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Hausdorff measures and dimensions in non equiregular

sub-Riemannian manifolds

R. Ghezzi and F. Jean

Abstract This paper is a starting point towards computing the Hausdorff dimension of submanifolds and the Hausdorff

volume of small balls in a sub-Riemannian manifold with singular points. We first consider the case of a strongly

equiregular submanifold, i.e., a smooth submanifold N for which the growth vector of the distribution D and the

growth vector of the intersection of D with T N are constant on N. In this case, we generalize the result in [12], which

relates the Hausdorff dimension to the growth vector of the distribution. We then consider analytic sub-Riemannian

manifolds and, under the assumption that the singular point p is typical, we state a theorem which characterizes the

Hausdorff dimension of the manifold and the finiteness of the Hausdorff volume of small balls B(p,ρ) in terms of

the growth vector of both the distribution and the intersection of the distribution with the singular locus, and of the

nonholonomic order at p of the volume form on M evaluated along some families of vector fields.

1 Introduction

The main motivation of this paper arises from the study of sub-Riemannian manifolds as particular metric spaces. Re-

call that a sub-Riemannian manifold is a triplet (M,D ,g), where M is a smooth manifold, D a Lie-bracket generating

subbundle of T M and g a Riemannian metric on D . The absolutely continuous paths which are almost everywhere

tangent to D are called horizontal and their length is obtained as in Riemannian geometry integrating the norm of their

tangent vectors. The sub-Riemannian distance d is defined as the infimum of length of horizontal paths between two

given points.

Hausdorff measures and spherical Hausdorff measures can be defined on sub-Riemannian manifolds using the sub-

Riemannian distance. It is well-known that for these metric spaces the Hausdorff dimension is strictly greater than the

topological one. Although the presence of an extra structure, i.e., the differential one, constitute a considerable help,

computing Hausdorff measures and dimensions of sets is a difficult problem. In [5] we study Hausdorff measures of

continuous curves, whereas in [1] the authors analyze the regularity of the top-dimensional Hausdorff measure in the

equiregular case (see the definition below). In the case of Carnot groups, Hausdorff measures of regular hypersurfaces

have been studied in [4] and in a more general context, a representation formula for the perimeter measure in terms of

Hausdorff measure has been proved in [2].

In this paper we consider three questions: given a sub-Riemannian manifold (M,D ,g), p ∈ M and a small ρ > 0,

1. what is the Hausdorff dimension dimH(M)?
2. under which condition is the Hausdorff volume H dimH(M)(B(p,ρ)) finite?
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3. the two preceding questions when M is replaced by a submanifold N, i.e., what is dimH(N) and when is

H dimH (N)(N ∩B(p,ρ)) finite?

A key feature to be taken into account is whether p is regular or singular for the sub-Riemannian manifold. Given

i ≥ 1, define recursively the submodule D i of Vec(M) by D1 =D , D i+1 =D i+[D ,D i]. Denote by D i
p = {X(p) | X ∈

D i}. Since D is Lie-bracket generating, there exists r(p) ∈ N such that

{0}= D0
p ⊂ D1

p ⊂ ·· · ⊂ D
r(p)
p = TpM.

A point p is regular if, for every i, the dimensions dimD i
q are constant as q varies in a neighborhood of p. Otherwise,

p is said to be singular. A set S ⊂ M is equiregular if, for every i, dimD i
q is constant as q varies in S. For equiregular

manifolds, questions 1 and 2 have been answered in [12] (but with an incorrect proof, see [13] for a correct one). In

that paper, the author shows that the Hausdorff dimension of an equiregular manifold M is

dimH(M) = Q, where

r(p)

∑
i=1

i(dimD i
p − dimD i−1

p ), (1)

and that the Hausdorff Q-dimensional measure near a regular point is absolutely continuous with respect to any

Lebesgue measure on M. As a consequence, when p is regular, the Hausdorff dimension of a small ball B(p,ρ) is

Q, and the Hausdorff Q-dimensional measure of B(p,ρ) is finite.

When there are singular points, these problems have been mentioned in [8, Section 1.3.A]. In this case, the idea

is to compute the Hausdorff dimension using suitable stratifications of M where the discontinuities of the dimensions

q 7→ dimD i
q are somehow controlled. Namely, as suggested in [8], we consider stratifications made by submanifolds N

which are strongly equiregular, i.e., for which both the dimensions dimD i
q and dim(D i

q ∩TqN) are constant as q varies

in N.

The first part of the paper provides an answer to question 3 when N is strongly equiregular. The first result of the pa-

per (Theorem 1) computes the Hausdorff dimension of a strongly equiregular submanifold N in terms of the dimensions

of dim(D i
q ∩TqN), generalizing formula (1) which corresponds to the case N = M. More precisely, dimH(N) = QN

where

QN :=
r(p)

∑
i=1

i(dim(D i
p ∩TpN)− dim(D i−1

p ∩TpN)).

This actually follows from a stronger property: indeed, we show that the QN-dimensional spherical Hausdorff measure

in N is absolutely continuous with respect to any smooth measure (i.e. any measure induced locally by a volume

form) on N. The Radon–Nikodym derivative computed in Theorem 1 generalizes [1, Lemma 32], which corresponds

to the case N = M. The main ingredient behind the proofs of such results is the fact that for a strongly equiregular

submanifold N the metric tangent cone to (N,d|N) exists at every p ∈ N and can be identified to TpN via suitable

systems of privileged coordinates (see Lemma 1).

