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We report on the implementation of a certified compiler for a high-level hardware description language (HDL) called Fe-Si (FEatherweight SynthesIs). Fe-Si is a simplified version of Bluespec, an HDL based on a notion of guarded atomic actions. Fe-Si is defined as a dependently typed deep embedding in Coq. The target language of the compiler corresponds to a synthesisable subset of Verilog or VHDL. A key aspect of our approach is that input programs to the compiler can be defined and proved correct inside Coq. Then, we use extraction and a Verilog back-end (written in OCaml) to get a certified version of a hardware design.

2 From Fe-Si to RTL

In this section, we shall present our source (Fe-Si) and target (RTL) languages, along with their semantics. For the sake of space, we leave the full description of this compilation process out of the scope of this paper.

The memory model

. We have four constructors for the type ty of types: Unit (the unit type), B (Booleans), Int (integers of a given size), and Tuple (tuples of types). The inductive definition of memory elements (mem) should be self-explaining.

We endow these inductive definitions with a denotational semantics: we implement Coq functions that map such reified types to the obvious Coq types they denote.

Introduction

Verification of hardware designs has been thoroughly investigated, and yet, obtaining provably correct hardware of significant complexity is usually considered challenging and time-consuming. On the one hand, a common practice in hardware verification is to take a given design written in an hardware description language like Verilog or VHDL and argue about this design in a formal way using a model checker or an SMT solver. On the other hand, a completely different approach is to design hardware via a shallow embedding of circuits in a theorem prover [START_REF] Hanna | Veritas + : A Specification Language Based on Type Theory[END_REF][START_REF] Gordon | Why Higher-Order Logic is a Good Formalism for Specifying and Verifying Hardware[END_REF][START_REF] Hunt | The Verification of a Bit-slice ALU[END_REF][START_REF] Beyer | Putting it all together -formal verification of the vamp[END_REF][START_REF] Coupet-Grimal | Certifying circuits in type theory[END_REF]]. Yet, both kinds of approach suffer from the fact that most hardware designs are expressed in low-level register transfer languages (RTL) like Verilog or VHDL, and that the level of abstraction they provide may be too low to do short and meaningful proof of high-level properties.

To raise this level of abstraction, industry moved to high-level hardware synthesis using higher-level languages, e.g., System-C [START_REF]IEEE Standard System C Language Reference Manual[END_REF], Esterel [START_REF] Berry | The foundations of Esterel[END_REF] or Bluespec [START_REF] Augustsson | Bluespec Language definition[END_REF], in which a source program is compiled to an RTL description. High-level synthesis has two benefits. First, it reduces the effort necessary to produce a hardware design. Second, writing or reasoning about a high-level program is simpler than reasoning about the (much more complicated) RTL description generated by a compiler. However, the downside of high-level synthesis is that there is no formal guarantee that the generated circuit description behaves exactly as prescribed by the semantics of the source program, making verification on the source program useless in the presence of compiler-introduced bugs.

In this paper, we investigate the formal verification of a lightly optimizing compiler from a Bluespec-inspired language called Fe-Si to RTL, applying (to a lesser extent) the ideas behind the CompCert project [START_REF] Leroy | A formally verified compiler back-end[END_REF] to hardware synthesis.

Fe-Si can be seen as a stripped-down and simplified version of Bluespec: in both languages, hardware designs are described in terms of guarded atomic actions on state elements. The one oddity here is that this language and its semantics have a flavor of transactional memory, where updates to state elements are not visible before the end of the transaction (a time-step). Our target language can be sensibly interpreted as clocked sequential machines: we generate an RTL description syntactically described as combinational definitions and next-state assignments. In our development, we define a (dependently typed) deep embedding of the Fe-Si programming language in Coq using parametric higher-order abstract syntax (PHOAS) [START_REF] Chlipala | Parametric higher-order abstract syntax for mechanized semantics[END_REF], and give it a semantics using an interpreter: the semantics of a program is a Coq function that takes as inputs the current state of the state elements and produces a list of updates to be committed to state elements.

Fe-Si hits a sweet spot between deep and shallow embeddings: using PHOAS to embed a domain-specific language makes it possible to use Coq as a meta programming tool to describe circuits, without the pitfalls usually associated with a deep embedding (e.g., the handling of binders). This provides an economical path toward succinct and provably correct description of, e.g., recursive circuits.

