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Hedgehog theory via Euler calculus

Yves Martinez-Maure

Abstract

Hedgehogs are (possibly singular and self-intersecting) hypersurfaces
that describe Minkowski di¤erences of convex bodies in Rn+1. They are
the natural geometrical objects when one seeks to extend parts of the
Brunn-Minkowski theory to a vector space which contains convex bodies.
There is a close relationship between Minkowski addition and convolution
with respect to the Euler characteristic. In this paper, we extend it to
hedgehogs with an analytic support function. In this context, resorting
only to the support functions and the Euler characteristic, we give various
expressions for the index of a point with respect to a hedgehog. Finally,
we present some applications.

Keywords and phrases: Hedgehogs, convex bodies, Brunn-Minkowski
theory, Euler characteristic, Euler integration, index, mixed volumes
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0. Introduction

Classical hedgehogs are (possibly singular and self-intersecting) hypersur-
faces that describe di¤erences of convex bodies with C2 support functions in
(n+1)-Euclidean vector space Rn+1 [12]. Many notions from the theory of con-
vex bodies carry over to hedgehogs and quite a number of classical results �nd
their counterparts. Of course, a few adaptations are necessary. In particular,
areas and volumes have to be replaced by their algebraic versions, which can
take negative values. The (algebraic) (n + 1)-dimensional volume of a hedge-
hog H � Rn+1 is de�ned as the integral over Rn+1�H of the Kronecker index,
say iH (x), of x 2 R

n+1�H with respect to H: iH (x) can be regarded as the
algebraic intersection number of almost every oriented half-line with origin x
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with the hypersurface H equipped with its transverse orientation. This index
is, in some sense, the corner stone of hedgehog theory. In particular, it played
a key role in obtaining a counter-example to an old uniqueness conjecture of
A.D. Alexandrov [1, 9]. On the other hand, there is a well-known relationship
between Minkowski addition of convex bodies and convolution with respect to
the Euler characteristic [4, 23, 25]. In the framework of hedgehogs with analytic
support functions, we extend this relationship to hedgehogs and interpret the
Kronecker index in terms of the Euler characteristic. We then give new expres-
sions for the Kronecker index resorting only to the support functions and the
Euler characteristic.

Figure 1. Minkowski di¤erence of two convex bodies of class C2+

In [12, 14], the author extended the theory by regarding hedgehogs as
Minkowski di¤erences of arbitrary convex bodies (the trick is to de�ne hedge-
hogs inductively as collections of lower-dimensional �support hedgehogs�). In the
polytopal case, hedgehogs are also known under the name �virtual polytopes�.
The notion of a virtual polytope was independently introduced by several au-
thors (see, e.g., [18] or [20]).

Figure 2. Minkowski di¤erence of two squares
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The relevance of hedgehog theory can be illustrated by the following two
principles [16]: 1. The study of convex bodies or hypersurfaces by splitting
them judiciously (that is, according to the problem under consideration) into a
sum of hedgehogs in order to reveal their structure (the study that led to the
�rst counterexample to A.D. Alexandrov�s uniqueness conjecture relied on this
�rst principle); 2. The geometrization of analytical problems by considering
real functions on the unit sphere Sn of Rn+1 as support functions of hedgehogs
or of more general hypersurfaces (called �multi-hedgehogs� [11, 15]).

Hedgehog (and multi-hedgehog) theory has, of course, many applications to
the Brunn-Minkowski theory. But, it also has applications to a wide variety of
topics including Sturm theory [11, 15], Monge-Ampère equations [17], minimal
surfaces [13, 21], singularity theory [5], the group of sheaves on an algebraic
variety (the Picard group) [20] and planar pseudo-triangulations [19].

In this paper, we have chosen the framework of hedgehogs with analytic sup-
port functions (we shall refer to them as �analytic hedgehogs� or �C!-hedgehogs�)
even if some of our results still hold with a few adaptations under weaker as-
sumptions.

Our �rst main result asserts that the Kronecker index of any C!-hedgehogH,
which represents a formal di¤erence K � L of two convex bodies K;L � Rn+1

of class C!+ (i.e., C
! and with positive Gaussian curvature), is such that

iH (x) = (�1)
n+1

�
1K � 1

�
o

L

�
(x) for all x 2 Rn+1�H,

where 1A denotes the characteristic function over a subset A � Rn+1, � the

convolution product with respect to Euler characteristic � and �
o

L the re�ection

of
o

L through the origin 0Rn+1 .

