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Introduction

Classical hedgehogs are (possibly singular and self-intersecting) hypersurfaces that describe di¤erences of convex bodies with C 2 support functions in (n+1)-Euclidean vector space R n+1 . Given two such convex bodies K, L R n+1 , the hedgehog H : =K L can be constructed (pointwise) by subtracting the boundary points of K and L that correspond to a same outer unit normal: see Figure 1, where K and L are the plane convex bodies with respective support functions k ( ) := p cos 2 + 4 sin 2 and l ( ) := p 4 cos 2 + sin 2 ; ( 2 [0; 2 ]). Many notions from the theory of convex bodies carry over to hedgehogs and quite a number of classical results …nd their counterparts. Of course, a few adaptations are necessary. In particular, areas and volumes have to be replaced by their algebraic versions, which can take negative values. The (algebraic) (n+1)-dimensional volume of a hedgehog H h R n+1 (with support function h) is de…ned as the integral over R n+1 H h of the Kronecker index, say i h (x), of x 2 R n+1 H h with respect to H h : i h (x) can be regarded as the algebraic intersection number of almost every oriented half-line with origin x with the hypersurface H h equipped with its transverse orientation [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF]. This index is, in some sense, the corner stone of hedgehog theory. In particular, it played a key role in obtaining a counter-example to an old uniqueness conjecture of A.D. Alexandrov [START_REF] Alexandrov | On uniqueness theorem for closed surfaces (Russian)[END_REF][START_REF] Martinez-Maure | Contre-exemple à une caractérisation conjecturée de la sphère[END_REF]. On the other hand, there is a well-known relationship between Minkowski addition of convex bodies and convolution with respect to the Euler characteristic [START_REF] Groemer | Minkowski addition and mixed volumes[END_REF][START_REF] Schapira | Operations on constructible functions[END_REF][START_REF] Viro | Some integral calculus based on Euler characteristic[END_REF]: If A and B are compact convex subsets of R n+1 , then

1 A 1 B = 1 A+B ,
where denotes the convolution product with respect to the Euler characteristic and A + B the usual Minkowski sum of A and B. After introducing appropriate de…nitions in the framework of 'analytic hedgehogs' (i.e. hedgehogs with an analytic support function), we can extend this relationship to hedgehogs and interpret the Kronecker index in terms of the Euler characteristic:

Theorem (Theorem 2, Section 3). If H f and H g are analytic hedgehogs of R n+1 then

1 f 1 g = 1 f +g ,
where 1 h denotes the Euler index of H h (see Section 3 for the de…nition) and the convolution product with respect to Euler characteristic.

Theorem (Theorem 3, Section 3). Let H h be an analytic hedgehog, which represents a formal di¤erence K L of two convex bodies K; L R n+1 of class C ! + (i.e., C ! and with positive Gaussian curvature). Its Kronecker index i h is such that

i h (x) = ( 1) n+1 1 K 1 o L (x) for all x 2 R n+1 H h ,
where 1 A denotes the characteristic function over a subset A R n+1 , the convolution product with respect to Euler characteristic and o L the re ‡ection of o L through the origin 0 R n+1 .

We then give new expressions for the Kronecker index resorting only to the support functions and the Euler characteristic. In particular, we prove that:

Theorem (Corollary 5, Section 3). Let H h be a hedgehog with support function h 2 C ! (S n ; R). Its Kronecker index i h is such that

8x 2 R n+1 H h , i h (x) = 8 < : 1 1 2 h (x) if n + 1 is even 1 2 + h (x) h (x) if n + 1 is odd, where h (x) := h (h x ) 1 (f0g) i , h (x) := h (h x ) 1 (] 1; 0[) i and + h (x) := h (h x ) 1 (]0; +1[) i .
We shall also consider the case where x is a point of H h (Theorems 6 and 7, Section 3). It is important to recall here that the study of i h in the particular case n + 1 = 2 and h 2 C 2 S 1 ; R was the main ingredient in the resolution of the uniqueness conjecture of A.D. Alexandrov [START_REF] Martinez-Maure | Contre-exemple à une caractérisation conjecturée de la sphère[END_REF].

In [START_REF] Martinez-Maure | Théorie des hérissons et polytopes[END_REF][START_REF] Martinez-Maure | Geometric study of Minkowski di¤erences of plane convex bodies[END_REF], the author extended hedgehog theory by regarding hedgehogs as Minkowski di¤erences of arbitrary convex bodies. The trick is to de…ne hedgehogs inductively as collections of lower-dimensional 'support hedgehogs'. More precisely, the de…nition of general hedgehogs is based on the three following remarks. (i) In R, every convex body K is determined by its support function h K as the segment [ h K ( 1) ; h K (1)], where h K ( 1) h K (1), so that the di¤erence K L of two convex bodies K; L can be de…ned as an oriented segment of R:

K L : = [ (h K h L ) ( 1) ; (h K h L ) (1)]. (ii) If K and
L are two convex bodies of R n+1 then for all u 2 S n , their support sets with unit normal u, say K u and L u , can be identi…ed with convex bodies K u and L u of the n-dimensional Euclidean vector space u ? ' R n . (iii) Addition of two convex bodies K; L R n+1 corresponds to that of their support sets with same unit normal vector: (K + L) u = K u +L u for all u 2 S n ; therefore, the di¤erence K L of two convex bodies K; L R n+1 must be de…ne in such a way that (K L) u = K u L u for all u 2 S n . A natural way of de…ning geometrically general hedgehogs as di¤erences of arbitrary convex bodies is therefore to proceed by induction on the dimension by extending the notion of support set with normal vector u to a notion of support hedgehog with normal vector u. In the polytopal case, hedgehogs are also known under the name 'virtual polytopes'.

