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Existence of solutions for compressible fluid models of
Korteweg type

Boris Haspot *

Abstract

This work is devoted to the study of the initial boundary value problem for a

general non isothermal model of capillary fluids derived by J.E Dunn and J.Serrin
(1985) in [15, 25], which can be used as a phase transition model.
We distinguish two cases, when the physical coefficients depend only on the density,
and the general case. In the first case we can work in critical scaling spaces, and we
prove global existence of solution and uniqueness for data close to a stable equilib-
rium. For general data, existence and uniqueness is stated on a short time interval.
In the general case with physical coefficients depending on density and on tempera-
ture, additional regularity is required to control the temperature in L* norm. We
prove global existence of solution close to a stable equilibrium and local in time
existence of solution with more general data. Uniqueness is also obtained.

1 Introduction

1.1 Derivation of the Korteweg model

We are concerned with compressible fluids endowed with internal capillarity. The model
we consider originates from the XIXth century work by van der Waals and Korteweg
[21] and was actually derived in its modern form in the 1980s using the second gradient
theory, see for instance [20, 26].

Korteweg-type models are based on an extended version of nonequilibrium thermodynam-
ics, which assumes that the energy of the fluid not only depends on standard variables
but on the gradient of the density. Let us consider a fluid of density p > 0, velocity
field u € RN (N > 2), entropy density e, and temperature 6 = (%)p. We note w = Vp,
and we suppose that the intern specific energy, e depends on the density p, on the en-
tropy specific s, and on w. In terms of the free energy, this principle takes the form of a
generalized Gibbs relation :

~ 1
de =Tds + %dp—l— —¢" - dw
p p

where T is the temperature, p the pressure, ¢ a vector column of RV and ¢* the adjoint
vector.
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In the same way we can write a differential equation for the intern energy per unit volume,
E = pe, B
dE =TdS + gdp + ¢* - dw

where S = ps is the entropy per unit volume and g = e — sT +% is the chemical potential.
In terms of the free energy, the Gibbs principle gives us:

dF = —SdT + gdp + ¢* - dw.
In the present chapter, we shall make the hypothesis that:
¢ = Kw.

The nonnegative coefficient x is called the capillarity and may depend on both p and T.
All the thermodynamic quantities are sum of their classic version (it means independent
of w) and of one term in |w|?.

In this case the free energy F decomposes into a standard part Fjy and an additional term
due to gradients of density:

1
F=F+ 5&\10]2.
We denote v = % the specific volume and k = vk. Similar decompositions hold for S, p
and g:
1 , ,
pP="Po— §Kp|w‘2 where: Kp =k, and pg = _(fﬂ)v

1 ~ ~ ,
g=go+ §Kg\w|2 where: Ke =k — Tk and eg = fo— T(fo)f.

The model deriving from a Cahn-Hilliard like free energy (see the pioneering work by
J.E.Dunn and J.Serrin in [15] and also in [1, 8, 17]), the conservation of mass, momentum
and energy read:

Op + div(pu) =0,

O(pu) + div(pu ® u + pI) = div(K + D) + pf,
dr(p(e + 3u?)) + div(u(pe + zplul* + p)) = div((D + K) -u = Q+ W) + pf - u,

with:
D = (Mdivu)I + p(du + Vu), is the diffusion tensor
K = (pdivg)l — ¢pw™, is the Korteweg tensor
Q= —nVT, is the heat flux.

The term

W = (0 +u"-Vp)p = —(pdivu)d

is the intersticial work which is needed in order to ensure the entropy balance and was
first introduced by Dunn and Serrin in [15].

The coefficients (), 1) represent the viscosity of the fluid and may depend on both the
density p and the temperature 7. The thermal coefficient 7 is a given non negative
function of the temperature T" and of the density p.



Differentiating formally the equation of conservation of the mass, we obtain a law of
conservation for w:
Opw + div(uw™ + pdu) =0 .

One may obtain an equation for e by using the mass and momentum conservation laws
and the relations:

div((=pI + K + D)u) = (div(—pl + K + D)) - u — pdiv(u) + (K + D) : Vu .
Multiplying the momentum equation by u yields:

(div(—pl + K + D)) - u = (d¢(pu) + div(puu®)) - u = Gt(M) + div(

plul?
; PR

2
We obtain then:

p(Oe +u* - Ve) 4+ pdivu = (K + D) : Vu+div(W — Q) .
In substituting K, we have (with the summation convention over repeated indices):
K : Vu = pdivedivu — ¢;w;0;u; ,
while:
—divIV = div((pdivu)¢) = p(dive)(divu) + (w* - ¢)divu + ¢; p 07 u;.
In using w; = 0jp, we obtain:

K :Vu—divilWV = —(w* - ¢)divu — ¢;0;(poiu;)
= —(w"* - ¢)divu — (div(pdu)) - ¢.

Finally, the equation for e rewrites:
p(Ore +u* -Ve) + (p+w* - ¢)divu = D : Vu — (div(pdu)) - ¢ — divQ .

From now on, we shall denote: d; = 0; + u* - V.

1.2 The case of a generalized Van der Waals law

From now on, we assume that there exist two functions IIy and II; such that:
po = T, (v) + Iy (v),

eo = —Tlo(v) + ¢(T) — T (T).

We now suppose that the coefficients A, i depend on the density and on the temperature,
and in all the sequel the capillarity x doesn’t depend on the temperature. _
Moreover we suppose that the intern specific energy is an increasing function of 7

(A) U'(T) > 0 with U(T) = o(T) — T (T).

We then set 0 = \II(T) and we search to obtain an equation on #. In what follows, we
assume that x depends only on the specific volume.



Obtaining an equation for 6 :

As: )
e = —TIly(v) + 0 + §/<a|w|2,

we thus have: )
de = —Hg(v)dtv 4 di0 + §H;|w|2dtv + kw* - dyw .

By a direct calculus we find:
dw = vdivu and w* - dyw = —|w|*divu — div(pdu) - w .
Then we have:
dif = dye + v(p — TTI (v))dive + k|w|2dive 4 kdiv(pdu) - w.

And in using the third equation of the system, we get an equation on 6:

dyf 4 vdivQ + vTTI) (v)divu = vD : Vu + div(pdu) - (kw — v$) + (kw|? — vw* - ¢)divu .
But as we have ¢ = kw and k = vk we conclude that:

dif — vdiv(xV0) + v¥ YOI (v)dive = vD : Vu
with: x(p,0) = (p, )W) (6) .

Obtaining a system for p, u, 6:

We obtain then for the momentum equation:
divD V divK 1 V(Kp|w|?
v Po v (Kplwl]?)

p p p 2 p

dt'LL —

where K, = k — ,0/1;).
And by a calculus we check that:

1 /
divK + S V(K |wf) = pV(xAp) + gV(mp\Vp\Q).
Indeed we have:

1
I =V (pdiv(kVp)) — div(kww™) + §V(Kp|w\2)

[PV (kAp) + KVpAp + pV (o) + K| VY] — [rdiv(wa®) + Ky w - Vpul,

K l‘i/ 1 ’
+ BVl + 2102V - 29 (o, ),

KR

=[PV (rAp) + KV pAp + £V (1] pl)] = [ndiv(we™)] + (5

lwf?,
=[PV (kAp) + KV pAp + LV (1 pl?)] = [muwdivw + SV wf] + SV,

=pV(rp) + £V (1, [ VpP)



Finally we have obtained the following system:

( Op + div(pu) = 0,
ivD P \I,—l P,
Ouu+ - Vu - T8 - sy + LT (DA
(NHV) §
= V(5IVeP),
040+ u-vo— WOV g1 P gy DV

where: Py =TIy, P, =11} and T = ¥~1(0).
We supplement (NHV') with initial conditions:

pi=0 = po = 0 uz=g = up, and O;—¢ = bp.

1.3 Classical a priori-estimates

Before getting into the heart of mathematical results, let us derive the physical energy
bounds of the (NHV') system when k is a constant and where the pressure just depends
on the density to simplify. Let p > 0 be a constant reference density, and let II be defined

i 0= o [ e - B40)
([

F;
so that Py(s) = sII'(s) — II(s), II'(5) = 0 and:
O IL(p) + div(ull(p)) + Py(p)div(u) =0 in D' ((0,T) x RM).

Notice that IT is convex as far as P is non decreasing (since Py(s) = sII' (s)), which is the
case for y-type pressure laws or for Van der Waals law above the critical temperature.
Multiplying the equation of momentum conservation in the system (NHV) by pu and
integrating by parts over RY, we obtain the following estimate:

[ Goolal? +p0-+ (00) =113 + 519) e +2 [ [ (2000w DG

s 2 |mO’2
+ (A p)|divel?) de S/ (
RN 2

+ pofo + (T1(po) —T1(p)) + 5|V pol)

It follows that assuming that the initial total energy is finite:

€0 = / (| 20| + pobo + (IL(po) — (p)) + f|Vp0]2)dx < 400,
RN P 2
then we have the a priori bounds:

M(p) — T1(p), plul?, and pf € L(0, 00, L'(RY))

Vp € L=(0,00, LA®RV))N, and Vu e L2(0, 00, RN)N*.



2 Mathematical results

We wish to prove existence and uniqueness results for (NHV') in functions spaces very
close to energy spaces. In the non isothermal non capillary case and P(p) = ap”, with
a > 0 and v > 1, P-L. Lions in [22] proved the global existence of variational solutions
(p,u,0) to (NHV) with k =0 for v > % it N>4, v> ]\?;—% if N = 2,3 and initial data
(po, mo) such that:

2

M)~ 1(p), 05 & LH®Y), and poty € L(RY)
These solutions are weak solutions in the classical sense for the equation of mass conser-
vation and for the equation of the momentum.
On the other hand, the weak solution satisfies only an inequality for the thermal energy
equation.
Notice that the main difficulty for proving Lions’ theorem consists in exhibiting strong
compactness properties of the density p in Lf o Spaces required to pass to the limit in the
pressure term P(p) = ap?.
Let us mention that Feireisl in [16] generalized the result to v > % in establishing that we
can obtain renormalized solution without imposing that p € LZQDC, for this he introduces
the concept of oscillation defect measure evaluating the lost of compactness.
We can finally cite a very interesting result from Bresch-Desjardins in [5],[6] where they
show the existence of global weak solution for (NHV') with x = 0 in choosing specific
type of viscosity where i and A are linked. It allows them to get good estimate on the
density in using energy inequality and to can treat by compactness all the delicate terms.
This result is very new because the energy equation is verified really in distribution sense.
In [23], Mellet and Vasseur improve the results of Bresch,Desjardins in generalize to some
coefficient p and A admitting the vacuum in the case of Navier-Stokes isothermal, they
use essentially a gain of integrability on the velocity.

In the case k > 0, we remark then that the density belongs to L>°(0, 00, H'(RN)). Hence,
in contrast to the non capillary case one can easily pass to the limit in the pressure term.
However let us emphasize at this point that the above a priori bounds do not provide any
L control on the density from below or from above. Indeed, even in dimension N = 2,
H' functions are not necessarily locally bounded. Thus, vacuum patches are likely to
form in the fluid in spite of the presence of capillary forces, which are expected to smooth
out the density. Danchin and Desjardins show in [14] that the isothermal model has weak
solutions if there exists ¢; and Mj such that:

a<|p|<M; and |p—1| << 1.

The vacuum is one of the main difficulties to get weak solutions, and the problem remains
open.

In the isothermal capillary case with specific type of viscosity and capillarity p(p) = up
and A(p) = 0, Bresch, Desjardins and Lin in [7] obtain the global existence of weak
solutions without smallness assumption on the data. We can precise the space of test
functions used depends on the solution itself which are on the form p¢ with ¢ € C§°(RY).



The specificity of the viscosity allows to get a gain of one derivative on the density:
p € L?(H?).

Existence of strong solution with x, 4 and A constant is known since the work by Hat-
tori an Li in [18], [19] in the whole space RY. In [14], Danchin and Desjardins study
the well-posedness of the problem for the isothermal case with constant coefficients in
critical Besov spaces.

Here we want to investigate the well-posedness of the full non isothermal problem in
critical spaces, that is, in spaces which are invariant by the scaling of Korteweg’s system.
Recall that such an approach is now classical for incompressible Navier-Stokes equation
and yields local well-posedness (or global well-posedness for small data) in spaces with
minimal regularity.

Let us explain precisely the scaling of Korteweg’s system. We can easily check that, if
(p,u,0) solves (NHV), so does (px, uy, fy), where:

pa(t,z) = p(A2t, Ax), ua(t, ) = Au(N2t, Az) and Oy(t,z) = A20(\°t, \x)

provided the pressure laws Py, P; have been changed into A\2Py, \2P;.

Definition 2.1 We say that a functional space is critical with respect to the scaling of
the equation if the associated norm is invariant under the transformation:

(p7 u, 0) — (p)w Uy, 6)\)
(up to a constant independent of \).

This suggests us to choose initial data (pg, ug,fp) in spaces whose norm is invariant for

all A > 0 by (po, uo,00) — (po(A-), Auo(A-), Abg(X-)).

A natural candidate is the homogeneous Sobolev space HN/2 x (HN/Qfl)N x HN/2-2,
but since HN/2 is not included in L, we cannot expect to get L™ control on the density
when pg € HN/2 The same problem occurs in the equation for the temperature when
dealing with the non linear term involving ¥~1(9).