Overview of Fe-Si

Fe-Si is a purely functional language built around a monad that makes it possible to define circuits. We start with a customary example: a half adder. This circuit has two Boolean inputs (Var B) and return a tuple of Boolean values (B ⊗ B). Here, we use Coq notations to implement some syntactic sugar: we borrow the do-notation to denote the monadic bind and use ret as a short-hand for return. (Our choice of concrete notations is dictated by some limitations in Coq's notation mechanism. For instance our explicit use of return may seem odd: it is due to the fact that Fe-Si has two classes of syntactic values, expressions and actions, and that return takes as argument an expression.)

Up to this point, Fe-Si can be seen as an extension of the Lava [START_REF] Bjesse | Lava: Hardware Design in Haskell[END_REF] language, implemented in Coq rather than Haskell. Yet, using Coq as a metalanguage offers the possibility to use dependent types in our circuit descriptions. For instance, one can define an adder circuit of the following type:

Definition adder n (a b: Var (Int n)): action [] (Int n) := ...
In this definition, n of type nat is a formal parameter that denotes the size of the operands and the size of the result as well.

Stateful programs. Fe-Si also features a small set of primitives for interacting with memory elements that hold mutable state. In the following snippet, we build a counter that increments its value when its input is true.

Definition Φ := [Reg (Int n)]. Definition count n (tick: Var B) : action Φ (Int n) := do x ← !member_0; do _ ← if tick then {member_0 ::= x + 1} else {ret ()}; ret x.
Here, Φ is an environment that defines the set of memory elements (in a broad sense) of the circuit. In the first line, we read the content of the register at position member_0 in Φ, and bind this value to x. Then, we test the value of the input tick, and when it is true, we increment the value of the register. In any case, the output is the old value of the counter.

The above "if-then-else" construct is defined using two primitives for guarded atomic actions that are reminiscent of transactional memory monads: assert and orElse. The former aborts the current action if its argument is false. The latter takes two arguments a and b, and first executes a; if it aborts, then the effects of a are discarded and b is run. If b aborts too, the whole action a orElse b aborts.

Synchronous semantics. Recall that Fe-Si programs are intended to describe hardware circuits. Hence, we must stress that they are interpreted in a synchronous setting. From a logical point of view the execution of a program (an atomic action) is clocked, and at each tick of its clock, the computation of its effects (i.e., updates to memory elements) is instantaneous: these effects are applied all at once between ticks. In particular this means that it is not possible to observe, e.g., partial updates to the memory elements, nor transient values in memory. (In Bluespec terminology, this is "reads-before-writes".)

From programs to circuits. At this point, the reader may wonder how it is possible to generate circuits in a palatable format out of Fe-Si programs. Indeed, using Coq as a meta-language to embed Fe-Si yields two kind of issues. First, Coq lacks any kind of I/O; and second, a Fe-Si program may have been built using arbitrary Coq code, including, e.g., higher-order functions or fixpoints.

Note that every Coq function terminates: therefore, a closed Fe-Si program of type action evaluates to a term that is syntactically built using the inductive constructors of the type action (i.e., all intermediate definitions in Coq have been expanded). Then we use Coq's extraction, which generates OCaml code from Coq programs. Starting from a closed Fe-Si program foo, we put the following definition in a Coq file:

Definition bar := fesic foo.
The extracted OCaml term that corresponds to bar evaluates (in OCaml) to a closed RTL circuit. Then, we can use an (unverified) back-end that pretty-prints this RTL code as regular Verilog code. (We reckon that this is some devious use of the extraction mechanism, which palliates the fact that there is currently no I/O mechanism in Coq.) 

Fe-Si

The definition of Fe-Si programs (action in the following) takes the PHOAS approach [START_REF] Chlipala | Parametric higher-order abstract syntax for mechanized semantics[END_REF]. That is, we define an inductive type family parameterized by an arbitrary type V of variables, where binders bind variables instead of arbitrary terms (as would be the case using HOAS [START_REF] Pfenning | Higher-Order Abstract Syntax[END_REF]), and those variables are used explicitly via a dedicated term constructor. The definition of Fe-Si syntax is split in two syntactic classes: expressions and actions. Expressions are side-effect free, and are built from variables, constants, and operations. Actions are made of control-flow structures (assertions and alternatives), binders, and memory operations.