Our second main result gives the following expression of the Kronecker index
of any hedgehog H � Rn+1 with support function h 2 C! (Sn;R):

8x 2 Rn+1�H, ih (x) =

8
<
:

1� 1
2�h (x) if n+ 1 is even

1
2

�
�+h (x)� �

�
h (x)

�
if n+ 1 is odd,

where �h (x) := �
h
(hx)

�1
(f0g)

i
, ��h (x) := �

h
(hx)

�1
(]�1; 0[)

i
and �+h (x) :=

�
h
(hx)

�1
(]0;+1[)

i
.

The paper is organized as follows. Section 1 recalls basic de�nitions and
facts on hedgehog theory. For the convenience of the reader, Section 2 brie�y
summarizes basic notions and results from Euler�s integral calculus. Section 3
presents the main results, Section 4 the proofs and Section 5 further remarks
and applications.
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1. Hedgehog theory

The set Kn+1 of all convex bodies of (n+1)-Euclidean vector space Rn+1 is
usually equipped with Minkowski addition and multiplication by non-negative
real numbers which are respectively de�ned by:

(i) 8(K;L) 2
�
Kn+1

�2
, K + L = fu+ v ju 2 K; v 2 Lg ;

(ii) 8� 2 R+;8K 2 Kn+1, �:K = f�u ju 2 K g .

Of course,
�
Kn+1;+; :

�
does not constitute a vector space since convex bodies

cannot be subtracted in Kn+1. Now, in the same way as we construct the group
of integers from the set of all natural numbers, we can construct the vector space�
Hn+1;+; :

�
of formal di¤erences of convex bodies of Rn+1 from

�
Kn+1;+; :

�
.

Moreover, we can [14]: 1. consider each formal di¤erence of convex bodies
of Rn+1 as a (possibly singular and self-intersecting) hypersurface of Rn+1, called

a hedgehog ; 2. extend the mixed volume V :
�
Kn+1

�n+1
! R to a symmetric

(n+ 1)�linear form on Hn+1.
Thus, hedgehog theory can be seen as an attempt to extend certain parts of

the Brunn-Minkowski theory to Hn+1. For n � 2, it goes back to a paper by
H. Geppert [3] who introduced hedgehogs under the German names stützbare
Bereiche (n = 1) and stützbare Flächen (n = 2).

Let us recall the de�nition of hedgehogs with C2 support functions in Rn+1.
For details on convex bodies, we refer the reader to the book by R. Schneider [22]:
As is well-known, every convex body K � Rn+1 is determined by its support
function hK : S

n �!R, where hK (u) is de�ned by hK (u) = sup fhx; ui jx 2 K g,
(u 2 Sn), that is, as the signed distance from the origin to the support hyper-
plane with unit normal vector u. In particular, every closed convex hypersurface
of class C2+ (i.e., C2-hypersurface with positive Gaussian curvature) is deter-
mined by its support function h (which must be of class C2 on Sn [22, p. 111])
as the envelope Hh of the family of hyperplanes with equation hx; ui = h(u).
This envelope Hh is described analytically by the following system of equations

�
hx; ui = h(u)
hx; : i = dhu(:).

The second equation is obtained from the �rst by performing a partial di¤eren-
tiation with respect to u. From the �rst equation, the orthogonal projection of
x onto the line spanned by u is h (u)u and from the second one, the orthogonal
projection of x onto u? is the gradient of h at u (cf. Figure 3). Therefore,
for each u 2 Sn, xh (u) = h(u)u+(rh) (u) is the unique solution of this system.
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xh u
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u

Figure 3. Convex bodies of class C2+ as
envelopes parametrized by their Gauss map

Now, for any C2 function h on Sn, the envelope Hh is in fact well-de�ned
(even if h is not the support function of a convex hypersurface). Its natural
parametrization xh : S

n ! Hh; u 7! h(u)u+ (rh) (u) can be interpreted as the
inverse of its Gauss map, in the sense that: at each regular point xh (u) of Hh,
u is a normal vector to Hh. We say that Hh is the hedgehog (or C

2-hedgehog)
with support function h (cf. Figure 4). Note that xh depends linearly on h.