The notion of a virtual polytope was independently introduced by several authors (see, e.g., [START_REF] Mcmullen | The polytope algebra[END_REF] or [START_REF] Pukhlikov | Finitely additive measures of virtual polytopes[END_REF]). Let us give an example in R 2 . Let K and L be the convex bodies of R 2 with support function h K (x) = jhx; e 1 ij + jhx; e 2 ij and h L (x) = jhx; e 3 ij + jhx; e 4 ij, where h:; :i is the standard inner product on R 2 , (e 1 ; e 2 ) the canonical basis of R The relevance of hedgehog theory can be illustrated by the following two principles [START_REF] Martinez-Maure | New notion of index for hedgehogs of R 3 and applications[END_REF]: 1. The study of convex bodies or hypersurfaces by splitting them judiciously (that is, according to the problem under consideration) into a sum of hedgehogs in order to reveal their structure (the study that led to the …rst counterexample to A.D. Alexandrov's uniqueness conjecture relied on this …rst principle); 2. The geometrization of analytical problems by considering real functions on the unit sphere S n of R n+1 as support functions of hedgehogs or of more general hypersurfaces (called 'multi-hedgehogs' [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF][START_REF] Martinez-Maure | Les multihérissons et le théorème de Sturm-Hurwitz[END_REF][START_REF] Martinez-Maure | A Sturm-type comparison theorem by a geometric study of plane multihedgehogs[END_REF]).

Hedgehog (and multi-hedgehog) theory has, of course, many applications to the Brunn-Minkowski theory. But, it also has applications to a wide variety of topics including Sturm theory [START_REF] Martinez-Maure | Les multihérissons et le théorème de Sturm-Hurwitz[END_REF][START_REF] Martinez-Maure | A Sturm-type comparison theorem by a geometric study of plane multihedgehogs[END_REF], Monge-Ampère equations [START_REF] Martinez-Maure | Uniqueness results for the Minkowski problem extended to hedgehogs[END_REF], minimal surfaces [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF]13,[START_REF] Rosenberg | Complete minimal surfaces and minimal herissons[END_REF], singularity theory [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF], the group of sheaves on an algebraic variety (the Picard group) [START_REF] Pukhlikov | Finitely additive measures of virtual polytopes[END_REF] and planar pseudo-triangulations [START_REF] Panina | Planar pseudo-triangulations, spherical pseudo-tilings and hyperbolic virtual polytopes[END_REF].

In this paper, we have chosen the framework of hedgehogs with analytic support functions (we shall refer to them as 'analytic hedgehogs' or 'C ! -hedgehogs') even if some of our results still hold with a few adaptations under weaker assumptions.

The paper is organized as follows. Section 1 recalls basic de…nitions and facts on hedgehog theory. For the convenience of the reader, Section 2 brie ‡y summarizes basic notions and results from Euler's integral calculus. Section 3 presents the main results, Section 4 the proofs and Section 5 further remarks.

Hedgehog theory

The set K n+1 of all convex bodies of (n + 1)-Euclidean vector space R n+1 is usually equipped with Minkowski addition and multiplication by non-negative real numbers which are respectively de…ned by:

(i) 8(K; L) 2 K n+1 2 , K + L = fu + v ju 2 K; v 2 L g ; (ii) 8 2 R + ; 8K 2 K n+1 , :K = f u ju 2 K g .
Of course, K n+1 ; +; : does not constitute a vector space since convex bodies cannot be subtracted in K n+1 . Now, in the same way as we construct the group of integers from the set of all natural numbers, we can construct the vector space H n+1 ; +; : of formal di¤erences of convex bodies of R n+1 from K n+1 ; +; : . Moreover, we can: 1. consider each formal di¤erence of convex bodies of R n+1 as a (possibly singular and self-intersecting) hypersurface of R n+1 , called a hedgehog [14, Section 2]; 2. extend the mixed volume V : K n+1 n+1 ! R to a symmetric (n + 1) linear form on H n+1 [22, p. 285, bottom].

Thus, hedgehog theory can be seen as an attempt to extend certain parts of the Brunn-Minkowski theory to H n+1 . For n 2, it goes back to a paper by H. Geppert [START_REF] Geppert | Über den Brunn-Minkowskischen Satz[END_REF] who introduced hedgehogs under the German names stützbare Bereiche (n = 1) and stützbare Flächen (n = 2).

Let us recall the de…nition of hedgehogs with C 2 support functions in R n+1 . For details on convex bodies, we refer the reader to the book by R. Schneider [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF]: As is well-known, every convex body K R n+1 is determined by its support function h K : S n ! R, where h K (u) is de…ned by h K (u) = sup fhx; ui jx 2 K g, (u 2 S n ), that is, as the signed distance from the origin to the support hyperplane with unit normal vector u. In particular, every closed convex hypersurface of class C 2 + (i.e., C 2 -hypersurface with positive Gaussian curvature) is determined by its support function h (which must be of class C 2 on S n [22, p. 111]) as the envelope H h of the family of hyperplanes with equation hx; ui = h(u). This envelope H h is described analytically by the following system of equations hx; ui = h(u) hx; : i = dh u (:).

The second equation is obtained from the …rst by performing a partial di¤erentiation with respect to u. From the …rst equation, the orthogonal projection of x onto the line spanned by u is h (u) u and from the second one, the orthogonal projection of x onto u ? is the gradient of h at u (cf. Figure 3, where H h R 2 has support function h ( ) := 10 + cos (3 ))). Therefore, for each u 2 S n , x h (u) = h(u)u + (rh) (u) is the unique solution of this system. Now, for any C 2 function h on S n , the envelope H h is in fact well-de…ned (even if h is not the support function of a convex hypersurface). Its natural parametrization x h : S n ! H h ; u 7 ! h(u)u + (rh) (u) can be interpreted as the inverse of its Gauss map, in the sense that: at each regular point x h (u) of H h , u is a normal vector to H h . We say that H h is the hedgehog (or C 2 -hedgehog) with support function h (cf. Figure 4, where H h R 2 has support function h ( ) := cos (2 )). Note that x h depends linearly on h. Since the parametrization x h can be regarded as the inverse of the Gauss map of H h , the Gaussian curvature h of H h at x h (u) is given by h (u) = 1= det [T u x h ], where T u x h is the tangent map of x h at u. Therefore, singularities are the very points at which the Gaussian curvature is in…nite. For every u 2 S n , the tangent map of x h at the point u is

T u x h = h(u) Id TuS n + H u h
, where H u h is the symmetric endomorphism associated with the hessian of h at u [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF]. Thus, the so-called 'curvature function' R h := 1= h is well-de…ned and continuous all over the unit sphere, including at the singular points (so that the classical Minkowski problem arises naturally for hedgehogs [START_REF] Martinez-Maure | New notion of index for hedgehogs of R 3 and applications[END_REF][START_REF] Martinez-Maure | Uniqueness results for the Minkowski problem extended to hedgehogs[END_REF]).