This is the reason why, instead of the classical homogeneous Sobolev space H? (RY), we
will consider homogeneous Besov spaces with the same derivative index B* = Bgyl(RN )
(for the corresponding definition we refer to section 4).

One of the nice property of B* spaces for critical exponent s is that B2 is an algebra
embedded in L*°. This allows to control the density from below and from above, without
requiring more regularity on derivatives of p. For similar reasons, we shall take 6y in B 7
in the general case where appear non-linear terms in function of the temperature.

Since a global in time approach does not seem to be accessible for general data, we will
mainly consider the global well-posedness problem for initial data close enough to stable
equilibria (Section 5). This motivates the following definition:

Definition 2.2 Let p > 0, > 0. We will note in the sequel:

quip and T =60 —0.
p



One can now state the main results of the paper.

The first three theorems concern the global existence and uniqueness of solution to the
Korteweg’s system with small initial data. In particulary the first two results concern
Korteweg’s system with coefficients depending only on the density and where the intern
specific energy is a linear function of the temperature.

Theorem 2.1 Let N > 3. Assume that the function ¥ defined in (A) satisfies U(T) =
AT with A > 0 and that all the physical coefficients are smooth functions depending only
on the density. Let p > 0 be such that:

R(p) >0, wu(p) >0, A(p)+2u(p) >0, n(p) >0 and 9,Po(p) > 0.

Moreover suppose that:

~ N N N ~N N
g €B2"b2 yeB2! Toe Bz bz272,

There exists an g depending only on the physical coefficients (that we will precise later)
such that if:
HQOHE%—L% + HUO||§%—1 + ”%HE%—L%—Q <eo

then (NHV) has a unique global solution (p,u,T) in EN/? where E* is defined by:

B =[Cy(Ry, B 1) N L' Ry, B )] x [Gy(R4, B )Y N L} (R4, B>H)Y]
x [Cy(Ry, B*7H72) 0 LY Ry, BSFH)].

Remark 1 Above, Bt stands for a Besov space with reqularity B® in low frequencies
and Bt in high frequencies (see definition 3.3).

The case N = 2 requires more regular initial data because of technical problems involving
some nonlinear terms in the temperature equation.

Theorem 2.2 Let N = 2. Under the assumption of the theorem 2.1 for U and the
physical coefficients, let e >0 and suppose that:

qo € BY'te g e B | T, e BOlte
There exists an g9 depending only on the physical coefficients such that if:
lgoll o1 + luoll o, + 170l o140t < €0
then (NHV) has a unique global solution (p,u,T) in the space:
E —[Cy(Ry, BT ) 0 LA Ry, 2] x [CyRs, B )2 (1 LI Ry, B22H )
x [Cy(Ry, BO1FE ) 0 LY (R, B>,

In the following theorem we are interested by showing the global existence of solution for
Korteweg’s system with general conditions and small initial data. In order to control the
non linear terms in temperature more regularity is required. That’s why we want control
the temperature in norm L.



Theorem 2.3 Let N > 2. Assume that ¥ be a reqular function depending on 6. Assume
that all the coeﬂicz’emﬁf are smooth functions of p and 0 except k which depends only on
the density. Take (p,T) such that:

K(p) >0, pu(p,T)>0, Xp,T)+2u(p,T)>0, n(p,T) >0 and 9,P(p,T) > 0.
Moreover suppose that:
qo € E%_l’%—H, ug € B

There exists an €1 depending only on the physical coefficients such that if:

qu”g%—l,%ﬂ + HUOHE%A,% + H'ﬁ)Hég,lg <e¢
then (NHV) has a unique global solution (p,u,T) in:
F% =[Cy(Ry, BT V34 0L Ry, BE 1349 x [Cy(Ry, B2 12N

N
2

NL' Ry, B2V 22N [Cy(Ry, B 15) N LRy, B2 102 +2)).

In the previous theorem we can observe for the case N = 2 that the initial data are very
close from the energy space of Bresch, Desjardins and Lin in [7].

In the following three theorems we are interested by the existence and uniqueness of
solution in finite time for large data. We distinguish always the differents cases N > 3
and N = 2 if the coefficients depend only on p, and the case where the coefficients depend
also on T

Theorem 2.4 Let N > 3,and ¥ and the physical coefficients be as in theorem 2.1. We
N N N
suppose that (qo,uo, To) € B2 x (B2 Y)Y x B272 and that po > ¢ for some ¢ > 0.

Then there exists a time T such that system (NHV) has a unique solution in Fr

Fr =[Cr(B%) N LH(B* )] x [Cr(BZ )N n Li(BZ+)V]
x [Cr(B22)nLL(B?)).

For the same reasons as previously in the case N = 2 we can not reach the critical level
of regularity.

Theorem 2.5 Let N =2 and £ > 0. Under the assumptions of theorem 2.1 for ¥ and
the physical coefficients we suppose that (qo,uo, To) € BLlte & (EO“EI)2 % B~L=14e gnd
po > ¢ for some ¢ > 0.

Then there exists a time T such that the system has a unique solution in Fr(2) with:

Fr(2) :[C~'T(§1J+€/) N L%(§373+€/)] « [6«T(§0,5/)2 N L%(§2,2+5/)2]

> [CT(B—I,—H-E,) QL%(ELH_&/)] ]

In the last theorem we see the general system without conditions, and like previously we
need more regular initial data.



Theorem 2.6 Under the hypotheses of theorem 2.8 we suppose that:
(qo, w0, To) € Bratl (B%)N x B* and po > ¢ for some ¢ > 0.
Then there exists a time T such that the system has a unique solution in :
Fp =(Cr(B= =) N LH(BE 2280 < [Cr(BH)Y N L (B )"
x [Cr(B) N LL(BZ*?)] .

This chapter is structured in the following way, first of all we recall in the section 3
some definitions on Besov spaces and some useful theorem concerning Besov spaces.
Next we will concentrate in the section 4 on the global existence and uniqueness of
solution for our system (NHV') with small initial data. In subsection 4.1 we will give
some necessary conditions to get the stability of the linear part associated to the system
(NHV). In subsection 4.2 we will study the case where the specific intern energy is linear
and where the physical coefficients are independent of the temperature. In our proof we
will distinguish the case N > 3 and the case N = 2 for some technical reasons. In the
section 5 we will examine the local existence and uniqueness of solution with general
initial data. For the same reasons as section 4 we will distinguish the cases in function
of the behavior of the coefficients and of the intern specific energy.

3 Littlewood-Paley theory and Besov spaces

3.1 Littlewood-Paley decomposition

Littlewood-Paley decomposition corresponds to a dyadic decomposition of the space in
Fourier variables.

We can use for instance any ¢ € C*°(R"), supported in C = {£ € RV/3 < |¢| < 3} such
that:

Y@ =1 if ¢#0.

l€Z
Denoting h = F~'¢, we then define the dyadic blocks by:

Alu:QlN/ h(2'y)u(x — y)dy and Sju = Z Agu.
RN k<l—1

Formally, one can write that:

u:ZAku.

kEZ
This decomposition is called homogeneous Littlewood-Paley decomposition. Let us ob-
serve that the above formal equality does not hold in S'(RY) for two reasons:

1. The right hand-side does not necessarily converge in S’ (RN).

2. Even if it does, the equality is not always true in S (R") (consider the case of the
polynomials).

However, this equality holds true modulo polynomials hence homogeneous Besov spaces
will be defined modulo the polynomials, according to [4].

10



3.2 Homogeneous Besov spaces and first properties

Definition 3.3 For s € R, and u € S'(RY) we set:

lullgs = Q2" Al 2)-

leZ

A difficulty due to the choice of homogeneous spaces arises at this point. Indeed, |.||ps
cannot be a norm on {u € S'(RN), ||lu||ps < +00} because |[u|ps = 0 means that u is
a polynomial. This enforces us to adopt the following definition for homogeneous Besov
spaces, see [4].

Definition 3.4 Let s € R.
Denotem = [s — ] if s — & ¢ Z and m = s — § — 1 otherwise.

o Ifm <0, then we define B® as:

B® = {u e S'(RY) llullps < oo and u = ZA[U in S/(RN)}.
lEZ

o Ifm >0, we denote by Pp, [RN] the set of polynomials of degree less than or equal
to m and we set:

B® = {u e S’ (RY) /PR /llullps < 0o and u= ZA[U in S/(RN)/Pm[RN]}.
leZ

Proposition 3.1 The following properties hold:
1. Density: If |s| < % , then C§° is dense in B®.
2. Derivatives: There exists a universal constant C' such that:

C7Hullps < [[Vullgs-1 < Cllulls=.

3. Algebraic properties: For s > 0, BS N L* is an algebra.

4. Interpolation: (B®', B?)g, = BOs2+(1-0)s1,

3.3 Hybrid Besov spaces and Chemin-Lerner spaces

Hybrid Besov spaces are functional spaces where regularity assumptions are different in
low frequency and high frequency, see [12].
They may be defined as follows:

Definition 3.5 Let s, t € R. We set:

lull o =D 2% [ Aqullzz + Y 27| Aqul| 2 .
q<0 q>0

Let m = —[% + 1 — s], we then define:

11



o Bt = {u e S(RY) ) [l 5o < 400}, if m <0

o B = {ueS(RN)/P,[RY] ] /llull go.c < 400} if m > 0.

Let us now give some properties of these hybrid spaces and some results on how they
behave with respect to the product. The following results come directly from the parad-
ifferential calculus.

Proposition 3.2 We recall some inclusion:
e We have B** = BS.
o Ifs<tthen BS' = BSN B!, if s > t then BSt = B* + Bt
o Ifs; < sy and t; >ty then BS111 —y B2tz
Proposition 3.3 For all s, t > 0, we have:
[uv] g < Clllullzellvllgee + lvllzeelull gs.e) -

For all sy, s9, t1, ta < % such that min(sy + s2, t1 + t2) > 0 we have:

||uv‘|ésl+tl—%,52+t2—% < CH“HEHH ”UHE%’Q :

For a proof of this proposition see [12]. We are now going to define the spaces of Chemin-
Lerner in which we will work, which are a refinement of the spaces:

LA(B®) := LP(0, T, B*).

Definition 3.6 Let p € [1,4o00[, T' € [1,4+00] and s € R. We then denote:
1 T 1/ l r 1/
g emy = 22 ([ 1A 20)' "+ 322 [ (o) ) 7
1<0 1>0

And we have in the case p = 0o

ol e ey = S 2 Al e+ 3 2% | A 1)
1<0 1>0

We note that thanks to Minkowsky inequality we have:

HUHLg(EShW) < HUHZ;(ESL%) and HuHLl (381 s2) = HUHLl (Bs1:52)

From now on, we will denote:

T
_ s 1
Jull 5, gy = 3024 [ IAOIG0) "

1<0 0

T
s 1
Il ey = 22 [ NAROI ) .

>0

12



Hence:
||UHZ§,(891 ||u”LP(B.51 + ||u”Lp(Bél 52)
We then define the space:

z§(§S1,82) = {u € L%(ESI,SQ)/HUHZ%(ESZDSZ) < OO}

We denote moreover by Cp(B*152) the set of those functions of E;?(ESM) which are

continuous from [0, 7] to Bsts2. In the sequel we are going to give some properties of
this spaces concerning the interpolation and their relationship with the heat equation.

Proposition 3.4 Let s, t, s1, so €R, p, p1, p2 € [1,+00]. We have:
1. Interpolation:

. 1 0 1-46
oz ey < Nl ey gt sy it 6.€ [0,1] and — =~

s=0s1+ (1 —0)se, t =0t + (1 —0)to

2. Embedding:
I2(B*") < LL(Cy) and Cr(B*) < C([0,T] x RY).

The z;(Bg) spaces suit particulary well to the study of smoothing properties of the heat
equation. In [9], J-Y. Chemin proved the following proposition:

Proposition 3.5 Let p € [1,4+00] and 1 < pa < p; < 400. Let u be a solution of:
Oy — pAu = f
t=0 = UQ -
Then there exists C > 0 depending only on N, u, p1 and p2 such that:
HUHE;I(BH?//H) < CHUOHBS + CHfHZ‘%?(BSfQJr?/Pz) .

To finish with, we explain how the product of functions behaves in the spaces of Chemin-
Lerner. We have the following properties:

Proposition 3.6 L B

Let s >0, t >0, 1/pa+1/p3 =1/p1 + 1/ps = 1/p < 1, uw € LF(B>') N LE (L) and
v e LY (B®) N L (L™).

Then wv € Lo.(B*') and we have:

HUUHZPT(és,t) < CH“HZ? (Loo)HUHiPT4(§s,t) + HUHZ’JTZ(LOQ)HUHEPS(Es,t)-

If si,80,ti,t2 < 5, s1 4520 >0, 8+t > 0, ,71 +oo=45<1 e LB (B and

vE E;z (B*2%2) then uv € E;(B’sﬁsr%ﬁw 2) and.

HUUHZ%(§;1+32—%¢1+Q—%}) < CHUHZ’;} (ESLH)HUHZS’?(ES&Q) :

’
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For a proof of this proposition see [12]. Finally we need an estimate on the composition
of functions in the spaces L% (Bs) (see the proof in the appendix).