The results for strongly equiregular submanifolds provide a first step towards the answer of questions 1 and 2 in the

general case, at least for analytic sub-Riemannian manifolds. This is the topic in the second part of the paper. Indeed,

when (M,D ,g) is analytic, M can be stratified as M = ∪i≥0Mi where each Mi is an analytic equiregular submanifold.

Then, the Hausdorff dimension of a small ball B is the maximum of the Hausdorff dimensions of the intersections

B∩Mi. To compute the latter ones, we use that each strata Mi can further be decomposed as the disjointed union of

strongly equiregular analytic submanifolds. In Lemma 3, using Theorem 1 we compute the Hausdorff dimension of an

equiregular (but possibly not strongly equiregular) analytic submanifold and we estimate the density of the correspond-

ing Hausdorff measure. Characterizing the finiteness of the corresponding Hausdorff measure of the intersection of a

small ball with an equiregular analytic submanifold is rather involved. Yet this is the main issue in question 2, as when-

ever the Hausdorff measure of B(p,ρ)∩{regular points} is infinite at a singular point p then so is H dimH (M)(B(p,ρ)).
To estimate H dimH (M)(B(p,ρ)∩{regular points}), we assume that the singular point p is “typical”, that is, it belongs

to a strongly equiregular submanifold N of the singular set. In Theorem 2 we characterize the finiteness of the afore-

mentioned measure at typical singular points through an algebraic relation involving the Hausdorff dimension Qreg
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near a regular point, the Hausdorff dimension QN of N, and the nonholonomic order at p of the volume form on M

evaluated along some families of vector fields, given by Lie brackets between generators of the distribution.

The proof of Theorem 2 (and of Proposition 1) will appear in a forthcoming paper.

The structure of the paper is the following. In Section 2 we recall shortly the definitions of Hausdorff measures

and dimension and some basic notions in sub-Riemannian geometry. Section 3 is devoted to the the definition and the

study of strongly equiregular submanifolds and contains the proof of Theorem 1 and the statement of Proposition 1. In

Section 4 we treat analytic sub-Riemannian manifolds. First, we estimate the Hausdorff dimension Q̄N of an analytic

equiregular submanifold N in Section 4.1. Then, in Section 4.2, we prove that the Q̄N-dimensional Hausdorff measure

of the intersection of a small ball B(p,ρ) with N is finite if p ∈ N and we state Theorem 2. Finally, we end by

applying our results to some examples of sub-Riemannian manifolds in Section 4.3. In particular, the examples show

that when the Hausdorff dimension of a ball centered at a singular point is equal to the Hausdorff dimension of the

whole manifold, the corresponding Hausdorff measure can be both finite or infinite.

2 Basic notations

2.1 Hausdorff measures

Let (M,d) be a metric space. We denote by diamS the diameter of a set S ⊂ M, by B(p,ρ) the open ball {q ∈ M |
d(q, p)<ρ}, and by B(p,ρ) the closure of B(p,ρ). Let α ≥ 0 be a real number. For every set A⊂M, the α-dimensional

Hausdorff measure H α of A is defined as H α(A) = limε→0+ H α
ε (A), where

H α
ε (A) = inf

{
∞

∑
i=1

(diamSi)
α

: A ⊂
∞⋃

i=1

Si, Si closed set, diamSi ≤ ε

}
,

and the α-dimensional spherical Hausdorff measure is defined as S α(A) = limε→0+ S α
ε (A), where

S α
ε (A) = inf

{
∞

∑
i=1

(diamSi)
α

: A ⊂
∞⋃

i=1

Si, Si is a ball, diamSi ≤ ε

}
.

For every set A ⊂ M, the non-negative number

D = sup{α ≥ 0 | H α(A) = ∞}= inf{α ≥ 0 | H α(A) = 0}

is called the Hausdorff dimension of A. The D-dimensional Hausdorff measure H D(A) is called the Hausdorff volume

of A. Notice that this volume may be 0, > 0, or ∞.

Given a subset N ⊂ M, we can consider the metric space (N,d|N). Denoting by H α
N and S α

N the Hausdorff and

spherical Hausdorff measures in this space, by definition we have

H α
xN(A) := H α(A∩N) = H α

N (A∩N),

S α
xN(A) := S α(A∩N)≤ S α

N (A∩N). (2)

These are a simple consequences of the fact that a set C is closed in N if and only if C = C′ ∩N, with C′ closed in

M. Notice that the inequality (2) is strict in general, as coverings in the definition of S α
N are made with sets B which

satisfy B = B(p,ρ)∩N with p ∈ N, whereas coverings in the definition of S α
xN include sets of the type B(p,ρ)∩N

with p /∈ N. Moreover, by construction of Hausdorff measures, for every subset S ⊂N, H α(S)≤S α(S)≤ 2αH α(S)
and H α

N (S)≤ S α
N (S)≤ 2αH α

N (S). Hence

H α (S)≤ S α
N (S)≤ 2αH α(S),
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and S α
N is absolutely continuous with respect to H α

xN .

2.2 Sub-Riemannian manifolds

A sub-Riemannian manifold of class C k (k = ∞ or k = ω in the analytic case) is a triplet (M,D ,g), where M is a

C k-manifold, D is a Lie-bracket generating C k-subbundle of TM of rank m < dimM and g is a Riemannian metric of

class C k on D . Using the Riemannian metric, the length of horizontal curves, i.e., absolutely continuous curves which

are almost everywhere tangent to D , is well-defined. The Lie-bracket generating assumption implies that the distance

d defined as the infimum of length of horizontal curves between two given points is finite and continuous (Rashewski–

Chow Theorem). We refer to d as the sub-Riemannian distance. The set M endowed with the sub-Riemannian distance

d is a metric space (M,d) (often called Carnot-Carathéodory space) which has the same topology than the manifold

M.