Given a hedgehog H h R n+1 ; (n 1), the Kronecker index of x 2 R n+1 H h with respect to H h , say i h (x), can be de…ned as the degree of the map

U (h;x) : S n ! S n ; u 7 ! x h (u) x kx h (u) xk ;
and interpreted as the algebraic intersection number of an oriented half-line with origin x with the hypersurface H h equipped with its transverse orientation (number independent of the oriented half-line for an open dense set of directions) [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF]. For n+1 = 2, the Kronecker index i h (x) is nothing but the winding number of H h around x: it counts the total number of times that H h winds around x.

For instance, the index is equal to 1 at any interior point of the hedgehog represented on Figure 4, since the curve winds once clockwise around the point. The (algebraic

(n + 1)-dimensional) volume of a hedgehog H h R n+1 can be de…ned by v n+1 (h) := Z R n+1 H h i h (x) d (x) ;
where denotes the Lebesgue measure on R n+1 , and it satis…es

v n+1 (h) = 1 n + 1 Z S n h(u)R h (u)d (u);
where R h is the curvature function and the spherical Lebesgue measure on S n . For instance, in the example of Figure 4, the algebraic area (or 2-dimensional volume) of H h R 2 is equal to minus the area of the interior of the curve. As for convex bodies of class C 2 + , we introduce a mixed curvature function R (f1;:::; fn) and de…ne the mixed (algebraic

(n + 1)-dimensional) volume of n + 1 hedgehogs H h1 ; : : : ; H hn+1 of R n+1 by v n+1 (h 1 ; : : : ; h n+1 ) = 1 n + 1 Z S n h 1 (p)R (h2;:::; hn+1) (p)d (p),
where R (h2;:::; hn+1) denotes the mixed curvature function of H h2 ; : : : ; H hn+1 [START_REF] Martinez-Maure | Hedgehogs and zonoids[END_REF]: See [START_REF] Martinez-Maure | De nouvelles inégalités géométriques pour les hérissons[END_REF] for a study of this extension of the mixed volume and Alexandrov-Fenchel type inequalities for hedgehogs.

Euler calculus

Euler calculus is an integration theory built with the Euler characteristic as a …nitely additive measure. Born in the sheaf theory, it has applications to algebraic topology, to strati…ed Morse theory, for reconstructing objects in integral geometry and for enumeration problems in computational geometry and sensor networks [START_REF] Curry | Euler calculus with applications to signals and sensing. Advances in applied and computational topology. AMS short course on computational topology[END_REF]. The short survey papers by P. Schapira [START_REF] Schapira | Operations on constructible functions[END_REF] and O. Viro [START_REF] Viro | Some integral calculus based on Euler characteristic[END_REF] played an important role in the development of this theory.

For the convenience of the reader, we brie ‡y summarize in this section very basic notions and results from Euler calculus. For proofs and more information on Euler calculus and its applications, we refer the reader to [START_REF] Curry | Euler calculus with applications to signals and sensing. Advances in applied and computational topology. AMS short course on computational topology[END_REF].

Tame sets. In Euler calculus, the measurable sets are the tame sets in some …xed 0-minimal structure. We shall not recall here the de…nition of tame subsets in a …xed 0-minimal structure. It can be found in the classical surveys on Euler calculus, e.g., in [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF]. Classical examples include polyconvex sets, semialgebraic sets and subanalytic sets. Here, we shall only need to know some basic facts that we shall summarize below. In particular, we shall need to know that the union and intersection of two tame sets are again tame. `i i and we set:

(A) = X i ( 1) dim( i) .
Algebraic topology asserts that this quantity is well-de…ned, that is, independent of the decomposition into open simplices. This combinatorial Euler characteristic is a topological invariant. It is also a homotopy invariant for compact …nite cell complexes (but not for non-compact spaces).

Examples. 1. Euler characteristic can be regarded as a generalization of cardinality. For a …nite discrete tame set A, (A) is the cardinality of A: 6. The Euler characteristic of any odd-dimensional compact manifold is equal to zero (see [START_REF] Maclaurin | Euler characteristic in odd dimensions[END_REF] for an elementary proof).

(A) = #A; 2. A closed

Remarks. 1. Euler calculus relies on the following additivity property:

Proposition. For any pair fA; Bg of tame subsets of X, we have:

(A [ B) = (A) + (B) (A \ B) :
2. Euler characteristic is multiplicative under cross products:

Proposition. For any pair fE; F g of tame sets, we have:

(E F ) = (E) : (F ) :
Note that these additivity and multiplicativity properties generalize the ones of cardinality of sets.

Euler integral. The above additivity property suggests to de…ne a measure over tame sets via:

Z X 1 A (x) d = (A)
where 1 A is the characteristic function over a tame subset A of X. A function f : X ! Z is said to be constructible if it has …nite range and if all its level sets f 1 (fsg) are tame subsets of X. Let CF (X) denote the Z-module of all Z-valued constructible functions on X. The Euler integral is de…ned to be the homomorphism R X : CF (X) ! Z given by: Z

X f d := +1 X s= 1 s f 1 (fsg) .
Alternately, writing f 2 CF (X) as f = P i c i 1 i , where X = `i i is a decomposition of X into a …nite disjoint union of open cells and where c i 2 Z, we have:

Z X f d := X i c i ( i ) = X i c i ( 1) dim( i) .
Convolution. On a …nite-dimensional real vector space V , a convolution operator with respect to Euler characteristic is de…ned as follows:

8 (f; g) 2 CF (V ) 2 ; (f g) (x) = Z V f (y) g (x y) dy:
Convolution is a commutative, associative operator providing CF (V ) with the structure of an algebra.

Proposition. (CF (V ) ; +; ) is a commutative ring with multiplicative identity element 1 f0 V g .

Relationship with Minkowski addition. There is a close relationship between Minkowski addition and convolution with respect to the Euler characteristic [START_REF] Groemer | Minkowski addition and mixed volumes[END_REF][START_REF] Schapira | Operations on constructible functions[END_REF][START_REF] Viro | Some integral calculus based on Euler characteristic[END_REF]]:

Groemer's theorem [START_REF] Groemer | Minkowski addition and mixed volumes[END_REF]. Let A and B be two compact convex subsets of R n+1 . We have

1 A 1 B = 1 A+B ,
where denotes the convolution product with respect to the Euler characteristic and A + B the usual Minkowski sum of A and B.

