We prove identifiability in the special case corresponding to n obs = 0 and X(τ 0 ) unobserved which is the least favorable case. Let θ = (ν k , k = 0, . . . , K) and θ = (ν k , k = 0, . . . , K) and consider any distributions π and π on X(τ 0 ), possibly depending on θ and θ . For N (τ ) = 0, integrating out X(τ 0 ), we obtain L(N (τ ), T 1 , . . . , T N (τ ) ; π, θ) = L(N (τ ), X(τ 0 ), T 1 , . . . , T N (τ ) , π , θ ) ⇔ e -µτ E π [e -ν 0 X(τ 0 )τ ] = e -µ τ E π [e -ν 0 X(τ 0 )τ ] (

Similarly considering N (τ ) = 1 and integrating out X(τ 0 ) and Z 1 we obtain L(T 1 ; θ, π) = ν 0 e -ν 0 j 0 (τ +τ 0 -T 1 ) e -µτ E π [X(τ 0 )e -ν 0 X(τ 0 )τ ] + e -µτ E π [e -ν 0 τ X(τ 0 ) ] K k=1 e -ν 0 (τ +τ 0 -T 1 )j k ν k

Then L(T 1 ; θ, π) = L(T 1 ; θ , π θ ) for all T 1 ∈ [τ 0 , τ 0 +τ ] leads to the identifiability of the exponents ν 0 j l for l = 0, • • • , K since the j k 's are all different (see condition C) so that ν 0 = ν 0 and ν k = ν k for k ≥ 1. This proves identifiability of the coefficients ν k even though the prior on X(τ 0 ) may be miss-specified.

Identifiability in the cases where X(τ 0 ) and/or Z are observed is deduced directly from the previous result.

B Asymptotic study of (X(t)) t≥0 : proof of Proposition 4 and Theorem 1

In Proposition 4 we give an integral expression of the generating function of the j 0 -Yule process with multi-size immigration described in Section 2 of the paper. More precisely, let X(t) by a 2 branching process such that each particle gives birth to j 0 particles at random time distributed with E(ν 0 ) and such that groups of j k immigrants arrive at random times distributed with E(ν k ), for k = 1 . . . K. We assume that X(0) = x 0 .

B.1 Proof of Proposition 4

The proof of Proposition 4 can be divided into two parts. Indeed, from one part, the x 0 particles present at time 0 will give birth to x 0 independent j 0 -Yule process (without immigration). Once the processes derived from those particles have been taken into account, we can reduce the study to a j 0 -Yule process with multi-size immigration starting from 0 particles.

In lemma 1, we recall the expression of the generating function of a j 0 -Yule process starting with one particle and study its asymptotic distribution. The generating function of a j 0 -Yule process with multi-size immigration starting with X(0) = 0 particle is then detailed. The proof is similar to the one given in (1) but adapted to our particular case. In the particular case where the sizes of the immigration groups are proportional to j 0 we derive a explicit expression of the limit distribution in subsection B.2.

Lemma 1. Let Y (t) be a branching process starting with Y (0) particle such that each particle gives birth to j 0 particles at interval time distributed with an exponential distribution of parameter

ν 0 . Then we have Ψ(s, t) = E[s Y (t) ] = 1 -(1 -s -j 0 ) exp(ν 0 j 0 t) -Y (0)/j 0 . Moreover, lim t→∞ e -j 0 ν 0 t Y (t) = Γ Y (0) j 0 , 1 j 0 (L)
Proof of Lemma 1 We first assume that Y (0) = 1. By construction of the process Y (t), Q i,j (h) = P (Y (t + h) = j|Y (t) = i) only depends on h, i, j. When h is small, Q i,j (h) verifies:

Q i,j (h) =            ν 0 ih + o(h) if j = i + j 0 1 -ν 0 ih + o(h) if j = i o(h) if j / ∈ {i, i + j 0 } (2) 
We now derive a partial differential equation fulfilled by the probability-generating function.

