
HAL Id: hal-00776765
https://hal.science/hal-00776765

Submitted on 16 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiency evaluation of overhead control heuristics in
DP-Fair multiprocessor scheduling

Yvon Trinquet, Naeem M. Shehzad, Anne-Marie Déplanche, Richard Urunuela

To cite this version:
Yvon Trinquet, Naeem M. Shehzad, Anne-Marie Déplanche, Richard Urunuela. Efficiency evaluation
of overhead control heuristics in DP-Fair multiprocessor scheduling. 17th IEEE International Con-
ference on Emerging Technologies & Factory Automation, Sep 2012, KRAKOV, Poland. pp.xxx-xxx.
�hal-00776765�

https://hal.science/hal-00776765
https://hal.archives-ouvertes.fr

Efficiency evaluation of overhead control heuristics in DP-Fair multiprocessor
scheduling

M.Naeem Shehzad, A.M Déplanche, Yvon Trinquet, Richard Urunuela
LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597
L’Institut de Recherche en Communications et Cybernétique de Nantes

Nantes, France.
{Naeem.Shehzad,Anne-Marie.Deplanche,Yvon.Trinquet,Richard.Urunuela}@irccyn.ec-nantes.fr

Abstract

A number of optimal algorithms exist for scheduling of
periodic taskset with implicit deadlines in real-time mul-
tiprocessor systems. However, the practical facts reveal
that the optimality is achieved at the cost of excessive
scheduling points, migrations and preemptions. In [20],
we proposed two heuristics to control the overhead for
a class of non-work conserving global scheduling algo-
rithms that combine fluid scheduling and deadline parti-
tioning, while guaranteeing optimality. This paper gives
some detailed simulation results along with description of
the system to generate the data for the simulation. The
given results show the basic strength of the heuristics and
validate their efficiency. 1

1. Introduction

The significance of real-time systems can be viewed
everywhere from mobile phones and automobiles upto
space systems. This revolution of technology has con-
stantly urged for an increase in the processing power.
Multiprocessing addresses to this problem. Scheduling
problem in real-time multiprocessor systems has got a
lot of attention after emergence of multicore architecture
[4, 14, 19]. The two main categories of multiprocessor
scheduling algorithms in real-time systems are partitioned
scheduling and global scheduling.

In different to partitioned scheduling [12, 13, 8], there
is a single queue of ready tasks and a single scheduler
for all the processors in global scheduling. Tasks and
their jobs are allowed to migrate from processor to pro-
cessor. Migration increases the schedulability which con-
sequently improves the resource utilization. Another sig-
nificant advantage of global scheduling is that the only
known optimal multiprocessor scheduling algorithms for
periodic tasks belong to this category.

1This work has been supported by the French Agence Nationale de
la Recherche through the RESPECTED project (Contract ANR-2010-
SEGI-002). See http://anr-respected.laas.fr

Though theoretically optimal, questions are raised
about the practical implementation of global scheduling.
The optimality is achieved at the rate of a large number of
migrations, preemptions and scheduling points, the cost
of which is commonly considered to be zero or negligi-
ble. But practically their effect in the system cannot be
neglected specially when these occur frequently. The cost
of migration on some modern multicore architectures is
much lower than in past but is still a non-zero value. Thus
frequent migrations and preemptions in the system lead
to an increase in worst-case execution times which may
result in the missing of deadlines.

Keeping in mind the overhead due to migration and
preemption, the study of their effect on different aspects of
processor scheduling is quite common [5, 24, 25]. Some
researchers have worked in the domain of overhead con-
trol due to preemption and migration in global scheduling.
[10] used the technique of delayed preemption for pre-
emption control in non-optimal global scheduling. Aoun
et al. [3] used the processor affinity technique to reduce
the number of migrations in PFair scheduling. Megel et
al. [16] proposed a linear programming formulation and
a local scheduler technique. In [20], we proposed the use
of some simple heuristics to control the preemptions and
migrations while still keeping the optimality, for a class
of non-work conserving global algorithms. The results
showed some significant improvement in the overhead.