This relationship will be the starting point in our study.

Statement of main results

In this section, given a convex body K R n+1 , we shall often need o K and @K to be tame subsets of R n+1 . It is the reason why we shall restrict ourselves to analytic hedgehogs (resp. convex bodies).

Minkowski inversion with respect to

Since 1 f0 R n+1 g is the multiplicative identity of CF R n+1 ; +; , the following result can be regarded as a Minkowski inversion theorem:

Theorem 1 Let K R n+1 be a convex body of class C ! + . We have

( 1) n+1 1 K 1 o K = 1 f0 R n+1 g ,
where o K denotes the re ‡ection of o K through the origin 0 R n+1 . In other words, the convolution inverse of the characteristic function of K is given by:

(1 K ) 1 = ( 1) n+1 1 o K .
Remarks. 1. Of course, if K is a convex body reduced to a point a of R n+1 , then the convolution inverse of the characteristic function of K is given by:

(1 K ) 1 = 1 f ag : 2.
In [START_REF] Pukhlikov | Finitely additive measures of virtual polytopes[END_REF], Pukhlikov and Khovanskii gave a similar Minkowski inversion theorem in the polytopal case: for every convex polytope K R n+1 , we have

( 1) dim K (1 K 1 relintK ) = 1 f0 R n+1 g ,
where relintK is the relative interior of K, that is, the interior of K in the smallest a¢ne subspace that contains K.

Euler index

De…nition Let H h be a C ! -hedgehog of R n+1 and let K, L R n+1 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L. De…ne the Euler index of H h by

1 h := 1 K (1 L ) 1 = ( 1) n+1 1 K 1 o L ,
where o L denotes the re ‡ection of o L through the origin 0 R n+1 .

Remarks. 1. Given any C ! -hedgehog H h R n+1 , for every large enough r > 0, k := h + r and l := r are the respective support functions of two convex bodies K and L such that H h is representing the formal di¤erence K L. Indeed, h = k l and if r is large enough then, for all u 2 S n , the principal radii of curvature of H k at x k (u), which are the eigenvalues of the tangent map T u x k = T u x h + rId TuS n , are all positive.

2. Using Groemer's theorem (see above) and the fact that the convolution product is commutative, associative and admits 1 f0 R n+1 g as unity, it is easy to check that 1 h is independent of the choice of the pair (K; L) of convex bodies of class C ! + such that H h is representing K L.

Furthermore, Groemer's theorem admits the following extension to analytic hedgehogs:

Theorem 2 Let H f and H g be two analytic hedgehogs of R n+1 . We have

1 f 1 g = 1 f +g .
This can be easily deduced from Groemer's theorem by using the above Minkowski inversion theorem. We will leave it to the reader to write down the details.

Relationship with Kronecker index

Theorem 3 Let H h be a C ! -hedgehog of R n+1 and let K, L R n+1 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L. For any x 2 R n+1 H h , the Euler index 1 h (x) := ( 1) n+1 1 K 1 o L (x) of H h at x is equal to i h (x)
, that is, to the degree of the map

U (h;x) : S n ! S n ; u 7 ! x h (u) x kx h (u) xk .
In other words, the Kronecker index i h is nothing but the restriction of the Euler index to R n+1 H h .

Expressions for the Kronecker index

Theorem 4 Let H h R n+1 be a C ! -hedgehog. Fix x 2 R n+1 H h and let h x : S n ! R be the support function of H h with respect to x:

h x (u) := hx h (u) x; ui = h (u) hx; ui .
The Kronecker index i h (x) is given by

i h (x) = 1 + ( 1) n+1 h (x) = + h (x) + ( 1) n+1 , where h (x) := h (h x ) 1 (] 1; 0[) i and + h (x) := h (h x ) 1 (]0; +1[) i .
Corollary 5 Under the assumptions of the previous theorem, we have:

8x 2 R n+1 H h , i h (x) = 8 <
:

1 1 2 h (x) if n + 1 is even 1 2 + h (x) h (x) if n + 1 is odd, where h (x) := h (h x ) 1 (f0g) i , h (x) := h (h x ) 1 (] 1; 0[) i and + h (x) := h (h x ) 1 (]0; +1[) i .
Remarks. 1. From these results, if n + 1 is even then, for any x 2 R n+1 H h , the knowledge of one of the four integers h (x), h (x), + h (x) and i h (x) implies that of the three others.

2.

For n + 1 = 2, we proved the following more general result (recall that the Euler characteristic is a generalization of cardinality):

Theorem [8]. Let H h R 2 be a C 2 -hedgehog. For every x 2 R 2 H h , the Kronecker index i h (x) is given by i h (x) = 1 1 2 n h (x) ,
where n h (x) denotes the number of cooriented support lines of H h through x, that is, the number of zeros of h x : S 1 ! R, u 7 ! h(u) hx; ui. 3. For n + 1 = 3, another expression for i h (x) is given by: Theorem [START_REF] Martinez-Maure | New notion of index for hedgehogs of R 3 and applications[END_REF]. Let H h R 3 be a C 2 -hedgehog. For every x 2 R 3 H h , the Kronecker index i h (x) is given by

i h (x) = r + h (x) r h (x)
, where r h (x) (resp. r + h (x) denotes the number of connected components of S 2 h 1 x (f0g) on which h x (u) := h(u) hx; ui is negative (resp. positive).

Euler index at a point of H h R 2

Theorem 6 Let H h R 2 be a C ! -hedgehog. At a simple regular point x := x h (u) of H h , the Euler index 1 h (x) is equal to the value taken by the Kronecker index i h on the connected component of R 2 H h towards which the unit normal vector u is pointing to. At a simple cusp point c of H h , the Euler index 1 h (c) is equal to the value taken by the Kronecker index i h on the connected component of R 2 H h that lies, in a neighborhood of c, on the same side of H h as the evolute of H h \ .

Remarks. 1. Generic singularities of plane C 1 -hedgehogs are cusp points [START_REF] Langevin | Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)[END_REF].

