) over any finite time interval, see e.g. [Arn89].

The surprising point is, in the next section we show that even if the solution of (2.10) approximates the
solution of (2.6) over bounded time intervals only, it still has a Hamiltonian structure, it possesses the same
adiabatic invariants as the exact solution of (2.6) over unbounded time intervals, and it preserves the

4In relation with the modulated Fourier expansion, let us note in passing that the function F we introduce here, obtained by
conjugating the original function g through the oscillatory factor eiτ , is such that its Fourier coefficients - in τ - are roughly the
coefficients of the U in [HLW06].
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initial energy (2.7) up to ε over long time as well, provided the potential function U satisfies some mild
assumptions. System (2.10) thus is nicely approximated by its averaged version

Ż1 = =(Z1) + i
1

2π

∫ 2π

0
g1
(
<(Z1), µ<(e−isZ2)

)
ds,

Ż2 = iµ
1

2π

∫ 2π

0
eisg2

(
<(Z1), µ<(e−isZ2)

)
ds,

(2.11)

a Hamiltonian system with Hamiltonian

〈KC〉(Z1, Z2) = ‖=(Z1)‖2 +
1
π

∫ 2π

0
U
(
<(Z1), µ<(e−isZ2)

)
ds. (2.12)

Example 2.1 As an example, we consider the Fermi-Pasta-Ulam system, as described in [HLW06], i.e. with
Hamiltonian

H(q1, q2, p1, p2) =
1
2
pT1 p1 +

1
2
pT2 p2 +

1
2ε2

qT2 q2 + U(q1, q2), (2.13)

where

U(q1, q2) =
1
4

{
(q1,1 − q2,1)4 +

d−1∑
i=1

((q1,i+1 − q1,i)− (q2,i+1 + q2,i))
4 + (q1,d + q2,d)4

}
.

Computing exactly the integrals in (2.11) and going back to the original variables leads to the following
expression for the averaged Hamiltonian 〈K〉 :

〈K〉(q1, q2, p1, p2) =
1
2
pT1 p1 + Vε(v1, v2), (2.14)

with

Vε(q1, q2) =
1
4
(
q41,1 +

d−1∑
i=1

(q1,i+1 − q1,i)4 + q41,d
)

+
3
4
q21,1(q22,1 + ε2p2

2,1) +
3
4

(q1,d)2(q22,d + ε2p2
2,d)

+
3
4

d−1∑
i=1

(q1,i+1 − q1,i)2((q2,i+1 + q2,i)2 + ε2(p2,i+1 + p2,i)2)

+
3
32

(q22,1 + ε2p2
2,1)2 +

3
32
ε2(p2,i+1 + p2,i)2 + (q22,d + ε2p2

2,d)
2 +

3
32

d−1∑
i=1

(q2,i+1 + q2,i)2.

2.1 Approximation over bounded time intervals

Lemma 2.2 Let F (τ, z) be the complex function (2.9) of τ ∈ T and z ∈ Cm+d . Assume that the potential
function U lies in C2

(
Rd × Rd

)
. Take a fixed vector z0 ∈ Cm+d .

On the other hand, for any ε ∈ (0, ε0) , let z(t) = (z1(t), z2(t)) be the solution of the oscillatory system
(2.8)

ż = F (t/ε, z), z(0) = z0 ∈ Cm+d,
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and let Z = (Z1(t), Z2(t)) be the solution of the average system (2.11)

Ż = 〈F 〉(Z), Z(0) = z0 ∈ Cm+d.

Then, there exists a time T ∗ > 0 and a constant C > 0 , independent of ε ∈ (0, ε0) and µ ∈ (0, µ0) ,
such that the solutions z(t) and Z(t) exist until time T ∗ > 0 and satisfy for any ε ∈ (0, ε0) and
µ ∈ (0, µ0) , the relation

∀ t ∈ (0, T ∗), ‖z(t)‖ ≤ C, and ‖Z(t)‖ ≤ C.

Besides, there exists a constant C such that for any ε ∈ (0, ε0) and µ ∈ (0, µ0) , we have

∀ t ∈ (0, T ∗), ‖z1(t)− Z1(t)‖ + µ−1‖z2(t)− Z2(t)‖ ≤ Cε. (2.15)

Remark 2.3 Note that the above statement does not use the bounded energy assumption (2.5), according
to which z0

1 = y0
1 = O(1) and z0

2 = y0
2 = O(

√
ε) , and only requires the milder z0

1 = y0
1 = O(1) ,

z0
2 = y0

2 = O(1) .

Proof. The arguments being standard, we only sketch the proof.
Firstly, as U has C2 regularity, it is clear that g = −∇U belongs to C1 , hence is locally Lipschitz.
Examining the explicit value of F (τ, z) in terms of g (relation (2.9)), it appears that F is locally Lipschitz
in z , independently of τ , of ε ∈ (0, ε0) , and of µ ∈ (0, µ0) , and so is 〈F 〉 . The first part of the statement
follows.
Secondly, whenever t ∈ (0, T ∗) , we may write

ż(t)− Ż(t) = F (t/ε, z(t))− 〈F 〉(Z(t))

= 〈F 〉(z(t))− 〈F 〉(Z(t)) + F (t/ε, z(t))− 〈F 〉(z(t)).

On top of that, there exists a function J(τ, z) = (J1(τ, z), J2(τ, z)) from T× Cm+d to Cm+d , which has
at least C1 smoothness in τ and z , such that for all τ ∈ T and z ∈ Cm+d ,

F (τ, z)− 〈F 〉(z) = ∂τJ(τ, z),

(it suffices to take J(τ, z) as the antiderivative in τ of the left-hand-side), and using the explicit value of F
again, we have the estimate ‖J2(τ, z(t))‖ ≤ Cµ whenever t ∈ (0, T ∗) for some constant C independent
of ε , and µ , and similarly ‖∂zJ2(τ, z(t))‖ ≤ Cµ . Therefore, we may write

F (t/ε, z(t))− 〈F 〉(z(t)) = ε
d
dt
(
J(t/ε, z(t))

)
− ε∂zJ(t/ε, z(t)) · F (t/ε, z(t)),

and for all t ∈ (0, T ∗) , we recover

z(t)−Z(t) = εJ(t/ε, z(t))−εJ(0, z0)+
∫ t

0

(
〈F 〉(z(s))−〈F 〉(Z(s))−ε∂zJ(s/ε, z(s))·F (s/ε, z(s))

)
ds.

This yields the result using the Gronwall Lemma, and the regularity at hand for F , 〈F 〉 , and J .

Solving (2.11) thus provides us with an ε -close approximation of the solution of (2.3) over finite times.
Going back to the Y -variables, and as a straight consequence of Lemma 2.2, we obtain the following
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Corollary 2.4 Let F (τ, z) be the complex function (2.9) of τ ∈ T and z ∈ Cm+d . Assume that the
potential function U lies in C2

(
Rd × Rd

)
. Take a fixed vector y0 ∈ Cm+d and define z0 = y0 . Define

y(t) = (y1(t), y2(t)) as the solution to (2.3) with initial value y0 , and Z(t) = (Z1(t), Z2(t)) as the
solution to (2.11) with initial value z0 (and µ =

√
ε ). Lastly, define the function

Y (t) = (Y1(t), Y2(t)) = (Z1(t), e−it/εZ2(t)).

Then, there exists a time T ∗ > 0 and a constant C > 0 , independent of ε ∈ (0, ε0) , such that the
solutions y(t) and Y (t) exist until time T ∗ > 0 and satisfy for any ε ∈ (0, ε0) , the relation

∀ t ∈ (0, T ∗), ‖y(t)‖ ≤ C, and ‖Y (t)‖ ≤ C.

Besides, there exists a constant C such that for any ε ∈ (0, ε0) , we have

∀t ∈ (0, T ∗), ‖y1(t)− Y1(t)‖+ ε−1/2‖y2(t)− Y2(t)‖ ≤ Cε. (2.16)

Remark 2.5 Again, the above statement does not use the bounded energy assumption (2.5), and only requires
the milder z0

1 = y0
1 = O(1) , z0

2 = y0
2 = O(1) .

2.2 Hamiltonian and adiabatic invariants over long-time intervals

Quite remarkably, the adiabatic invariants of the original, oscillatory system (2.8) turn out to be preserved
along the exact solution of the averaged system (2.11), on any time interval, as we now show.

Theorem 2.6 Under the assumptions of Lemma 2.2, let Z(t) = (Z1(t), Z2(t)) be the exact solution of the
averaged Hamiltonian system (2.11). Then, the quantity

‖Z2(t)|2 =
d∑
i=1

|Z2,i(t)|2,

which can be interpreted as an adiabatic invariant, is preserved as long as the solution Z(t) exists, i.e.