In this work, we follow an intrinsic approach [START_REF] Benton | Strongly Typed Term Representations in Coq[END_REF]: we mix the definition of the abstract syntax and the typing rules from the start. That is, the type system of 

t := ∀ V, action V Φ t.

Fig. 2. The syntax of expressions and actions

the meta-language (Coq) enforces that all Fe-Si programs are well-typed by construction. Besides the obvious type-oblivious definitions (e.g., it is not possible to add a Boolean and an integer), this means that the definition of operations on state-holding elements requires some care. Here, we use dependently typed de Bruijn indices. or Some (v, ∆ ′ ) (meaning that the action returned the value v and the partial update ∆ ′ ). Note that the PHOAS approach makes it possible to manipulate closed terms: we do not have rules for β-reduction, because it is implemented by the host language. That is, Γ only stores the mutable state, and not the variable values. There are two peculiarities here: first, following the definition of ⊕, if two values are written to a memory element, only the first one (in program order) is committed; second, reading a register yields the value that was held at the beginning of the time step.

Γ ⊢ e v Γ, ∆ ⊢ Return e → Some(v, ∆) Γ, ∆1 ⊢ a → None Γ, ∆1 ⊢ Bind a f → None Γ, ∆1 ⊢ a → Some (v, ∆2) Γ, ∆2 ⊢ f v → r Γ, ∆1 ⊢ Bind a f → r Γ ⊢ e true Γ, ∆ ⊢ Assert e → Some((), ∆) Γ ⊢ e false Γ, ∆ ⊢ Assert e → None Γ, ∆ ⊢ a → Some (v, ∆ ′ ) Γ, ∆ ⊢ a orElse b → Some (v, ∆ ′ ) Γ, ∆ ⊢ a → None Γ, ∆ ⊢ b → r Γ, ∆ ⊢ a orElse b → r Γ (r) = v Γ, ∆ ⊢ RegRead r → Some(r, ∆) Γ ⊢ e v Γ, ∆ ⊢ RegWrite r e → Some((), ∆ ⊕ (r, v))
(The reduction rules of Fe-Si can be described in terms of layered monads: we have a Reader monad of the old state and Writer monad of the state update to implement the synchronous aspect of state update; and we stack the Option monad on top of the state-change monads to implement the transactional aspect of the semantics.)

Finally, we define a wrapper function that computes the next state of the memory elements, using the aforementioned evaluation relation (starting with an empty partial update).

Definition Next {t} {Φ} (st: Φ ) (A : Action Φ t) : option ( t ty * Φ ) := ...

RTL

Our target language sits at the register-transfer level. At this level, a synchronous circuit can be faithfully described as a set of state-holding elements, and a nextstate function, implemented using combinational logic [START_REF] Gordon | Relating Event and Trace Semantics of Hardware Description Languages[END_REF]. Therefore, the definition of RTL programs (block in the following) is quite simple: a program is simply a well-formed sequence of bindings of expressions (combinational operations, or reads from state-holding elements), with a list of effects (i.e, writes to state-holding elements) at the end.

Section t.

Variable V: ty → Type. Variable Φ: list mem. Inductive expr: ty → Type := | Evar : ∀ t (v : V t), expr t (* read from memory elements *)

| Einput : ∀ t, member Φ (Input t) → expr t | Eread_r : ∀ t, member Φ (Reg t) → expr t | Eread_rf : ∀ n t, member Φ (Regfile n t) → V (Int n) → expr t (* operations on Booleans *) | Emux : ∀ t, V B → V t → V t → expr t | Eandb : V B → V B → V B | ... (* operations on words *) | Eadd : ∀ n, V (Int n) → V (Int n) → expr (Int n) | ... (* operations on tuples *) | Efst : ∀ l t, V (Tuple (t:: l)) → expr t | ... Inductive scope (A : Type): Type := | Send : A → scope A | Sbind : ∀ (t: ty), expr t → (V t → scope A) → scope A. Inductive write : mem → Type := | WR : ∀ t, V t → V B → write (Reg t) | WRF : ∀ n t, V t → V (Int n) → V B → write (Regfile n t).
Definition effects := DList.T (option • write) Φ. We show the definition of expressions and sequences of binders in Fig. 4. The definition of expressions is similar to the one we used for Fe-Si, except that we have constructors for reads from memory elements, and that we moved to "three-adress code". (That is, operands are variables, rather than arbitrary expressions.) A telescope (type scope A) is a well-formed sequence of binders with an element of type A at the end (A is instantiated later with a list of effects). Intuitively, this definition enforces that the first binding of a telescope can only read from memory elements; the second binding may use the first value, or read from memory elements; and so on and so forth.