2. This result can be extended to hedgehogs H h R 2 that are Minkowski di¤erences K L of convex polygons. For instance, if we start again with the example of the di¤erence H h = K L of two squares presented in Figure 2, the Euler index of H h is such that 6 is describing this relation by means of representations in R 2 . As can be seen on this …gure, where the red arrows are representing unit normal vectors u, at a simple nonangular point x of H h , the Euler index 1 h (x) is equal to the value taken by the Kronecker index i h on the connected component of R 2 H h towards which the normal vector u is pointing to. The blue arrows just indicate the orientation of H h . In higher dimensions, the question is more involved at the singular points. However, the result remains true at the simple regular points.

1 K 1 o L = 1 h . Figure
Theorem 7 Let H h R n+1 be a C ! -hedgehog. At a simple regular point x := x h (u) of H h , the Euler index 1 h (x) is equal to the value taken by the Kronecker index i h on the connected component of R n+1 H h towards which the unit normal vector u is pointing to.

Proof of the results

Proof of Theorem 1. By the de…nition of the convolution product, we have

1 K 1 o K (x) := Z R n+1 1 K (y) 1 o K (x y) d (y) for x 2 R n+1 . Fix x 2 R n+1 . The range of F x : R n+1 ! R, y 7 ! 1 K (y) 1 o K (x y) is included in f0; 1g and 8y 2 R n+1 , F x (y) = 1 , y 2 K \ o K + fxg .
By the de…nition of Euler integral, we thus get

1 K 1 o K (x) := Z R n+1 F x (y) d (y) = K \ o K + fxg . If x = 0 R n+1 then K\ o K + fxg = o K and hence 1 K 1 o K (x) = ( 1) n+1 since o K is homeomorphic to an open (n + 1)-ball. Assume x 6 = 0 R n+1 . If K \ o K + fxg = ? then K \ o K + fxg = 0.
Hence, we may assume that K \ 

K \ o K + fxg = o K \ o K + fxg + @K \ o K + fxg = ( 1) n+1 + ( 1) n = 0,
which achieves the proof.

To prove Theorems 3 and 4, we shall need some intermediate results and properties.

Proposition 8 Under assumptions of Theorem 3, we have:

1 h (x) = 8 < : i h (x) = 0 if x = 2 K + ( L) ( 1) n+1 (1 [(K + f xg) \ @L]) if x 2 (K + ( L)) H h .
Proof. We have

1 K 1 o L = 1 K (1 L 1 @L ) = (1 K 1 L ) (1 K 1 @L ) ,
where L (resp. @L) denotes the re ‡ection of L (resp. @L) through the origin. Now, we have 1 K 1 L = 1 K+( L) by Groemer's theorem, so that

1 K 1 o L = 1 K+( L) (1 K 1 @L ) . Let x 2 R n+1 . The range of F x : R n+1 ! R, y 7 ! 1 K (y) 1 @L (x y) is included in f0; 1g and 8y 2 R n+1 , F x (y) = 1 , y 2 K \ (@L + fxg) .
By the de…nition of Euler integral, we thus get

(1 K 1 @L ) (x) := Z R n+1 F x (y) d (y) = [K \ (@L + fxg)] .
Using the translation y 7 ! y x, we deduce that

(1 K 1 @L ) (x) = [(K + f xg) \ @L] . First assume x = 2 K + ( L). Then 1 K+( L) (x) = 0 and (1 K 1 @L ) (x) = 0 since (K + f xg) \ @L 6 = ? would imply x 2 K + ( @L). Consequently 1 h (x) := ( 1) n+1 1 K 1 o L (x) = ( 1) n+1 1 K+( L) (x) (1 K 1 @L ) (x) = 0.
Since x h (S n ) K + ( L), we also have i h (x) = 0 and thus 1 h (x) = i h (x).

Now assume x 2 (K + ( L)) H h . Then we get

1 h (x) = ( 1) n+1 (1 [(K + f xg) \ @L]) .
Recall that we say that two submanifolds S 1 and S 2 of a manifold M are transverse, and we write

S 1 t S 2 , if T m M = T m S 1 + T m S 2 for all m 2 S 1 \ S 2 .
Proposition 9 Let H h be a C ! -hedgehog of R n+1 and let K, L R n+1 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L. For every x 2 R n+1 such that (K + f xg) \ L 6 = ? and @ (K + f xg) t @L, the following properties hold:

(i) (h x ) 1 (f0g) @ (K + f xg) \ @L; (ii) (h x ) 1 (] 1; 0]) @ (K + f xg) \ L; (iii) (h x ) 1 ([0; +1[) (K + f xg) \ @L;
where is the homeomorphism relation and The following corollary is immediate.

(h x ) (u) := h (u) hx; ui, (u 2 S n ). u v w x l u x kx u u p x k x v x l w n 1 H k x v H l w H l u
Corollary 10 Under the assumptions of the previous proposition, we have:

:

[@ (K + f xg) \ @L] = h (x) [@ (K + f xg) \ L] = h (x) + h (x) [(K + f xg) \ @L] = h (x) + + h (x) where h (x) := h (h x ) 1 (f0g) i , h (x) := h (h x ) 1 (] 1; 0[) i and + h (x) := h (h x ) 1 (]0; +1[) i .
Lemma 11 Let H h be a C ! -hedgehog of R n+1 and let K, L R n+1 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L. For any x 2 R n+1 nH h , we have:

1 h (x) = i h (x) = 1 ( 1) n h (x) = 0 if @ (K + f xg)
and @L are externally tangent (that is, if they intersect in exactly one point and the intersection of their interior is empty).

Proof. Let a = b x be the point of tangency of @ (K + f xg) and @L, where (a; b) 2 K L. By Proposition 8, we have

1 h (x) = ( 1) n+1 (1 [(K + f xg) \ @L]) . Since (K + f xg) \ @L = fag, this implies 1 h (x) = 0.
Let u be the point of S n such that a = x kx (u) = x l ( u). For all " > 0, x " := x + "u is such that (K + f x " g) \ L = ? and hence x " = 2 K + ( L). Therefore, i h (x " ) = 0 for all " > 0 and hence i h (x) = 0.