u

0

h u u

xh u

Hh

Figure 4. A C2-hedgehog
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Since the parametrization xh can be regarded as the inverse of the Gauss
map of Hh, the Gaussian curvature �h of Hh at xh (u) is given by �h(u) =
1=det [Tuxh], where Tuxh is the tangent map of xh at u. Therefore, singularities
are the very points at which the Gaussian curvature is in�nite. For every u 2 Sn,
the tangent map of xh at the point u is Tuxh = h(u) IdTuSn +H

u
h , where H

u
h is

the symmetric endomorphism associated with the hessian of h at u [5]. Thus,
the so-called �curvature function� Rh := 1=�h is well-de�ned and continuous
all over the unit sphere, including at the singular points (so that the classical
Minkowski problem arises naturally for hedgehogs [16, 17]).
Given a hedgehogHh � R

n+1; (n � 1), the Kronecker index of x 2 Rn+1�Hh

with respect to Hh, say ih (x), can be de�ned as the degree of the map

U(h;x) : S
n ! Sn; u 7�!

xh(u)� x

kxh(u)� xk
;

and interpreted as the algebraic intersection number of an oriented half-line
with origin x with the hypersurface Hh equipped with its transverse orientation
(number independent of the oriented half-line for an open dense set of directions)
[5]. The (algebraic (n+ 1)-dimensional) volume of a hedgehog Hh � R

n+1 can
be de�ned by

vn+1 (h) :=

Z

Rn+1�Hh

ih (x) d� (x) ;

where � denotes the Lebesgue measure on Rn+1, and it satis�es

vn+1 (h) =
1

n+ 1

Z

Sn
h(u)Rh(u)d�(u);

where Rh is the curvature function and � the spherical Lebesgue measure on S
n.

As for convex bodies of class C2+, we introduce a mixed curvature function
R(f1;:::; fn) and de�ne the mixed (algebraic (n+1)-dimensional) volume of n+1
hedgehogs Hh1 ; : : : ; Hhn+1 of R

n+1 by

vn+1(h1; : : : ; hn+1) =
1

n+ 1

Z

Sn
h1(p)R(h2;:::; hn+1)(p)d�(p),

whereR(h2;:::; hn+1) denotes the mixed curvature function ofHh2 ; : : : ; Hhn+1 [10]:
See [7] for a study of this extension of the mixed volume and Alexandrov-Fenchel
type inequalities for hedgehogs.

2. Euler calculus

Euler calculus is an integration theory built with the Euler characteristic
� as a �nitely additive measure. Born in the sheaf theory, it has applications
to algebraic topology, to strati�ed Morse theory, for reconstructing objects in
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integral geometry and for enumeration problems in computational geometry and
sensor networks [2]. The short survey papers by P. Schapira [23] and O. Viro
[25] played an important role in the development of this theory.
For the convenience of the reader, we brie�y summarize in this section very

basic notions and results from Euler calculus. For proofs and more information
on Euler calculus and its applications, we refer the reader to [2].

Tame sets. In Euler calculus, the measurable sets are the tame sets in some
�xed 0-minimal structure. We shall not recall here the de�nition of tame subsets
in a �xed 0-minimal structure. It can be found in the classical surveys on Euler
calculus, e.g., in [24]. Classical examples include polyconvex sets, semialgebraic
sets and subanalytic sets. Here, we shall only need to know some basic facts
that we shall summarize below. In particular, we shall need to know that the
union and intersection of two tame sets are again tame.

Euler characteristic. Fix an 0-minimal structure O on a topological space X.
De�nable functions between two spaces are those whose graphs are in O. The
Euler characteristic � : O ! Z admits the following combinatorial de�nition:

Any tame set A 2 O is de�nably homeomorphic to a �nite disjoint union of
open simplices

`
i �i and we set:

� (A) =
X

i
(�1)

dim(�i) .

Algebraic topology asserts that this quantity is well-de�ned, that is, independent
of the decomposition into open simplices. This combinatorial Euler characteris-
tic is a topological invariant. It is also a homotopy invariant for compact �nite
cell complexes (but not for non-compact spaces).

Examples. 1. Euler characteristic can be regarded as a generalization of cardi-
nality. For a �nite discrete tame set A, � (A) is the cardinality of A:

� (A) = #A;

2. A closed orientable 2-manifold S has Euler characteristic 2 � 2g, where g
denotes the genus of S;
3. If A is a compact contractible tame set, then � (A) = 1;
4. Any open n-ball of Rn has Euler characteristic (�1)

n
;

5. The n-dimensional sphere Sn has Euler characteristic 1 + (�1)
n
;

6. The Euler characteristic of any odd-dimensional compact manifold is equal
to zero (see [6] for an elementary proof).

Remarks. 1. Euler calculus relies on the following additivity property:

Proposition. For any pair fA;Bg of tame subsets of X, we have:

� (A [B) = � (A) + � (B)� � (A \B) :
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2. Euler characteristic is multiplicative under cross products:

Proposition. For any pair fE;Fg of tame sets, we have:

� (E � F ) = � (E) :� (F ) :

Note that these additivity and multiplicativity properties generalize the ones
of cardinality of sets.