‖Z2(t)‖ = ‖Z2(0)‖.

Remark 2.7 As claimed in the introduction, the quantity ‖Z2(t)‖ is the energy carried by the fast oscillating
part Z2(t) of the full vector Z(t) .

Proof. Let X = <(Z1) . We have

d

dt
‖Z2‖2 = 2<(Z∗2 Ż2) = 2µ<

( i

2π

∫ 2π

0
eisZ∗2g2

(
X,µ<(e−isZ2)

)
ds
)
,

where Z∗2 denotes the vector (Z2)T . Noticing that

d
ds
(
<(e−isZ2)

)
=

1
2

d
ds

(e−isZ2 + eisZ̄2) = −i1
2

(e−isz − eisZ̄2) = =(e−isZ2), (2.17)

and using that g2 = −∇2U is real-valued, it is straightforward to obtain

d
dt
‖Z2‖2 =

1
π

∫ 2π

0
=(µe−isZ2)T∇2U(X,µ<(e−isZ2))ds =

1
π

[
U(X,µ<(e−isZ2))

]s=2π

s=0
= 0.
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Based on the above Theorem, the following lemma now refines the bounds at hand on the exact solution
of (2.11).

Lemma 2.8 Under the assumptions of Lemma 2.2, let E > 0 be given, and assume the initial value z0 =
(z0

1 , z
0
2) satisfies the bounded energy relation (2.5). Assume furthermore that the time T ≤ +∞ , is such

that the solution Z(t) = (Z1(t), Z2(t)) of (2.11) with initial value z0 exists until time T , and remains in
a given bounded set for any t ∈ (0, T ) , independently of ε .

Then we have the estimate

∀ε ∈ (0, ε0), ∀t ∈ (0, T ), ‖Z2(t)‖2 = ‖Z2(0)‖2 ≤ 2εE. (2.18)

Moreover there exists a constant C such that

∀ε ∈ (0, ε0), ∀t ∈ (0, T ), |KC(t/ε;Z(t))−KC(0;Z(0))| ≤ Cε, (2.19)

where KC(t/ε, Z) is the Hamiltonian (2.7) associated with the non-averaged system (2.6).

Remark 2.9 In other words, and quite remarkably again, according to the second estimate, the solution
of the averaged system preserves the time-dependent Hamiltonian of the oscillatory system over any time
interval, up to an error of size ε .

Remark 2.10 The existence of a finite value of T such that the assumptions of the Lemma are met, is
guaranteed by Lemma 2.2.

Note that the situation T = +∞ occurs when, say, g is globally Lipschitz, or when the potential
function U is coercive ( U(x1, x2) ≥ ‖x1‖2 + ‖x2‖2 for large values of x ), say.

Proof. Inequality (2.18) is a consequence of the previous theorem, combined with the bounded energy
condition (2.5).
On the other hand, as Z(t) is the exact solution of (2.11), the Hamiltonian function (2.12) is preserved:

∀t ≥ 0, 〈KC〉(Z(t)) = 〈KC〉(Z(0)).

Hence, we have

KC(t/ε;Z(t))−KC(0;Z(0)) = KC(t/ε;Z(t))− 〈KC〉(Z(t))−
(
KC(0;Z(0))− 〈KC〉(Z(0))

)
. (2.20)

By definition of KC (2.7) and of 〈KC〉 (2.12), we have for all Y ∈ Cm+d and all t ≥ 0 ,

KC(t/ε;Y ) − 〈KC〉(Y ) = 2U(<(Y1), µ<(e−it/εY2)) − 1
π

∫ 2π

0
U(<(Y1), µ<(e−isY2)) ds. (2.21)

Using the boundedness of Z(t) and estimate (2.18), according to which Z2(t) has size
√

2εE , we easily
obtain for all t ≥ 0 and s ∈ (0, 2π) ,

|U(<(Z1(t)), µ<(e−it/εZ2(t)))− U(<(Z1(t)), µ<(e−isZ2(t)))| ≤ C
√

2εE,

where C does not depend on ε nor on t . Plugging this inequality into (2.21) and (2.20) then yields the
result.

We can now pull the averaged solution Z(t) back to the original variables. This leads to the following

9



Theorem 2.11 Under the assumptions of Corollary 2.4, let E > 0 be given, and assume the initial value
y0 = (y0

1, y
0
2) satisfies the bounded energy relation (2.5). Define Y (t) as in Corollary 2.4. Assume further-

more that the time T ≤ +∞ is such that Y (t) exists until time T and remains in a given bounded set for
any t ∈ (0, T ) , independently of ε .

Then, we have for any t ∈ (0, T ) the upper-bounds

‖Y2(t))‖2 = ‖Y2(0))‖2 ≤ 2εE, (2.22)

and
|HC(Y1(t), Y2(t))−HC(Y1(0), Y2(0))| ≤ Cε, (2.23)

where HC denotes the Hamiltonian (2.4). and C does not depend on ε .

Remark 2.12 In other words, the reconstructed solution Y (t) obtained from solving the averaged system
preserves both the adiabatic invariant of the original system (first estimate) and its time-dependent Hamilto-
nian up to an error of size ε (second estimate).

Remark 2.13 One may have T = +∞ under the assumptions of Remark 2.10.

Proof. Estimate (2.22) is an immediate consequence of Theorem 2.6. In order to show (2.23), we write,
with the notation of Corollary 2.4,

HC(Y1(t), Y2(t)) =
‖Z2(t)‖

ε
+KC(t/ε, Z1(t), Z2(t)) (2.24)

so that (2.23) appears as a consequence of (2.19).

2.3 Semi-discrete solution

The results of the previous subsection motivate the search for a numerical approximation of the averaged
equations (2.11) in place of the non-averaged ones (2.3). It is to be hoped indeed that one may obtain in
this way a method that preserves both the adiabatic invariant of the original, oscillatory system and its time-
dependent Hamiltonian.

The first step towards this objective is the discretization of integrals contained in equations (2.11) . Given
the integrands are periodic functions, it is well-known that Riemann sums are particularly suited for that. We
shall thus consider the sequence of problems associated with the Hamiltonians

KN
C (Z1, Z2) = ‖=(Z1)‖2 +

2
N

N−1∑
n=0

U
(
<(Z1), µ<(e−i

2nπ
N Z2)

)
, (2.25)

for Z = (Z1, Z2) ∈ Cm+d , which are approximations of Hamiltonian 〈KC〉(Z1, Z2) , see (2.12). The
corresponding system reads

ŻN1 = =(ZN1 ) + i
1
N

N−1∑
n=0

g1

(
<(ZN1 ), µ<(e−i

2nπ
N ZN2 )

)
,

ŻN2 = iµ
1
N

N−1∑
n=0

ei
2nπ
N g2

(
<(ZN1 ), µ<(e−i

2nπ
N ZN2 )

)
.

(2.26)
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In the sequel, we assume that the smooth function U(x) = U(x1, x2) is analytic in the sense that, for a
given constant B0 , there exist constants K0 and R0 such that

∀α ∈ Nm+d, ∀x ∈ Rm+d with ‖x‖ ≤ B0,

∣∣∣∣∣ ∂|α|∂xα
U(x)

∣∣∣∣∣ ≤ α!K0R
−|α|
0 , (2.27)

where |α| = α1 + · · ·+ αm+d and α! = α1! · · ·αm+d! if α = (α1, . . . , αm+d) .

We prove below that the exact solution of this semi-discrete set of equation enjoys similar properties than
the true solution Z(t) to the averaged system (conservation of energy and of the adiabatic invariant).

2.3.1 Approximation over bounded time intervals

We first estimate the difference on finite time intervals between the solutions Z(t) of (2.11) and ZN (t) of
(2.26). The difference ZN (t)− Z(t) turns out to have size µN over bounded time intervals.

Lemma 2.14 Assume that U satisfies (2.27) and let (y0
1, y

0
2) ∈ Cm+d . Suppose that for all ε ∈ (0, ε0) ,

the solutions Z(t) of (2.11) with initial values (y0
1, y

2
0) , and ZN (t) = (ZN1 (t), ZN2 (t)) , N ≥ 1 , of

(2.26) with the same initial values exist until a time T ≤ +∞ . Suppose in addition that these solutions are
uniformly bounded with respect to ε and N , in the following sense:

∀ ε ∈ (0, ε0), ∀N ≥ 1, ∀ t ∈ (0, T ), sup
(
‖ZN (t)‖ , ‖Z(t)‖

)
≤ B, (2.28)

for some constant B ≤ B0 .
Then, for a sufficiently small ε0 , and for any finite time T ∗ < T , there exists a constant C depending

only on T ∗ and B such that

∀0 ≤ t ≤ T ∗, ‖Z1(t)− ZN1 (t)‖ + µ−1‖Z2(t)− ZN2 (t)‖ ≤ CµN . (2.29)

Remark 2.15 As a consequence of the estimates below, the assumptions of the above Lemma are met when-
ever the initial data have norm estimated by B/2 (with B ≤ B0 ), say, and N is sufficiently large (or ε is
sufficiently small).