Finally, by noticing that h (x) is constant on each connected component of R n+1 H h and that (h x )

1 (] 1; 0[) is homeomorphic to an open n-ball B n when the Euclidean norm of x is su¢ciently large, we see that

h (x) = (B n ) = ( 1)
n , which achieves the proof:

Lemma 12 Let H h R n+1 be an analytic hedgehog. For every x 2 R n+1 H h , the index 1 h (x) is given by

1 h (x) = 1 + ( 1) n+1 h (x) , where h (x 
) := h (h x ) 1 (] 1; 0[) i .
Proof. From Proposition 8 and Lemma 11, we can assume without loss of generality that x 2 (K + ( L)) H h and @ (K + f xg) t @L. Then, by Proposition 8 and Corollary 10, we have:

1 h (x) = ( 1) n+1 1 h (x) + + h (x) . But h (x) + h (x) + + h (x) = (S n ) and (S n ) = 1 + ( 1) n , so that 
1 h (x) = 1 + ( 1) n+1 h (x) .
Proof of Theorems 3 and 4. Let H e h R n+1 be the hedgehog with support function e h ( u) = h (u), (u 2 S n ). Note that H h and H e h have:

-the same geometric realization since x e h ( u) = x h (u) for all u 2 S n ; -the same transverse orientation (resp. opposite transverse orientations) at each point x e h ( u) = x h (u) if n + 1 is even (resp. odd).

Therefore i e h = ( 1) n+1 i h on R n+1 H h . Thus if we prove that, under assump-

tions of Theorem 3, i h (x) = + h (x) + ( 1) n+1 for all x 2 R n+1 H h , then i h (x) = ( 1) n+1 i e h (x) = ( 1) n+1 + e h (x) + ( 1) n+1 = 1 + ( 1) n+1 + e h (x) = 1 + ( 1)
n+1 h (x) for all x 2 R n+1 H h , and hence i h = 1 h on R n+1 H h by Lemma 12. So it remains only to prove that:

8x 2 R n+1 H h , i h (x) = + h (x) + ( 1) n+1 .
Since i h (x) is equal to 0 and (h x ) 1 (]0; +1[) homeomorphic to an open nball when the distance of x from the origin is su¢ciently large, it su¢ces to prove that the map x 7 ! i h (x)

+ h (x) + ( 1) n+1 is constant on R n+1 H h .
Since the maps x 7 ! i h (x) and x 7 ! + h (x) are constant on each connected component of R n+1 H h , we only need to prove that i h (x) + h (x) remains constant whenever x crosses H h transversally at a regular point.

Recall that, at a regular point x h (u) of H h , the transverse orientation of H h is given by sign [R h (u)] u, where sign is the sign function and R h the curvature function of H h . Therefore, the Kronecker index i h (x) decreases by one unit whenever x crosses H h transversally at a simple regular point x h (u) in the direction of sign [R h (u)] u. Thus it is su¢cient to prove that + h (x) also decreases by one unit whenever x crosses H h transversally at a simple regular point x h (u) in the direction of sign [R h (u)] u.

Let x h (u) be a simple regular point of H h . As the point x h (u) is regular, the curvature function of H h is nonzero at u: R h (u) 6 = 0. Recall that R h (u) is the product of the principal radii of curvature R 1 h (u), . . . , R n h (u) of H h at u, which are de…ned as the eigenvalues of x h at u. Denote by p (resp. q) the number of principal radii of curvature of H h at u that are positive (resp. negative), (p; q) 2 N 2 and p + q = n . Let us consider the variation of + h (x) when x, moving on the normal line to H h at x h (u), crosses H h at x h (u) in the direction of transverse orientation (that is, in the direction of ( 1) q u). We …rst consider the case where the sectional curvature x h (u) of H h at x h (u) is positive (i.e., (p; q) = (n; 0) or (0; n)). In the sequel of the proof, B n will denote an open n-ball. If q = 0, then the e¤ect of the crossing on + h (x) is to add (B n ) (S n ), that is 1, to + h (x). If q = n, then the e¤ect of the crossing on + h (x) is to add ( 1) n+1 (B n ), that is 1, to + h (x). Thus, in both cases, the e¤ect of this crossing in the direction of transverse orientation is that + h (x) decreases by one unit.

We now turn to the case where p and q are nonzero. If we consider (h x ) 1 (f0g), which is a (not necessarily connected) smooth orientable hypersurface of S n for any x 2 R n+1 H h (since rh x (u) 6 = 0 whenever h x (u) = 0), the e¤ect of the crossing in the direction of transverse orientation can then be viewed as a surgery performed on the hypersurface. If q is even (resp. odd), the "surgery" consists in cutting out a piece of hypersurface homeomorphic to S q 1 D p (resp. D q S p 1 and replacing it by a piece of hypersurface homeomorphic to D q S p 1 (resp. S q 1 D p , where D m+1 is the closed m-ball bounded by S m , (m 2 N). Recall that such a surgery is possible by the fact that S p 1 S q 1 can be regarded as the boundary of S q 1 D p or as the boundary of D q S p 1 . When we consider (h x )

1 ([0; +1[), the e¤ect of the "surgery" is to remove (resp. to add) a cell complex that is homeomorphic to D p B q if q is even (resp. odd). Since Euler characteristic is multiplicative under cross products, the e¤ect of the crossing on + h (x) is thus to add ( 1) q+1 (B q ), that is -1.

Proof of Corollary 5. By Theorem 4, if n+1 is even, for every

x 2 R n+1 H h , i h (x) = 1 + h (x) = + h (x) + 1 and hence i h (x) = 1 + 1 2 h (x) + + h (x) . Since h (x) + h (x) + + h (x) = (S n ) = 1 + ( 1) n , it follows that i h (x) = 1 1 2 h (x). Now, if n + 1 is odd then, for every x 2 R n+1 H h , i h (x) = 1 h (x) = + h (x) 1 and hence i h (x) = 1 2 + h (x) h (x) .
Proof of Theorem 6. We shall give later a proof valid in any dimension n + 1, (n 2 N ), (cf. proof of Theorem 7). But, in order to deal with the special case of cusp points, we present here a slightly di¤erent proof in the plane. Let K; L R 2 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L in R 2 . We shall denote by k and l their respective support functions. Following the proof of Proposition 8 for n + 1 = 2, we get

1 h (x) = 1 [(K + f xg) \ @L] , since x := x h (u) = x k (u) + ( x l (u)) 2 K + ( L).
Note that @ (K + f xg) and @L are internally tangent at the point x l (u) since x l (u) = x kx (u), where k x (u) := k (u) hx; ui, u 2 S 1 . Here 'internally' means that the two convex curves lie in the same side of their common tangent. Since x := x h (u) is assumed to be a regular point of H h , we have R h (u) 6 = 0 and thus R kx (u) 6 = R l (u).