Proposition 3.7 Let s >0, p € [1,400] and uj,uz--- ,uq € EPT(B;) N LF(L>).

(i) Let F € W[s]+2°°(RN) such that F(0) = 0. Then F(ui,ug, -+ ,uq) € EPT(B;).

loc
More precisely, there exists a constant C' depending only on s,p, N and F' such that:

1 Curs uz, - s ua)llgp gy < Olllunllngs ooy lluallLge (noey -+ s lJuall ge <))

(HUIHZ;(B;) +eee HudHZPT(Bg))'

(ii) Let u € LA.(B5%?), s1, 59 > 0 then we have F(u) € L.(B*%*) and
IEl g 5ereny < OOl ol oy

(iii) If v, u € L 7(Bp) N LF(L*®) and G € I/Vl[SHSOO(]RN) then G(u) — G(v) belongs to
LPT(B;) and there exists a constant C depending only of s,p, N and G such that:

1G) ~ C)lzp gy < Cllllzge oy oo ) (10—l 3y 0+ Tl

ol ) + o = wllzge ol 2 ) + 0122 5))-
(w) Ifv,ue L’ Byt )N LP(L™) and G € VVZ[SH?’OO(]RN) then G(u) — G(v) belongs to
Lp B,'*%) and it exists a constant C depending only of s,p, N and G such that:
P g Y p

IG(w) = G)llge g2y < Clllullge ey I0llzgezoe)) (Il = wllze ooy (L + llullzge o)

+ vl zge (zoey) + llv — U||L;S(L<>o)(||U||sz(§;1v52) + HUHz;(g;lvsz)))-
The proof is an adaptation of a theorem by J.Y. Chemin and H. Bahouri in [2], see the
proof in the Appendix.
4 Existence of solutions for small initial data

4.1 Study of the linear part

This section is devoted to the study of the linearization of system (N HV) in order to get
conditions for the existence of solution. We recall the system (NHV') in the case where

14



k depends only on the density p:
Op + div(pu) = 0,

A (pu) + div(pu @ u) — divD — pV(kAp) + (V(Po(p) + TPi(p))

(NHY) = pV(LIVoP),

i P, D :
8,0 — dw(’;w) 4T 1;’) ) div(u) = pw_

Moreover we have:
div(D) = (A + p)Vdivu + pAu + V(N)divu + (du + Vu) Vi,
= (2X + p)Vdivu + pAu + 01 A(p, 0)V pdivu + 02 A(p, 0) VOdivu
+ (du + Vu)orpu(p, )V p + (du + Vu)Oap(p, 6) V0.

We transform the system to study it in the neighborhood of (p,0,8). Using the notation
of definition 2.2, we obtain the following system where F,G, H contain the non linear
part:

(0yq + divu = F,

Otu—%Au (/\;M)levu pﬁVAq+(P0( )+TP1( p))Vq

(M) Pi(p)
+m/1( T)

VT =G,

8tT—KAT+ Pp( )dl u=H.

This induces us to study the following linear system:

Oyq + divu = F

Byu — fidu— (i +X) —eVAq— Vg —VT =G
0T — aAT + ddivu = H

ou — pAu = PG

(M)

where v, ¢, , 3, 7, 0 and 1 are given real parameters. Note that system (M) with right
hand side considered as source terms enters in the class of models (M /), it is only a
matter of setting:

TPi(p) '

=", A=

Sl =i
Sl \ >
bl

— k. B = Fy(p) + TPi(p). 7 = - ) a=X -

We transform the system in setting:

d=A"'divu and Q = A tcurlu

15



where we set: Ah = F1(|€|*h) (the curl is defined in the appendix).
We finally obtain the following system in projecting on divergence free vector fields and
on potential vector fields:

Oiq+ Ad = F,

Ord — vAd — eN3q — BAq — yAT = A7 1div G,
, T — aAT + 6Ad = H,

(M) el

9 — IAQ = A Leurl G,

u=—A"'Vd— AtdivQ.

\

The last equation is just a heat equation. Hence we are going to focus on the first three
equations. However the last equation gives us an idea of which spaces we can work with.
The first three equation can be read as follows:

q(t,€) q(t,€) F(t,€)
(M,) O dt.©) | +AE©) | dt.&) | =| AldivG(t¢)
T(t,€) T(t,€) H(t,€)
where we have:
0 o
A = | —cleP-B8lgl vIEP ¢
0 algl  al¢f

The eigenvalues of the matrix —A() are of the form [£]*)\¢ with A¢ being the roots of
the following polynomial:

Pe(X) = X7 + (v + a) X* + <€+1/04+W>X+ <a6+§€>.

For very large &, the roots tend to those of the following polynomial (by virtue of conti-
nuity of the roots in function of the coefficients):

X+ v+ a)X?+ (e +rva)X +ae.

The roots are —a and —%(1 £ /1 — 25).

The system (M) is well-posed if and only if for |¢| tending to 400 the real part of the
eigenvalues associated to A(§) stay non positive. Hence, we must have:

e, v, a>0.

Let us now state a necessary and sufficient condition for the global stability of (M /).

Proposition 4.8 The linear system (M/) 18 globally stable if and only if the following
conditions are verified:

(%) v,e,a>0, af >0, vo(vr+a)+vs8>0, v6+ 8 >0.

16



If all the inequalities are strict, the solutions tend to 0 in the sense of distributions and
the three eigenvalues A1(€), Ay (&), A_(&) have the following asymptotic behavior when &
tends to 0:

(%

5
B+~

v +a v
P, As(e) ~ —(PW T EVBy 2 4 bl 75T B

M)~ 2030 + B)

Proof :

We already know that the system is well-posed if and only if v, > 0. We want that all
the eigenvalues have a negative real part for all .

We have to distinguish two cases: either all the eigenvalues are real or there are two
complex conjugated eigenvalues.

First case:

The eigenvalues are real. A necessary condition for negativity of the eigenvalues is that
P(X) >0 for X > 0. We must have in particular:

P§(0)=a5+0‘—520 VE #0.

€17

This imply that a8 > 0 and ae > 0. Hence, given that o« > 0, we must have 8 > 0 and
€ > 0. For £ tending to 0, we have:

Ao+ B8) + ap
€]2 '

Making A tend to infinity, we must have P¢(A) > 0 and so vd + 3 > 0.
The converse is trivial.

Pe(A) ~

Second case:

P: has two complex roots z+ = a = ib and one real root A, we have:
Pe(X) = (X — N)(X? —2aX + |22 [%).

A necessary condition to have the real parts negative is in the same way that P¢(X) >0
for all X > 0.

If v6 4+ 8 > 0, we are in the case where £ tends to 0 (and we see that P: is increasing).
We can observe the terms of degree 2 and we get: A+ 2¢ = —a — v then A and «
are non positive if and only if Pe(—a — v) < 0 (for this it suffices to rewrite P like
Pe(X) = (X — N)(X?% —2aX + |24 |%)). Calculate:

Pe(—a—v) = —ve — Vo — vB+ I/|’£Y’(52+ 047(5.

With the hypothesis that we have made, we deduce that P¢(—a — v) < 0 for £ tending
to 0 if and only if v3 4+ vyd + ayd > 0.

17



Behavior of the eigenvalues in low frequencies:

Let us now study the asymptotic behavior of the eigenvalues when ¢ tends to 0 and all
the inequalities in (A) are strict.

We remark straight away that the condition «vé + 8 > 0 ensures the strict monotonicity
of the function: A — P¢(\) for £ small. Then there’s only one real eigenvalue A;(£) and
two complex eigenvalues Ay (&) = a(&) +ib(§).

Let e~ < — a_f < et < 0. When ¢ tends to 0, we have:

Y6+
Pe(N) ~ [€]72(A(v0 + B) + aB)).

Then Pg(e~) < 0 and Pe(et) > 0 and P: has a unique real root included between ¢~ and
et. These considerations give the asymptotic value of A1 (€).
Finally, we have:

af ap

M(€) +20(6) = —a = v and — (al(©)* +HOAE) = A + 1 ~ 1

whence the result. O

We summarize this results in the following remark.

Remark 2 According to the analysis made in proposition 4.8, we expect the system (M)
to be locally well-posed close to the equilibrium (p,0,T) if and only if we have:

(@) 1(p,0) >0, X(p,0) +2u(p,0) > 0, k(p) >0, and x(p,T) > 0.

By the calculus we have:

g ano (ﬁa T) T 8TpO (:57 T)
= 3,p0(5,T), 7 = ~ ) 5= 0P
B pPO(P ) Y paTe()(p, T) p

We remark that v§ > 0 if Opeo(p, T) > 0. In the case where n verifies n(p,T) > 0, the
supplementary condition giving the global stability reduces to:

(D) 6pp0(ﬁ7 T) > 0.

Now that we know the stability conditions on the coefficients of the system (M /), we aim
at proving estimates in the space 7.

We add a condition in this following proposition compared with the proposition 4.8 which
is: 9 > 0, but it’s not so important because in the system (NHV') we are interested in,

. _ 1

we have effectively v§ = (D) > 0.

Proposition 4.9 : Under the conditions of proposition 4.8 with strict inequalities and
with the condition v§ > 0, let (q,d,T) be a solution of the system (M/) on [0,T) with

initial data (qo,uo, To) such that:

go € B dy € BN T € B2 for some s €R.

18



Moreover we suppose that for some 1 < ry < 400, we have:

~ ~ 2 2 ~ 2 ~ ~ 2 2
Fe LB ), Ge LB ™), He LB >,

We then have the following estimate for all r1 < r < 4o00:
lall g, grereont, + 1Tl georezocaed, + lullg, eore) S Naollgess + Juollpens

+ H%HBS 1,5-2 +HFH (B B4 72— 2+T2) HGHL;}( s— 3+— + HH” (B Bt s 4+T21)-

Proof:

We are going to separate the case of the low, medium and high frequencies, particu-
lary the low and high frequencies which have a different behavior, and depend on the
indice of Besov space.

1) Case of low frequencies:

Let us focus on just the first three equation because the last one is a heat equation that
we can treat independently. Applying operator A; to the system (Mi)7 we obtain then
in setting:

q=2Ng, dp=Nd, T = AT

the following system:

dq + Ady = F,
Ody — VAd; — 5A3ql — BAq — AT, = A_ldiVGl, .
0,Ti — AT + 6Ad; = H. (4.3)

Throughout the proof, we assume that ¢ # 0: if not we have just a heat equation on (4.3)
and we can use the proposition 3.5 to have the estimate on 7 and we have just to deal
with the first two equations. Denoting by W (¢) the semi-group associated to (4.1 — 4.3)
we have:

q(t) 0 t F(s)
u(t) | =W(E) | wo +/ W(t—s)| G(s) ds .
H(s)

We set: N
= Bllalz + ldill7> + gllﬁllia — 2K (Aq;, dy)

for some K > 0 to be fixed hereafter and (-,-) noting the L? inner product.

To begin with, we consider the case where F = G = H = 0.

Then we take the inner product of (4.2) with d;, of (4.1) with 8¢, and of (4.3) with ~7;.
We get:

d ¥ Yo
S (ldlZz + Blallze + SITl7) + vIIVAl7: — e(Mq, di) + - [IVTil72 = 0. (44)

N |
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Next, we apply the operator A to (4.2) and take the inner product with ¢;, and we take
the scalar product of (4.1) with Ad; to control the term %(Aql,dl) Summing the two
resulting equalities, we get:

d
am%dl) + A3 — v{Ady, Aq) — || Aq|32 — Bl|Aqll|F2 — v(AT;, Ag) = 0. (4.5)

We obtain then in summing (4.4) and (4.5):

1d Yo
it T WIVdlL: = KlAdi|IZ:) + (KBl AallZ: + KelA%al72) + IV TillZ

+ Kv(Ady, Aq) + Kv(AT, Aq) — €<A3ql,dl> =0.

Like indicated, we are going to focus on low frequencies so assume that | < [y for some
lp to be fixed hereafter. We have then Ve, b, d > 0 :

b 1
[(Ady, Aa)| < SlIAalz2 + o || Adill7:

b C22lo
< §HAQIH%2 + T\\Adl”é ,

2lo

C2
|<A3QZ7dl>| = |<AQQlaAdl>| < %2

C
|AqilZ2 + 5 lIAdi 72 -

Moreover we have: ||[Vd;|2, = ||Ad;||%,. Finally we obtain:

1d , C2%o ce 2 yoo o Ky 2
== — (K Kv+ —)|||Ad — ——1|A
st + = K+ ——Kv+ )]IAdi7z + [ = 57 JIAT (17

02210
2c

b d
+ K[ +eC2% — v —e=— — ] Aallz: < 0.