Euler integral. The above additivity property suggests to de�ne a measure
over tame sets via:

Z

X

1A (x) d� = � (A)

where 1A is the characteristic function over a tame subset A of X. A function
f : X ! Z is said to be constructible if it has �nite range and if all its level
sets f�1 (fsg) are tame subsets of X. Let CF (X) denote the Z-module of all
Z-valued constructible functions on X. The Euler integral is de�ned to be the
homomorphism

R
X
: CF (X)! Z given by:

Z

X

fd� :=

+1X

s=�1

s�
�
f�1 (fsg)

�
.

Alternately, writing f 2 CF (X) as f =
P

i ci1�i , where X =
`
i �i is a

decomposition of X into a �nite disjoint union of open cells and where ci 2 Z,
we have:

Z

X

fd� :=
X

i
ci� (�i) =

X
i
ci (�1)

dim(�i) .

Convolution. On a �nite-dimensional real vector space V , a convolution op-
erator with respect to Euler characteristic is de�ned as follows:

8 (f; g) 2 CF (V )
2
; (f � g) (x) =

Z

V

f (y) g (x� y) dy:

Convolution is a commutative, associative operator providing CF (V ) with
the structure of an algebra.

Proposition. (CF (V ) ;+; �) is a commutative ring with multiplicative iden-
tity element 1f0Vg.
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Relationship with Minkowski addition. There is a close relationship be-
tween Minkowski addition and convolution with respect to the Euler character-
istic [4, 23, 25]:

Theorem [4]. Let A and B be two compact convex subsets of Rn+1. We have

1A � 1B = 1A+B ,

where � denotes the convolution product with respect to the Euler characteristic
and A+B the usual Minkowski sum of A and B.

This relationship will be the starting point in our study.

3. Main results

In this section, given a convex body K � Rn+1, we shall often need
o

K and
@K to be tame subsets of Rn+1. It is the reason why we shall restrict ourselves
to analytic hedgehogs (resp. convex bodies).

Minkowski inversion with respect to �

Since 1f0Rn+1g
is the multiplicative identity of

�
CF

�
Rn+1

�
;+; �

�
, the following

result can be regarded as a Minkowski inversion theorem:

Theorem 1 Let K � Rn+1 be a convex body of class C!+. We have

(�1)
n+1

�
1K � 1

�
o

K

�
= 1f0Rn+1g

,

where �
o

K denotes the re�ection of
o

K through the origin 0Rn+1 . In other words,
the convolution inverse of the characteristic function of K is given by:

(1K)
�1
= (�1)

n+1
1
�

o

K
.

Remarks. 1. Of course, if K is a convex body reduced to a point a of Rn+1,
then the convolution inverse of the characteristic function of K is given by:

(1K)
�1
= 1f�ag:

2. In [20], Pukhlikov and Khovanskii gave a similar Minkowski inversion
theorem in the polytopal case: for every convex polytope K � Rn+1, we have

(�1)
dimK

(1K � 1�relintK) = 1f0Rn+1g
,

where relintK is the relative interior of K, that is, the interior of K in the
smallest a¢ne subspace that contains K.
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Euler index

De�nition Let Hh be a C!-hedgehog of Rn+1 and let K, L � Rn+1 be convex
bodies of class C!+ such that Hh is representing the formal di¤erence K � L.
De�ne the Euler index of Hh by

1h := 1K � (1L)
�1
= (�1)

n+1
�
1K � 1

�
o

L

�
,

where �
o

L denotes the re�ection of
o

L through the origin 0Rn+1 .

Remarks. 1. Given any C!-hedgehog Hh � Rn+1, for every large enough
r > 0, k := h+ r and l := r are the respective support functions of two convex
bodies K and L such that Hh is representing the formal di¤erence K � L.

2. Using Groemer�s theorem and properties of convolution product, we can
easily check that 1h is independent of the choice of the pair (K;L) of convex
bodies of class C!+ such that Hh is representing K � L.

Furthermore, Groemer�s theorem admits the following extension to analytic
hedgehogs:

Theorem 2 Let Hf and Hg be two analytic hedgehogs of Rn+1. We have

1f � 1g = 1f+g .