If R h (u) > 0, then R kx (u) > R l (u), so that, in a neighborhood of the tangent point, (@L) fx l (u)g lie in the interior of K + f xg. It follows that

[(K + f xg) \ @L] = 1 2 ( [@ (K + f xg) \ @L] 1) = 1 2 n 0 h (x) , where n 0 h (x) = v 2 S 1 fug jh x (v) = 0 . Thus 1 h (x) is then equal to 1 1 2 n 0 h (x)
, which is the value taken by i h on the connected component of R 2 H h towards which the unit normal vector u is pointing to.

If R h (u) < 0, then R kx (u) < R l (u), so that, in a neighborhood of the tangent point, (@ (K + f xg)) fx l (u)g lie in the interior of L. It follows that

[(K + f xg) \ @L] = 1 2 ( [@ (K + f xg) \ @L] + 1) = 1 2 n 0 h (x) + 1,
where

n 0 h (x) = v 2 S 1 fug jh x (v) = 0 . Thus 1 h (x) is then equal to 1 2 n 0 h (x)
, which is the value taken by i h on the connected component of R 2 H h towards which the unit normal vector u is pointing to.

Following the same approach for a simple cusp point c := x h (v) and noticing that R h = R kx R l changes sign at v, we obtain

1 h (c) = 1 1 2 n 0 h (c) ,
where n 0 h (c) = v 2 S 1 fvg jh x (v) = 0 , which is the required value for 1 h (c).

Proof of Theorem 7. Let K; L R n+1 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L in R n+1 . Denote by k and l their respective support functions. Following the proof of Proposition 8, we get

1 h (x) = ( 1) n+1 (1 [(K + f xg) \ @L]) , since x := x h (u) = x k (u) + ( x l (u)) 2 K + ( L). Note that @ (K + f xg)
and @L are internally tangent at the point x l (u) since x l (u) = x kx (u), where k x (u) := k (u) hx; ui, (u 2 S n ).

The result is the consequence of the following four observations: (i) The proof of Proposition 8 can be adapted to obtain 

[(K + f xg) \ @L] = h (x) + + h (x) in the present case; (ii) h (x) + h (x) + + h (x) = (S n ) = 1 + ( 1) n ; (i) At x = x h (u), h : R n+1 ! Z, p 7 ! h (h p ) 1 (] 1; 0 

Further remarks Euler characteristic of an analytic hedgehog

Let H h R n+1 be an analytic hedgehog. De…ne its Euler characteristic by:

(H h ) := Z R n+1 1 h (x) d (x) .
Proposition 13 Any analytic hedgehog of R n+1 has Euler characteristic 1.

Proof. Let H h be a C ! -hedgehog of R n+1 and let K, L R n+1 be convex bodies of class C ! + such that H h is representing the formal di¤erence K L. By the de…nitions of (H h ) and 1 h , we have:

(H h ) := Z R n+1 ( 1) n+1 1 K 1 o L (x) d (x) .
Convolution is a commutative, associative operator providing CF R n+1 with the strucuture of an algebra and by reversing the order of integration, we get immediately [2, Lemma 19.1, p. 36]:

Z R n+1 (f g) d = Z R n+1 f d Z R n+1 gd for all f , g 2 CF R n+1 .
Thus

(H h ) = ( 1) n+1 Z R n+1 1 K (x) d (x) Z R n+1 1 o L (x) d (x) , that is, (H h ) = ( 1) n+1 (K) o L = ( 1) n+1 (D) o D = 1, where D is the closed (n + 1)-ball bounded by S n in R n+1 , (n 2 N).
Remark. For any analytic hedgehog H h R n+1 , (H h ) can also be regarded as the Euler characteristic of the complement of the unbounded connected component of R n+1 H h , which is a compact contractible tame set.

Sturm-Hurwitz type theorems

The Sturm-Hurwitz theorem states that any continuous real function of the form f ( ) = +1 X n=N (a n cos n + b n sin n ) , for some sequences of real numbers (a n ) and (b n ), has at least as many zeros as its …rst nonvanishing harmonics: # f 2 [0; 2 [ jf ( ) = 0 g 2N .

For C 2 -functions, this result is closely related to the index i h (x) of a C 2hedgehog H h R 2 with respect to a point x 2 R 2 H h and to its relationship with the number of zeros of h x (u) = h(u) hx; ui, u 2 S 1 [START_REF] Martinez-Maure | Les multihérissons et le théorème de Sturm-Hurwitz[END_REF][START_REF] Martinez-Maure | New notion of index for hedgehogs of R 3 and applications[END_REF]. So, our results suggest that, in higher dimensions, Sturm-Hurwitz type theorems might resort to the Euler characteristic.

Mixed volume of analytic hedgehogs

As a consequence of Theorems 2 and 3, we have: Given hedgehogs with support functions h 1 ; : : : ; h n+1 2 C ! (S n ; R), the real function P : R n+1 ! R given by P ( 1 ; : : :

; n+1 ) := v n+1 n+1 X k=1 k h k ! = Z R n+1
1 1h1 : : :

1 n+1hn+1 (x) d (x) ,
where denotes the Lebesgue measure on R n+1 , is a homogeneous polynomial the coe¢cients of which are the mixed volumes of H h1 ; : : : ; H hn+1 up to a constant factor.