We denote by Dq ⊂ TqM the fiber of D over q. The subbundle D can be identified with the module of sections

{X ∈ Vec(M) | X(q) ∈ Dq,∀q ∈ M}.

Given i ≥ 1, define recursively the submodule D i of Vec(M) by

D1 = D , D i+1 = D i +[D ,D i].

Set D i
q = {X(q) | X ∈ D i}. Notice that the identification between the submodule D i and the distribution q 7→ D i

q is

no more meaningful when the dimension of D i
q varies as a function of q (see the discussion in [3, page 48]). The

Lie-bracket generating assumption implies that for every q ∈ M there exists an integer r(q), the non-holonomy degree

at q, such that

{0} ⊂ D1
q ⊂ ·· · ⊂ D

r(q)
q = TqM. (3)

The sequence of subspaces (3) is called the flag of D at q. Set ni(q) = dimD i
q and

Q(q) =
r(q)

∑
i=1

i(ni(q)− ni−1(q)), (4)

where n0(q) = 0.

We say that a point p is regular if, for every i, ni(q) is constant as q varies in a neighborhood of p. Otherwise, the

point is said to be singular. A subset A ⊂ M is called equiregular if, for every i, ni(q) is constant as q varies in A.

When the whole manifold is equiregular, the integer Q(q) defined in (4) does not depend on q and it is the Hausdorff

dimension of (M,d) (see [12]).

Given p ∈ M, let X1, . . . ,Xm be a local orthonormal frame of D . A multiindex I of length |I|= j ≥ 1 is an element

of {1, . . . ,m} j. With any multiindex I = (i1, . . . , i j) is associated an iterated Lie bracket XI = [Xi1 , [Xi2 , . . . ,Xi j
] . . . ] (we

set XI = Xi1 if j = 1). The set of vector fields XI such that |I| ≤ j is a family of generators of the module D j. As a

consequence, if the values of XI1 , . . . ,XIn at q ∈ M are linearly independent, then ∑i |Ii| ≥ Q(q).
Let Y be a vector field. We define the length of Y by

ℓ(Y ) = min{i ∈N | Y ∈ D i}.

In particular, ℓ(XI)≤ |I|. Note that, in general, if a vector field Y satisfies Y (q) ∈ D i
q for every q ∈ M, Y need not be in

the submodule D i. By an adapted basis to the flag (3) at q, we mean n vector fields Y1, . . . ,Yn such that their values at

q satisfy

D i
q = span{Yj(q) | ℓ(Yj)≤ i}, ∀ i = 1, . . . ,r(q).
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In particular, ∑n
i=1 ℓ(Yi) = Q(q). As a consequence, a family of brackets XI1 , . . . ,XIn such that XI1(q), . . . ,XIn(q) are

linearly independent is an adapted basis to the flag (3) at q if and only if ∑i |Ii|= Q(q).

3 Hausdorff dimensions and volumes of strongly equiregular submanifolds

In this section, we answer question 3 when N is a particular kind of submanifold, namely a strongly equiregular one.

These results include the case where M itself is equiregular.

3.1 Strongly equiregular submanifolds

Let N ⊂ M be a smooth connected submanifold of dimension b. The flag at q ∈ N of D restricted to N is the sequence

of subspaces

{0} ⊂ (D1
q ∩TqN)⊂ ·· · ⊂ (D

r(q)
q ∩TqN) = TqN. (5)

Set

nN
i (q) = dim(D i

q ∩TqN) and QN(q) =
r(q)

∑
i=1

i(nN
i (q)− nN

i−1(q)),

with nN
0 (q) = 0.

Definition 1. We say that N is strongly equiregular if

(i) N is equiregular, that is, for every i, the dimension ni(q) is constant as q varies in N.

(ii) for every i, the dimension nN
i (q) is constant as q varies in N.

In this case, we denote by QN the constant value of QN(q), q ∈ N.

By an adapted basis to the flag (5) at q ∈ N, we mean b vector fields Z1, . . . ,Zb such taht

D i
q ∩TqN = span{Z j(q) | ℓ(Z j)≤ i}, ∀ i = 1, . . . ,r(q).

In particular, when Z1, . . . ,Zb is adapted to the flag (5), we have TqN = span{Z1(q), . . . ,Zb(q)} and QN = ∑b
i=1 ℓ(Zi).

Recall that the metric tangent cone1 to (M,d) at any point p exists and it is isometric to (TpM, d̂p), where d̂p denotes

the sub-Riemannian distance associated with a nilpotent approximation at p (see [3]). The following lemma shows the

relevance of strongly equiregular submanifolds as particular subsets of M for which a metric tangent cone exists. Such

metric space is isometrically embedded in a metric tangent cone to the whole M at the point.