Using the fact that Y (t) take its values in {j 0 k + 1, k ∈ N} we have:

Ψ(s, t) = E[s Y (t) ] = k∈N P (Y (t) = j 0 k + 1|Y (0) = 1)s j 0 k+1 = k∈N Q 1,j 0 k+1 (t)s j 0 k+1 (3)
Using a backward-equation we derive an expression for Q 1,j 0 k+1 (t) = P (Y (t) = j 0 k + 1). Indeed,

Q 1,j 0 k+1 (t+h) = P (Y (t+h) = j 0 k+1|Y (0) = 1) = Q 1,j 0 k+1 (t)(1-ν 0 h)+Q j 0 +1,j 0 k+1 (t)ν 0 h+o(h)
using (2). We directly obtain the following ODE:

Q 1,j 0 k+1 (t) = lim h→0 Q 1,j 0 k+1 (t + h) -Q 1,j 0 k+1 (t) h = -ν 0 Q 1,j 0 k+1 (t) + ν 0 Q j 0 +1,j 0 k+1 (t) (4)
We now derive from (4) and (3) a partial differential equation for Ψ(s, t)

∂ ∂t Ψ(s, t) = s k∈N Q 1,j 0 k+1 (t)(s j 0 ) k = ∞ k=1 s j 0 k+1 [-ν 0 Q 1,j 0 k+1 (t) + ν 0 Q j 0 +1,j 0 k+1 (t)] = -ν 0 Ψ(s, t) + ν 0 ∞ k=1 s j 0 k+1 Q j 0 +1,j 0 k+1 (t) (5) 
∞ k=1 s j 0 k+1 Q j 0 +1,j 0 k+1 (t) is the probability-generating function of a process with the same division mechanism as Y (t) by which would start with j 0 + 1 particles. By properties inherent to branching processes, this is equivalent to the sum of j 0 + 1 independent processes starting with one particle. As a consequence, let Y 1 , . . . Y j 0 +1 by independent processes distributed as Z,

we have:

∞ k=1 s j 0 k+1 Q j 0 +1,j 0 k+1 (t) = E[s Y 1 (t)+•••+Y j 0 +1 (t) ] = E[s Y (t) ] j 0 +1 = Ψ(s, t) j 0 +1
As a consequence the partial differential equation (5) becomes : ∂ ∂t Ψ(s, t) = ν 0 Ψ(s, t)(Ψ j 0 (s, t) -1) with Ψ(s, 0) = s. The solution of this equation is :

Ψ(s, t) = 1 -e ν 0 j 0 t (1 -s -j 0 ) -1/j 0
We now study the asymptotic distribution of Z(t) = e -ν 0 j 0 t Y (t) through its moments-generating function :

Φ Z(t) (θ) = E[e θ Z(t) ] = E[e θe -ν 0 j 0 t Y (t) ] = E[(e θe -ν 0 j 0 t ) Y (t) ] = E[s Y (t) t ] = Ψ(s t , t)
where s t = e θe -ν 0 j 0 t t→∞ 1 + θe -ν 0 j 0 t . We easily obtain the following limit

lim t→∞ Φ Z(t) (θ) = 1 (1 -j 0 θ) 1/j 0
and recognize the moment generating function of the Γ 1 j 0 , 1 j 0 . Now, if the process starts with Y (0) = X(0) particles, each of them initiates a j 0 -Yule process which is independent of the other ones, leading to :

Ψ(s, t) = 1 -(1 -s -j 0 ) exp(ν 0 j 0 t) -X(0)/j 0 and lim t→∞ e -j 0 ν 0 t Y (t) = Γ X(0) j 0 , 1 j 0 (L)
We now use Lemma 1 to study the distribution of X(t), the number of particles issued from the multi-immigration j 0 -Yule process described in the paper. We first assume that X(0) = 0. Let φ(s, t) denote the probability-generating function function of (X(t)

) t≥0 φ(s, t) = E[s X(t) ] = ∞ n=0 P n (t)s n
where P n (t) = P (X(t) = n) is the probability to have n particles at time t. This probability can be decomposed into :

P n (t) = P n|0 (t)m 0 (t) + ∞ k=1 P n|k (t)m k (t) (6) 
where m k (t) is the probability that k immigration groups arrived in the time interval [0, t) and P n|k (t) denotes the probability there are n particles at time t given that k immigration groups arrived during [0, t). Moreover P n|0 (t) = δ n0 because X(0) = 0.

Using the independence of the immigration events, P n|k (t) can also be decomposed as :

P n|k (t) = i 1 +•••+i k =n U i 1 (t) . . . U i k (t) (7) 
where U m (t) denotes the probability that an immigration group leads (by the branching mechanism) to m particles at time t given that the group immigrates during the interval [0, t).