On the mixed area of K; L R 2 when L is centered Proposition 14 Let K and L be convex bodies of class C 2 + in R 2 . Denote by k and l their respective support functions and let k x be the support function of K with respect to x: k x (u) := k (u) hx; ui ; u 2 S 1 . Denote by L the re ‡ection of L through the origin and b l its support function: b l (u) = l ( u), u 2 S 1 . We have:

v 2 (k; c (l)) = 1 8 Z K+( L) n k l (x) d (x) ,
where c (l) is the centered part of l, that is, c (l) = 1 2 l + b l and n k l (x) = # (k x l)

1 (f0g) = # u 2 S 1 jk x (u) = l (u) . In particular, if L is centered (i.e., centrally symmetric with respect to the origin), then Proof. As we have recalled, for any C 2 -hedgehog H h , we have [START_REF] Martinez-Maure | Indice d'un hérisson : étude et applications[END_REF]:

8x 2 R 2 H h , i h (x) = 1 1 2 n h (x) ,
where n h (x) denotes the number of cooriented support lines of H h through x, that is, the number of zeros of h x : S 1 ! R, u 7 ! h(u) hx; ui. Therefore, we have:

8x 2 (K + ( L)) H h , i k+ b l i k l (x) = 1 2 n k l (x) .
By integrating over K + ( L), we get: Remark. This result gives a geometrical interpretation of the mixed area when one of the arguments is a centered convex body since n k l (x) is the number of common support lines of K + f xg and L.

v 2 k + b l v 2 (k l) =

In higher even dimensions

Starting from Corollary 5, we can easily obtain the following result in much the same way.

Proposition 15 Let K and L be convex bodies of class C ! + in R n+1 , where n + 1 is even. Denote by k and l their respective support functions and let k x be the support function of K with respect to x: k x (u) := k (u) hx; ui ; (u 2 S n ). Denote by L is the re ‡ection of L through the origin and b l its support function: b l (u) = l ( u), (u 2 S n ). We have:

v n+1 k + b l v n+1 (k l) = 1 2 Z K+( L) k l (x) d (x)
where k l (x) = h (k x l) 1 (f0g) i = [fu 2 S n jk x (u) = l (u) g].
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 11 Figure 1. The Minkowski di¤erence K L (smooth case)

  2 and e 3 ; e 4 2 R 2 the unit vectors de…ned by e 3 = 1 p 2 (e 1 + e 2 ) and e 4 = 1 p 2 (e 1 e 2 ). These convex bodies are two squares whose formal di¤erence K L can be realized geometrically as the hedgehog with support function h = h K h L as represented on Figure 2.
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 2 Figure 2. The Minkowski di¤erence K L (polytopal case)
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 3 Figure 3. Convex bodies of class C 2 + as envelopes parametrized by their Gauss map
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 4 Figure 4. A C 2 -hedgehog

  Euler characteristic. Fix an 0-minimal structure O on a topological space X. De…nable functions between two spaces are those whose graphs are in O. The Euler characteristic : O ! Z admits the following combinatorial de…nition: Any tame set A 2 O is de…nably homeomorphic to a …nite disjoint union of open simplices
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 55 Figure5illustrates this result considering again the example of Figure4(that is, the hedgehog H h with support function h ( ) := cos (2 )).
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 6 Figure 6. Euler index of the Minkowski di¤erence of two squares Euler index at a regular point of H h R n+1

oK

  + fxg 6 = ?. In this case, o K \ o K + fxg is homeomorphic to an open (n + 1)-ball and its boundary is the disjoint union of @K \ o K + fxg and K \ @ (K + fxg), where the boundary of a convex body L is denoted by @L. Therefore, K \ o K + fxg is then the disjoint union of o K \ o K + fxg and @K \ o K + fxg , which is homeomorphic to an open n-ball, so that
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 7 Figure 7. Projection view onto the plane (Rv + Rw) ?

v 2 ( 8 Z

 28 K; L) = 1 K+L n k l (x) d (x) .

1 2 Z 8 Z

 28 K+( L) n k l (x) d (x) . Since v 2 k + b l v 2 (k l) = 2v 2 k; l + b l v 2 (l) v 2 b l and v 2 b l = v 2 (l), it follows that: v 2 (k; c (l)) = 1 K+( L) n k l (x) d (x) .

  

Proof. (i) It follows from the assumptions that (K + f xg) \ L is a strictly convex body with interior points, and thus that its support function f : S n ! R u 7 ! sup fhp; ui jp 2 (K + f xg) \ L g is continuously di¤erentiable (see, e.g., [22, p. 107]). Denote by k and l the respective support functions of K and L and let k x (u) := k (u) hx; ui for all u 2 S n . Note that the zeros of h x = k x l are the points u 2 S n such that the support hyperplanes with exterior normal vector u of K + f xg and L coincide. Such an u 2 (h x ) 1 (f0g) cannot be a regular point of x f . So, we can consider the continuous map

To check that it de…nes a homeomorphism from the compact (h x )

1 (f0g) to @ (K + f xg) \ @L, it su¢ces to prove that it is a bijection.

Let p 2 @ (K + f xg) \ @L. Since @ (K + f xg) t @L, there exists a pair of non-antipodal points v and w on S n , such that

Let denote the shortest arc between v and w on S n . Since we have clearly h x (v) < 0 and h x (w) > 0, there exists some u 2 such that h x (u) = 0. It remains to prove that such an u 2 is unique and such that (u) = p. For 2 S n , let H kx ( ) and H l ( ) (resp. H kx ( ) and H l ( ) denote the respective support hyperplanes (resp. halfspaces) with exterior normal vector of K + f xg and L. Note that: ( ) The segment with endpoints x kx (u) and x l (u), say (u), is passing through the complementary of

, where ? is the vector subspace orthogonal to 2 S n and (x kx (u) x l (u)) the line through x kx (u) and x l (u).

Let u 1 ; u 2 2 \ (h x ) 1 (f0g). From ( ) and ( ) with u = u 1 and u = u 2 , it follows that the support hyperplanes H kx (u 1 ) = H l (u 1 ) and H kx (u 2 ) = H l (u 2 ) of the convex hull of (K + f xg) [ L must coincide (in order that all the endpoints of the segments (u 1 ) and (u 2 ) lie in each of the support halfspaces H l (u 1 ) and H l (u 2 ), see Figure 7). Therefore, there exists a unique u 2 such that h x (u) = 0 and it satis…es (u) = p. (i) To complete the proof it is su¢cient to observe that any crossing of (h x )

1 (f0g)

to a crossing of @ (K + f xg) \ @L on @ (K + f xg) (resp. @L) from @ (K + f xg) \ 0 L to @ (K + f xg) \ R n+1 nL (resp from. R n+1 n (K + f xg) \ @L to 0 K + f xg \ @L, which results from the proof of (i).