The known optimal global scheduling algorithms can
be divided into two main classes. PFair [19] and dead-
line partitioning fair which is shortly known as DP-Fair
[14]. Both categories are based on the principle of fair-
ness but they differ on how much fairness is required.

Proportionate fair, or simply PFair, was presented by
Baruah et al. in 1996 [19]. It uses the concept of fairness
which suggests that processor share of each task is pro-
portional to its utilization factor at any instant. For a task
Ti with utilization factor Ti.u, time allocated at any given
time t, will be either bt ∗ Ti.uc or dt ∗ Ti.ue. The time is
divided into small intervals of equal length in PFair and
an interval is called quantum. Scheduling of all the tasks
is done at the start of each quantum. As a result, PFair

achieves the optimality at the cost of huge runtime over-
head [21] due to frequent scheduling points, preemptions
and migrations. PF , PD and PD2 are three PFair al-
gorithms which are proven to be optimal [19]. ERFair[2]
which is a work-conserving technique is a extended form
of PFair.

DP-Fair combines the notion of fluid scheduling (ideal
fairness) with deadline partitioning while still guarantees
the optimality. All the DP-Fair strategies choose to sub-
divide time into slices where all the tasks have a common
(local) deadline. Such common deadlines are necessary
because according to Hong and Leung [11], no optimal
on-line scheduler can exist for a set of jobs with two or
more distinct deadlines on two or more processors. These
deadlines are called boundaries and are defined by the
points of task release (that coinicide with task deadlines
for an implicit deadline taskset). These are abbreviated as
b0, b1,...bk etc. as shown in the figure 1. Distance between
any two boundaries is also known as a node. In DP-Fair,
the fairness is required to achieve only at the boundaries.
It reduces the number of scheduling points compared to
that of PFair. Scheduling in each node comprises two
steps. The computation of execution time units (called
local execution time) for each task for that node and de-
cision for dispatching these time units among the proces-
sors. The execution time units are called local execution
time units because they are assigned only for that partic-
ular interval and can be different to the execution time of
the task. Local execution time units may be a discrete or
a non-discrete value depending on the technique used for
their computation.

Figure 1. Definition of intervals in DP-Fair

Some of well known non-work conserving algorithms
following the principle of DP-Fair are Boundary fair [26],
LLREF [9] and LRE − TL [7]. They differ either in
computation of local execution times or dispatching tech-
nique.

Boundary fair or BFair is a technique proposed by
Zhu et al. [26]. For a task Ti with utilization factor
Ti.u, time allocated for any node between bk and bk+1

is either b(bk+1 − bk) ∗ Ti.uc or d(bk+1 − bk) ∗ Ti.ue.
BFair uses McNaughton’s algorithm [15] for dispatch-
ing of taskset in a static way. For 100 tasks in the taskset,

Zhu showed thatBFair has 48 % scheduling points when
compared with PD [26].

In LLREF [9], the execution time units of any task
are directly proportional to its utilization factor at any
time. The resulting value may be a non-integer which
causes a practical problem during implementation (due to
the hardware characteristics of processors, execution time
unit numbers should be integral multiples of the highest
precision timer). LLREF uses a dynamic technique for
dispatching of taskset. LRE − TL [7] is based on the
principle of LLREF but defines an improved dispatch-
ing technique.

Recently, an optimal global scheduling algorithm,
known as RUN, is proposed by Regnier et al. [18] which
is based on a principle other than fairness. It reduces the
multiprocessor problem to a series of uniprocessor prob-
lem and consequently minimizes the number of migra-
tions and preemptions. Nelissen et al. [17] has also pro-
posed a technique called U-EDF to reduce the number of
preemptions and migrations by releasing fairness. How-
ever, the optimality is not shown for this technique. In ad-
dition, it involves non-discrete values of execution times
causing some constraints during implementation.

The DP-Fair algorithm on which our work is based
uses the BFair [26] technique for the computation of
local execution time units and the LRE − TL [7] dy-
namic technique for the task dispatching. In [6], Cho et
al. used the same algorithm. In this article, we refer it as
BFair/LRE-TL.