Combining (7) and (6), we can rewrite the probability-generating function φ(s, t):

φ(s, t) = ∞ n=0 P n (t)s n = m 0 (t) + ∞ n=0 s n ∞ k=1 m k (t) i 1 +•••+i k =n U i 1 (t) . . . U i k (t) = ∞ k=0 m k (t) ∞ n=0 s n U n (t) k Denoting J(s, t) = ∞ n=0 s n U n (t)
, we obtain:

φ(s, t) = ∞ k=0 m k (t)J k (s, t) (8) 
where m k (t) is the probability that k immigration groups arrived in the time interval [0, t).

Using the Poisson properties of our immigration process we have :

m k (t) = e -µt (µt) k k! with µ = ν 1 + • • • + ν K and so by (8): φ(s, t) = ∞ k=0 e -µt (µt) k k! J k (s, t) = e -µt exp{µtJ(s, t)} (9) 
We now compute J(s, t) and to that purpose we first study U n (t). Recall that U n (t) is the probability that an immigration group leads (by the branching mechanism) to n particles at time t given that the group immigrates during the interval [0, t). As a consequence, using the infinitesimal probabilities, U n (t) can be decomposed into :

U n (t) = t 0 K k=1 r k (u)Q(n, t|j k , u)d u N (u|t) ( 10 
)
where

• d u N (u|t)
is the conditional infinitesimal immigration rate i.e. the probability that there is exactly one immigration group during the infinitesimal interval [u, u + du) ⊂ [0, t) given there is exactly one immigration group in the interval [0, t). In the case of a Poisson process,

d u N (u|t) = du t • r k (u)
is the probablity that the immigration group is of size j k given that it arrived at time u, k = 1, . . . , K. Using the Poisson properties of our immigration process we have :

r k (u) = ν k ν 1 + • • • + ν K = ν k µ
and so is independent of u.

• Q(n, t|j k , u) denotes the probability that an immigration occuring at time u and consisting of j k particles leads to n particles at time t. Q(n, t|j k , u) only relies on the branching part of the process and can be decomposed as previously:

Q(n, t|j k , u) = i 1 +•••+i j k =n Q i 1 (t -u) . . . Q i j k (t -u) (11) 
where Q i (t) is the probability that one particle leads to i particles by division process in a period of length t. Indeed, once arrived, each particle is the initial point of a branching process which evolves independently during the remaining time t -u.

As a consequence, we can express J(s, t) as:

J(s, t) = ∞ n=0 s n U n (t) = ∞ n=0 K k=1 ν k µ s n t 0 Q(n, t|j k , u) du t = K k=1 ν k µ t 0 ∞ n=0 s n i 1 +•••+i j k =n Q i 1 (t -u) . . . Q i j k (t -u) du t = K k=1 ν k µ t 0 ∞ n=0 s n Q n (t -u) j k du t . Let Ψ(s, t) = ∞ n=0 s n Q n (t)
be the probability-generating function of a j 0 -Yule process without immigration, starting with one particle, then

J(s, t) = K k=1 ν k µ t 0 (Ψ(s, t -u)) j k du t (12) 
which combined with Lemma 1 leads to :

J(s, t) = K k=1 ν k µ t 0 1 -(1 -s -j 0 ) exp(ν 0 j 0 (t -u)) -j k /j 0 du t Substituting v = (1 -s -j 0 ) exp(ν 0 j 0 (t -u)) into the integral gives : t 0 1 -(1 -s -j 0 ) exp(ν 0 j 0 (t -u)) -j k du t = 1 tν 0 j 0 (1-1 s j 0 ) exp(ν 0 j 0 t) 1-1 s j 0 1 (1 -v) j k /j 0 v dv
and proposition 4 is proved.

B.2 Proof of Theorem 1

Recall that assumption A states that ∀k ∈ {1 . . . K}, j k j 0 = r k ∈ N * . The usual decomposition of

1 (1-v) r k v into fractions leads to t 0 1 -(1 -s -j 0 ) exp(ν 0 j 0 (t -τ )) -j k /j 0 dτ t = 1 tν 0 j 0 log(v) -log(1 -v) + r k -1 l=1 1/l (1 -v) l (1-1 s j 0 ) exp(ν 0 j 0 t) 1-1 s j 0 .
Introducing the following notations :

J 0 (s, t) = 1 tν 0 j 0 [log(v) -log(1 -v)]
(1-1 s j 0

) exp(ν 0 j 0 t)