Then we choose (b, ¢,d) such that:
D=t ia=l
€ 2

which is possible if v > 0 as v > 0, € > 0. In the case where v < 0, we recall that v
and 0 have the same sign, we have then no problem because with our choice the first and
third following inequalities will be satisfied and if v < 0 in the second equation the term
7% is positive in taking d > 0. So we assume from now on that v > 0 and so with this
choice, we want that:

2
1% 14
— K1+ C22 )y >

2
B4 cooo _ o920 S g
2 2v
ooy
2 _kXso.
;5 97
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We recall that in your case v > 0, >0, @ > 0and v >0, d > 0. So it suffices to choose
K and [y such that:

v 2a I51% 1
K<min[—2 2% and 220 <min( 22— ).
mm(z(uczzlog;) 5> o mm<6052 656’)

Finally we conclude in using Proposition 3.1 part (ii) with a ¢ small enough. We get:

3 dt fl 222 <0 forl<ly. (4.8)

2) Case of high frequencies:

We are going to work with [ > I} where we will determine /1 hereafter. We set then:

17 = Bl A2 + Blldil2 + 1A Tl — 2K (Ag.d),

and we choose B and K later on.
Then we take the inner product of (4.2) with d;:

2+ VIV — =N d) — BN d) —/(AThd) =0, (49)

Moreover we have in taking the scalar product of (4.1) with A2%g;:

thHAQZHLz + (A%dy, Ag) = 0. (4.10)

And in the same way with (4.3), we have:

5 dtHA 1T||L2 + 0‘||7'HL2 +8{dj, A1) = 0. (4.11)

After we sum (4.9), (4.10) and (4.11) to get:

1d
Bl|di||72 + e Bl Aqil|72 + AT Til[72) + B Vdil|72 + o Til|72
g Bl L 12) L g (4.12)

— BB{(Aqy, d)) — By(AT;, dp) + 8{d;, A"'T}) = 0.

Then like previously we can play with (Ag;, d;) to obtain a term in ||Aql|]%2. We have
then again the following equation:

d
7 A di) + IAdi[72 = v(Adi, Aqr) — e[| A7z = BllAalg — VAT, Ag) = 0. (4.13)

We sum all these expressions and get:

Bu||Vd||2, — K||Ad;||? 2, + K[B||Aq|? A%q |2
2dtfl [Br||Vd||7- |Adi||72] + al| Tl 72 + K [Bll A2 + || A%qll7] (4.14)

— B,B<Aql, dl> — B’y(A’ﬁ, Cll> + 5<dl, A7177> + KV<Adl, Aql> + ’}/K<AT, Aql> =0.
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The main term in high frequencies will be: [[A%g]|2,. The other terms may be treated
by mean of Young’s inequality:

1 2 a 2
|(Aqi, dp)| < %HAQZHLZ + §|’Adl|’L23
1

< -
= 2ac¢22h

a
1A2ql32 + 5 I1Adi 3.

We do as before with the others terms in the second line of (4.14) and we obtain:

B

I+ By~ )AL + ol Tl + K (o

2 2
o o)Al <

[ ~[ITillze + 5 IIAdzlle] + K[*IIAQQzHLz T IIAdzlle t 57 HTIILz + 7HA2QI||L2]

d 1

1A%al32 + 5

+ BBl A3 + 8 NTHI3s + &~ IAdia].

We obtain then for some a, b, c/ d, e to be chosen:

e 1 9
1
+ [a — (B’y— —i—'yK -+ 52 2211 )] HTHLz (4.15)
BK b 1 1 2 12
+ [ ooy K - KV§—7K§ B ﬁ?—h}\m all72 <0.

We claim that a, b, ¢, d, e, l;, K may be chosen so that:
e 1

a 2 d
1 1 1
a— (nyQ— + 7K -+ (526 22l1) >0, (4.17)
BK b
o +eK — Kyf —'yK— BﬁQd 2211 > 0. (4.18)
We want at once that for (4.16) and (4.18):
a d
425 4.1
v—r5—85>0, (4.19)
by (4.20)
S SR . .
So we take: y /
e=1, a=2hd, d=2h, h= ———, b=20h,

2(76 + )

’ ’ ’ 3
c =20(v+a)h and h = ST 108

With this choice, we get (4.19) and (4.20). In what follows it suffices to choice B, K
small enough and [; large enough. We have then:

fi =2 Max(1,2Y)|qil| g2 + [|di]| 22 + Min(1, 24| 73| 2
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We have so obtain for [ < [y, [ > [; and for a ¢ small enough:

Ld

5 dthQ + Cl22lfl2 S 0.

3) Case of Medium frequencies:

For [y <1 <1y, there is only a finite number of terms to treat. So it suffices to find a C'
such that for all these terms:

lallrr 2y < Cs lldillzr 2y < C, | Tillprz2) < € for all T € [0, +oc]

(B) and r € [1,400]

with C' large enough independent of T
And this is true because the system is globally stable: indeed according to proposition
4.8, we have:

a a
HW(t) b <e @ p Va,b,c e L?
L2 c L2

with ¢1(£) = mingi, <¢j<on (Re(M1(€)), Re(X2(€)), Re(A3(€))) where the A;(§) correspond

to the eigenvalues of the system. We have then in using the estimate in low and high

frequencies in part 4.1 and the continuity of ¢1(§) the fact that there exits ¢; such that:
c1 (5) >c1 > 0.

So that we have:

7 [ la®)|}- 1 T 1/ (g0l 2
( / (Il dt) 5( / e—mds> luonllee | for lo <1<y,
o \ T 0 (7o) 22

And so we have the result (B).

4) Conclusion:

In using Duhamel formula for W and in taking C large enough we have for all I:
. — __ 921
max(1,2') [l qi(t)l| g2 + |di(8) 2 + min(1, 27| T(8)]| 2 < Ce™"* (max(1, 2")[|(go)il| 22
. _ b2
+[[(do)ull 2> + min(1,27") [ (7o)l .2) +C/ =079 (max(1,27)[|Fi 2 + (|Gl 2
0

+ min(1,27Y) || Hy|| 2)ds .

Now we take the L™ norm in time and we sun in multiplying by 2Us=1+3) for the low
frequencies and we sum in multiplying by 2/ %) for the high frequencies.
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This yields:

"q||z;(§s—1+%,s+%) + ‘|THZTT(§S_1+%’S_2+%) + |’derT(Bs—1+%) S ||q0”§s—l,s + ||7’0H§sfl,sf2

1

T

e [TOT r
fdolpes + 3 2671+ /O ( /0 et ><\|E<T>\Lz+uGlmuLz+er<T>\L2)dT) dt)

1<0

T

+3 2 ( / ' ( / LT + IG5 + |rA-1Hz<T>||Lz>dT>Tdt)

>0

Bounding the right hand-side may be done by taking advantage of convolution inequal-
ities. To complete the proof of proposition 4.9, it suffices to use that u = —A~!Vd —
A~1divQ and to apply proposition 3.5. [l

4.2 Global existence for temperature independent coefficients

This section is devoted to the proof of theorem 2.1 and 2.3. Let us first recall the spaces
in which we work with for the theorem 2.1:

E* =[Cy(Ry, B*H) N L' (R B 72)] x [Cy(Ry, BV N L (R, BH)V]
x [Cy(Ry, B~ 1572 0 LY(Ry, BTH*)].

In what follows, we assume that N > 3.
Proof of theorem 2.1:

We shall use a contracting mapping argument for the function ¢ defined as follows:

q0 t F(Qv u, T)
(g u, T)=W(t,)* | u | + / Wit—s)| G(qu,T) ds . (4.21)
To 0 H(q,u,T)

In what follows we set:
p=pl+q),0=0+T,T =070
The non linear terms F, G, H are defined as follows:
F = —div(qu),
K, 5 5
G =—uNVu+V(ZL|Vp* )+ [,u(p) — M(p)] Au+ [C(p) — C(p)} Vdivu
2 p p p
(4.22)

(VK (D) - K(7)Ap) + [Po(ﬂ) +pTP1(P) _ Py(p) +ﬁTP1(ﬁ)]vp

Pi(p)  Pi(p) X(p)Vpdivu  (du+ Vu)u' (p)Vp
+ e ) !

P

9
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where we note: ( = A + u, and:

H= <dw(><;”)w) - §A9)+ [TP;(”) _ TP vy — v 4 23V

(4.23)

1) First step, uniform bounds:

Let:
n=llgoll gy 1y +lluoll jx + + 1170l 55 1 5 -

We are going to show that i) maps the ball B(0, R) into itself if R is small enough.
According to proposition 4.9, we have:

q0
W) | wo | Ily <Cn. (4.24)

7o

We have then according (4.21), proposition 4.9 and 4.24:
+[1G(g,w, T

||¢(q,% T)HE% < 077 + HF(CLuaT)HLI(B?—l =3 Ll(B%_l)
(4.25)
HIH (@ w Ty g4y -
Moreover we suppose for the moment that:
(H) l1q]l oo rxrN) < 1/2.
We will use the different theorems on the paradifferential calculus to obtain estimates on
1@ Tl o 16w T, sy and G T, oy oayos
1) Let us first estimate ||F(q,u T)H 1 BE-LEy According to proposition 3.6, we have:
Jaiv(all, 5y ny, < laul, g, + vl gy
and:
ol g, < Nl el
a1y <l gl s, + Dl 0l
Because E?’?“ — B% and B> 2+l <y B3+l (from proposition 3.2), we get:
Jaiv gl s -r,, < Dl gy Il g, e ol

2) We have to estimate ||G(q,u,T)]|| . We see straight away that:

Li(BE Y
[M,(OP) — (p_)]Au = K(q)Au
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for some smooth function K such that K(0) = 0. Hence by propositions 3.7, 3.6 and 3.2

yield:
pp) (o)
|42 - P, ST T B

P D

LBz

5”qHLoo(B%) ”uHLl(B%H)’

gl iy,

Slall 5513,

In the same way we have:

R

ap-ny S lall o g llull g

_ D <
IV (p) = KPNADN 4y -y Sl o gy llall vy

Pi(e)  Fi(p)
I 100 182y 115

Sl a1y,

After it remains two terms to treat:

|| |:TP1(p) . TPI(:[_)):| vp||L1(B%71) 5 || [(Pl(p) PlpEﬁ)

HQH 1,%+2) .

—1)’

~N N .
Bz2th

P p
Py(p) Pi(p) Pi(p)
LTV g+ IT(EZ =2Vl
TP(p) TPi(p)
_ <
||[ : L2 1y S 100 )l )+ 1TV,
+IK(D)T VAl
According to proposition 3.7, we have:
(LA I F S " [ T
DTVl ) gy -y < Cllall om0 1TVl gy
Therefore:
TP(p) TPy(p)
_ <
H[ P 5 ] pHLl(B%_I) ~ HqHLOO(E%_l’%)HqHLl(B%'H)
Ul 3oy Tyl
In the same spirit:
Pi(p)  Pi(p)
_ <
IS 22001, ) S Nl 1T
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1(p
000,y <Nl o T

+ 4l N LT P

Leo(BT L )’

where we have:

Ter=» AT and Tup =Y AT .

<0 >0

Next we have the following term:

||U*_vu||L1(B%71) S HUHLOO(B%*H||u||L1(B%+1)'

And finally we have the terms coming from div(D) which are of the form:

X (p)Vpdivu

. N(p ‘
H < | L(g)Vpdivu] 4 u/(f)vpdwu”

P s s (B3 (B3
where we have set: , ,
A(p(1 A(p
Lo - ML) X ()
p(l+ 1) p
Afterwards we can apply proposition 3.7 to get:
IVpdivad, oy S Tl ol
1) pdival 0 S IL@I, s [90divel
As we assumed that (H) is satisfied, we have in using proposition 3.7:
IZ@] ey, < Clall ey,
So we have:
N (p)Vpdivu
HTHU(B%*I) S HUHL1(B%+1)anLoo(g%fl,%)(l + Hq”Loo(E%*l %))
In the same way we have in using 3.6, 3.7 and 3.2:
(du + Vu)Vp i (p)
[ ; ¥ -1y < Cllell oy on Nl gy, (U Dl )
K, K, K, K
4 2 P P 2 p 2
IVCLITAN,, s, S HE = SOV, g, + IEIT0P 1,
< 2
S U@ gy, 1901 o, + VAP,
< 2 2
Sl ) IV, o+ V02,
Sl 12, o + Hq”pm“)
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K, K
.

where L(q) = <~

3) Let us finally estimate ||H (q,u, T)||L1(§%_1%_2):

div(x(p)V¥é X :
HM _ EAHH G <||K(q )le(Kl(q)ve)HLl(E%—l,%72)

+[|div(K:1(q) VO] + [ K(q)Ad]|

~N N N
Ll(B7_1’7_2) Ll B——l 2—2)7

and we have:

[V (K@ VO, gy 12 < Cllall oy 1T gy ey
So finally:
div(x(p)V0) X
=== = 580 ¥y Sl gy 1Ty,
CRRPTR,
Next we have:
9Py (p) 9P1( D)
I1( Ap A5 )dlvu||L1(B*—17—2 S ||Td1vu||L1(§%_l%_2)

+ HTLl(Q)diquLl(E%A,%ﬁ) + HLl(Q)diVUHLl(E%fl,

vz

where we denote:

On one hand,

Tdivull | sy -0y ST

HLI( )leUH ~% i - 2y~ < HLI( )‘|Lw(§%71,%72)HUHLl(B%+1)7
whence the desired result:
0P (p) OPi(p), .
I A A )dWUHLl(E%—l,L} S . 37_17_2)!\U\\L1(37+1)
T 1o 0l gy ) (L ] o )

We proceed in the same way for the others terms which are similar, and we finish with
the last two following terms:

[ S 4 R T

D :Vu
p ||L1(§%71,%—2)

5 HK(Q)VU : quLl(E%—l,%72) + HVU : vu”Ll(ngl,ﬂfQ .
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and:

N .
2

1K (q)Vu: VUHLI(E%—I N )

<

so the result:

D :Vu
Iy S (Ul ol

Finally in using (4.24), (4.25) and all the previous bound, we get:
l(a,u, Tl Ly < CUC+1)n+ R)*. (4.26)

Let ¢ be such that || - HB% < ¢ implies that: ||+ ||z~ < 1/3. Then we choose R and 7 such

that:
inf(R, c)

R <inf((3C) 7Y, ¢,1), and n < il

So (#H) is verified and we have:

Y(B(0,R)) C B(0,R) .