The motivation behind this work is to elaborate the ad-
vantages of the heuristics proposed in [20] while tested in
a more sophisticated way with our BFair/LRE-TL algo-
rithm. The article discusses the whole mechanism of gen-
erating the dataset for testing the algorithm. It gives some
new perspectives about the performance of these heuris-
tics when the ratio of tasks to processor changes.

System Model. We consider that T is a set of N
synchronous periodic tasks Ti where i = 1, 2...N to be
scheduled on M identical processors. Each task Ti has
a period Ti.p equal to its relative deadline Ti.d (im-
plicit deadline), an execution time Ti.e and utilization fac-
tor Ti.u. (which is Ti.e/Ti.p) in range (0, 1] such that∑N

i=1(Ti.u) ≤ M . Each task in such a system is invoked
or released repeatedly in accordance with its period Ti.p.
Each such invocation is called a job of the task. We as-
sume that all the tasks are independent, i.e. they do not
share any common resource and do not have any prece-
dence with each other. The costs of migration, preemption
and context switch are assumed to be already added in ex-
ecution times. A processor can not execute more than one
task at any given time and a single task cannot execute on
more than one processor at any given time.

The organization of the rest of the paper is as follows.
Section 2 discusses the DP-Fair scheduling. Section 3
briefly revises the heuristics proposed in [20]. Section 4
discusses the experimental set up along with the data gen-
eration process. Section 5 gives the experimental results

along with the conclusion in section 6.

2. Scheduling of taskset in BFair/LRE-TL

As presented earlier, in BFair/LRE-TL, the schedul-
ing of a taskset in a node is divided into two parts, com-
putation of local execution time units and dispatching of
taskset.

2.1. Local execution time computation
We used BFair [26] algorithm for the computation of

task local execution times. This is realized by allocation of
some mandatory units which enable each task to achieve
the lower limit of fairness and then unallocated units of
time over the node are are distributed as optional units ac-
cording to some priority rules. Any task cannot have more
than one optional unit. The resulting local execution time
Ti.l is sum of mandatory units and optional unit and it is
always an integer value. Such a computation guarantees :

• Each local execution time is less than or equal to
length of the node, i.e. Ti.l ≤ (bk+1 − bk) ∀ 0 <
i ≤ N

• The sum of local execution time units is less
than or equal to total capacity of the processors,
i.e.

∑N
i=1(Ti.l) ≤M(bk+1 − bk)

• At each bk, and for each task, the distance between
its ideal fair execution and real execution is strictly
less than one, ensuring that deadline will be met.

2.2. Task dispatching
We are inspired by the principle of LRE − TL [7] for

designing of our dispatching technique. It uses the notion
of zero local laxity for tasks. A task is said to have zero
local laxity if its remaining local execution time to be con-
sumed becomes equal to the remaining time of the node.
The following general rules are applied while dispatching
taskset between two boundaries bk and bk+1:

• At most M tasks can be executed at any given time.

• A task with zero local laxity is given maximum pri-
ority. It must be executed immediately, otherwise it
will miss its local deadline.

• A task with zero local remaining execution time is
preempted (due to non-work conserving behavior).

• No processor remains idle if there is a ready task with
non-zero local remaining execution time.

Both of our overhead control heuristics are related to the
dispatching technique.

3. Overhead control

Generally, the theory of global scheduling only re-
quires execution of tasks so that all tasks meet their dead-
line without specifying any particular task executing on
any particular processor. This is the reason why most
of the scheduling algorithms give no explicit prescription
about assigning the tasks to the processors. Thus, after the
computation of local execution times and establishment of
scheduling rules, some complementary dispatching tech-
nique can be designed to reduce the overhead due to pre-
emption and migration. In [20], we added some simple
heuristics in the dispatching technique to make it more ef-
ficient in terms of overhead. The heuristic 1 is related to
the task to processor assignment criterion. Heuristic 2 ex-
plores the order in which at most M tasks are selected for
execution.

3.1. Heuristic 1
Normally, the assignment of tasks for execution is

made to any available processors without considering their
previous histories. Contrarily, heuristic 1 allows the task
to keep the record of the processor on which it was ex-
ecuted last time and as a result an affinity relation exists
between task and processor. Taking this relation into ac-
count, heuristic 1 tries to assign a newly running task to
the processor on which it was scheduled the last time. This
heuristic works at primary scheduling points, i.e. the ones
that coincides with boundaries time (or start of a node)
as well as at secondary scheduling events that may occur
inside a node. The algorithm is given below. The compu-
tational complexity of heuristic 1 is O(M).