Lemma 1. Let N ⊂ M be a b-dimensional submanifold of M. Assume N is strongly equiregular. Then, for every p ∈ N:

(i) there exists a metric tangent cone to (N,d|N) at p and it is isometric to (TpN, d̂p|TpN);
(ii) the graded vector space

gr
N
p (D) :=⊕

r(p)
i=1 (D

i
p ∩TpN)/(D i−1

p ∩TpN)

is a nilpotent Lie algebra whose associated Lie group GrN
p (D) is diffeomorphic to TpN;

(iii)every b-form ω ∈
∧b N on N induces canonically a left-invariant b-form ω̂ p on GrN

p (D). Moreover,

ˆ

N∩B(p,ε)
ω = εQN

ˆ

TpN∩B̂p

ω̂ p + o(εQN ), (6)

1 in Gromov’s sense, see [7]
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where o(εQN ) is uniform as p varies in N and B̂p is the ball centered at 0 of radius 1 in the nilpotent approximation

at p of the sub-Riemannian manifold.

Remark 1. When N is an open submanifold of M, assuming N strongly equiregular is equivalent to saying that N

contains only regular points. In that case, Lemma 1 is well-known (point (i) follows by the fact that the nilpotent

approximation is a metric tangent cone, point (ii) says that the tangent cone shares a group structure - which in this

case satisfies the additional property grp(D) = spanp{D
1} - and (iii) has been remarked in [1] using the canonical

isomorphism between
∧n(grp(D)∗) and

∧n(T ∗
p M).

Proof. Note first that since the result is of local nature, it is sufficient that we prove it on a small neighbourhood

B(p0,ρ)∩N of a point p0 ∈ N. For every p in a such a neighbourhood, there exists a coordinate system ϕp : Up →R
n

on a neighborhood Up ⊂ M of p, such that ϕp are privileged coordinates at p, p 7→ ϕp is continuous, and N is rectified

in coordinates ϕp, that is ϕp(N ∩Up)⊂ {x ∈R
n | xb+1 = · · ·= xn = 0}. The construction is as follows.

Given ρ > 0 small enough, we can find b vector fields Y1, . . . ,Yb defined on B(p0,ρ) which form a basis adapted to

the flag (5) restricted to N at every p ∈ B(p0,ρ)∩N. Moreover, up to reducing ρ , we can find Yb+1, . . . ,Yn such that

Y1, . . . ,Yn is adapted to the flag (3) of the distribution at every point p ∈ B(p0,ρ)∩N. Using these bases, we define for

p ∈ N ∩B(p0,ρ), a local diffeomorphism Φp : Rn → M by

Φp(x) = exp

(
n

∑
i=b+1

xiYi

)
◦ exp

(
b

∑
i=1

xiYi

)
(p). (7)

The inverse ϕp = Φ−1
p of Φp provides a system of coordinates centered at p which are privileged (see [9]). Moreover,

thanks to property (i) in Definition 1, the map from B(p0,ρ)∩N to M which associates with p the point Φp(x) is

smooth for every x ∈ R
n. Finally, in coordinates ϕp, the submanifold N ∩U coincides with the set

{
exp

(
b

∑
i=1

xiYi

)
(p) | (x1, . . . ,xb) ∈ Ω

}
⊂
{

Φp(x) | xb+1 = · · ·= xn = 0
}
,

where Ω is an open subset of Rb.

Using ϕp we identify M with TpM ≃ R
n. Since Y1(p), . . . ,Yb(p) span TpN, ϕp maps N in TpN, where TpN is

identified with R
b ×{0} ⊂ R

n ≃ TpM. Therefore, whenever q1,q2 ∈U ∩N we have

d̂p(q1,q2) = d̂p|TpN(q1,q2),

and obviously d(q1,q2) = d|N(q1,q2). Hence estimate (70) in [3, Theorem 7.32] holds when we restrict d to N and d̂

to TqN. This allows to conclude that a metric tangent cone to (N,d|N) at p exists and it is isometric to (TpN, d̂p|TpN),
where the inclusion of TpN into TpM is to be intended via ϕp.

The algebraic structure of gr
N
p (D) and the fact that GrN

p (D) is diffeomorphic to R
b are straightforward. As a

consequence, there also exists a canonical isomorphism between
∧b(grN

p (D)∗) and
∧b(T ∗

p N). Let ω̃p be the image

of ωp under such isomorphism (see the construction in [13, Section 10.5]). Then ω̂ p is defined as the left-invariant

b-form on TpN which coincides with ω̃p at the origin.

Finally, as a consequence of point (i), by definition of metric tangent cone ϕp(B(p,ε)∩N) converges to B̂(0,ε)∩

TpN in the Gromov–Hausdorff sense as ε goes to 0. By homogeneity of d̂p we have B̂(0,ε)∩TpN = εQN (B̂p ∩TpN)

and we get (6). Since p 7→ ϕp and p 7→ B̂p are continuous [1, Section 4.1], the remainder o(εQN ) in (6) is uniform with

respect to p. �

For the sake of completeness, let us give an explicit formula for ω̂ p. Recall that the construction of the coordinates

ϕp involves an adapted basis Y1, . . . ,Yb to the flag (5) restricted to N at every p ∈ B(p0,ρ)∩N. In particular the vector

fields Y1, . . . ,Yb restricted to N form a local frame for the tangent bundle to N and

ω = ω(Y1, . . . ,Yb)d(Y1|N)∧·· ·∧d(Yb|N).
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Let X1, . . . ,Xm be a local orthonormal frame for the sub-Riemannian structure in a neighborhood of p, and XI1 , . . . ,XIn

be an adapted basis to the flag (3) at p, where XI j
is the Lie bracket corresponding to the multi-index I j. Since

XI1 , . . . ,XIn is a local frame for the tangent bundle to M, for every i = 1, . . . ,b we can write Yi in this basis as

Yi = ∑
|I|≤ℓ(Yi)

Y I
i XI,

where Y I
i are smooth function (the fact that only multiindices with length smaller than ℓ(Yi) appear in this sum is due to

the definition of length of a vector field). Denote by X̂
p
1 , . . . , X̂

p
m the nilpotent approximation of X1, . . . ,Xm at p obtained

in coordinates ϕp, and by X̂
p
I j

the Lie bracket between the X̂
p
1 , . . . , X̂

p
m corresponding to the multiindex I j. For every

i = 1, . . . ,b we define the vector field

Ŷ
p

i = ∑
|I|=ℓ(Yi)

Y I
i (p)X̂I .