2) Second step: Property of contraction
We consider (qy,uy,7T;), (qy, s, Ty ) in B(0, R) where we note:
b:i=T+0, T, =v"'(6:)

and we set:

(64 = g2 = g1, du =y =y, 6T =Tp = Ty) .
We have according to proposition 4.9 and (4.21):

Hw(QL,uL,TL)(q/Q?u/Q?TQJ) - 7#('ILvULvTL)(q/l’ull’le)HE% S
| F(q2,u2, T2) — F(ql,“hﬂ)”p(g%—l%) (4.27)

+ ||G(QQ,U2,75) - G(qlaulyﬂ)HLl(B%—l)
+ ||H(Q2au2a75) - H(Qlaulaﬂ)

HLl(E%*L%”)'
where we have:

F(q2,u2,T2) — F(q,u1,T1) = —div(qous) + div(qiu1)

]. / !
Gla2,u2, T2) = Glar, w1, i) = 6u™-Vuz + uf.Vou + V(5 (K, - K, )|Vpa|?)
1 .
T GE (Tl = (91 - lp)A0u+ L) Mg — () Vaiv(3u)

Py(p2)  Bylpy)

V(o) A00)) + V(K (p2) — K (1) Ap) + [0 22— 22

A
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/

+ ( . > ﬁ P15 (8q) + TP;(p)Véq + pAST P} (p2)

LiPipn) - Pia)VOT

Pi(p2) = Prlpu)I 902 + 5

A

N N N
(p2) — (pl) )vpg divug + (Pl) (ﬁ Vé qdivue
P2 p1 P1

+ pAG1(Py(p2) — Py(p1)) Va2 +

+ p ABL Py (p1) Vg + (

+ Vpidivdu) + (X ;’”) _ A f)pl)) (dug + Vuz)Vps + & [()pl) (d(6u) + VouVpy
2 1 1

+ pV(dq)(duz + Vuz)).

And we have for the part pertaining to H:

H(go,us, o) — Hlqu,u1, Ti) = <p12 - pll> div(x(p2)Vbe) + plldiv«xw) () V6)

1 P P 0 1)
+ —div(x(p1)VoT) + o) _ Filpa) L divuy + Filp2) Idlvul ou*. Vo
p1 p1 p2 | A p2 A
0 1 1 1 1
+ Palpa) 2 di vou —uiVoT + (— — —)Dg : Vug — — D1 : Véu — — (D2 — Dy) : Vug
pa A P2 pP1 1 41
Let us first estimate ||F(q2,u2, T2) — F(qi,u1, T)|| . ~ . We have:

LY(BY 1Y)

HF((JQ,’LLQ,’]-Q) - F(Qla“lvﬂ)” %,17%) S Hle((QQ - QI)U2)”

~ ~N N
LY(B Ll(ijlyj)

+ ||diV(q1(u2 — ul))||L1(§%71'%)’

<
< l1l oy 18l el v+ 10al e el

LQ(B2 H 2” LQ(B%)

ol 100l ) + el 160, iy, + N bufl ,

N .
L2(B 2 L (B 2 L2(B7+1)| 2)

Next, we have to bound |G (g2, u2, T2) — G(q1, u1, 7'1)HL1(B%_1). We treat only one typical
term, the others are of the same form.

We use essentially the proposition 3.7 to treat the product and the composition, so we
get :

10 Agus = ), ) S L+

LYy~ P SR AT S
Bounding ||H (g2, u2, T2) — H(q1,u1,T1)||

using the proposition 4.9 :

LBy Y- is left to the reader. So we get in

’

(65,15, T3) = ¥laio s Ty <C 100007y (I TN

N
E2

g un TNy + 2u<qL,uL,er>uEg).
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If one chooses R small enough, we end up with in using (4.27) and the previous estimates:

’

! ! ! 3
||\Il(q23u277-21) - \Il(qlaulaﬂj)HE% S n H((Sgh(sua 6T)||E%

We thus have the property of contraction and so by the fixed point theorem, we have
N
existence of a solution to (NHV'). Indeed we can see easily that £'2 is a Banach space.

3)Uniqueness of the solution:

The proof is similar to the proof of contraction, hence we will have the same type of
estimates. So consider two solutions in E2: (q1,u1,71) and (g2, u2,72) of the system
(NHV) with the same initial data. With no loss of generality, one can assume that
(q1,u1,71) is the solution found in the previous section.

We thus have:

1
(H) g1l oo (jo,r1xRN) < >

Let T be the largest time such that gy verifies (H). By continuity, we have 0 < T' < T..
Next we see that:

dg=q—q, ou=uy—uy, 6T =T —Th

verifies the system:

( 0:9q + divéu = F(qo,u2, T2) — Fq1,u1, Th),

[i C _ ) _ Pi(p
ayu — L Asu — Q_Vdivéu — pKVASq + (Py(p) + TP, (p)) Vg + = 1,(p ) VT
p p pY' (T)

= G(QQa uz, 7-2) - G(qbul?ﬂ)>

TPi(p)

8,6T — %AéT—i— divou = H(qa,us, T3) — H(qu,u1, T1)-
\

We apply the proposition 4.9 on [0, T3] with 0 < 77 < T and we have:

1(6g, 0w, 0T)|| =5 < A(T1)[|(6g, 0u, 0T )

|y
E2

where we have for T enough small A(Ty) < 1.

And we thus have: d¢ = 0, du = 0, 6T = 0 on [0,77] for T} small enough and we
conclude after by connectivity. [l

We treat now the specific case of N = 2, where we need more regularity for the ini-
tial data because we cannot use the proposition 3.6 in the case N = 2 with the previous
initial data. Indeed we cannot treat some non-linear terms such as ||7 divul| Li(Bo—1) OF
||u*.V0HL1(§07_1) because if we want to use proposition 3.6, we are in the case s; +s9 = 0.
This is the reason why more regularity is required.
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We recall the space in which we are working:
:[Cb(R+,§0,1+E ) N Ll (R+,§2’3+5 )] % [Cb(R+7 EO,E )N N Ll (R-i-a §2,2+5 )N]
X [Cp(Ry, BO—1+e )N ! Ry, B21+e )]

with e > 0, E' being the space in which we have a solution . And E' corresponds to the
space where we show the uniqueness of solution.

E :[Cb(R+’§O,1+E') A LQ(R+7§1,2+5’)] y [Cb(R+,§075’)N A LZ(RJ”ELHE')N]
x [Cy(Rs, B ) N L3Ry, BY)).

Proof of theorem 2.2

The proof is similar to the previous one except that we have changed the functional
space, in which the fixed point theorem is applied. So we want verify that the function
1 is contracting to apply the fixed point. We denote by (qr,ur,7Tr) the solution of the
linear system (M) with F = G = H = 0 and with initial data (go, uo, 7o)

Arguing as before, we get:

lotaw Tl < Cn+ I (@0 Tl s o

(4.28)
F G, T oy + I (@, T 1 o, avery -
if:
HqOHEO 14¢’ + HU’OHEO S T H%HEO —14e’ <n.
Let us estimate [|F'(q, u, T)I| 1 gose’ys 1G0T 1 ooty and [1H (g, w, T 1o, -14e s

we just give two examples of estlmates in the space E' ,the other estimates are left to the
reader.

(@)l ey < lgullzngen) + gl g
and:
lqullpysry S llallz2syyllullL2(syy,
laull s, S el s vty + all sy 2y
We do similarly for ||G(q,u,T)||

”H(q7u T)HLl BO 1+a )
needed. Prop081t10n 3.6 enables us to write:

Li(Foe The new difficulty appears on the last term

In fact it’s only for this term that that additional regularity is

HTdiVu||L1(EO7_1+5,) ~ HTHLOO BO.— 1+E HUHLl(BQ)'

Hu*'VGHLl(EO’_lJ’_El) S HTHLI(EI,I-‘-E/ ) HUHLOO(BO) '

To conclude we follow the previous proof. Uniqueness in E' goes along the lines of the
proof of uniqueness in dimension N > 3. U
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4.3 Existence of a solution in the general case with small initial data

In this section we are interested by the general case where all the coefficients depend on
the density and the temperature except . In this case to control the non-linear terms we
need that # be bounded, that’s why we need to take more regular initial data to preserve
the L* bound.

As the initial data are more regular, we need to obtain new estimates in Besov spaces on
the linear system (M).

Proposition 4.10 Under conditions of proposition 4.8 with strict inequality, let (q,u,T)
be a solution of the system (M) on [0,T) with initial conditions (qo,uo, To) such that:

qQ € §371,3+1’UO c Esfl,sjr]a c Esfl,s.
Moreover we suppose 1 < 1y < 400 and:
Tr ~s—3+%,s—1+% Tr ~s—3+%,s—2+% T ~s—3+%,s—2+%
FelLl}(B 1 1), Ge L} (B 1 1), He L} (B 1 ).
We then have the following estimate for all v € [ry, +00]:
HqHZ;(Es—l-Q—%,s-kl-ﬁ-%) + HUHE%(ES—I-F%,S-Q—%) + ”T”Z;(Es—l-k%,s-!—%) S HQOHES*LS#J + HUOHES*LS

+ ||76||§S—1,s + ”FHL"‘I
T

(Es—3+%,s—1+%) + HGHLTTl (és—3+%,s—2+%) + HHHLTTl (és—3+%,s—2+%)'

Proof:

The proof is similar to that of proposition 4.9. Low frequencies are treated as in propo-
sition 4.9 because we don’t change the regularity index for the low frequencies. On the
other hand in the case of high frequencies the regularity index has changed so that we
have to see what is new. For the medium frequencies we can proceed as in proposition
4.9.

Case of high frequencies:

We are going to work with [ > [; where we will determine [; hereafter. We set:
ff = eBllAall72 + Blldill7: + | Til72 — 2K (Aq, di)

where B and K will be chosen later on.
Then we take the scalar product of (4.3) with 7;, we get:

Ld
2 dt
After we sum (4.9), (4.10) and (4.29) to get:

1713 + all VT2 + 8(Ads, To) = 0. (4.29)

1d
5 g (Blldili: + eBllAalLz + 1 TilIZ2) + By Vil + ol VTilIZ:
t (4.30)

- BB<Aql7 dl> - B’7<A7;7 dl> + 5<Adl77;> = 0.
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We sum (4.30) and (4.13) and we get:

2 dtfl + [BY|IVd)|3: — K|[Ad)|[32] + || VT 22 + [BK | Aq||32 + e K| A%q)]|%.] o

— B,@<Aql, dl> — B’y(A’ﬁ, dl> + (5<Adl,7;> + KI/<Adl, Aql> + ")/K<AT, Aql> =0

We interest us after only to the terms of high frequencies, so arguing as in proposition
4.9 we get:

d e 9
1
+lo— (Brge +7K 57 + 62 S i (432)
BK b ¢ L1 9 s
+ (g + K = Kvg — 7K2C22h — BB oo IV allz: < 0.
Let us assume that:
Bv—(K+B r k2 Bs—2 4158 50
v — v —
e 221 b 9c02h 09 7
| (By— + 4K — 46—~ ) >0
o — il il -
(1) 72a v 2¢ 2e 22l ’
BK b ¢ 11
22l + K KV§ ’}’K2 22l1 —Bﬁﬁﬁ > 0

We recall that v > 0, and a > 0. Next we want to have:

b
—v=>0.
€ V2>

So we take: b= % (we recall that € > 0). So with this choice we get (1) in taking B, K
small enough and [y big enough in following the same type of estimate as in the proof of
the proposition 4.9. We have then for [ < Iy, [ > [; and ¢ small enough:

fl +c22 2 <o.

2 dt
and:
fi = max(1,2) gl g2 + | dill 2 + | Til| 2
Next we conclude in a similar way as in proposition 4.9. [l

In the general case the coefficients depend on the temperature and we have to con-
trol the norm L*° in order to apply the theorems of composition. This motivates us to
work in the following spaces:

F2 =[Cy(Ry, B> 712 N LY R BEH1213)) x [Cy(Ry, B

N

LRy, B [Cy(Ry, BE 702 N LRy, BE 1))
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Proof of theorem 2.3:

The principle of the proof is similar to the previous one and we use the same notation.
We define the map 1 as before with the same F'; G and H except that our coefficients
depends on the density and the temperature. We will verify only that i) maps a ball
B(0, R) into itself, the end is left to the reader.