Algorithm Heuristic 1
Suppose:

• t is the time at which algorithm is called

• HB is the list of tasks that have been already selected
for running after t. Maximum size of HB is M

• T.getLastProc() returns the processor on which
task T was executed last time

• P is an object that represents a processor

1. for(each task T of HB not running before t)

2. P = T .getLastProc() ;

3. if (P is idle)

4. assign T to P ;

5. else

6. assign T to any idle processor;

7. end for

3.2. Heuristic 2
At the start of each node, heuristic 2 attempts to control

the preemptions. According to this technique, the task ex-
ecuting on a processor just before the scheduling is given
priority to re-execute provided it is still ready. By con-
tinuing such executions, some unnecessary preemptions
are avoided. The algorithm is given below. The computa-
tional complexity of heuristic 2 is O(M).

Algorithm Heuristic 2
Suppose

• t is the time at which algorithm is called

• HB is the list of tasks that were running before t and
that may be updated by this algorithm. And at the
end, it contains the tasks that have to run after t

• ReadyList is the list containing unsorted ready tasks

1. for (each task T of HB)

2. if(T ε ReadyList)

3. ReadyList.remove(T);

4. else

5. T.preempt();

6. HB .remove(T);

7. end for

8. while (HB .size() < M && ReadyList.size()! = 0)

9. T = ReadyList.getfirst();

10. HB .add(T);

11. endwhile

4. Experimentation

A series of simulation based experimental studies was
performed to find the effect of using the overhead control
heuristics with BFair/LRE-TL and to discover out some
relevant features. In the first place, we added heuristic
1, then heuristic 2 and finally both the heuristics with the
BFair/LRE-TL to find their individual and combined ef-
fects on the migration and preemption compared to the
original version of BFair/LRE-TL algorithm. When we
use both the heuristics, we call the resulting algorithm as
a hybrid algorithm. The experimental test bed is shown in
figure 2 and explained hereafter.

Figure 2. Experimental test bed

4.1. Taskset Generator
The functional diagram of the taskset generator is

shown in figure 3. Taking total utilization factor U and
number of tasks N as inputs, it gives N couples of Ti.e
and Ti.p such that

∑N
i=1(Ti.e

Ti.p
) = U . The time periods

Ti.p are chosen from a set of time periods in a round robin
way. Utilization of limited values of task periods helps to
limit the hyper period of the taskset and thus bounds rea-
sonably the simulation interval. Moreover, the utilization
of different period sets gives rise to various distributions
of node length and frequency. We used Roger Stafford’s
randfixedsum algorithm [22] at the heart of the genera-
tor. Stafford’s algorithm efficiently generates N values
between a and b such that their sum gives a constant value.
The Matlab implementation of the algorithm is publicly
available with all necessary documentation [22]. In our
case, Stafford’s algorithm takes the total number of tasks
N , their total utilization factor U and limits 0, 1 as in-
puts and gives utilization factors Ti.usof N tasks as out-
put. The values of of Ti.e obtained from Ti.us may not
be a discrete value. Therefore, the following algorithm is
used to obtain the discrete couples of Ti.e and Ti.p from
Ti.us, while keeping the value of total utilization factors
produced by Stafford’s algorithm.

Algorithm for task parameters computa-
tion

Suppose
T = {Pj , j = 0, k − 1} = Set of periods
∆%= Percentage error
Initial conditions
∆0 = 0;
∆% = 0

1. for (i = 1...N)

2. Ti.u
′ = min {(Ti.us + ∆i−1) , 1}

3. Ti.p = P(i% k)

4. Ti.e =max{bTi.p ∗ Ti.u′c , 1}

5. ∆i = Ti.us − Ti.e
Ti.p

6. ∆% = ∆% + |∆i|
Ti.us

Figure 3. Dataset generator

7. end for

8. ∆% = ∆%
N

The taskset is discarded if the sum of utilization factor fi-
nally calculated is more than U or average error of the
taskset is not less than 10 %. This value is a good com-
promise between the initial Stafford’s distribution and a
moderate time to generate a large number of configura-
tions.