Proof. Let F (τ, Z) be defined by (2.9), and for all n = 0, . . . , N − 1 , let sn = 2πn
N . We have

Ż1 − ŻN1 = 〈F1〉(Z)− 〈F1〉(ZN )

+ i
1

2π

∫ 2π

0
g1(<(ZN1 ), µ<(e−isZN2 )) ds− i 1

N

N−1∑
n=0

g1(<(ZN1 ), µ<(e−isnZN2 )).

For x1 ∈ Rm and z2 ∈ Cd , the function s 7→ h(s, x1, z2) = g1(x1,<(e−isz2)) is 2π -periodic and can be
expanded as a Fourier series

h(s, x1, z2) =
∑
k∈Z

ĥk(x1, z2)eiks,
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with smooth coefficients ĥk(x1, z2) . Note that, as U is real-valued, we have ĥ−k = ĥk for all k ∈ Z .
Now, we get

1
N

N−1∑
n=0

h(<(ZN1 ), µ<(e−isnZN2 ))− 1
2π

∫ 2π

0
h(<(ZN1 ), µ<(e−isZN2 )) ds

=
∑

k∈Z\{0}

ĥk(<(ZN1 ), µZN2 )
1
N

N−1∑
n=0

eiksn .

Since
1
N

N−1∑
n=0

eiksn =
1
N

N−1∑
n=0

e2iπnk/N =

{
0 if k/N /∈ Z,

1 if k/N ∈ Z,
(2.30)

the previous sum reduces to
2
∑
j∈N∗
<(ĥjN (<(ZN1 ), µZN2 )).

On the other hand, for all k ∈ Z , we have

ĥk(x1, µz2) = − 1
2π

∫ 2π

0
e−iks∂1U

(
x1, µ<(e−isz2)

)
ds.

Expanding the right hand side in µ ∈ (0,
√
ε0) , we find for k ≥ 1 ,

ĥk(x1, µz2) =

− 1
2π

k−1∑
n=0

µn

n!

∫ 2π

0
e−iks∂1∂

n
2U(x1, 0)

(
<(e−isz2), · · · ,<(e−isz2)

)
ds+

µk

k!
Rk(x1, ξz2), (2.31)

where

Rk(x1, ξz2) =
1

2π

∫ 2π

0
e−iks∂1∂

k
2U(x1, ξ<(e−isz2))

(
<(e−isz2), · · · ,<(e−isz2)

)
ds

for some 0 < ξ < µ . In formula (2.31), the integrand is a homogeneous polynomial of degree −(k − 1) ≤
n ≤ k − 1 in eis , multiplied by e−iks , and hence, its average over [0, 2π] is equal to zero. For k = jN
with j ≥ 1 we deduce using (2.28) and (2.27)∣∣∣ĥjN (<(ZN1 ), µZN2 )

∣∣∣ =
µjN

(jN)!

∣∣RjN (<(ZN1 ), ξZN2 )
∣∣ ≤ K0

(
µB

R0

)jN
.

Plugging this estimate into the previous one, we conclude that for µ sufficiently small,∣∣∣∣∣ 1
N

N−1∑
n=0

h(<(ZN1 ), µ<(e−isnZN2 ))− 1
2π

∫ 2π

0
h(<(ZN1 ), µ<(e−isZN2 )) ds

∣∣∣∣∣ ≤ CµN ,
where C is independemt of µ , hence

‖Ż1 − ŻN1 ‖ ≤ ‖〈F1〉(Z)− 〈F1〉(ZN )‖+ CµN .

Estimate (2.29) then follows from Gronwall Lemma. The counterpart for Z2 can be obtained in a similar
fashion.
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Combining this result with Corollary 2.4 allows to pull back the above result in terms of the original y
variables, as follows.

Theorem 2.16 Assume that U satisfies (2.27), and let (y0
1, y

0
2) ∈ Cm+d . For all ε ∈ (0, ε0) , assume that

the solution y(t) = (y1(t), y2(t)) of (2.3) with initial values (y0
1, y

0
2) exists until a time T ≤ +∞ . Assume

moreover that the solution ZN (t) = (ZN1 (t), ZN2 (t)) of (2.26) with N ≥ 2 and with the same initial
values, exists until time T . Eventually, suppose that these solutions are uniformly bounded, in that they
satisfy (2.28) for some B ≤ B0 , whenever ε ∈ (0, ε0) . Define the function Y N (t) = (Y N

1 (t), Y N
2 (t)) =

(ZN1 (t), e−it/εZN2 (t)) .
Then for sufficiently small ε0 , and for any finite time T ∗ < T , there exists a constant C , independent

of ε and t , such that for all ε ∈ (0, ε0) ,

∀0 ≤ t ≤ T ∗, ‖y1(t)− Y N
1 (t)‖+ ε−1/2‖y2(t)− Y N

2 (t)‖ ≤ Cε. (2.32)

Remark 2.17 Again, the assumptions of the Theorem are met whenever the initial data have norm estimated
by B/2 (with B ≤ B0 ), say, and N is sufficiently large (or ε is sufficiently small).

2.3.2 Hamiltonian and adiabatic invariants over long-time intervals

Let us now turn our attention to the conservation of invariants by the semi-discrete solution ZN (t) .
Strictly speaking, the adiabatic invariants of (2.11) are not any longer exact invariants of (2.26). However,

we still are in the very favourable situation where the oscillatory energies remain almost constant over long
intervals of time. This result is of prior importance for our approach.

Theorem 2.18 Assume that U satisfies (2.27). For all ε ∈ (0, ε0) , let ZN (t) = (ZN1 (t), ZN2 (t)) be the
exact solution of (2.26) with initial values (y0

1, y
0
2) satisfying the bounded energy assumption (2.5). Suppose

that the solutions ZN (t) exist until a time T ≤ +∞ , and that there exists a constant B ≤ B0 independent
of ε and N ≥ 3 , such that

∀ t ∈ (0, T ), ‖ZN (t)‖ ≤ B. (2.33)

Then there exist positive constants c0 and C depending only on E and B such that for all ε ∈ (0, ε0) ,
N ≥ 3

∀ 0 ≤ t ≤ min
(

cN0
µNεN/2−2

, T

)
,

∣∣‖ZN2 (t)‖2 − ‖ZN2 (0)‖2
∣∣ ≤ Cε2. (2.34)

Remark 2.19 As before, the assumptions of the Theorem are met, for some finite value of T at least, when-
ever the initial data have norm estimated by B/2 (with B ≤ B0 ), say, and N is sufficiently large (or ε is
sufficiently small).
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Proof. Let X(t) = <(ZN1 (t)) and for 0 ≤ n ≤ N −1 , let sn = 2nπ
N . Using (2.17), we obtain for all time

1
2

d
dt
‖ZN2 ‖2 = <(ZN2

∗
ŻN2 )

= µ<
(
i

1
N

N−1∑
n=0

eisn(ZN2 )∗g2(X,µ<(e−isnZN2 ))
)

=
1
N

N−1∑
n=0

m∑
j=1

=(µe−isnZN2,j)
∂U

∂x2,j
(X,µ<(e−isnZN2 ))

=
1
N

N−1∑
n=0

d
ds
U(X,µ<(e−isZN2 ))

∣∣∣∣
s=sn

.

For fixed x1 ∈ Rm , z2 ∈ Cd , the function s 7→ f(s, x1, z2) = U(x1,<(e−isz2)) is 2π -periodic and can
be expanded as a Fourier series

f(s, x1, z2) =
∑
k∈Z

f̂k(x1, z2)eiks,

with smooth coefficients f̂k(x1, z2) . As U is real valued, f̂−k = f̂k for all k ∈ Z . Hence, we get

1
N

N−1∑
n=0

d
ds
U(X,µ<(e−isnZN2 )) =

∑
k∈Z

(ik)f̂k(X,µZN2 )
1
N

N−1∑
n=0

eiksn ,

and, using (2.30),
1
2

d
dt
‖ZN2 ‖2 = 2

∞∑
j=1

(jN)=
(
f̂jN (X,µZN2 )

)
. (2.35)

Now, as in the proof of Lemma 2.14, estimates (2.33) and (2.27) imply∣∣∣f̂jN (X,µZN2 )
∣∣∣ =

µjN

(jN)!

∣∣RjN (X, ξZN2 )
∣∣ ≤ K (µ‖ZN2 ‖

R

)jN
.