This enables us to compute ω̂ p as

ω̂ p = ωp(Y1(p), . . . ,Yb(p))d(Ŷ p
1 |TpN)∧·· ·∧d(Ŷ p

b |TpN). (8)

The fact that the right-hand side of (8) does not depend on the XI nor on the Yi is a consequence of the intrinsic

definition of ω̂ p.

3.2 Hausdorff volume

Assume now that N is an orientable submanifold. By a smooth volume on N we mean a measure µ associated with

a never vanishing smooth form ω ∈
∧b N, i.e., for every Borel set A ⊂ N, µ(A) =

´

A
ω . We will denote by µ̂ p the

smooth volume on TpN associated with ω̂ p.

We are now in a position to prove the main result.

Theorem 1. Let N ⊂M be a smooth orientable submanifold. Assume N is strongly equiregular. Then, for every smooth

volume µ on N,

lim
ε→0

S QN
N (B(q,ε))

µ(N ∩B(q,ε))
=

diam
d̂q
(TqN ∩ B̂q)

QN

µ̂q(TqN ∩ B̂q)
, ∀q ∈ N, (9)

where diam
d̂q

denotes the diameter with respect to the distance d̂q. In particular, S QN
N is absolutely continuous with

respect to µ with Radon–Nikodym derivative equal to the right hand side of (9). As a consequence,

dimH N = QN , (10)

and, for a small ball B(p,ρ) centered at a point p ∈ N, the Hausdorff volume H QN (N ∩B(p,ρ)) is finite.

Remark 2. When N is an open submanifold of M, e.g., N = {p ∈ M | p is regular}, the computation of Hausdorff

dimension is well-known, see [12]. In particular, when p is a regular point the top-dimensional Hausdorff measure

H Q(B(p,r)) is positive and finite. When N = M, equation (9) gives a new proof to [1, Theorem 1]. This is interesting

since the latter was obtained as a consequence of [1, Lemma 32], whose proof is incorrect.

To prove Theorem 1 a fundamental step is the following lemma.

Lemma 2. Let N and µ be as in Theorem 1. Let p ∈ N. Assume there exists positive constants ε0 and µ+ > µ− such

that, for every ε < ε0 and every point q ∈ B(p,ε0)∩N, there holds

µ− diam(B(q,ε)∩N)QN ≤ µ(B(q,ε)∩N)≤ µ+ diam(B(q,ε)∩N)QN . (11)

Then, for every ε < ε0,
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µ(B(p,ε)∩N)

µ+
≤ S QN

N (B(p,ε)) ≤
µ(B(p,ε)∩N)

µ−
.

Proof. Let
⋃

i B(qi,ri) be a covering of B(p,ε)∩N with balls of radius smaller than δ < ε0. If δ is small enough, every

qi belongs to B(p,ε0)∩N and, using (11), there holds

µ(B(p,ε)∩N)≤ ∑
i

µ(B(qi,ri)∩N)≤ µ+∑
i

diam(B(qi,ri)∩N)QN .

Hence, we have S QN
N (B(p,ε)) ≥

µ(B(p,ε)∩N)
µ+

.

For the other inequality, let η > 0, 0 < δ < ε0 and let
⋃

i B(qi,ri) be a covering of B(p,ε)∩ N such that qi ∈
B(p,ε)∩N ri < δ and ∑i µ(B(qi,ri)∩N)≤ µ(B(p,ε))+η . Such a covering exists due to the Vitali covering lemma.

Using as above (11), we obtain

µ(B(p,ε)∩N)+η ≥ ∑
i

µ(B(qi,ri)∩N)≥ µ−∑
i

diam(B(qi,ri)∩N)QN .

We then have S QN

N,δ
(B(p,ε)) ≤ µ(B(p,ε)∩N)

µ−
+ η

µ−
. Letting η and δ tend to 0, we get the conclusion. �

Proof of Theorem 1. Fix q ∈ N. By point (ii) in Lemma 1 (TqN, d̂q|TqN) is a metric tangent cone to (N,d|N) at q,

whence, from the definition of Gromov–Hausdorff convergence we get

lim
ε→0

diam(N ∩B(q,ε))

ε
= diam

d̂q
(TqN ∩ B̂q). (12)

By (6) in Lemma 1, for every q ∈ N there holds

µ(N ∩B(q,ε)) = εQN µ̂q(TqN ∩ B̂q)+ o(εQN ). (13)

Since N is strongly equiregular, the limits in (12) and (13) hold uniformly as q varies in N.

Moreover, adapting the argument in [1, Section 4.1], we deduce that the map q 7→ µ̂q(B̂q ∩TqN) is continuous on

N. As a consequence, for any η > 0 there exists ε1 > 0 such that for every q ∈ B(p,ε1) and every ε < ε1 we have

µ− ≤
µ(N ∩B(q,ε))

diam(N ∩B(q,ε))QN
≤ µ+

with

µ± =
µ̂q(TqN ∩ B̂q)

diam
d̂q
(TqN ∩ B̂q)QN

±η .