The task utilization factors produced by our generator
lie uniformly between 0 and 1 when tested for U = 0.5N.
At U = 0.25N, the majority of the generated configurations
include light tasks. In the same way, at U = 0.75N, most
of the tasks in the configurations are heavy tasks.

4.2. Experimental conditions
We have presented the results of only one set of periods

due to space limitation. We used T ={30, 36, 40, 45, 50}
for the experiments. It gives rise to the scheduling inter-
vals of variable lengths between 2 and 30 with a slightly
high proportion of interval of length 10. The hyper period
is 1800.

1. The process of experiments was conducted at vari-
able total utilization factor, i.e. U=M, U=0.75M and
U= 0.5M.

2. For each value of total utilization factor, experiments
were performed with varying number of processors
including 4, 6, 8, 10 and 12.

3. For each number of processor value, four different
values of number of tasks were used, i.e. N=1.5M,
N=2M, N=2.5M and N=3M.

4. For each value of N, 30 configurations were gen-
erated and were tested for four algorithms, i.e.

Figure 4. Migration control at U=M

Figure 5. Preemption control at U=M

BFair/LRE-TL, BFair/LRE-TL with heuristic 1,
BFair/LRE-TL with heuristic 2 and BFair/LRE-TL
with both heuristics known as hybrid.

4.3. Simulator

We used STORM [1, 23] as the simulation tool.
STORM stands for “Simulation TOol for Real time Mul-
tiprocessor scheduling”. STORM is a freeware software
tool developed in our research team. It is able to simulate
the behavior of predefined or user defined real-time mul-
tiprocessor schedulers and to evaluate their performance
by computing specified metrices on the schedules they
construct. It has the ability to show the execution of a
given set of tasks over a multiprocessor architecture while
taking into account the requirements of both taskset and
hardware system. It takes all the input information about
the taskset, processors and the scheduling algorithm in the
form of an XML file. STORM enables to incorporate an
observer of the simulation as a separate program. It counts
the number of migrations and preemptions without affect-
ing the scheduling process. It stores the results in text
files.

Figure 6. Migration control of hybrid algo-
rithm with variable utilization factor

Figure 7. Preemption control of hybrid algo-
rithm with variable utilization factor

5. Results

The results give the improvement expressed as a
percentage of specific algorithm relative to the basic
BFair/LRE-TL one for the number of preemptions and mi-
grations as well. Different perspectives of the obtained
results are given in the following.

5.1. Overhead control at U=M
The results are given in the graphical form in figures 4

and 5. Each point on the graph represents an average result
of experiments on 120 tasksets with a variable number of
task to processor ratio. The configurations include taskset
with different utilization factors, light weight as well as
heavy weight tasks as defined in point 3 of experimental
conditions.

The results show that migrations with heuristic 1 are
about 60% of BFair/LRE-TL algorithm while it shows not
any effect on the number of preemptions. The preemp-

tions with heuristic 2 are approximately 65 % of the pre-
emptions of BFair/LRE-TL. The migrations with heuristic
2 are also in the same range. Heuristic 2 basically controls
the preemptions but it reduces the migrations as well be-
cause tasks which avoid preemption by heuristic 2 may
have been migrated to different processors otherwise. Hy-
brid algorithm keeps the advantages of both heuristic 1
and heuristic 2 and shows better results upto 50 % for mi-
gration.

5.2. Overhead control at variable total utilization fac-
tor

The graphs in the figures 6 and 7 show the results
where the performance of the only hybrid algorithm is
tested with different total utilization factors. Each point in
the graph shows an average result of experiments on 120
tasksets with a variable number of task to processor ratio.
The hybrid algorithm improves the migration control with
a reduction in total utilization factor. The preemption con-
trol of the hybrid algorithm works notably better for high
total utilization factor. As mentioned earlier, the preemp-
tion control heuristic works at primary scheduling points.
With comparatively low utilization factor, tasks are pre-
empted before their completion (due to the non-work con-
serving behavior), letting the time idle at the end of the
node and making the heuristic 2 inoperative. Smaller is
the total utilization factor, lower are the chances of work-
ing of heuristic 2 and lower is the preemption control.