1) First step, uniform Bounds:

We set:
a0 = [lgoll zx 1y 1+ lluoll gy 0y + [ Toll 55 0y -

We denote (qr,,ur,Tz) the solution of (M') with initial data (qo,uo, 79). We have so in
accordance with proposition 4.10 the following estimates:

H(q[z)uLaﬂ)H % S COéO ; (433)

F

e Ty < Cao + [ Flg,u, T

LL(BY L5+

(4.34)
+ HG(Qa u, T)||L1T(§7—1,%) + HH(Qa u, T)HL%(E%_L%) .
Moreover we suppose for the moment that:
(H) gl oo rxrvy < 1/2 and [T oo mxryy < 1/2.
We will now treat each term: ||F(q,u, T)HLlT(E%*L%“)’ ||G(q,u,7’)HL1T(§%,I%) and

1H (q,u, T,

HL;(B%—L%)'

1) We notice that:

Idivlgu)l, 3 s, < el ol o

< Nl gyl g, +

L2(B% Ll(B%“)HqHLw(B%)’

2) After we focus on ||G(q,u, T)HLl(E%*L%)' We have according to proposition 3.7:

_ < [|K(q, T

LNBT 1Y)

S

H[u(/z 0) M(% 9)]Au

LOO(B%)”“HLI(E%"’L%J"Q)

HQHLOO(B%) + HTHLN(B%))||UHL1(§%+1,%+2) .

We proceed in a similar way for the term:

(C(p) — ¢(p)) Vdivu.
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Next we have in using propositions 3.6 and 3.2:
109 (5(5) = R A 13 S (Wl gy ol 20

ey 1] o ) O ] )

pR(p) o
1222 — B0 19l v, < el v Dol

Next, we have to treat the following terms:

I

Tﬁpl 1% -,
A ]9Vl s, S 1T LTIVl gy

L@Vl gy, + 12TVl gy

17)7

where L1 and L9 are regular function in the sense of proposition 3.7. And we have:

1L @Vall gy Sl gy-ny ol gy
IL2(T)Vall, 5y vy, S ||T||Lm(g%,1g)uanl(Bgﬂ).
Finally:
ToP(p)
H[Tl _Tpl(p)]VQHLl(é%fl,%) f, Hq”pﬂ(é%*v%“)HTHLOO(BT*1 =D HQH 1)
+ (||qHLOO(§7—1 7-;-1 + HTHLOO B%_l 71} )HQHL1 B7+1 7-»—3)
and
Py(p) Pi(p)
_ <
16 s = 70 -4y S MA@V Tl g+ VD0, g,

LU LA(TIVON 5y

I1L2(T) VO

SITH, gy 1y

Ll(E%’l’%) L°°(B771’7)HTHL1(B%+I)7

| L1(q )VGH ~N -1, N S llgll 1, ¥ HTHLl(’BS%H,ﬂH)'

Loo( B7 2
Finally:
Pi(p) Pi(p)
H(p\I//(T) - ﬁ\y/(f))veHLl(E%*L%) S (Hq‘|Loo(§%fl,%+1))2HTHL1(§%+1,%+2)
TN oy, + s TN, en oo

36



After we have the following terms:

* 2
ol s, < Bl e
And we have the terms coming from div(D). We will treat this one:

A (p, 0)Vp divu
1= P ||L1(§g_1g)§||L(q7 T)Vpdivull | py 1y, +Vedivull |y, s

S(1+ HQHLN g¥-1 N+1 + HTHLOO(B%*L%)) HqHLoo(E%*lv%‘i’l |’UHL1(§%+1,%+2).

Afterwards in the same way we can treat the terms of the type:

(du + Vu)Vp py(p,0) (du+ Vu)V0 1y (p, 6) and Ay (p, )V divu
p ’ p p '

Finally, we have:

vz
2

2
¥4, TIVeFl L, 5

+1)

IV UV, gy, S I = KDIVAPI,

SO+ Dl gy >Hqu;(3 Yooy

3) Let us finally estimate ||H(q,u, T)||L1(§%71’%):

div(x(p,0)V0)  x(p,0)
; &

st < IK@div(E (@ TIVO) L, oy oy

0 LY(BZ

(K@ TIVO) iy, + IK @6, sy oy

and in using the propositions 3.7 and 3.6 we get:

Idiv (K10, IV 5y, S Ul oy, + 1Ty T e e

+ Ulall o g g0y + 171 HHQHTHLQ(B%H)-

\2

w\z

Next we have:

I - i, o) S IE@dival gy,
i@ divall, sy vy + W) divall, oy
where:
Eata)aivull, oy, S ol gy ol e
LTyl 5y, HTHLOO el e
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so we get:

TPi(p) TPi(p), .
I( ;( ) _ 1_( ))dIVUHLl(gng) S T

Loo(é%fl,%)nu”l/l(B%«H)||qHLOO(§%71,%)
+ (HqHLoo(E%*L%) + HTHLOO(E%A,%))Hu”Ll(B%ﬂ) .

To end with, we have the last two terms:

||u*.V9HL1(§%,1,%) < HTHLl(E%H’%“)HUHLOO(‘BS%A’%) )
D :Vu
| p s gy S IE@QVu:Vull ), px sy Ve Vull ), gy
S+ ”‘JHLOO(E%,%H))HUHH(E%,%H) HUHL2(37+1)
Finally we have in using (4.33), (4.34) and the previous bounds:
(g, ', T )l pwse < CU(C + 1)n+ R)? (4.35)
Let ¢ such that || - || gv/2 < ¢ implies that: || - ||z < 1/3 then we choose R and o such

that:
(R,c)

C+1°

R <inf((3C)7Y,¢,1), ag < inf
So (H) is verified and we have then:
¢(B(0, R)) € B(0, R) .

Next one can proceed as in the proof of the theorem 2.1, we have to show the contraction
of the application v to use the theorem of the fixed point.

The uniqueness of the solution in the space F7 follows the same lines as in theorem 2.1.
The details are left to the reader.

5 Local theory for large data

In this part we are interested in results of existence in finite time for general initial data
with density bounded away from zero. We focus on the case where the coefficients depend
only on the density with linear specific energy, and next we will treat the general case.
As a first step, we shall study the linear part of the system (NHV) about non constant
reference density and temperature, that is:

Orq + divu = F,
(N) Oyu — div(aVu) — V(bdivu) — V(cAq) = G,
oT —div(dVT) = H,
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5.1 Study of the linearized equation
We want to prove a priori estimates for system (N) with the following hypotheses on

a,b,c,d:

O<eg<a<Mi<oo,0<c<a+b< My<oo, 0<ec3<c< Msg< oo,
O0<ey <d< My < oo.

We remark that the last equation is just a heat equation with variable coefficients so that
one can apply the following proposition proved in [13].

Proposition 5.11 Let T solution of the heat equation:
T —div(dVT) = H,

we have so for all index T such that —% —-1<7< % — 1 the following estimate for all
a € [1,+o00]:

171

La(B™ta

< ITolla + IH Iy ey + IVl

IemT Y ”VTHE%(BT“)’

We are now interested by the first two equations of the system (N).

(V) {8tq—|-dlvu:F

Oru — div(aVu) — V(bdivu) — V(cAq) = G

where we keep the same hypothesis on a, b and c¢. We have then the following estimate
of the solution in the spaces of Chemin-Lerner:

Proposition 5.12 Let 1 <1 <7 < +00, 0 < s < 1, (go,up) € B31 x (B3 1)V,
and (F,G) € Li (BF~24+2/m) s (Lt (B ~3++2/m))N

Suppose that Va , Vb , Ve belong to E%(B%) and that dyc € LL(L*>).

Let (q,u) € @rT(B%JrsH/r) n z%(B%Jrsﬂ)) % ((er(B%Jrs—lﬂ/r))N N (zzT(B%+s)N) be
a solution of the system (N').

Then there exists a constant C depending only on r, r1, A, i, K, ¢1, c2, My and Ms such
that:

H(quu)"z%(3%71+s+2/1")(1 - CHVCHL%(LOO)> < H(v%:uO)HB% + H(VF7 G)HZTT1(B%73+5+2/1"1)
1Vl v Wkl oy + 1V 005y IVl )+ IV

).

+ Vel i,
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Proof:

Like previously we are going to show estimates on ¢; and u;. So we apply to the system
the operator 4; , and we have then:

Qg + divy = Fy (5.36)
Opuy — div(aVul) — V(b divul) — V(CAql) =G+ R, (5.37)

where we denote:
Ry = div([a, A Vu) — V([b, Af]divuy) — V([e, Aj]Ag).

Performing integrations by parts and usinf (5.36) we have:

ld 2 : Vgl
— wV(cAq)dr = - — c|Vq|*dx — (dlvul (Vq.Ve) + e
RN 2 dt RN RN 2
+ c.Vql.VFl) dx.

Next, we take the inner product of (5.37) with u; and we use the previous equality, we
have then:

1d

th(Hqu%mL/ c|Vaq|*dz) +/ (G|Vul]2+b|divul|2)dx:/ (G + R)).uy da
RN RN RN
\V4 2
+/ ((divy(Ve.Va) + | qu ‘8tc+chl.VFl)) dz .
RN

In order to recover some terms in Ag; we take the inner product of the gradient of (5.36)
with u;, the inner product scalar of (5.37) with V¢; and we sum, we obtain then:

d
/ Vg, .wdx +/ c(Aq)?dx :/ ((Gy + R)).Vq + |diviy|® + w.VE
dt RN RN RN
—aVu : Viq — bAqdivuy)dz. (5.38)

Let a > 0 small enough. We define:
6 = s + [ (RelVal + 20Vauu)ds (5.39)
RN

In using the previous inequality and the fact that a167 < %a% + %b?, we have in summing;:

1d 1
1y, 1 / (a|Vul? + ablAgP)de < (|Gl + | Rllz2)
2dt 2 RN

1
< (@[ Valze + llwullz2) + IV Rl 2 (adlul g2 + |V allz2) + 5 10ell<IValZ:  (5.40)

+ Vel IVall 2 [Vl 2 -
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For small enough «, we have according (5.39):
1 3
okt <lul?+ [ relVaPds < JiF. (5.41)
2 RN 2

Hence according to (5.40) and (5.41):

1d
S+ K22 < R (1Gill 2 + IRl 2 + IV Ell ) |9uel o[ Va2 + 22 K | Vel

By integrating with respect to the time, we obtain:
_ ! t _ Ly
k() <e Kk (0) + C / K2 D) (0, 1o |V ar (7)1 22 + IV F(P) 12 + Go() 2
0

+ |Ri(7)|| 2 + 2K (7) ||V e() || 2 )T

After convolution inequalities imply that:

-2 - r—1/r _2
1kt £ o7y < (277 Ky (0) + (272 HL/r=1/ 1)|’(VE7GZ)||L;1(L2)+2 TRl Ly e

_2 5.42
+ 27 Vel e 0eelly oy + 19Nz ooy Wil oy - 042

Moreover we have:
C_l ki < qulHLz + HulHL2 < Ck.

—14s+2)

Finally multiplying by 2(% ! and using (5.41), we end up with:

H(quU)HLTT(B%AﬂJrz/r)(l - CHVCHLQ(LOO)) < [[(VF, G)HE;I(B%73+$+2/T1)

N, o
1(Va0, w0) |y v+ 1Vl gy el oy + D2 Rl 1) -
leZ

Finally, applying lemma 1 on the appendix to bound the remainder term completes the
proof

(X 4s—
> A M Rsgs < Cllal g ol )+ Wl gy Tl
S

O

5.2 Local existence Theorem for temperature independent coefficients

We recall the space we will work with:

Fr =[Cr(B%) N LH(BZ2)] x [Cr(BZ )N n LL(B= )N x [Cr(B* ~2) N Li(B

N4

)]
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endowed with the following norm:

0.0, Tl =Nl oy + el g gy + el o)+ Tl
We will now prove the local existence of a solution for general initial data with a linear
specific intern energy and coefficients independent of the temperature. The functional

space we shall work with is larger than previously, the reason why is that the low fre-
quencies don’t play an important role as far as one is interested in local results.

In what follows, N > 3 is assumed.
Proof of the theorem 2.4:

Let:
"= +q pP"=p1+¢), u" =2 +a", T"=T°+T" and 0" =0+ T"

where (g%, u", T9) stands for the solution of:

0g’ — Ag” =0,
o’ — Aul =0,
TV — ATY =0,

supplemented with initial data:

qO(O) =4qo, UO(O) = ug , TO(O) =To.

Let (Gn, tn, Tp) be the solution of the following system:

( 8#7714—1 + diV(ﬂn—l-l) = F,,

Oplip 11 — div (MVE”“) -V <C(’0n) div(a”“)) —V(K(p")AF) = Gy,

p" pr
) (")
_ . X pn _
O Tny1 — div| =———"Thy1 |= Hy,
t In+1 1V<1 P +1>
(Q'rl-‘rla ﬂn-{-h 7_;14—1)15:0 = (07 07 0)7
where:

F, = — div(¢"u") — Aq® — div(u?),

Y22

G = = ()Y + VL 9 P) - V(v + (L i

N (p")Vprdiva® | (du” + V) 1 (0)Ve [ P Topm
+ —— |V
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P' n fnP’ n n n
[Po(p™) + TPy (p™)]Va _Auo+div<u(p )Wo>

Ly <Wdiv(uo)) FV(K(pMAP),

TPy (p"
7171@ )divu" — (u™)*.VO" +
p p

N0 x(p") —
q") (P")
— Afy + dlv( x(p") V@O)
+
1) First Step , Uniform Bound

Let € be a small parameter and choose T small enough so that in using the estimate of
the heat equation stated in proposition 3.5 we have:

0 0
o al RN
~ N _ _ — N
L (B2 7?) LOO(BT b L°°(BT) 0
We are going to show by induction that:
(Pn) H(‘jﬂ,ﬂTlﬂ,Tn)HFT Se.