1-1 s j 0 = - 1 tν 0 j 0 log 1 -s j 0 (1 -e -ν 0 j 0 t ) And for 1 ≤ l ≤ R k -1 J l (s, t) = 1 tν 0 j 0 1/l (1 -v) l (1-1 s j 0 ) exp(ν 0 j 0 t) 1-1 s j 0 = 1 tlν 0 j 0 1 -(1 - 1 s j 0 )e ν 0 j 0 t) -l
-s lj 0 we can write : J(s, t)

= 1 µ K k=1 ν k r k -1 l=0 J l (s, t).
A rearrangement is the sums (using the fact that r 1 < r 2 < • • • < r K ) leads to :

J(s, t) = 1 µ (ν 1 + • • • + ν K )(J 0 (s, t) + J 1 (s, t) + • • • + J r 1 -1 (s, t)) + 1 µ (ν 2 + • • • + ν K )(J r 1 (s, t) + • • • + J r 2 -1 (s, t)) + • • • + 1 µ ν K (J r K-1 (s, t) + • • • + J r K -1 (s, t))
Setting

α l =      1 for 0 ≤ l ≤ r 1 -1 ν k +•••+ν K µ
for any r k-1 ≤ l ≤ r k -1 and for any k = 2 . . . K

we have the following expression for the probability-generating function of X(t):

φ(s, t) = e -µt exp{µtJ(s, t)} = exp -µt + µt r K -1 l=0 α l J l (s, t)
We can now study the asymptotic comportment of X(t) = e -ν 0 j 0 t X(t). Let Φ X(t) (θ) =

E[e -θ X(t) ] be the moment generating function of X(t). We have :

Φ X(t) (θ) = E[(e θe -ν 0 j 0 t ) X(t) ] = φ(e θe -ν 0 j 0 t , t) = exp -µt + µt r K -1 l=0 α l J l (s t , t) (13) 
with s t = exp θe -ν 0 j 0 t t→∞ 1 + θe -j 0 ν 0 t . We study the convergence of each term of the product.

J 0 (s t , t) = -1 tν 0 j 0 log 1 -s j 0 t (1 -e -ν 0 j 0 t ) and so exp [-µt + µtJ 0 (s t , t)] = e ν 0 j 0 t -s j 0 t (e ν 0 j 0 t -1)

-µ ν 0 j 0 .

Using s j 0 t = e θj 0 e -ν 0 j 0 t ≈ t→∞ 1 + j 0 θe -ν 0 j 0 t , we obtain :

exp [-µt + µtJ 0 (s t , t)] ≈ t→∞ (1 -j 0 θ) -µ ν 0 j 0 .
We know consider the terms of the form φ l (s t , t) = exp [µtα l J l (s t , t)]. We have

φ l (s t , t) = exp µα l lν 0 j 0 1 -(1 -s -j 0 t )e ν 0 j 0 t -l -s j 0 l t ≈ t→∞ exp µα l lν 0 j 0 (1 -j 0 θ) -l -1
Finally for all θ ≤ 0, lim t→∞ E[e θ X(t) ] = (1 -j 0 θ)

-µ ν 0 j 0 r K -1 l=1 exp µα l lν 0 j 0 (1 -j 0 θ) -l -1 = E[e θY 0 ] r K -1 l=1 E[e θY l ]
where Y 0 ∼ Γ µ ν 0 j 0 , 1 j 0 with moment generating function equal to M (θ) = (1 -j 0 θ) -µ ν 0 j 0 . Moreover Y l is such that its moment generating function is exp µα l lν 0 j 0 (1 -j 0 θ) -l -1 which can be 10 rewritten as exp µα l lν 0 j 0 (1 -j 0 θ) -l -1 = ∞ k=0 exp -µα l lν 0 j 0 µα l lν 0 j 0

k 1 k! 1 (1 -j 0 θ) kl = ∞ k=0 ρ l,k 1 (1 -j 0 θ) kl
where ρ kl = exp -µα l lν 0 j 0 µα l lν 0 j 0 k 1 k! is the probability that a Poisson random variable of parameter µα l lν 0 j 0 is equal to k. So Y l is distributed with an infinite mixture of Γ kl, 1 j 0 with Poisson weights. Finally, e -ν 0 j 0 t X(t) converges in distribution towards a sum of r K independent variables 

j K - 1 l=0

 1 Y l where the Y 0 ∼ Γ µ ν 0 j 0 , 1 j 0 and Y l ∼ ∞ k=0 ρ kl Γ kl, 1 j 0 with ρ kl = exp -µα l lν 0 j 0 µα l lν 0 j 0 k 1 k! .