5.3. Overhead control at a variable ratio of task to pro-
cessor

The results in figures 8 to 11 show the percentage im-
provement in migration and preemption control of hybrid
algorithm while varying the number of the task to proces-
sor ratio. Each point in the graph shows an average re-
sult of experiments on 30 tasksets. The graphs in figures
8 and 9 show the migration control and figures 10 and
11 show the preemption control of the hybrid algorithm.
The experiments were done at U = 0.75M and U = M .
Number of tasks N varies between 6 and 36 according to
variation in the number of processors.

The migration control works better at lower ratio of
task to processor than at higher values. This trend is more
significant at U = 0.75M than U = M . The preemp-
tion control also performs better at lower values of task
to processor ratio, when U = 0.75M . When U = M ,
the hybrid algorithm shows the best preemption control at
N = 2M as shown in the figure 11.

We know that preemption control ability of the hybrid
algorithm due to heuristic 2 is relatively weaker at lower
value of total utilization factor. Also as the ratio of number
of task to processor increases, the number of light tasks
in the taskset increases. Both of these factors reduce the
chances of tasks to continue upto next node. It leaves the
idle time units at the end of the node which prohibits the
work of heuristic 2 which controls both migrations and
preemptions. This is the reason of deterioration of pre-

Figure 8. Migration control in variation with
number of tasks at U=0.75M

Figure 9. Migration control in variation with
number of tasks at U=M

emption control at U = 0.75M with higher values of
task to processor ratio as shown in figure 10. Since this
heuristic 2 controls the migration as well, the migration
control of hybrid also follows the same pattern specially
when U < M . At higher value of task to processor ratio,
it is difficult for a task to re-execute on the same processor
than at lower value of task to processor ratio.

6. Conclusion

In this article, we have shown the improvement in
terms of overhead for a class of optimal non-work con-
serving global scheduling algorithm by using simple
heuristics. Our simulation results have validated the effi-
ciency of the heuristics and have shown very clear trends
about their properties. The algorithms showed the same
trends when we experimented them with four different
sets of periods.

At present, we are using the very same heuristics with

Figure 10. Preemption control in variation
with number of tasks at U=0.75M

Figure 11. Preemption control in variation
with number of tasks at U=M

work-conserving scheduling algorithms. Although work-
conserving techniques have intrinsically lower overheads
than non-work conserving techniques. We want to eval-
uate in what proportions such overhead control heuristics
may reduce it further.

References

[1] http://storm.rts-software.org.

[2] J. Anderson and A. Srinivasan. Early-release fair
scheduling. In the Proceedings of the 12th Euromi-
cro Conference on Real-Time Systems, pages 35–43,
2000.

[3] D. Aoun, A-M Déplanche, and Y. Trinquet. Pfair
scheduling improvement to reduce interprocessor
migrations. In the Proceedings of 16th Interna-
tional Conference on Real-Time and Network Sys-
tems, Rennes, France, pages 131–138, 2008.

[4] K. Bletsas B. Andersson and S. K. Baruah. Schedul-
ing arbitrary-deadline sporadic task systems on mul-
tiprocessors. In the Proceedings of the Real-Time
Systems Symposium, pages 385–394, 2008.

[5] A. Block and J. Anderson. Accuracy versus migra-
tion overhead in real-time multiprocessor reweight-
ing algorithms. In the Proceedings of the 12th In-
ternational Conference on Parallel and Distributed
Systems, pages 355–364, 2006.

[6] H. Cho, Binoy Ravindran, and E. Douglas Jensen. T-
l plane-based real-time scheduling for homogeneous
multiprocessors. Journal of Parallel and Distributed
Computing, 70:225 – 236, 2010.

[7] S. Funk and Vijaykant Nadadur. Lre-tl an optimal
multiprocessing scheduling algorithm for sporadic
task sets. In the Proceedings of the 17th Interna-
tional Conferenece of Real-Time and Network sys-
tems, Paris, pages 26–27, 2009.