Definition block t := scope (V B * V t * effects). End t. Definition Block Φ t := ∀ V, block Φ V t.
A block is a telescope, with three elements at the end: a guard, a return value, and a (dependently typed) list of effects. The value of the guard (a Boolean) is equal to true when the return value is valid and the state updates must be committed; and false otherwise. The return value denotes the outputs of the circuits. The data type effects encodes, for each memory element of the list Φ, either an effect (a write of the right type), or None (meaning that this memory element is never written to). (For the sake of brevity, we omit the particular definition of dependently typed heterogeneous lists DList.T that we use here.)

Semantics. We now turn to define the semantics of our RTL language. First, we endow closed expressions with a denotation function (in the same way as we did at the source level, except that it is not a recursive definition). Note that we instantiate the variable parameter of expr with the function . ty , effectively tagging variables with their denotations.

Variable Γ : Φ . Definition eval_expr (t : ty) (e : expr . ty t) : . ty:= match e with

| Evar t v ⇒ v | Einput t v ⇒ DList.get v Γ | Eread t v ⇒ DList.get v Γ | Eread_rf n t v adr ⇒ Regfile.get (DList.get v Γ ) adr | Emux t b x y ⇒ if b then x else y | Eandb a b ⇒ andb a b | ... | Eadd n a b ⇒ Word.add a b | ... | Efst l t e ⇒ Tuple.fst e | ... end.
The denotation of telescopes is a simple recursive function that evaluates bindings in order and applies an arbitrary function on the final (closed) object. The final piece that we need is the denotation that corresponds to the write type. This function takes as argument a single effect, the initial state of this memory location and either returns a new state for this memory location, or returns None, meaning that location is left in its previous state.

Definition eval_effect (m : mem) : option (write . ty m) → m mem → option m mem := ... Using all these pieces, it is quite easy to define what is the final next-state function.

Definition Next {t} {Φ} (Γ : Φ ) (B : Block Φ t) : option ( t ty * Φ ) := ...

Compiling Fe-Si to RTL

Our syntactic translation from Fe-Si to RTL is driven by the fact that our RTL language does not allow clashing assignments: syntactically, each register and register file is updated by at most one write expression. With one wrinkle, we could say that we move to a language with static single assignment.

From control flow to data flow. To do so, we have to transform the control flow (the Assert and OrElse) of Fe-Si programs into data-flow. We can do that in hardware, because circuits are inherently parallel: for instance, the circuit that computes the result of the conditional expression e ? a : b is a circuit that computes the value of a and the value of b in parallel and then uses the value of e to select the proper value for the whole expression.

Administrative normal form. Our first compilation pass transforms Fe-Si programs into an intermediate language that implements A-normal form. That is, we assign a name to every intermediate computation. In order to do so, we also have to resolve the control flow. To be more specific, given an expression like do x ← (A OrElse B); ... we want to know statically to what value x needs to be bound and when this value is valid. In this particular case, we remark that if A yields a value v A which is valid, then x needs to be bound to v A ; if A yields a value that is invalid, then x needs to be bound to the value returned by B. In any case, the value bound in x is valid whenever the value returned by A or the value returned by B is valid. More generally, our compilation function takes as argument an arbitrary function, and returns a telescope that binds three values: (1) a guard, which denotes the validity of the following components of the tuple; (2) a value, which is bound by the telescope to denote the value that was returned by the action;

(3) a list of nested effects, which are a lax version of the effects that exist at the RTL level.

The rationale behind these nested effects is to represent trees of conditional blocks, with writes to state-holding elements at the leaves. (Using this data type, several paths in such a tree may lead to a write to a given memory location; in this case, we use a notion of program order to discriminate between clashing assignments.)

Linearizing the effects Our second compilation pass flattens the nested effects that were introduced in the first pass. The idea of this translation is to associate two values to each register: a data value (the value that ought to be written) and a write-enable value. The data value is committed (i.e., stored) to the register if the write-enable Boolean is true. Similarly, we associate three values to each register-file: a data value, an address, and a write-enable. The data is stored to the field of the register file selected by the address if the write-enable is true.