Owing to bound (2.33), we can assume that ε0 is such that for all µ ∈ (0,
√
ε0) ,(

µ‖ZN2 ‖
R

)N
<

1
2
,

and hence we get from (2.35) ∣∣∣∣ d
dt
‖ZN2 ‖2

∣∣∣∣ ≤ CN (µ‖ZN2 ‖R

)N
(2.36)

for some constant C depending on K . Now, for given numbers a and r > 1 , the exact solution of the
ODE ẋ = axr is given by

x(t) = x0(1− xr−1
0 (r − 1)at)−

1
r−1 ,

so that for t ≤ 1
2(xr−1

0 (r − 1)a)−1 , we have x(t) ≤ 2x0 . Applying this estimate with a = CNµNR−N ,
r = N/2 > 1 and x0 = 2Eε , we can show from (2.5) and (2.36) that there exists a constant c independent
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of ε and N such that

∀ t ≤ min
(

cN0
µNεN/2−2

, T

)
, ‖ZN2 (t)‖2 ≤ 4Eε.

Plugging this estimate into (2.36), we obtain similarly the existence of constants c and C such that

∀ t ≤ min
(

cN0
µNεN/2−2

, T

)
,

∣∣‖ZN2 (t)‖2 − ‖ZN2 (0)‖2
∣∣ ≤ Cε2.

This completes the proof.

As before, it now becomes an easy task to pull back the above estimates in terms of the original y -
variables.

Theorem 2.20 Assume that U satisfies (2.27). For N ≥ 3 and ε ∈ (0, ε0) , let ZN (t) = (ZN1 (t), ZN2 (t))
be the exact solution of (2.26) with initial values (y0

1, y
0
2) satisfying the bounded energy assumption (2.5).

Assume that ZN (t) exists until a time T ≤ +∞ , and satisfies (2.33) for some B ≤ B0 . Define Y N (t) =
(ZN1 (t), e−it/εZN2 (t)) .

Then there exist positive constants c0 and C such that for all ε ∈ (0, ε0) and all N ≥ 3 ,

∀ 0 ≤ t ≤ min
(

cN0
µNεN/2−2

, T

)
,

∣∣‖Y N
2 (t)‖2 − ‖Y N

2 (0)‖2
∣∣ ≤ Cε2, (2.37)

and

∀ 0 ≤ t ≤ min
(

cN0
µNεN/2−2

, T

)
, |HC(Y N

1 (t), Y N
2 (t))−HC(y0

1, y
0
2)| ≤ Cε, (2.38)

where HC is the Hamiltonian (2.4).

Remark 2.21 In other words, the semi-discrete solution Y N (t) obtained through the solution of the aver-
aged system (2.11) preserves both the energy and the adiabatic invariant of the original oscillatory system
(2.3), up to error terms of size ε2 resp. ε .

Remark 2.22 As usual, the assumptions of the Theorem are met, for some finite value of T , whenever
the initial data have norm estimated by B/2 (with B ≤ B0 ), say, and N is sufficiently large (or ε is
sufficiently small).

Proof. The first inequality follows from the previous theorem. Using (2.24) and the preservation of Hamil-
tonian (2.25), we next obtain

HC(Y N
1 (t), Y N

2 (t))−HC(y0
1, y

0
2) = 2(∆U)(t)− 2(∆U)(0) +

‖ZN2 (t)‖2 − ‖ZN2 (0)‖2

ε
,

where

∆U = U
(
<(ZN1 ), µ<(e−it/εZN2 )

)
− 1
N

N−1∑
n=0

U
(
<(ZN1 ), µ<(e−i

2nπ
N ZN2 )

)
,

=
1
N

N−1∑
n=0

(
U
(
<(ZN1 ), µ<(e−it/εZN2 )

)
− U

(
<(ZN1 ), µ<(e−i

2nπ
N ZN2 )

))
.
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According to the previous theorem, as long as t ≤ min
(

cN0
µNεN/2−2 , T

)
, the solution ZN (t) remains

bounded and satisfies the estimates (2.33) and (2.34). Hence, as in the proof of Lemma 2.8, we can show that

∀ t ≤ min
(

cN0
µNεN/2−2

, T

)
, |(∆U)(t)− (∆U)(0)| ≤ Cε

for a constant C independent of N and ε . We now get the result using (2.34).

2.4 Fully-discrete solution

We now consider the time discretization of (2.26) by a symplectic method. We denote by FN (Z) =
(FN1 (Z), FN2 (Z)) the right-hand side of (2.26) and, for a given step size h > 0 , by ΦN

h (·) a symplec-
tic integrator of order r applied to this system (hence ΦN

h represents one elementary step of the numerical
integration). Finally, we define the numerical approximation as the sequence

ZN,0 = y0 = (y0
1, y

0
2) ∈ Cm+d, (2.39)

ZN,n = ΦN
h (ZN,n−1), n ≥ 1. (2.40)

This entirely defines the numerical method we retain in this article (up to the choice of a symplectic numer-
ical integrator ΦN

h ). Note that each computation of the vector field which defines ZN , derived from the
Hamiltonian KN

C (see (2.25) and (2.26)), roughly has a cost of the order N . Note also that solving the
semi-discrete problem by a standard, non-symplectic scheme would be pointless: energy would drift in that
case.

Theorem 2.23 Assume that U satisfies (2.27), and let h0 > 0 . For all ε ∈ (0, ε0) and h ∈ (0, h0) , let
ZN,n = (ZN,n1 , ZN,n2 ) be the numerical solution given by a symplectic integrator ΦN

h applied to the system
(2.26) with stepsize h and initial values (y0

1, y
0
2) satisfying the bounded energy condition (2.5). Assume

that ZN,n is well-defined for all n ≥ 0 such that nh ≤ T , where T ≤ +∞ is some given time, and that
ZN,n is bounded by a constant B independent of ε , h , N ≥ 3 and n , in the sense that

∀nh ∈ (0, T ), ‖ZN,n‖ ≤ B. (2.41)

Then for h0 sufficiently small, there exist positive constants c0 and C depending only on E and B
such that for all ε ∈ (0, ε0) , N ≥ 3 and h ∈ (0, h0) ,

∀ 0 ≤ nh ≤ min
(

cN0
µNεN/2−2

, T

)
,

∣∣‖ZN,n2 ‖2 − ‖ZN,02 ‖2
∣∣ ≤ Cε2. (2.42)

Remark 2.24 In the particular case when the chosen symplectic integrator ΦN
h is provided by the midpoint

rule, the proof below establishes that the assumptions of the Theorem are met whenever the initial data have
norm estimated by B/2 (with B ≤ B0 ), say, and N is sufficiently large (or ε is sufficiently small).

In the general case when ΦN
h may be any symplectic integrator, we simply mention that the methods

developed in [HLW06], combined with our assumption that U has analytic smoothness (2.27), show that the
assumptions of the Theorem are met under similar circumstances.

Note finally that one may again have T = +∞ here, provided particular circumstances are met, such
as a global Lipschitz bound on g , or some coercivity of U , see Remark 2.10.
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Proof. For the sake of symplicity, we consider here the case of the midpoint rule. For a general symplectic
method, we can adapt the proof along the lines of [HLW06, Thm. IV.2.2].
Under theses circumstances, sequence (2.40) becomes

ZN,n+1 = ZN,n + hFN
(
ZN,n+1/2

)
,

where for all n , ZN,n+1/2 := (ZN,n+1+ZN,n)/2 . Premultiplying the second component of by (ZN,n+1/2
2 )∗

leads to
‖ZN,n+1

2 ‖2 = ‖ZN,n2 ‖2 + 2h(ZN,n+1/2
2 )∗FN2 (ZN,n+1/2).

As in the proof of Theorem 2.18, from bound (2.41) we can derive the estimate

∀n ≥ 0,
∣∣∣‖ZN,n+1

2 ‖2 − ‖ZN,n2 ‖2
∣∣∣ ≤ ChN

µ‖ZN,n+1/2
2 ‖
R

N

(2.43)

valid for some constants R and C depending on U and B (compare with (2.36)). Using (2.33) again and
the hypothesis on U , we easily see that there exists a constant c such that

∀N ≥ 3, ∀n ≥ 0, ‖ZN,n+1/2
2 ‖ ≤ (1 + hc)‖ZN,n2 ‖ .

from which it follows, in combination with (2.43), that

∀n ≥ 0, ‖ZN,n+1
2 ‖2 ≤ ‖ZN,n2 ‖2

(
1 + ChN

(1 + hc)N

RN
µN ‖ZN,n2 ‖N−2

)
.

Therefore, for h ≤ h0 sufficiently small, there exists a constant α > 0 such that for any N we have
C N (1 + hc)N/RN ≤ αN , and we deduce

∀n ≥ 0, ‖ZN,n+1
2 ‖2 ≤ ‖ZN,n2 ‖2

(
1 + hµNαN‖ZN,n2 ‖N−2

)
.