[8] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[9] B. Ravindran H. Cho and E. Douglas Jensen. An
optimal real-time scheduling algorithm for multipro-
cessors. In the Proceedings of the IEEE Interna-
tional Real-Time Systems Symposium, pages 101–
110, 2006.

[10] Chiahsun Ho and Shelby H. Funk. A hybrid prior-
ity multiprocessor scheduling algorithm. In the Pro-
ceedings of the 31st Real-Time Systems Symposium
(RTSS), San Diego, CA, USA, 2010.

[11] K.S. Hong and J.Y.-T. Leung. On-line scheduling of
real-time tasks. IEEE Transactions on Computers,
pages 1326–1331, 1992.

[12] L. George J. Goossens I. Lupu, P. Courbin. Multi-
criteria evaluation of partitioning schemes for real-
time systems. In the Proceedings of the 15th IEEE
International Conference on Emerging Techonolo-
gies and Factory Automation, 2010.

[13] J.L. Diaz D.F. Garcia J.M. Lopez, M. Garcia. Uti-
lization bounds for multiprocessor rate-monotonic
scheduling. Real-Time Systems, pages 5–28, 2003.

[14] G. Levin, Shelby Funk, Caitlin Sadowski, Ian Pye,
and Scott Brandt. Dp-fair: A simple model for un-
derstanding optimal multiprocessor scheduling. In
the Proceedings of the 22nd Euromicro Conference
on Real-Time Systems, pages 3–13, 2010.

[15] R. McNaughton. Scheduling with deadlines and loss
functions. Management Sciences, pages 1–12, 1959.

[16] Thomas Megel, Renaud Sirdey, and Vincent David.
Minimizing task preemptions and migrations in mul-
tiprocessor optimal real-time schedules. In the Pro-
ceedings of the 31st IEEE Real-Time Systems Sym-
posium, pages 37–46, 2010.

[17] G. Nelissen, V. Berten, J. Goossens, and D. Miloje-
vic. Reducing preemptions and migrations in real-
time multiprocessor scheduling algorithms by re-
leasing the fairness. In RTCSA, 2011.

[18] Paul Regnier, George Lima, Ernesto Massa, Greg
Levin, and Scott A. Brandt. Run: Optimal multipro-
cessor real-time scheduling via reduction to unipro-
cessor. In RTSS, pages 104–115, 2011.

[19] N. C.G.Plaxton S.Baruah and D.Varvel. Proportion-
ate progress:a notion of fairness in resource alloca-
tion. Algorithmica, 15:600–625, 1996.

[20] M.N Shehzad, A-M Déplanche, Y. Trinquet, and
Richard Urunuela. Overhead control in real-time
global scheduling. In the Proceedings of 19th In-
ternational Conference on Real-Time and Network
Systems. Nantes, France, pages 45–52, 2011.

[21] A. Srinivasan and J. Anderson. Optimal rate-based
scheduling on multiprocessors. In the Proceedings
of the 34th ACM Symposium on Theory of Comput-
ing, pages 189–198, 2001.

[22] R. Stafford. Random vectors with fixed sum.
http://www.mathworks.com/matlabcentral/fileexchange/9700,
2006.

[23] R. Urunuela, A-M. Déplanche, and Y. Trinquet.
Storm - a simulation tool for real-time multipro-
cessor scheduling evaluation. In the Proceed-
ings of IEEE International Conference on Emerging
Technology and Factory Automation, ETFA, Bilbao,
pages 1–8, 2010.

[24] C. Y. Yang, Jian-Jia Chen, and Tei-Wei Kuo. Pre-
emption control for energy-efficient task scheduling
in systems with a dvs processor and non-dvs devices.
In the Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications, pages 293–300, 2007.

[25] G. Yao, Giorgio Buttazzo, and Marko Bertogna.
Feasibility analysis under fixed priority scheduling
with fixed preemption points. In the Proceedings of
the 16th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applica-
tions, pages 71–80, 2010.

[26] D. Zhu, Daniel Mosse, and Rami Melhem. Multiple-
resource periodic scheduling problem: How much
fairness is necessary? In the Proceedings of the 24th
IEEE International Real-Time Systems Symposium,
pages 142–151, 2003.