The heart of this translation is a merge function that takes two writes of the same type, and returns a telescope that encapsulates a single write:

Definition merge s (a b : write s): scope (option (write s)) := ... For instance, in the register case, given (v a , e a ) (resp. (v b , e b )) the data value and the write-enable that correspond to a, the write-enable that corresponds to the merge of a and b is e a ||e b , and the associated data value is e a ? v a : v b .

Moving to RTL. The third pass of our compiler translates the previous intermediate language to RTL, which amounts to a simple transformation into three-address code. This transformation simply introduces new variables for all the intermediate expressions that appear in the computations.

Lightweight optimizations

We will now describe two optimizations that we perform on programs expressed in the RTL language. The first one is a syntactic version of common subexpression elimination, intended to reduce the number of bindings and introduce more sharing. The second is a semantic common sub-expression elimination that aims to reduce the size of the Boolean formulas that were generated in the previous translation passes.

Syntactic common-subexpression elimination. We implement CSE with a simple recursive traversal of RTL programs. (Here we follow the overall approach used by Chlipala [START_REF] Chlipala | A verified compiler for an impure functional language[END_REF].) Contrary to our previous transformations that were just "pushing variables around" for each possible choice of variable representation V, here we need to tag variables with their symbolic values, which approximate the actual values held by variables. Then, CSE goes as follows. We fold through a telescope and maintain a mapping from symbolic values to variables. For each binder of the telescope, we compute the symbolic representation of the expression that is bound. If this symbolic value is already in the map, we avoid the creation of an extraneous binder. Otherwise, we do create a new binder, and extend our association list accordingly.

Using BDDs to reduce Boolean expressions. Our compilation process introduces a lot of extra Boolean variables. We use BDDs to implement semantic common-subexpression elimination. We implemented a BDD library in Coq; and we use it to annotate each Boolean expression of a program with an approximation of its runtime value, i.e, a pointer to a node in a BDD. Our use of BDDs boils down to hash-consing: it enforces that Boolean expressions that are deemed equivalent are shared.

The purpose of this pass is to simplify the extraneous boolean operations that were introduced by our compilation passes. In order to simplify only the Boolean computations that we introduced, we could use two different kinds of Booleans (the ones that were present at the source level and the others); and use our simplification pass only on the latter.

Putting it all together

In the end, we prove that our whole compiler that goes from Fe-Si to RTL and implements the two lightweight optimizations described above is correct. That is, we prove that that next-step functions at the source level and the target level are compatible. Theorem fesic_correct A :

∀ (Γ : Φ ), Front.Next Γ A = RTL. Next Γ (fesic A).

Design and verification of a sorter core

We now turn to the description of a first hardware circuit implemented and proved correct in Fe-Si. A sorting network [START_REF] Cormen | Introduction to Algorithms, 2nd Edition[END_REF] is a parallel sorting algorithm that sorts a sequence of values using only compare-and-swap operations, in a data-independent way. This makes it suitable for a hardware implementation.

Bitonic sorters for sequences of length 2 n can be generated using short and simple algorithmic descriptions. Yet, formally proving their correctness is a challenge that was only partially solved in two different lines of previous work. First, sorter core generators were studied from a hardware design perspective in Lava [START_REF] Claessen | The design and verification of a sorter core[END_REF], but formal proof is limited to circuits with a fixed size -bounded by the performances of the automated verification tools. Second, machine-checked formal proofs of bitonic sort were performed e.g., in Agda [START_REF] Bove | Formalising bitonic sort in type theory[END_REF], but without a connection with an actual hardware implementation. Our main contribution here is to implement such generators and to propose a formal proof of their correctness.

More precisely, we implemented a version of bitonic sort as a regular Coq program and proved that it sorts its inputs. This proof follows closely the one described by Bove and Coquand [START_REF] Bove | Formalising bitonic sort in type theory[END_REF] -in Agda -and amounts to roughly 1000 lines of Coq, including a proof of the so-called 0-1 principle1 .

Then, we implemented a version of bitonic sort as a Fe-Si program, which mimicked the structure of the previous one. We present side-by-side the Coq implementation of reverse in Fig. 5. The version on the left-hand side can be seen as a specification: it takes as argument a sequence of 2 n inputs (represented as a complete binary tree of depth n) and reverses the order of this sequence. The code on the right-hand side implements part of the connection-pattern of the sorter. More precisely, it takes as input a sequence of input variables and builds a circuit that outputs this sequence in reverse order.