Finally we obtain

∀n ≥ 0, ‖ZN,n+1
2 ‖2 ≤ ‖ZN,02 ‖2 exp

hµNαN n∑
p=0

‖ZN,p2 ‖N−2

 .

Now, recall that ‖ZN,02 ‖2 ≤ 2Eε and assume that for p = 0, . . . , n , we have ‖ZN,p2 ‖2 ≤ 4Eε . Using the
last inequality, we thus have

‖ZN,n+1
2 ‖2 ≤ 2Eε exp

(
nhµNαN (4E)N−2εN/2−1

)
,

so that for
nhµNαN (4E)N−2εN/2−1 ≤ log 2 (2.44)

we have ‖ZN,n+1
2 ‖2 ≤ 4Eε as well. This proves by induction that for all n satisfying (2.44), ‖ZN,n+1

2 ‖ =
O(µ) . Eventually, plugging this bound into (2.43) shows that there exists a constant α > 0 depending only
on B , E , U and h0 such that for all n satisfying (2.44),∣∣‖ZN,n+1

2 ‖2 − ‖ZN,02 ‖2
∣∣ ≤ nhµNαNεN/2.
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On the other hand, and quite unsurprisingly, the numerical solution ZN,n obtained through a symplectic
integrator clearly preserves the natural discretized Hamiltonian (2.25), KN

C , as shown by the following

Lemma 2.25 Under the hypotheses of the previous theorem, there exist positive constants h0 , c and C ,
depending only on E , B and U such that for all ε ∈ (0, ε0) , N ≥ 3 and h ∈ (0, h0) ,

∀ 0 ≤ nh ≤ min (exp(c/h), T ) ,
∣∣KN

C (ZN,n)−KN
C (ZN,0)

∣∣ ≤ Chr
where r is the order of the symplectic integrator, and where KN

C (Z) is the discretized Hamiltonian (2.25).

Proof. Assumption (2.27) and definition (2.25) imply that KN
C (Z) satisfies analytic estimates of the form

(2.27) for some constants independent on N and ε . The statement thus follows from classical results in
backward error analysis (see for instance [HLW06, Chap. IX] and references therein).

Therefore, we are now in position to state that the numerical solution ZN,n preserves both the Hamilto-
nian and the adiabatic invariant of the original oscillatory system (up to small error terms).

To present the result cleanly, going back to the original variables, we first define the approximations
Y N,n of Y (t) (see above) by the formula

∀n ≥ 0, Y N,n
1 = ZN,n1 and Y N,n

2 = e−inh/εZN,n2 . (2.45)

Combining previous results with Theorem 2.20, we immediately get the following

Theorem 2.26 Assume that the hypotheses of Theorem 2.23 hold true for µ =
√
ε and define Y N,n , n ≥ 0

by relation (2.45). Then, for h0 sufficiently small, there exist positive constants c , c0 , C depending only
on E and B such that for all ε ∈ (0, ε0) , N ≥ 3 and h ∈ (0, h0) ,

∀ 0 ≤ nh ≤ min
(

cN0
εN−2

, T

)
,

∣∣‖Y N,n
2 ‖2 − ‖Y N,0

2 ‖2
∣∣ ≤ Cε2, (2.46)

and

∀ 0 ≤ nh ≤ min
(

cN0
εN−2

, exp
( c
h

)
, T

)
,

∣∣HC(Y N,n
2 )−HC(Y N,0

2 )
∣∣ ≤ C(ε+ hr) (2.47)

where r is the order of the symplectic integrator, and HC the hamiltonian (2.4).

Remark 2.27 With the previous notation, it is clear that Theorem 2.16 (error estimate between the true solu-
tion and the approximate one, over bounded time intervals) extends straightforwardly to the fully discretized
solution Y N,n , the error in the equation (2.32) being then of order O(ε + hr) . More precisely, using
the above notation, for sufficiently small ε0 , and for any finite time T ∗ < T , there exists a constant C ,
independent of ε and n , such that for all ε ∈ (0, ε0) , all h ∈ (0, h0) ,

∀ 0 ≤ nh ≤ T ∗, ‖y1(nh)− Y N,n
1 ‖+ ε−1/2‖y2(nh)− Y N,n

2 ‖ ≤ C(ε+ hr).
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3 Extension to the multi-frequency case

In this section, we consider the extension of previous results to the case where different frequencies are
present in the system. The equations are similar to (2.1), the only difference being that 1

ε is now replaced by
a matrix 1

εA : 
ẍ1 = g1(x1, x2) = −∇1U(x1, x2),

ẍ2 +
1
ε2
A2x2 = g2(x1, x2) = −∇2U(x1, x2),

(3.1)

where x1 ∈ Rm and x2 ∈ Rd , and where A is a d × d symmetric positive definite matrix with positive
eigenvalues ω1, . . . , ωd . Similarly to (2.2), we assume that the initial values depend on ε in such a way that
the following energy is bounded

∀ ε ∈ (0, ε0),
‖Ax0

2‖2

ε2
+ ‖ẋ0

1‖2 + ‖ẋ0
2‖2 ≤ E.

Introducing the variables y1 = x1 +iẋ1 and y2 =
1√
ε
A1/2x2 +i

√
εA−1/2ẋ2 , system (3.1) can be rewritten

as (compare (2.3)) 
ẏ1 = =(y1) + ig1(<(y1), µA−1/2<(y2)),

ẏ2 = −iA
ε
y2 + iµA−1/2g2(<(y1), µA−1/2<(y2)),

(3.2)

with Hamiltonian

HC(y1, y2) = ‖=(y1)‖2 +
‖A1/2y2‖2

ε
+ 2U(<(y1), µA−1/2<(y2)). (3.3)

The condition on the initial values now takes the form

‖=(y0
1)‖2 +

‖A1/2y0
2‖2

ε
≤ 2E. (3.4)

The equations can be simplified further by introducing z1 = y1 and z2 = ei
t
ε
Ay2{

ż1 = =(z1) + ig1(<(z1), µA−1/2<(e−i
t
ε
Az2)),

ż2 = iµei
t
ε
AA−1/2g2(<(z1), µA−1/2<(e−i

t
ε
Az2),

(3.5)

and are then associated to the non-autonomous (complex) Hamiltonian

KC(t/ε; z1, z2) = ‖=(z1)‖2 + 2U(<(z1),
√
εA−1/2<(e−it/εz2))). (3.6)

As in the case A = Id , we can write (3.5) in the form (2.8) with a vector field F (τ, z) defined by (3.5) and
consider the corresponding averaged system (2.11), where the averaging operator 〈F 〉 is now defined by

〈F 〉(Z) = lim
T→∞

1
T

∫ T

0
F (τ, Z) dτ. (3.7)
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The averaged system we consider can hence be written as
Ż1 = =(Z1) + i lim

T→∞

1
T

∫ T

0
g1(<(Z1), µA−1/2<(e−isAZ2))ds,

Ż2 = iµ lim
T→∞

1
T

∫ T

0
eisAA−1/2g2(<(Z1), µA−1/2<(e−isAZ2)ds.

(3.8)

This is once again a Hamiltonian system associated with the Hamiltonian

〈KC〉(Z1, Z2) = ‖=(Z1)‖2 + 2 lim
T→∞

1
T

∫ T

0
U(<(Z1), µ<(e−isAA−1/2Z2)) ds. (3.9)

Some remarks about the numerical approximation of the above system are in order (the very discretization is
discussed in detail in the next paragraphs). Firstly, as shown through the estimates (3.15) and (3.17) below,
the discretization of the integrals involved in (3.9) will eventually have cost O(N) for some large N , for
approximations of the integral that will have exponential accuracy. Secondly, note that after a possible change
of unknowns and of function U , we can always assume that the matrix A is diagonal. From the point of
view of the numerical cost, this means we readily consider the computation of the diagonal form of A as a
pre-processing step, independent of our main task which is the filtering of the fast oscillations, so that we do
not further investigate the very method that should be used to diagonalize A , nor its cost.

In the sequel, the eigenvalues of A are assumed to satisfy a non-resonance condition according to the
following definition. Note that this condition is generically satisfied.

Definition 3.1 For a given set of frequencies ω = (ω1, . . . , ωd) ∈ Rd , the resonance module M is defined
as

M = {α ∈ Zd |α1 ω1 + . . .+ αd ωd = 0}.

The vector of frequencies ω is said to be non-resonant outside M if

∃ γ, ν > 0, ∀α ∈ Zd\M, |α · ω| > γ|α|−ν . (3.10)

The orthogonal of the resonant module is defined by

M⊥ = {β ∈ Zd | ∀α ∈M, α1β1 + · · ·+ αdβd = 0}.