As (qo, 1o, To) = (0,0,0) the result is true for n = 0. We suppose now (P,,) true and we
are going to show (Pp41).

To begin with we are going to show that 1+ ¢" is positive. Using the fact that B> < [
and that we take € small enough, we have for ¢ € [0, T):

n __ n—1 n 1 . 0
14" = oll o oryermy S Nival, o+ i@ D, e+ vl

S 2+ [lg"

L;(B%+1)’
and:
n—1, n—1 n—1 n—1 n—1 n—1
L T T 1 P 1l PPN T S
Hence:

1¢" = qoll oo (0,1 xrNy < C1(28 + (Ao + €)e).

Finally we thus have:

11+ qoll oo 0,y xrNy = 18" = qoll oo (0,7)xmy £ 1+ 6" < 11+ qoll Lo 0,7y xRN)

+ lg"™ — qoll Lo ((0,7) x &Y

whence if € is small enough:

g <1_|_”POUL°°
2p p
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In order to bound (¢",@",7") in Fr, we shall use proposition 5.12. For that we must
check that the different hypotheses of this proposition adapted to our system (N;) are
satisfied, so we study the following terms:

n_ ") S, n_ X"
= ) b" = 5 =K n) d* = .

In using (Py,) and by continuity of 1 and the fact that u is positive on [p(1 +min(go)) —
o, p(1 4+ max(qo)) + a], we have:

0<c <a™=

We proceed similarly for the others terms.
Next, notice that:

IVa"| )< 1£

~ _ _ < n B )

¢(p") _ n
1+ ¢ - C(p)Hng(B%H) <Cllq HZQT(B%H)

195"z 3, <

IVerlizs py, < Clla™ll;
T

% ACEANN

To end on our hypotheses we have to control dyc™ in norm || - [|p1 (recy. As BY < L™,
it actually suffices to bound [|9;c"|| , . We have:
L .(B?2)
aic =K (p")dg" = K (p")(div(g" ") = div(u™)) .
And we have in using the propositions 3.6 and 3.7:

1K (o) (div(g" ™) = div(u™))] < K (p")div(g™ um )]

2

LL(BY) Li(B%)

I (i),

Nz

)7

< n n n—1, n—1
S+ e IIL%O(B%)(IIU | ) g™ IILlT(BgH))

N
Lh(Bz ™!

S A la e )l N (|
T

n—1
3 g

N N
LBzt L (B 5 ) LBzt

+ "M, o e ) -
L2(BTHY)

N
2

L2(BY)

We now use proposition 5.11 to get the bound on 7™, so we obtain in taking 7 = % -2

pr LFEBETTY (5.43)
x| 7]

+[V(

1T 5% e -2y S (1

ML (B2 HLlT(B%*?)
Ll (B 2 )
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So we need to bound d” in L%O(B%):

Now we show by induction (P,1). Finally, applying the estimates of propositions 5.12
and 5.11, we conclude that:

1@ @ T ) ey (1= C(fla”| ) T 1l g gy,

(5.44)

L%(B%“ L2 (BN+1

+Hall )

1 o gy + 110 HLlT(B%))) < [(VE, Gu)ll, N

1(3——1

Bounding the right-hand side may be done by applying propositions 3.6 and 3.7. For
instance, we have:

”FnHLlT(BN/2) < HdiV(qnun)”LlT(BNﬂ) + ”diVUOHLlT(BN/2) + HAqo”LlT(BN/Z)-
Since:
HUnQ"”LlT(BN/Hl) S anHL%O(BN/Q)||UnHL1T(BN/2+1) + an”L%(BN/er)Hun”L%(LOO)ﬂ

we can conclude that:
HFn||L1T(BN/2) < C(Ag+e+ve)2

Next we want to control the different terms of G,. According to propositions 3.6 and
5.12, we have:

(") Vu"| S Jlunl|

sty S Ml e gy lunlly vy

’

v L('Onlv P v S I Vel x + Vol
2 Pn LBzt~ q P LL(B?) P LL(B?
< 1 ni|2 ni|2 )
SO+ I,

After we have:

1) .. : p(p™)  u(p)
IV ) divunlyy o) S lldivenl, oIV E o Mty
S CHun”Ll (BN+1 ||q || (B%) .
9 vl gy O, ]
n 3771) — L%,(BT*l L°° BT)

After we study the term coming from div(D):

X (p")Vprdiv(u®)
14 qgn

| Iy g%y SIEG)VR AV, oy + (VA VI, oy

S (T4 [lg"]]

S

n
N 0 FAORRN U T
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We proceed similarly for the following term:

(du" + Vum)p' (p")Vp"

14+ q"
Next we study the last terms:
[Po(p™) + T"Pi(p™)]Vg" n n n

FITVG N, s
T

< n||2 n n
STICNE, g, + 1T 1973 0 (1

ENV0" 1, o,y < O, + DIT N,

(P o o < n 0
Hd1V(1+anu My g1y S AN gy Il gy

We proceed similarly with the other terms:

~Au’, vV <1C:_p7;ldiv(u0)> , V(K(p™)AG).

Let us estimate now || H,|| N _, . We obtain:
LL(BZ7?%)

n

IV (

n n n q n
1+qn)-V9 x(p") ¥y S 1K (q )V(1+qn)-V9 L1 (Bv/2-2)

n

1+n

+CJIV( )V

N _
1Y -2y

S U107 3 10" i 1T g v,

We have after these last two terms:

I v, g SIS, oy + K@K (T v

+ || K1 (T7)divu"|| N
LT
with K and Kj regular in sense of the proposition 3.7 and:

1@l o) ST 0 sy

N

”Kl(Tn)divu”HLlT(BN/Q—Q) ST LYy

n
L%O(B%—Q)”u H
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so finally:

TP (p")
pr

|u"]

Y I e ) 17

. <
divu HLIT(B%’Z) S (THQ HL°°(32 L%O(B%’l)
+ [lg"

N .
L°°(B2 LL(Bzth

and, since N > 3:

n n < n n

90"y o) < I ) 1671
n n|2

IV Gy i ny < T,

We obtain in using (5.44) and the different previous inequalities:

(@15 Tnt1, Tngr) || pp (1 — C2vE(Ag + VE)) < Ci(e(Ag + VE)? + T(Ag + VE)).

In taking 7' and e small enough we have (P,11), so we have shown by induction that
(¢",u™, T™) is bounded in Fr.

Second Step: Convergence of the sequence

We will show that (¢",u",7™) is a Cauchy sequence in the Banach space Fr, hence
converges to some (q,u,T) € Fr.
Let:

6q" ="t — ¢, Su" = uTh ST = T - T

The system verified by (d¢™, du™,6T"™) reads:

(0;0¢" + divou" = F,, — F,,_1,

dyou™ — div (“;’;ﬂ) vau"> -V (C(p’f) div(éu”)) “V(K(p")Adq") =

Gn - anl + G'/rz - an—l?

at5Tn - d1V<1X_(f iv&ﬂ) = Hn - anl + H;L - H1/1—17
q

3¢"(0) =0, 6u"(0) =0, §7"(0) =

where we define:

n+1 n
G, = —an (ML) - Bty v () - K () Ad)
n+1 n
- v((C(p’;+1 ) _ C(p’; ))div(u”H)).
In the same way we have:
1, — div(( x(e")  x(") ywon).

1_|_qn+1 1+qn
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Applying propositions 5.11, 5.12, and using (P,,), we get:
1(6g™, 0u™, 6T™)||py < C(|[Fn — anlnLlT(BN/?) +Gn = Gn1 + Gy, — Gn—lHL;(BN/?fl)

+ ||Hy — Hyoy + Hy, — H;L—IHL%(BN/?*?))»
And by the same type of estimates as before, we get:
18", 0u™, 6T™)|[ P < CVE(L+ A0)*[[(0g" ", 6u™ =, 6T )|l .-
So in taking € enough small we have that (¢",u",T") is Cauchy sequence, so the limit
(¢,u,T) is in Fp and we verify easily that this is a solution of the system.
Third step: Uniqueness

Suppose that (q1,u1,71) and (g2, ue, T2) are solutions with the same initial conditions,
and (q1,u1,71) corresponds to the previous solution.
Assume moreover that we have:

g1 ()| e < v, VE €[0,T).

We set then:
0¢=q2—q1, ou=uz —u1, 0T =To —Th.

The triplet (dq, du, T ) satisfies the following system:
( 0¢0q + divéu = Fy — F,

Opou — div('LL(p'.;Q)Véu) — V(C(pp;)div(éu)) — V(K(p2)Adq) = G2 — G1 + G

atéT* le( i(:f)z) V5T) = H2 - H1 + H/,
2

| 69(0) =0, 6u(0) =0, 67(0) =0

with:

6' = aiv( (M2 )9, ) ()~ K1) M)

_ v((C(m) _ C(pl))div(u1)>,

P2 P1

o :div<( x(p2) _ x(p1) )v92> _
I+q¢ 1+aq
Let T the largest time such that: @2l Loo 0,7y xrN < @ As g2 € C([0,T7; BN/2) | we have
by continuity 0 < 7T < T
We are going to work on the interval [0, 7] with 0 < T}y < T and we use the proposition
5.12, so we obtain in using the same type of estimates than in the part on the contraction:

106g, 0w, 0T .5 < Z(T)[|(6¢; 6u, 6T)||

=¥
FT FT
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with Z(T) 7 0.
We have then for 77 small enough: (g, du,d7T) = (0,0,0) on [0,7}] and by connectivity
we finally conclude that:

q1 = q2, u1 =uz, 71 =Tz on [0,T].

Proof of the theorem 2.5

In the special case N = 2, we need to take more regular initial data for the same reasons
as in theorem 2.2. Indeed some terms like W (6)divu or v*.V6 can’t be controlled without
more regularity.

The proof is similar to the previous proof of theorem 2.4 except that we have changed
the functional space Fr(2), in which the fixed point theorem is going to be applied. As
we explain above we can use the paraproduct because we have more regularity, so we
just see the term u*.V@. The other terms and the details are left to the reader.

We then have:

[ AT o PN [ ey

5.3 Local existence theorem in the general case

Now we suppose that all the coefficients depend on the temperature and on the density,
and that conditions (C) and (D) are satisfied with strict inequalities.

One of the problem in the general case is the control of the L* norm of the temperature
f in order to have control on the non linear terms where the physical coefficients appear.
Indeed in the theorem of composition we need to control the norm L°.

So we must impose that 6y is in B~ to hope a L control. And in consequence the
others initial data have to be also more regular.

Proof of theorem 2.6:

We proceed exactly like in theorem 2.4 except that we ask more regularity for the initial
data. We define then:

"=+ v =u+a", T =T+ T" and 0" =T"+T

where (¢°,u", T°) stands for the solution of:

8tq0 - ACJO = 07
O’ — Aul =0,
0,7 — ATY =0,

supplemented with initial data:

qO(O) =qo, uO(O) =g, 00(0) = 0.

49



Let (n, tn, 0,) be the solution of the following system:

0" + div(a" ) = F,

8t'an+1 . dn/,(#(pp’;e)vuTH*l) _v <C(pp;L9)d1V(Un+l)> —V(ﬁ(pn)A(jn+l) - G'ru

_ nogny _
8t7-n+1 — div X(p ) )TnJrl —_ Hn;
144g"

\ (qn+1) an+la 7_Mrl—i_l)tZ() - (07 07 0)
where:
F, = — div(g"u™) — Aq® — div(u?),

!
n

K n n n An
Gp,=— (u")".Vu" + V(Tp|Vp”|2) _ V(M(pi:g))divu" + V(Lf))divu”

p
A1 (", 0™)Vpidivu™ | (du” + Vu") g (", 0") V"
+ +
Ay (p™, 0V divu™  (du™ + Vu™) pg(p", 07) VO™
+ +
LCORS oLVl VAN P
1+qm py(T™)
— Au® + div (MVUO> +V (Wdiv(u%) +V(5(p™)AG),
P (p™) .. D" : Vu"
H, =V VO (o, ") — ) gy — () v 4+ 2
(1+qn) x(p",0") o (u™) o

— Ay + div(mveo).

1) First Step , Uniform Bound

Let € be a small positive parameter and choose T small enough so that in using the
estimate of the proposition 3.5 we have:

(He)

After we are going to show by induction that:

(Pn) ||((jn7ran,7;7,)||FT S g.

20



As (qo, Uo, To) = (0,0,0) the result is true for (Py). We suppose now (P,) true and we

are going to show (Pp1).

To begin with we are going to show that 1 + ¢" is positive. In using the fact that
N

Bz — L* and that we can take ¢ enough small, we have for ¢ € [0,T7:

)+ lldiv(g™ )|

lg" = qoll Lo~ (0,7 xmy < Cr(lldiv(@™)ll Y

+ Hle(UO)HL%ﬂ(B%))a

I(B

< (2\/f5 + ”qniluniluLlT(B%ﬂ))’
and by induction hypothesis (Pn_l):
n—1, n—1 < n—1 n—1
Iy ey VI 0 v,
1
VT g o 1 e
thus:

14" = qoll o= (0.7 xrN) < CLVT (2 + (Ag + €)e).