Next, we turn to the function that is at the heart of the bitonic sorting network. A bitonic sequence is a sequence (x i ) 0≤i<n whose monotonicity changes fewer than two times, i.e.,

x 0 ≤ • • • ≤ x k ≥ • • • x n , with 0 ≤ k < n
or a circular shift of such a sequence. Given a bitonic input sequence of length 2 n , the left-hand side min_max_swap returns two bitonic sequences of length 2 n-1 , such that all elements in the first sequence are smaller or equal to the elements in the second sequence. The right-hand side version of this function builds the corresponding comparator network: it takes as arguments a sequence of input variables and returns a circuit.

We go on with the same ideas to finish the Fe-Si implementation of bitonic sort. The rest of the code is unsurprising, except that it requires to implement a dedicated bind operation of type

∀ (U: ty) n, Var (domain n) → (T n → action [] Var U) → action [] Var U.
that makes it possible to recover the tree structure out of the result type of a circuit (domain n).

We are now ready to state (and prove) the correctness of our sorter core. We chose to settle in a context where the type of data that we sort are integers of a given size, but we could generalize this proof to other data types, e.g., to sort tuples in a lexicographic order. We side-step the presentation of some of our Coq, to present the final theorem in a stylized fashion.

(* Lists of length 2 n represented as trees *) Inductive tree (A: Type): nat → Type := | L : ∀ x : A, tree A 0 | N : ∀ n (l r : tree A n), tree A (S n).

Definition leaf {A n} (t: tree A 0) : A := ... Definition left {A n} (t: tree A (S n)) : tree A n := ... Definition right {A n} (t: tree A (S n)) : tree A n := ...

Fixpoint reverse {A} n (t : tree A n) := match t with | L x ⇒ L x | N n l r ⇒ let r := (reverse n r) in let l := (reverse n l) in N n r l end. Variable cmp: A → A → A * A. Fixpoint min_max_swap {A} n : ∀ (l r : tree A n), tree A n * tree A n := match n with | 0 ⇒ fun l r ⇒ let (x, y) := cmp (leaf l) (leaf r) in (L x, L y) | S p ⇒ fun l r ⇒ let (a, b) := min_max_swap p (left l) (left r) in let (c, d) := min_max_swap p (right l) (right r) in (N p a c, N p b d) end.
... Fixpoint sort n : tree A n → tree A n := ... (Note that this theorem states the correctness of the Fe-Si implementation against a specification of sorted sequences that is independent of the implementation of the sorting algorithm in the left-hand side of Fig. 5; the latter only serves as a convenient intermediate step in the proof.)

Variable cmp : Var

A → Var A → action nil Var (A ⊗ A). Fixpoint min_max_swap n : ∀ (l r : T n), C (S n) := match n with | 0 ⇒ fun l r ⇒ cmp (leaf l) (leaf r) | S p ⇒ fun l r ⇒ do a, b ← min_max_swap p (left l) (left
Testing the design Finally, we indulge ourselves and test a design that was formally proven, using a stock Verilog simulator [2]. We set the word size and the number of inputs of the sorter, and we generate the corresponding Verilog code. Unsurprisingly, the sorter core sorts its input sequence in every one of our test runs.

Verifying a stack machine

The circuit that was described in the previous section is a simple combinational sorter: we could have gone one step further in this verification effort and pipelined our design by registering the output of each compare-and-swap operator. However, we chose here to describe a more interesting design: a hardware implementation of a simple stack machine, inspired by the IMP virtual machine [START_REF] Leroy | Mechanized semantics. In Logics and languages for reliability and security[END_REF], i.e., a small subset of the Java virtual machine.