Remark 3.2 The introduction of the resonant module M is a way to select those component of the given fre-
quency vector ω which are rationaly independent. It generalizes more standard notions of ’non-resonance’.
Let us give three simple examples.

The simplest case corresponds to ω = (ω1, . . . , ωd) , where the ωi ’s are rationally independent. In that
circumstance, the resonant module reduces to {0} , and the small-denominator estimate (3.10) is generically
satisfied. This is the most standard notion of non-resonance: the vector ω is then said to be non-resonant.

The point is, our analysis can be carried out beyond this simple situation.
Indeed, in the case ω = (1, 1, . . . , 1) , for instance, a highly resonant situation in the standard terminol-

ogy, M is the set of integer vectors α such that α1 + · · · + αd = 0 , and the vector ω then is certainly
non-resonant outside M since |α · ω| ≥ 1 whenever α /∈M in this case.

In the similar spirit, if ω = (1, 1,
√

2) , say, M is the set of integer vectors α = (α1, α2, α3) such that
α1 + α2 = 0 and α3 = 0 , and again ω is non-resonant outside M as can be shown by using the fact
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that |k1 + k2

√
2| ≥ γ(|k1| + |k2|)−ν (for some γ and ν ) whenever k1 + k2

√
2 6= 0 , and next setting

k1 = α1 + α2 and k2 = α3 .
These simple observations justify the fact that, generically, any vector ω is non-resonant outisde the

associated resonance module M .

Remark 3.3 The second reason for our introduction of the resonance module M is the following. Not only
does our assumption that ω is non-resonant outside M allow to analyse the situation for any (generic)
value of ω , including ω ’s that are resonant in the standard sense, but the very value of M also allows to
read off the effective number of adiabatic invariants associated with the original ODE, as we show below,
and to quantify the various energy exchanges. We refer to Remark 3.6 below.

If the eigenvalues of A satisfy such an assumption, then the limit (3.7) can be identified in terms of
Fourier coefficients of the integrand with indices in M :

Lemma 3.4 Consider a function G of θ = (θ1, . . . , θd) ∈ Td and assume that it is analytic in a domain
Td + i[−ρ, ρ]d where ρ > 0 . Besides, assume that ω ∈ Rd is non-resonant outside M . Finally, for
α ∈ Zd , define Ĝ(α) as the α -Fourier coefficient of G .

Then for all θ0 ∈ Td , we have

lim
T→∞

1
T

∫ T

0
G(θ0 + tω) dt =

∑
α∈M

Ĝ(α)eiα·θ0 . (3.11)

Proof. It is clear that for all time t ≥ 0 ,

G(θ0 + tω) =
∑
k∈M

Ĝ(α)eiα·θ0 +
∑

k∈Zd\M

Ĝ(α)eiα·(θ0+tω).

Integrating from t = 0 to t = T , and using (3.10), we immediatly get∣∣∣ 1
T

∫ T

0
G(θ0 + tω) dt−

∑
k∈M

Ĝ(α)eiα·θ0
∣∣∣ ≤ 2

Tγ

∑
α∈Zd\M

|α|ν |Ĝ(α)|.

The analyticity of G guarantees that the Ĝ(α) ’s are exponentially decreasing with respect to |α| , ensuring
the convergence of the series in the right-hand side. This shows the result with a rate of convergence of 1/T .

From a numerical point of view, the identification of the resonance module M is far from obvious in general.
For this reason, we rely on (3.8) rather than a discretization in space.

In the following, we will not address the question of convergence of the exact solution over bounded time
intervals for it is very similar to the single frequency case. We will rather focus on adiabatic invariance and
discretization of the averaged system, since these aspects exhibit significant differences.
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3.1 Hamiltonian and adiabatic invariants

A straightforward calculation shows that ‖A1/2Z2(t)‖2 remains invariant along the exact solution of (3.8):
Noticing that

d
ds
<(e−isAZ2) =

1
2

d
ds

(e−isAZ2 + eisAZ̄2)

= −i1
2
A(e−isAZ2 − eisAZ̄2)

= A=(e−isAZ2),

we indeed obtain (with the notation X = <(Z1) )

d
dt
‖A1/2Z2‖2 = 2<(Z∗2AŻ2),

= 2µ lim
T→∞

1
T

∫ T

0
<
(
iZ∗2A

1/2eisAg2(X,µ<(e−isAA−1/2Z2)) ds
)
,

= 2 lim
T→∞

1
T

∫ T

0
=(µe−isAA1/2Z2)∇2U(X,µ<(e−isAA−1/2Z2)) ds,

= 2 lim
T→∞

1
T

[
U(X,µ<(e−isAA−1/2Z2))

]s=T
s=0

= 0.

However, there are additional structural properties in this situation: according to [BGG89], there exist
further adiabatic invariants for (3.1) provided condition (3.10) holds. It turns out that, for (3.8), there exist
corresponding invariants which are linear combination of the oscillatory energies |Z2,j |2 .

Theorem 3.5 Assume that U is analytic (compare 2.27) and that ω is non-resonant outside M .
Then, for any β = (β1, . . . , βd) in M⊥ , the quantity

Iβ(Z2) =
d∑
j=1

βj |Z2,j |2

is invariant along the solution Z(t) = (Z1(t), Z2(t)) of (3.8).

Remark 3.6 In other words, there are adiabatic invariants that are indexed by β ∈M⊥ . Due to the specific
structure of the set M⊥ , many of them coincide (up to a constant factor), and an appropriate choice of basis
for the set M⊥ is to be made, in order to count the effective number of independent adiabatic invariants we
have exhibited here.

Let us give but three examples.
In the case when ω = (ω1, . . . , ωd) and the ωi ’s are rationally independent, M = {0} and M⊥ =

Zd , a module that is generated by the d vectors (1, 0, . . . , 0) , . . . , (0, . . . , 0, 1) . The above Theorem
asserts, in this case, the existence of d adiabatic invariants, namely I1,0,...,0 = |Z2,1(t)|2 , . . . , I0,...,0,1 =
|Z2,d(t)|2 .

In the case when ω = (1, 1, . . . , 1) , say, M is the set of α ’s such that α1 + α2 + · · · + αd = 0
so that M⊥ is clearly the set of β ’s such that β1 = β2 = · · · = βd . Therefore, M⊥ is generated by
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the vector (1, 1, . . . , 1) and the above theorem asserts the existence of one adiabatic invariant: I1,1,...,1 =
|Z2,1(t)|2 + |Z2,1(t)|2 + · · ·+ |Z2,d(t)|2 = ‖Z2(t)‖2 .

In the case when ω = (1, 1,
√

2) , say, M is the set of α ’s such that α1 + α2 = 0 , α3 = 0 , so
that M⊥ is clearly the set of β ’s such that β1 = β2 . Therefore, M⊥ is generated by the two vectors
(1, 1, 0) and (0, 0, 1) , and the above theorem asserts the existence of two adiabatic invariants: I1,1,0 =
|Z2,1(t)|2 + |Z2,1(t)|2 and I0,0,1 = |Z2,3(t)|2 .

In summary, one sees that the above Theorem asserts, in the general case, that the system possesses as
many adiabatic invariants as ω has rationally independent components, and these invariants are indexed
according to the independent components of ω .

Proof. System (3.8) is Hamiltonian with potential 〈KC〉(Z) given by (3.9). The main ingredient of the
proof is again a Fourier expansion of the integrand function

s 7→ U(<(Z1), µ<(e−isAA1/2Z2)),

for given (Z1, Z2) . As before , we set X = <(Z1) and introduce the variables (r, φ) ∈ Rd
+ × Td defined

by

∀ j = 1, . . . , d,

{
rj = µω

−1/2
j |Z2,j |,

φj = Arg(Z2,j),
(3.12)

and the function ∆ : Rd
+ × Td → Rd defined by

∆(r, θ) =
(
r1 cos θ1, . . . , rd cos θd

)
.