Finally we have:

11+ qoll Lo 0,7y xm™) — 14" = qoll Lo (0, 1)xmY) < 1+ "™ < |1+ qoll Lo ((0,7) xR

+ [lg"™ = qoll Lo ((0,1) x& V)

S crqqr <y ool
2p

So we have shown that:
(%) lg" (2= < 240
and that p™ is bounded away from 0.

To verify the uniform bound we use the propositions 5.11 and 5.12. For that we have
to verify the different hypotheses of these propositions, so that we study the following
terms:

g B0 60"

n_ X", 0")
= ) b" = ) =K n) d" = :
I+q7 I+q7 ¢ (pn) 1+ q"

In using (P,) and by continuity of y and the fact that p is positive on [p(1 + min(q%)) —
a, p(1 + max(q°)) + a] x [#(1 + min(7?)) — a, p(1 + max(7?)) + a], we have:

_ u(p",0")

0<c <a"
Cl1 S~ a 1—{—(]”

< M .

o1



We proceed similarly to verify the bounds of the other terms
After we use the proposition 3.6 and the fact that ¢" is bounded. We get:

190" g5 ) S 175 iy on o, + 1Ty i
195" 53 ) S 14"y ey + 1T i
196" o S "

L2(B2+1 2+2)

Next we want to estimate 9;¢" in LL.(B %) For that, we use the fact that

o =K (p"og" = K (p")(div(¢g"'u""") = div(u"))

And we have:

1K (p")(div(g" ")

—div(@)l, ) < K @D,

K (pdiv@),
S 10" Yy ) + 1870 )
SO oy Yy sy 10 07

n—1 n—1
18 ey 0 )
Now we want to show (P,+1) by induction and in this goal we will apply the estimates

of proposition 5.11 and proposition 5.12. This is possible as we have verified above the
validity of the hypotheses. We obtain:

N
L2(B?2)

-+l Zntl Fntl

@ T D)l (1= Cla g i)+ 107 gy 1
mn n
", i + 10"

(5.45)
Il (B%))) S I(VE,, G”)HLI

We want to control now the part on the right-hand side of (5.45), for this we do like
previously in using proposition 3.6. We have:

1Bl iy < I g+ IOy ) + 186N, v
with:
00y ey < 10w 1971 g an) 17 g v 07 )

<0 e it o 7y pany VTN gy g 0
One ends up with:

I1Fall, g, < Cldo + +VEPR

02



Next we want to control the different terms of G,,. We have:

(") Vu| < VT|u"|

n
LL(BY) L (BY) H HL2 2(BTHY

/

K, .
19 (S22 19002 )y 1, S VI

n
L%O(B%ﬂ))Hq ”LQT(B%Jrz)'

After we have:

u(p™, M), o n n
IV vl ) < g ) VI 0y 1T )
We treat similarly the term:
7 97’1
V(C(p ’ )>divu”.
o
Next we study the term:
X (0", 0) ¥ prdiv(u®) \ .
| T ) S I VTN )l s
We proceed similarly for the following term:
(du™ + Vur)p' (p", 0")V p"
14 gn
Next we have:
e + T AT Tig"l,,. el
1+qm Ly.(8%) ~ Tl Lg(BY) 1 Ly (BT HY)
DI ey 17 iy (L 17 )
Pi(p")
n <
I IV ) S VT N )+ 1T )
FVIIT i 19 e e I
: M(pnvan) 0 0
Hle(Wvu )HLlT(B%) < (lg" HLOQ(B7 + ”THH ))Hu HLIT(B%”)

+ ||u0|| %+1)(\/THQHHL%O(B%+1) + HTnHL%(B%H)) :

L2(B

We proceed similarly with the other terms:

AU, V <C(pn’0n)div(u0)> . Vi(k(p")AG).

1+qm
After we want to estimate the term ||[H"|| |~ . So we have:
L. (B7Z)
IV GO 0D, ) S A 1T )

n
VTG e ) 1T 0
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We have after these last terms:

TP (p") |, 7"
L7007 n < n "
== aivall, ) S VT (10 ) + 1T oy A )
X ||U ||L%(B%+1)'

and:

V0", ) < \/:ﬂlu”HL?(Bg)H? iz ¥4

n . n n|2
|Vu™ : Vu ||L%«(B%) <|lu ||L%(B%)

we obtain in using (5.45), the hypothesis of recurrence to the state n and the previous
inequalities:

1(@nt15 Tt 15 Tt | p (1 — C2¢/E(Ag + VE) < Ci(e(Ao + VE)* + T(Ao + VE)).

In taking 7" and e small enough we have (P,+1), so (¢",u", T™) is bounded in Fp. To
conclude we proceed like in the proof of theorem 2.4 and we show in the same way that
(g%, a", T™) is a Cauchy sequence in Fr, hence converges to some (q,u,7T) in Fr. We
verify after that (p,u,0) is a solution of the system.

Uniqueness:

We compare the difference between two solutions with the same initial data and we use
essentially the same type of estimates than in the part on contraction. The details are
left to the reader.

6 Appendix

This part consists in one commutator lemma which enables us to conclude in proposition
5.12. Moreover we give the proof of proposition 3.7 on the composition of function in
hybrid spaces adapted from Bahouri-Chemin in [2].

Lemma 1 Let 0 < s < 1. Suppose that A € EZT(B%‘H) and B € E%(B%_H'S). Then
we have the following result :

U 14
064, ABll gy iy < Ce2 F Al L 18]

I2(B% 1+

with ZlEZ Cc| = 1.

Proof:

We have the following decomposition:

uv =T, + T;u
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where: T,v =, Si—1ulv and: T,/]u = ez Si+2vAu.

We then have:
Ok [A, AZ]B = akT/AlBA — 8kAlTj3A + [TA, Al]akB + TakAAlB — AlTBkAB- (6.46)

From now on, we will denote by (¢;);cz a sequence such that:

ch <1

lEZ

Now we are going to treat each term of (6.46). According to the properties of quasi-
orthogonality and the definition of T" we have:

OTapA= Y Oh(SmialBALA).
m>1—2
Next, in using Bernstein inequalities, we have:
10 Thp Al iy S 32 2™ 8Bl (o) | AmAll 2 12
m>1—2

N N (N
SUFABl gz 3 27 @G A Al 2 1)

m>1—2

< 27Z(N/271+s)(21(%*1+5)”AlBHL%(LQ)) Z (2m(%+1)”AmAHL2T(L2))

m>1—2

< . 9—l(N/2—1+s)
s 180z, (51 1Az (g 0y

Next, we will use the classic estimates on the paraproduct to bound the second term of
the right-hand side of (6.46). We obtain then:

ITh AN, 3y S 1B

L%(B%+5 L%(B%71+S)HA”L%(B%+1)

After in using the spectral localization we have:
10eATH Al 12y S 2IATHAl Ly (1)
<27 G| B)|
~ L

%(B%—l-‘rS) ||AHE%(B%+1)

According to the properties of orthogonality of Littlewood-Payley decomposition we have:

[Ta, MJOkB = > [Sm-14,A]AR0:B .

Im—1|<4

In applying Taylor formula, we obtain for z € R:
1
[Sn1 A, Al Ay O B(x) = 271 / / h(y)(y.Sm-1 VA —2""79)) A OrB(x—2"y)drdy .
RN Jo
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By an inequality of convolution we have:

11Sm-14, AJARB|l 2 S 27V A| oo || Ak Bl 2 -
So we get:

N 14
1T, A0k Bll 12y S 27|V A 12 (1) | Bl

~ N .
L2(BZ'F9)

Finally we have:
Ty aAB= > Spm 10,ANA,B.
ll—m|<4

Hence:
”TBkAAlBHL%F(L?) < HakAHLQT(LOO)HAZBHL%(LQ) :

And the classic estimates on the paraproduct give:

—_(N_
Zo,ADBl, iy 1) S a2 F AN, Ly 1Bl o

_1)
The proof is complete. O

Proof of proposition 3.7:

To show (i) we use “first linéarisation” method introduced by Y.Meyer in [24], which
amounts to write that:

F(u17u27 o 7ud) = Z(F(S[H-lub t 7SP+1ud) - F(Spula te aspud))'
PEL

According to Taylor formula, we have:

F(Sp+1u1, s ,Sp+1ud) — F(Spul, s ,Spud) = ‘ffllillj’u,:,lJ +---+ mgufl

with u? = Apu; and
4 1
m, = / O F (Spur + sull, -+, Spu; + sul - -+ | Spug + sul)ds.
0

Observe that: 4
[mpllee < (|VF[ L.

We have:
ApF(ur,ug, - ,uq) = A}, + Af,

where we have decomposed the sum into two parts:

AD =3 (pr‘fm;) R Ap<u3m;>>,

q=p
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A}(f) = Z <Ap(u‘fm;) +---+ Ap(ugmé)).
q<p—1

Now we bound HAI(,I)HL%(LP) in this way:
HAz(ul)HL;(Lp) < Z (HU?HLPT(LP)Hm},HL%’(Lm) + o udll oo Imgll ngs ooy
q=>p

= ; IVE o2 eq(lurllze gy + - + lludllze (5s))
q=-p

with (¢q) € I1(Z).

Therefore, since s > 0:

> 27 AN e 1y < CIVEre(luilize gy + -+ lluallze (5))-
PEZL

To bound HA,(f) I L2.(Lv) We use the fact that the support of the Fourier transform of AIS)Q)
is included in the shell 2PC, so that according to Bernstein inequality:

1832 1 gemy < D2 1A mg) gy + -+ [ Ap(gma) s o).
q<p-—1

§C2_p([51+1) Z (Ha[s}—‘_l(u({mé)HL’%(LP) 4+ ||8[5}+1(u3m;)|’L%(Lp)).
g<p—1

Moreover we have according to Faa-di-Bruno formula:

1 m
dFmi = / S A P + sut) [ 01, (Sy(u) + su))ds.
O it =k, lm #0 n=1

Hence we get for all k € N:

Hakmf}”L%"(Lm) < Oy, 427
with: Cy, 1 = c(1+ HUZHL%O(LOO))
We have then:

||A;(32) ||L%(LP) < 2~ P(sl+1) <Zl CqQQ(—s-l-[S]—H)CUU_ ﬂld(HulHZ;(Bg) N Hud”f;(B;))‘
q=p—

Hence the result:

Z 2pSHA;(zQ)||L”T(LP) < Cul,-~,u(1(||ul||ZPT(Bs) +oet ||ud||zf%(31s7))-
pEZ

So the first part of the proof is complete.
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For proving (ii) we proceed in the same way as before. We get:

F(u) = Z Mgy

qEZ
And we have for p > 0:
ApF(u) = AL+ A2

SO:

/ —
||A;HL;(L2) < ZHF |02 qSQCqHUHzPT(Eswzy
q=>p

Hence in using convolution inequality:

Y272 A g 12y < CIIF [z ull zo (G102

p>0
After we get for all s > 0:
HA]Z;”LPT(L?) < ¢27Plsl+D) Z Ha[s]ﬂ(mquq)HLf’T(L?),
q<p—1

§C2—p([s]+1) Z 2‘1([8]+1—5(Q))Cq||uqHE%(ESLSQ
q<p—1

)

with s(q) = s1 or sa.
So we obtain:

Z 9Ps2 HA?DHL;(L?) < Z 9—p([s]+1-52) Z cq2q([s]+1*31) ||UHZPT(§81,S2)

p>0 >0 a=0 (6.47)
— +1— +1- ‘
+ 22 p([s} 82) Z Cq2qqs] 52)”““Ef}(§31752)'
p>0 0<g<p—1

We have to choose s, so for the first term of (6.47) we just need that: [s]+1—s2 > 0 and
[s]+1—s; > 0 and for the second term of (6.47) we just have a inequality of convolution.
So we can take s = 1 + max(si, s2).

We do the same for p < 0 and we have:

DAl ey S D2 D I 2 e ull oo vy

p<0 p<0 qzp
/ —
+ 3 N F 2 2 7y e,
p<0 p<q<0

We conclude by a inequality of convolution.
And for the term Ag we get:

Z oPs1 HA%HZP(LQ) < Z o—p([s]+1-51) Z ngtz([s]+1—s1)||u||zp(§31’s2)'
p<0 p<0 q<p—1
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For proving (iii) and (iv), one just has to use the following identity:

G(v) — G(u) = (v — u) /0 H(u+ (v — w)dr + G (0)(v — )

/

where H(w) = G (w) — G’ (0), and we conclude by using (i), (ii) and proposition 3.6. [

7 Annex: Notations of differential calculus

If f: R" — R, we denote:

df = Z; o dx; = 0;fdux;
with the summation convention on repeated indices and the simplified notation:

_9f
oif = 52

The vector field associated to the differential df is noted Vf,

_of o

Let f: R™ — R”. Let denote f; the ¢ th component of f, and:

(df)i; = i fi-
By analogy with the case of the scalar, we denote:
Vf=(df)*, so(Vf)ij = 0ifj-
The curl of f is given by:
(curlf)i; = 9ifj — 0; fi.
The divergence of the vector field f is given by:

din =tr df = 81]01
If A: R" — R™", with coefficients a; j,we set:
(diV A)] = 8,~al-j N divA = le(Ai) d(L‘j.
’ 81‘]-

In particular, for f scalar, we have:

div(fI) = df.
And finally we set:

A:B= ambivj .
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