Again, we proceed in two steps: first, we define a specification of the behavior of our stack machine; second, we build a Fe-Si implementation and prove that it behaves as prescribed. The instruction set of our machine is given in Fig. 6, where we let x range over identifiers (represented as natural numbers) and n, δ range over values (natural numbers). The state of the machine is composed of the code (a list of instruction), a program counter (an integer), a variable stack (a list of values), and a store (a mapping from variables to values). The semantics of the machine is given by a one-step transition relation in Fig. 6. Note that this specification uses natural numbers and lists in a pervasive manner: this cannot be faithfully encoded using finite-size machine words and register files. For simplicity reasons, we resolve this tension by adding some dynamic checks (that do not appear explicitly on Fig. 6) to the transition relation to rule out such ill-defined behaviors. The actual Fe-Si implementation is straightforward. The definition of the internal state is depicted below: the stack is implemented using a register file, and a stack pointer; the store is a simple register file; the code is implemented as another register file that is addressed by the program counter. The actual implementation of the machine is unsurprising: we access the code memory at the address given by the program counter; we case-match over the value of the opcode and update the various elements of the machine state accordingly. For the sake of space, we only present the code for the setvar x instruction below. Correctness. We are now ready to prove that our hardware design is a sound implementation of its specification. First, we define a logical relation that relates the two encodings of machine state (in the specification and in the implementation), written ≡. Then, we prove a simulation property between related states.

i ::= const n | var x | setvar x | add | sub | bfwd δ | bbwd δ | bcond c δ | halt C ⊢ pc, σ, s → pc + 1, n :: σ, s if C(pc) = const n C ⊢ pc, σ, s → pc + 1, s(x) :: σ, s if C(pc) = var x C ⊢ pc, v :: σ, s → pc + 1, σ, s[x ← v] if C(pc) = setvar x C ⊢ pc, n2 :: n1 :: σ, s → pc + 1, (n1 + n2) :: σ, s if C(pc) = add C ⊢ pc, n2 :: n1 :: σ, s → pc + 1, (n1 -n2) :: σ, s if C(pc) = sub C ⊢ pc, σ, s → pc + 1 + δ, σ, s if C(pc) = bfwd δ C ⊢ pc, σ, s → pc + 1 -δ, σ, s if C(pc) = bbwd δ C ⊢
Theorem 2. Let s 1 be a machine state as implemented in the specification and m 1 the machine state as implemented in the circuit, such that s 1 ≡ m 1 . If s 1 makes a transition to s 2 , then m 1 makes a transition to m 2 such that s 2 ≡ m 2 .

Note that we do not prove completeness here: it is indeed the case that our implementation exhibits behaviors that cannot be mapped to behaviors of the specification. In this example, the specification should be regarded as an abstraction of the actual behaviors of the implementation, which could be used to reason about the soundness of programs, either written by hand or produced by a certified compiler.

Testing the design Again, we compiled our Fe-Si design to an actual Verilog implementation. We load binary blobs that correspond to test programs in the code memory, and run it while monitoring the content of given memory locations. This gives rise to an highly stylized way of computing e.g., the Fibonacci sequence.

Comparison with related work

Fe-Si marries hardware design, functional programming and inductive theorem proving. We refer the reader to Sheeran [START_REF] Sheeran | Hardware Design and Functional Programming: a Perfect Match[END_REF] for a review of the use of functional programming languages in hardware design, and only discuss the most closely related work.

Lava [START_REF] Bjesse | Lava: Hardware Design in Haskell[END_REF] embeds parametric circuit generators in Haskell. Omitting the underlying implementation language, Lava can be faithfully described as a subset of Fe-Si, with two key differences. First, Lava features a number of layout primitives, which makes it possible to describe more precisely what should be the hardware layout, yielding more efficient FPGA implementation. We argue that these operators are irrelevant from the point of view of verification, and could be added to Fe-Si if needed. Second, while Lava features "non-standard" interpretations of circuits that make it possible to prove the correctness of fixed-size tangible representation of circuits, our embedding of Fe-Si in Coq goes further: it makes it possible to prove the correctness of parametric circuit generators.

Bluespec [START_REF] Augustsson | Bluespec Language definition[END_REF] is an industrial strength hardware description language based on non-deterministic guarded atomic actions. A program is a set of rewrite rules in a Term Rewriting System that are non-deterministically executed one at a time. To implement a Bluespec program in hardware, the Bluespec compiler needs to generate a deterministic schedule where one or more rules happen each clock-cycle. Non-determinism makes it possible to use Bluespec both as an implementation language and as a specification language. Fe-Si can be described as a deterministic subset of Bluespec. We argue that deterministic semantics are easier to reason with, and that we can use the full power of Coq as a specification language to palliate our lack of non-determinism in the Fe-Si language. Moreover, more complex scheduling can be implemented using a few program combinators [START_REF] Dave | Scheduling as rule composition[END_REF]: we look forward to implementing these in Fe-Si.