Therefore, applying Lemma 2 and letting η tend to 0 we deduce (9).

To show (10), notice that the right-hand side of (9) is continuous and positive as a function of q. Hence, for S QN
N -

almost every q ∈ N there exists ρ > 0 small enough such that

0 < S QN (N ∩B(p,ρ))< ∞. (14)

This is equivalent to (10). �

We end this section by stating a result which gives a weak equivalent of the function µ̂q(TqN ∩ B̂q) appearing in

Theorem 1. This will be useful in the following to determine whether the Hausdorff volume of a small ball is finite or

not. This result stems from the uniform Ball-Box Theorem, [10] and [11, Th. 4.7].

Proposition 1. Let M be orientable and ϖ be a volume form on M. Let N be an orientable submanifold of M of

dimension b, and let ω be a volume form on N, with associated smooth volume µ . Assume N is strongly equiregular
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and set Q[N] equal to the constant value of Q(q), for q ∈ N. Then there exists a constant C > 0 such that, for every

q ∈ N,
1

C
νq ≤ µ̂q(TqN ∩ B̂q)≤Cνq (i.e. µ̂q(TqN ∩ B̂q)≍ νq uniformly w.r.t. q),

where νq =max{
(
ω ∧dXIb+1

∧·· ·∧dXIn

)
q
(XI1(q), . . . ,XIn(q))}, the maximum being taken among all n-tuples (XI1 , . . . ,XIn)

in argmax{ϖq(XI′1
(q), . . . ,XI′n

(q)) | ∑i |I
′
i |= Q[N]}.

In particular, if N is an open equiregular subset of M, i.e., b = n, and if µ is the smooth measure on M associated

with ϖ , we have

µ̂q(B̂q)≍ max{ϖq(XI′1
, . . . ,XI′n

) | ∑
i

|I′i |= Q[M]}, uniformly w.r.t. q ∈ M.

This proposition, together with Theorem 1, allows to give an estimate of the Hausdorff volume of a subset of N. If

S ⊂ N, then
1

C′

ˆ

S

1

νq

dµ ≤ H QN (S)≤C′

ˆ

S

1

νq

dµ , (15)

where the constant C′ > 0 does not depend on S.

4 Hausdorff dimensions and volumes of analytic sub-Riemannian manifolds

Let (M,D ,g) be an analytic (Cω ) sub-Riemannian manifold. The set Σ of singular points is an analytic subset of M

which admits a Whitney stratification Σ =
⋃

i≥1 Mi by analytic and equiregular submanifolds Mi (see for instance [6]).

Denoting M0 = M \ Σ the set of regular points, we obtain a Whitney stratification M =
⋃

i≥0 Mi of M by analytic

and equiregular submanifolds. Note that M0 is an open and dense subset of M, but it may be disconnected. As a

consequence, the Hausdorff dimension of M is

dimH(M) = max
i≥0

dimH(Mi),

and the α-dimensional Hausdorff measure of a ball B(p,ρ), p ∈ M and ρ > 0, is

H α(B(p,ρ)) = ∑
i

H α(B(p,ρ)∩Mi).

4.1 Hausdorff dimension

The first problem is then to determine the Hausdorff dimension of an equiregular - possibly not strongly equiregular -

submanifold.

Lemma 3. Let N be an analytic and equiregular submanifold of M. Set QN := maxq∈N QN(q). Then

dimH(N) = QN ,

and QN(q) = QN on an open and dense subset of N.

If moreover N is orientable, then for every smooth measure µ on N, S
QN
N is absolutely continuous with respect to

µ with Radon–Nikodym derivative

dS
QN
N

dµ
(q) =

(diam
d̂q
(TqN ∩ B̂q))

QN

µ̂q(TqN ∩ B̂q)
, for µ-a.e. q ∈ N. (16)
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Proof. Since N is analytic and equiregular, it admits a stratification N =
⋃

i Ni by strongly equiregular submanifolds

Ni of N. By Theorem 1, dimH(Ni) = QNi
and thus dimH(N) = maxi QNi

. In particular, dimH(N) ≤ maxq∈N QN(q).
Now, recall that QN(q) = ∑

rN
i=1 i(nN

i (q)−nN
i−1(q)), where rN := r(q) is constant since N is equiregular, and nN

rN
(q) =

dimN. This may be rewritten as

QN(q) =
rN−1

∑
i=0

codim(D i
q ∩TqN), (17)

where codim(D i
q ∩TqN) = nN

rN
(q)−nN

i (q) is the codimension of D i
q ∩TqN in TqN. The submanifold N being equireg-

ular, QN(q) is a lower semi-continuous function on N with integer values. Hence QN(q) takes its maximal value QN

on the strata Ni which are open in N, and smaller values on non open strata. Since QNi
(q) = QN(q) when Ni is an open

subset of N and QNi
(q)< QN(q) when Ni is a non open subset of N, the first part of the lemma follows.

As for the second part, notice that every non open stratum Ni is of µ-measure zero, since Ni is a subset of N

of positive codimension, and of S
QN

N -measure zero, since dimH(Ni) = QNi
< QN . A first consequence is that N is

strongly equiregular near µ-a.e. point q. Therefore the measure µ̂q on TqN is defined µ-a.e. – and so is the right-hand

side of (16). Applying then Theorem 1 to every open stratum Ni, we get the conclusion. �

Corollary 1. dimH(M) = max{QMi
(q) : i ≥ 0, q ∈ Mi}= max{QMi

: i ≥ 0}.