We can then write
U(X,µ<(e−isAA−1/2Z2)) = (UX ◦∆)(r, φ− sω) (3.13)

where UX(Z2) = U(X,Z2) . Using (2.27), it is easy to see that the function θ 7→ (UX ◦∆)(r, θ) is analytic
in a domain containing Td× [−ρ, ρ]d for some ρ > 0 . Lemma 3.4 hence allows to identify the time average
of function (3.13), so that Hamiltonian (3.9) reads

〈KC〉(Z1, Z2) = ‖=(Z1)‖2 + 2
∑
α∈M

ÛX ◦∆(r, α)eiα·φ

where ÛX ◦∆(r, α) denotes the α -Fourier coefficient of (UX ◦ ∆)(r, θ) . The differential equations for
Z2 are now of the form, for j = 1, . . . , d ,

Ż2,j = −i∂〈KC〉
∂Z̄2,j

(Z1, Z2)

= −2i
∑
α∈M

(∂(ÛX ◦∆)
∂rj

∂rj
∂Z̄2,j

+ i αj (ÛX ◦∆)
∂φj
∂Z̄2,j

)
eiα·φ

= −i
∑
α∈M

(∂(ÛX ◦∆)
∂rj

µω
−1/2
j Z2,j

|Z2,j |
− αj (ÛX ◦∆)

Z2,j

|Z2,j |2
)
eiα·φ,

where we have omitted the arguments (r, α) in the Fourier coefficients. As U is real-valued, we have for
all α ∈ Zd and r ∈ Rd

+ ,

ÛX ◦∆(r,−α) = ÛX ◦∆(r, α).
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Hence,
<(Ż2,jZ̄2,j) = −2

∑
α∈M+

αj =
(
ÛX ◦∆)(r, α)eiα·φ

)
where (M+,M−) is a symmetric partition of M such that α ∈M+ if and only if (−α) ∈M− . Finally,
we obtain

d
dt
Iβ(Z2) =

1
2

d∑
j=1

βj<(Ż2,jZ̄2,j)

= −
∑

α∈M+

( d∑
j=1

βjαj

)
=
(
ÛX ◦∆)eiα·φ

)
= 0,

as β ∈M⊥ . This shows the result.

Using the same procedure as in previous sections, we can show the following result (compare Theorem
2.20):

Theorem 3.7 Assume that ω is non-resonant outside M . For ε ∈ (0, ε0) , let (y0
1, y

0
2) ∈ Cm+d satisfy

the bounded energy condition (3.4) with E > 0 independent of ε . Let Z(t) = (Z1(t), Z2(t)) be the
exact solution of (3.8) with initial values (y0

1, y
0
2) . Assume that Z(t) exists until time T ≤ +∞ , and is

uniformly bounded with respect to ε ∈ (0, ε0) and t ∈ (0, T ) (the existence of such a T is guaranteed as
in the one-frequency case). Define the function Y (t) = (Y1(t), Y2(t)) = (Z1(t), e−it/εZ2(t)) .

Then there exists a constant C > 0 such that for all ε ∈ (0, ε0) ,

∀t ∈ (0, T ), ‖A1/2Y2(t))‖2 = ‖A1/2Y2(0))‖2 ≤ 2εE

and
∀t ∈ (0, T ), |HC(Y1(t), Y2(t))−HC(y0

1, y
0
2)| ≤ Cε,

where HC denotes the Hamiltonian (3.3). Moreover , we have for any β ∈M⊥ ,

∀t ∈ (0, T ), Iβ(Y2(t)) = Iβ(Y2(0)).

3.2 Semi-discrete solution

The specificity of the integrand in the definition of the Hamiltonian KC(Z1, Z2) allows to refine Lemma
3.4. Similarly to the proof of Lemma 2.14, we set for θ ∈ Ts , x1 ∈ Rm and z2 ∈ Cd ,

h(θ, x1, z2) = U(x1, µ<(e−iθA−1/2z2))

where e−iθA−1/2z2 is the vector with components, e−iθjω−1/2
j z2,j , for j = 1, . . . , d . For α ∈ Zd , the

Fourier coefficient
ĥ(α, x1, z2) =

1
(2π)d

∫
Td
e−iα·θh(θ, x1, z2) dθ

can be expanded with respect to µ ∈ (0,
√
ε0) as in (2.31). By using the same argument as in the proof of

Lemma 2.14, under the assumption (2.27), we have for bounded x1 and z2 , and for all α ∈ Zd ,∣∣ĥ(α, x1, z2)
∣∣ ≤ c(Cµ‖z2‖)|α| (3.14)
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where |α| = |α1| + · · · + |αd| and for some constants c and C depending on bounds on x1 and z2 and
on U .

In the following, we define the function ξ : [0, 1] → R by ξ(u) = e
− 1
u(1−u) and ϕ : [0, 1] → R , the

filter function, by ϕ = ξ/‖ξ‖L1(0,1) .

Lemma 3.8 Assume that ω is non resonant outside M , and that U satisfies (2.27). Assume that B ≤ B0

is a given constant.
Then there exist positive constant ε0 > 0 , κ , ρ and C such that for all T0 > 0 , µ ∈ (0,

√
ε0) and

any given vector Z = (Z1, Z2) such that ‖Z‖ ≤ B ,∣∣∣∣ 1
T0

∫ T0

0
ϕ

(
s

T0

)
KC(s, Z1, Z2)− 〈KC〉(Z1, Z2)

∣∣∣∣ ≤ Cµ‖Z2‖ exp(−κT ρ0 ), (3.15)

where KC(s, Z1, Z2) is the time-dependent Hamiltonian (3.6) and 〈KC〉(Z1, Z2) the averaged Hamiltonian
(3.9).

Proof. The proof of this result relies on a combination of techniques used in [CCC + 05] with estimate
(3.14) on the Fourier coefficient of the integrand defining 〈KC〉 . The fact that Z2 is bounded ensures the
convergence of the series, provided ε0 is sufficiently small.

The next stage in the discretization of 〈KC〉 consists in approximating the integral (3.15). To this aim, we
take T0 = Nδ in the above Lemma, where δ is a small parameter. We assume that ω is non-resonant
oustside M and we require that δ obeys the following non-resonance condition

∃ γ∗, ν∗ > 0 ∀α ∈ Zd\M,

∣∣∣∣1− eiδα·ωδ

∣∣∣∣ ≥ γ∗|α|−ν∗ . (3.16)

Note that if ω is non-resonant outside M , then for δ0 > 0 , the set of δ < δ0 satisfying this condition is
open and dense in (0, δ0) . Its measure is of size δa+1

0 for some a > 0 (see for instance [HLW06, Chap.
X]).

Lemma 3.9 Assume that ω is non-resonant outside M , and let δ be such that (3.16) holds true. Assume
that U satisfies (2.27) and let B ≤ B0 be a given constant.

Then there exist positive constants ε0 , κ∗ , ρ∗ and C∗ such that for all N ≥ 3 , µ ∈ (0,
√
ε0) and

any given vector Z = (Z1, Z2) such that ‖Z‖ ≤ B

∣∣∣∣∣ 1
SN

N−1∑
n=0

ϕ
( n
N

)
KC(nδ, Z1, Z2)− 1

Nδ

∫ Nδ

0
KC(s, Z1, Z2)ds

∣∣∣∣∣ ≤ C∗µ‖Z2‖ exp(−κ∗Nρ∗), (3.17)

where SN =
∑N−1

n=0 ϕ(n/N) and where KC(s, Z1, Z2) is the time dependent Hamiltonian (3.6) and
〈KC〉(Z1, Z2) the averaged Hamiltonian (3.9).

Proof. The proof is very similar to the proof of Theorem 2 in [CCC + 05] and is therefore omitted. Note
that in estimate (3.17), the constants depend on δ , but are uniformly bounded in δ ∈ (0, δ0) .
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In the following, we consider the solution ZN (t) = (ZN1 (t), ZN2 (t)) of the system associated with the
discretized Hamiltonian

KN
C (Z1, Z2) :=

1
SN

N−1∑
n=0

ϕ
( n
N

)
KC(nδ, Z1, Z2), (3.18)

for some δ satifying condition (3.16). Proceeding as in Subsection 3.1, and using similar calculations as
in previous Lemma, we can prove that for a bounded solution ZN (t) (i.e. a solution such that there exists
a B ≤ B0 and a T ≤ +∞ such that ‖ZN (t)‖ ≤ B for any t ∈ (0, T ) ), we have (using the fact that
ωj > 0 ) ∣∣∣∣ d

dt
‖A1/2ZN2 (t)‖2

∣∣∣∣ ≤ Cµ‖A1/2ZN2 (t)‖ exp(−κNρ)

for some constants ρ , C and κ , provided ω is non-resonant outside M , and ε0 is sufficiently small.
From this equation, and provided ZN (0) = (y0

1, y
0
2) satisfies the bounded energy condition (3.4), we obtain

∀ t ∈ (0, T ), ‖A1/2ZN2 (t)‖ ≤ C(ε1/2 + tµ exp(−κNρ))

for some constant C > 0 . Eventually,

∀ 0 ≤ t ≤ min (exp(κNρ), T ) ,
∣∣∣‖A1/2ZN2 (t)‖2 − ‖A1/2ZN2 (0)‖2

∣∣∣ ≤ Cε.
Under the same assumptions, and using this result, we also have that for all β ∈M⊥

∀ 0 ≤ t ≤ min (exp(κNρ), T ) ,
∣∣∣Iβ(ZN2 (t))− Iβ(ZN2 (0))

∣∣∣ ≤ Cε,
with a possibly modified constant C (which now depends on β ).