Richards and Lester [START_REF] Richards | A monadic approach to automated reasoning for Bluespec SystemVerilog[END_REF] developed a shallow-embedding of a subset of Bluespec in PVS. While they do not address circuit generators nor the generation of RTL code, they proved the correctness of a three-input fair arbiter and a two-process implementation of Peterson's algorithm that complements our case studies (we have not attempted to translate these examples into Fe-Si).

Slind et al [START_REF] Slind | Proof producing synthesis of arithmetic and cryptographic hardware[END_REF] built a compiler that creates correct-by-construction hardware implementations of arithmetic and cryptographic functions that are implemented in a synthesisable subset of HOL. Parametric circuits are not considered.

Centaur Technology and the University of Texas have developed a formal verification framework [START_REF] Slobodová | A flexible formal verification framework for industrial scale validation[END_REF] that makes it possible to verify RTL and transistor level code. They implement industrial level tools tied together in the ACL2 theorem prover and focus on hardware validation (starting from existing code). By contrast, we focus on high-level hardware synthesis, with an emphasis on the verification of parametric designs.

Conclusion

Our compiler is available on-line along with our examples as supplementary material [1]. The technical contributions of this paper are a novel use of PHOAS as a way to embed domain-specific languages in Coq; -a toy compiler from a simple hardware description language to RTL code; -machine checked proofs of correctness for some simple hardware designs. This work is intended to be a proof of concept: much remains to be done to scale our examples to more realistic designs and to make our compiler more powerful (e.g., improving on our current optimizations). Yet, we argue that it provides an economical path to certification of parameterized hardware designs.

  Definition hadd (a b: Var B) : action [] (B ⊗ B) := do carry ← ret (andb a b); do sum ← ret (xorb a b); ret (carry, sum).
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Fixpoint

  eval_scope {A B} (F : A → B) (T : scope . ty A) : B := match T with | Send X ⇒ F X | Sbind t e cont ⇒ eval_scope F (cont (eval_expr t e)) end.

  Variable A : ty. Fixpoint domain n := match n with | 0 ⇒ A | S n ⇒ (domain n) ⊗ (domain n) end. Notation T n := (tree (expr Var A) n). Notation C n := action nil Var (domain n). Fixpoint reverse n (t : T n) : C n := match t with | L x ⇒ ret x | N n l r ⇒ do r ← reverse n r; do l ← reverse n l; ret [ tuple r, l] end. Notation mk_N x y := ([ tuple x, y]) .

  r); do c, d ← min_max_swap p (right l) (right r); ret ([ tuple mk_N a c, mk_N b d]) end. ... Fixpoint sort n : T n → C n := ...
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 6 Fig. 6. Instruction set and transition relation of our stack machine

  Variable n : nat. Notation OPCODE := (Tint 4). Notation VAL := (Tint n). Definition INSTR := OPCODE ⊗ VAL. Definition Φ : state := [

  Definition pop := do sp ← ! SP; do x ← read STACK [: sp -1]; do _ ← SP ::= sp -1; ret x. Definition Isetvar pc i := do v ← pop; do _ ← write REGS [: snd i ← v]; PC ::= pc + 1.

Inductive member : list mem → mem → Type := | member_0 : ∀ E t, member (t:: E) t | member_S : ∀ E t x, member E t → member (x:: E) t.Using the above definition, a term of type member Φ M denotes the fact that the memory element M appears at a given position in the environment of memory elements Φ. We are now ready to present the (elided) Coq definitions of the inductives for expressions and actions in Fig.2. (For the sake of brevity, we omit the constructors for accesses to register files, in the syntax and, later, in the semantics. We refer the reader to the supplementary material [1] for more details.) Our final definition Action of actions is a polymorphic function from a choice of variables to an action (we refer the reader to[START_REF] Chlipala | Parametric higher-order abstract syntax for mechanized semantics[END_REF] for a more in-depth explanation of this encoding strategy).Semantics. We endow Fe-Si programs with a simple synchronous semantics: starting from an initial state, the execution of a Fe-Si program corresponds to a sequence of atomic updates to the memory elements. Each step goes as follows: reading the state, computing an update to the state, committing this update.The reduction rules of Fe-Si programs are defined in Fig.3. The judgement Γ, ∆ ⊢ a → r reads "in the state Γ and with the partial update ∆, evaluating a produces the result r", where r is either None (meaning that the action aborted),

That is, a (parametric) sorting network is valid if it sorts all sequences of 0s and 1s.