4.2 Finiteness of the Hausdorff volume of balls

Let p ∈ M and ρ > 0 (ρ is assumed to be arbitrarily small). The aim of this section is to determine under which

conditions the small ball B(p,ρ) has a finite Hausdorff volume H dimH (B(p,ρ))(B(p,ρ)). We make first two preliminary

remarks.

• If p is a regular point, then there exists a neighbourhood of p in M which is strongly equiregular, and Theorem 1

implies that H dimH(B(p,ρ))(B(p,ρ)) is finite. We then assume in the following that p is a singular point.

• The results of this section are local. Up to reducing to a neighbourhood of p, we can assume that M is an oriented

manifold with volume form ϖ .

Recall that, by definition, the stratification M =
⋃

i≥0 Mi is locally finite. That is, there exists a finite set I of

indices such that p ∈ Mi if and only if i ∈ I , where Mi denotes the closure of the stratum Mi. Therefore, for ρ
small enough, the ball B(p,ρ) admits a finite stratification B(p,ρ) =

⋃
i∈I (B(p,ρ)∩Mi). Applying Corollary 1, the

Hausdorff dimension Dp of B(p,ρ) is

Dp = max{QMi
(q) : i ∈ I , q ∈ Mi}.

Let J ⊂ I be the subset of indices i such that dimH(Mi) = Dp. We have

H Dp(B(p,ρ)) = ∑
i∈J

H Dp(B(p,ρ)∩Mi).

Proposition 2. Let N be an analytic and equiregular submanifold of M, dimH(N) = QN . If p ∈ N and if ρ > 0 is small

enough, then the Hausdorff volume H QN (B(p,ρ)∩N) is finite.

Proof. Up to replacing N with a small neighbourhood of p in N, we assume that N is orientable. We then choose a

smooth measure µ on N and we have, for ρ small enough, µ(B(p,ρ)∩N)<+∞. From Lemma 3,

S
QN

N (B(p,ρ)∩N) =

ˆ

B(p,ρ)∩N

(diam
d̂q
(TqN ∩ B̂q))

QN

µ̂q(TqN ∩ B̂q)
dµ .
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The submanifold N is strongly equiregular near µ-a.e. q ∈ N. We can then apply Proposition 1 near µ-a.e. q ∈ N and

we get

S
QN
N (B(p,ρ)∩N)≤C

ˆ

B(p,ρ)∩N

(diam
d̂q
(TqN ∩ B̂q))

QN

νq

dµ .

The function q 7→ νq is positive and continuous on N, so the integrand function in the previous formula is finite and

continuous on N, and we have S
QN

N (B(p,ρ)∩N) ≤ Cst µ(B(p,ρ)∩N)< +∞. Since H QN is absolutely continuous

with respect to S
QN
N , the conclusion follows. �

As a consequence, the Hausdorff volume H Dp(B(p,ρ)) is finite if and only if H Dp(B(p,ρ)∩Mi) is finite for

every stratum Mi such that dimH(Mi) = Dp and p ∈ ∂Mi. To go further, we will assume that p is a typical singular

point, that is, that p satisfies the following assumptions for ρ small enough:

(A1) p belongs to a strongly equiregular submanifold N of M, N ⊂ Σ , and B(p,ρ)∩Σ ⊂ N;

(A2) for every q ∈ N∩B(p,ρ), there exists a family XI1 , . . . ,XIn such that ∑i |Ii|= Qreg and ordqϖ(XI1 , . . . ,XIn) = σ ,

where Qreg is the constant value of Q(q) for q ∈ M \Σ , and

σ = max{s ∈ N : q ∈ N ∩B(p,ρ) and ∑
i

|Ii|= Qreg imply ordqϖ(XI1 , . . . ,XIn)≥ s}.

Let us recall the definition of ordq (see [3] for details). Given f ∈ C k(M), we say that f has non-holonomic order

at p greater than or equal to s, and we write ordp f ≥ s if for every j ≤ s− 1

(Xi1 . . .Xi j
f )(p) = 0 ∀ (i1, . . . , i j) ∈ {1, . . . ,m} j,

where Xi f denotes the Lie derivative of f along Xi. Equivalently, f (q) = O(d(p,q)s). If moreover we do not have

ordp f ≥ s+ 1, then we say that f has non-holonomic order at p equal to s, and we write ordp f = s.

Theorem 2. Assume p satisfies (A1) and (A2). Let QN be the constant value of QN(q) for q∈ N, and r6N be the maximal

integer i such that ni(p)− ni−1(p)> nN
i (p)− nN

i−1(p). Then

H Qreg(B(p,ρ)\Σ)< ∞ ⇔ σ ≤ Q(p)−QN − r6N .

As a consequence,

• if Qreg < QN , then Dp = QN and H Dp(B(p,ρ)) is finite;

• if Qreg ≥ QN , then Dp = Qreg and H Dp(B(p,ρ)) is finite if and only if σ ≤ Q(p)−QN − r6N .

The proof of this theorem is postponed to a forthcoming paper. It relies on the use of Proposition 1.