Using these observations, we arrive at

Theorem 3.10 Assume ω is non-resonant outside M , and let δ be such that (3.16) holds true. Suppose
U satisfies (2.27) and let N ≥ 1 . For all ε ∈ (0, ε0) , let ZN (t) = (ZN1 (t), ZN2 (t)) be the exact
solution of the Hamiltonian system associated with (3.18) with initial values (y0

1, y
0
2) satisfying the bounded

energy condition (3.4). Eventually, assume that for some T ≤ +∞ , solutions ZN (t) exist and satisfy
‖ZN (t)‖ ≤ B for a constant B ≤ B0 independent of ε and N , whenever t ∈ (0, T ) . Define the
functions Y N (t) = (ZN1 (t), e−it/εZN2 (t)) .

Then there exist positive constants κ , ρ and C depending on δ , U , E and B such that for all
ε ∈ (0, ε0) and N ≥ 1

∀ 0 ≤ t ≤ min (exp(κNρ), T ) ,
∣∣‖A1/2Y N

2 (t)‖2 − ‖A1/2Y N
2 (0)‖2|

∣∣ ≤ Cε,
and

∀ 0 ≤ t ≤ min (exp(κNρ), T ) , |HC(Y N
1 (t), Y N

2 (t))−HC(Y N
1 (0), Y N

2 (0))| ≤ Cε,
where HC is the hamiltonian (3.3). Moreover, for all β ∈ M⊥ , there exist constant κ , ρ and C such
that

∀ 0 ≤ t ≤ min (exp(κNρ), T ) , |Iβ(Y N
1 (t), Y N

2 (t))− Iβ(y0
1, y

0
2)| ≤ Cε.

Proof. The proof combines all previous arguments. The conservation of the Hamiltonian is a consequence
of the conservation of KN

C and of equations (3.15) and (3.17).
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3.3 Fully discrete solution

Finally, we consider the approximation of the solution ZN (t) of (3.18) by a symplectic integrator ΦN
h . For

n ≥ 1 , we define the numerical solution ZN,n as the sequence

ZN,0 = y0 ∈ Cm+d,

ZN,n = ΦN
h (ZN,n−1), n ≥ 1.

Proceeding as in the proof of Theorem (2.23) and using similar arguments than before, we can show that
under the assumptions of Theorem 3.10, we have for sufficiently small h ≤ h0 (compare (2.42))

∀ 0 ≤ nh ≤ min (exp(κNρ), T ) ,
∣∣‖A1/2ZN,n2 ‖2 − ‖A1/2ZN,02 ‖2

∣∣ ≤ Cε
for some constants κ , ρ and C independent of N and h . Combining this estimate with the result given
by the Backward error analysis, we can show the following

Theorem 3.11 Under the hypotheses of Theorem 3.10, we define the approximation Y N,n , n ≥ 0 by the
relation (2.45). Then, for h0 sufficiently small, there exist positive constants κ , ρ , c and C such that for
all ε ∈ (0, ε0) , N ≥ 3 , and h ∈ (0, h0) ,

∀ 0 ≤ nh ≤ min (exp(κNρ), T ) ,
∣∣‖A1/2Y N,n

2 ‖2 − ‖A1/2Y N,0
2 ‖2

∣∣ ≤ Cε,
and

∀ 0 ≤ nh ≤ min
(

exp(κNρ), exp
( c
h

)
, T
)
,

∣∣HC(Y N,n
2 )−HC(Y N,0

2 )
∣∣ ≤ C(ε+ hr)

where r is the order of the symplectic integrator, and HC Hamiltonian (2.4). Moreover, if β ∈M⊥ , there
exist positive constants κ , ρ and C such that

∀0 ≤ nh ≤ min (exp(κNρ), T ) ,
∣∣Iβ(Y N,n

2 )− Iβ(Y N,0
2 )

∣∣ ≤ Cε.
4 Numerical experiments

4.1 Single-frequency case: the FPU problem

We take over the Fermi-Pasta-Ulam problem (2.13) and solve it with the numerical scheme of section 2.4
(i.e. we solve equations (2.26) for N = 4 with the implicit midpoint rule). For comparison purposes, the
parameter m and the initial conditions considered are taken from [HLW06], pp. 22. On Figures 1 and 2,
we have plotted (from left to right and from top to bottom) the oscillatory energies Ij , j = 1, 2, 3 and the
Hamiltonian (shifted by a constant value −0.8 ) along the numerical solution obtained for h = π

ω ,
2π
ω ,

3π
ω ,

4π
ω

with ω = 50 . Note that we have considered here the problem in its original formulation with Hamiltonian

Figure 1: Numerical energies for the Fermi-Pasta-Ulam problem: h = π
50 (left) and h = 2π

50 (right)

(2.13) and not the “averaged” equations with Hamiltonian (2.14). Several conclusions can be drawn from
this experiment:

27



Figure 2: Numerical energies for the Fermi-Pasta-Ulam problem: h = 3π
50 (left) and h = 4π

50 (right)

Figure 3: Deviation of the total oscillatory energy and error of the Hamiltonian for the FPU-problem

• The total oscillatory energy (in red with constant value 1 ) is almost perfectly conserved, in agreement
with the theory which asserts that symplectic methods preserve quadratic invariants.

• The Hamiltonian of the problem is also very well preserved: it oscillates within a band of width ε , as
predited by Theorem 2.20.

• The exchange of oscillatory energies between the stiff springs is adequatly reproduced, even for very
large stepsizes. This is remarkably better than some other methods proposed in the litterature (see the
method of Garcia-Archilla et al. [GASSS99] for instance (method (C) page 481 of [HLW06]).

• There is no resonance for the values of h considered. Figure 3 shows the errors on the Hamiltonian
and the deviation of the total oscillatory energy versus hω for a large spectrum of values (from 0 to
5π ). Though these curves have been carefully computed with a significant number of points ( h is kept
constant equal to 0.2 and ω varies), no resonance occurs. This is also in contrast with most existing
methods, where at least one of the too energies explodes for particular values of hπ .

4.2 Multi-frequency case: a toy-problem from [HLW06]

We now consider a Hamiltonian of the form

H(x, ẋ) =
1
2

(
‖ẋ1‖2 + ‖ẋ2‖2 +

1
ε2
‖Ax2‖2

)
+ U(x1, x2), (4.1)

where A = diag(λ1, λ1, λ2, λ3) = diag(1, 1,
√

2, 2) and

U(x) = (c+ x2,1 + x2,2 + x2,3 + γx2,4)4 +
1
8
x2

1x
2
2,1 +

1
2
x2

1,

with c = 0.05 and γ = 2.5 . Following [BGG89], one can show that the system has the following adiabatic
invariants: the total oscillatory energy IT = I1 + I2 + I3 + I4 and the energies I1 + I2 + I4 and I3 in
accordance with the resonance module (see [HLW06]). On Fig. 4 we have reproduced the experiment of
[HLW06] pp. 518-519 with ε = 70−1 and h = 10ε , using the method described in previous section with
T = 80 and N = 120 . It can be observed that the qualitative behaviour of the exact solution is once again
very well reproduced. For a larger stepsize h = 1 , the oscillatory energies are still preserved, although the
energy exchange is not as accuratly reproduced.

5 Conclusion

Both theoretical and experimental results demonstrate that solving the averaged equations with a suitable
one-step method makes sense. More precisely, we have exhibited here a numerical method which is accurate
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Figure 4: Oscillatory energies along the numerical solution of (4.1) for T = 80 , N = 120 and h = 10ε (left) and
h = 1 (right)

in terms of preservation of the natural adiabatic invariants over long time ; needless to recall, and as usual
in the context of geometric numerical integration, the so-obtained trajectories roughly approximate the true
trajectories to within O(ε+ hr) only, for bounded values of time, where ε is the high-frequency parameter
and h is the time step. The resulting numerical technique is both robust and qualitatively correct. However,
one could argue that it is far from efficient: while a Gautschi-type method typically requires one evaluation
of g per step, our method necessitates up to 100 more : this may seem unacceptable. Nevertheless, one
should keep in mind that, on the one hand, these computations can be performed fully in parallel on a multi-
processor machine, and on the other hand, that stepsizes up to 100 larger can be used. In the same spirit,
note that other numerical schemes exist which do not suffer from resonances while almost-preserving the
adiabatic invariants: considering indeed the first two terms of the modulated Fourier expansion (see eq. (3.3)
on page 487 in [HLW06]), a standard scheme will solve this system without being affected by numerical
resonances. However, such a scheme is difficult to write in the multi-frequency case, and besides, it requires
the computation of the second derivatives of g . ( Note yet that writing a basic first order approximation
remains easy, since the second derivatives of g contain terms which are small and may be neglected in a first
order approach).
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