Remark 3. Assumption (A2) is actually not necessary for the computations. If p satisfies only (A1), we introduce two

integers σ− ≤ σ+:

σ+ = min{s ∈N : ∀q ∈ N ∩B(p,ρ), ∃XI1 , . . . ,XIn s.t. ∑i |Ii|= Qreg and ordqϖ(XI1 , . . . ,XIn)≤ s},
σ− = max{s ∈ N : ∃ an open subset Ω of N ∩B(p,ρ) s.t. q ∈ Ω and ∑i |Ii|= Qreg imply ordqϖ(XI1 , . . . ,XIn)≥ s}.

Assumption (A2) is equivalent to σ− = σ+ = σ . The generalization of the criterion of Theorem 2 to the case where p

satisfies only (A1) is then:

• if σ+ ≤ Q(p)−QN − r6N , then H Qreg(B(p,ρ)\Σ)< ∞;

• if σ− > Q(p)−QN − r6N , then H Qreg(B(p,ρ)\Σ) = ∞.

Notice that the order σ (and σ− if p does not satisfies (A2)) always satisfies σ ≥ Q(p)−Qreg. We thus obtain a

simpler criterion for the non finiteness of the Hausdorff volume of a ball.

Corollary 2. Assume p satisfies (A1). If 0 ≤ Qreg −QN < r6N , then H Dp(B(p,ρ)) = ∞.
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4.3 Examples

Example 1 (the Martinet space). Consider the sub-Riemannian manifold given by M = R
3, D = span{X1,X2},

X1 = ∂1, X2 = ∂2 +
x2

1

2
∂3,

and the metric dx2
1 + dx2

2. We choose ϖ = dx1 ∧dx2 ∧dx3, that is, the canonical volume form on R
3.

The growth vector is equal to (2,2,3) on the plane N = {x1 = 0}, and it is (2,3) elsewhere. As a consequence, N is

the set of singular points. At a regular point, Qreg = 4. Every singular point p = (0,x2,x3) satisfies (A1) and we have

Q(p) = 5, QN = 4, and r6N = 1. Applying Corollaries 1 and 2, we obtain:

dimH(M) = 4, and H 4(B(p,ρ))< ∞ if p regular, H 4(B(p,ρ)) = ∞ otherwise.

Thus small balls centered at singular points have infinite Hausdorff volume. This result can also be obtained by a direct

computation based on the uniform Ball-Box Theorem, see [11].

Note that the only family (XI1 ,XI2 ,XI3) such that ∑i |Ii|= Qreg is (X1,X2, [X1,X2]). The volume form of this family

equals x1 and it is of order 1 at every point of N. Thus every singular point satisfies assumptions (A1) and (A2) with

σ = 1 (σ = Q(p)−Qreg here).

Example 2. Consider the sub-Riemannian manifold given by M = R
4, D = span{X1,X2,X3}, where

X1 = ∂1, X2 = ∂2 +
x2

1

2
∂4, X3 = ∂3 +

x2
2

2
∂4,

and g = dx2
1 + dx2

2 + dx2
4. We choose ϖ as the canonical volume form on R

4.

At a regular point, Qreg = 5. The set of singular points is N = {x1 = x2 = 0}. Every singular point satisfies (A1)

and we have Q(p) = 6, QN = 4, and r6N = 1. Thus, by Corollary 1, dimH(M) = 5. However Corollary 2 does not allow

to conclude on the finiteness of the Hausdorff volume.

The only families such that ∑i |Ii|=Qreg are (X1,X2,X3, [X1,X2]) and (X1,X2,X3, [X2,X3]). The volume form applied

to these families is equal to x1 and x2 respectively, and both of them are of order 1 at every point of N. Thus every

singular point satisfies assumptions (A1) and (A2) with σ = 1 (σ = Q(p)−Qreg here). Applying Theorem 2, we

obtain:

dimH(M) = 5, and H 5(B(p,ρ))< ∞ for any p ∈ M.

Example 3. Let M = R
5, D = span{X1,X2,X3},

X1 = ∂1, X2 = ∂2 + x1∂3 + x2
1∂5, X3 = ∂4 + xk

1∂5,

with k > 2, and g = dx2
1 + dx2

2 + dx2
3. We choose ϖ as the canonical volume form on R

5.

The singular set is N = {x1 = 0}. A simple computation shows that every singular point p satisfies (A1) and (A2),

and Qreg = 7, Q(p) = 8, QN = 7, r6N = 1, and σ = k− 1. Thus in this example σ > Q(p)−Qreg. Now Corollaries 1

and 2 apply and we obtain

dimH(M) = 7, and H 7(B(p,ρ))< ∞ if p regular, H 7(B(p,ρ)) = ∞ otherwise.

Example 4. Let M = R
5, D = span{X1,X2,X3},

X1 = ∂1, X2 = ∂2 + x1∂3 + x2
1∂5, X3 = ∂4 +(xk

1 + xk
2)∂5,

with k > 2, and g = dx2
1 + dx2

2 + dx2
3. We choose ϖ as the canonical volume form on R

5.

The singular set is N = {x1 = x2 = 0}. Every singular point p satisfies (A1) and (A2) and we have Qreg = 7,

Q(0) = 8, QN = 6, r6N = 1, and σ = k− 1. By Corollary 1 and Theorem 2, we obtain
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dimH(M) = 7, and H 7(B(p,ρ))< ∞ if p regular, H 7(B(p,ρ)) = ∞ otherwise.

Note that in this case we do not have Qreg −QN < r6N . This shows that the criterion in Corollary 2 does not provide a

necessary condition for the Hausdorff volume to be infinite.
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