This can be easily deduced from Groemer�s theorem by using the above
Minkowski inversion theorem.

Relationship with Kronecker index

Theorem 3 Let Hh be a C!-hedgehog of Rn+1 and let K, L � Rn+1 be convex
bodies of class C!+ such that Hh is representing the formal di¤erence K � L.

For any x 2 Rn+1�Hh, the Euler index 1h (x) := (�1)
n+1

�
1K � 1

�
o

L

�
(x)

of Hh at x is equal to ih (x), that is, to the degree of the map

U(h;x) : S
n ! Sn; u 7�!

xh(u)� x

kxh(u)� xk
.

In other words, the Kronecker index ih is nothing but the restriction of the Euler
index to Rn+1�Hh.

Expressions for the Kronecker index

Theorem 4 Let Hh � Rn+1 be a C!-hedgehog. Fix x 2 Rn+1�Hh and let
hx : S

n ! R be the support function of Hh with respect to x:

hx (u) := hxh(u)� x; ui = h (u)� hx; ui .
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The Kronecker index ih (x) is given by

ih (x) = 1 + (�1)
n+1

��h (x) = �
+
h (x) + (�1)

n+1 ,

where ��h (x) := �
h
(hx)

�1
(]�1; 0[)

i
and �+h (x) := �

h
(hx)

�1
(]0;+1[)

i
.

Corollary 5 Under the assumptions of the previous theorem, we have:

8x 2 Rn+1�Hh, ih (x) =

8
<
:

1� 1
2�h (x) if n+ 1 is even

1
2

�
�+h (x)� �

�
h (x)

�
if n+ 1 is odd,

where �h (x) := �
h
(hx)

�1
(f0g)

i
, ��h (x) := �

h
(hx)

�1
(]�1; 0[)

i
and �+h (x) :=

�
h
(hx)

�1
(]0;+1[)

i
.

Remarks. 1. From these results, if n+ 1 is even then, for any x 2 Rn+1�Hh,
the knowledge of one of the four integers �h (x), �

�
h (x), �

+
h (x) and ih (x) im-

plies that of the three others.

2. For n + 1 = 2, we proved the following more general result (recall that
the Euler characteristic is a generalization of cardinality):

Theorem [8]. Let Hh � R2 be a C2-hedgehog. For every x 2 R2�Hh, the
Kronecker index ih (x) is given by

ih (x) = 1�
1

2
nh (x) ,

where nh (x) denotes the number of cooriented support lines of Hh through x,
that is, the number of zeros of hx : S1 ! R, u 7! h(u)� hx; ui.

3. For n+ 1 = 3, another expression for ih (x) is given by:

Theorem [16]. Let Hh � R3 be a C2-hedgehog. For every x 2 R3�Hh, the
Kronecker index ih (x) is given by

ih (x) = r
+
h (x)� r

�
h (x) ,

where r�h (x) (resp. r+h (x)
�
denotes the number of connected components of

S2 � h�1x (f0g) on which hx(u) := h(u)� hx; ui is negative (resp. positive).

4. In [16], we introduced another notion of index, which is more appropriate
for studying certain classes of hedgehogs of R3, such as projective hedgehogs
(i.e. with an antisymmetric support function):

11



De�nition. Let Hh � R
3 be a C2-hedgehog. Fix x 2 R3�Hh and let hx :

S2 ! R be the support function of Hh with respect to x. For every x 2 R3�Hh,
de�ne the jh-index of x with respect to Hh by:

jh (x) := 1� ch (x) ;

where ch (x) denotes the number of connected components of h�1x (f0g) � S2,
that is the number of spherical curves corresponding to points of Hh at which
the support plane passes through x.

Euler index at a point of Hh � R
2

Theorem 6 Let Hh � R2 be a C!-hedgehog. At a simple regular point x :=
xh (u) of Hh, the Euler index 1h (x) is equal to the value taken by the Kronecker
index ih on the connected component of R2�Hh towards which the unit normal
vector �u is pointing to. At a simple cusp point c of Hh, the Euler index 1h (c)
is equal to the value taken by the Kronecker index ih on the connected component
of R2�Hh that lies, in a neighborhood A of c, on the same side of Hh as the
evolute of Hh \ A.

Remarks. 1. Generic singularities of plane C1-hedgehogs are cusp points [5].

2. This result can be extended to hedgehogs Hh � R
2 that are Minkowski

di¤erences K � L of convex polygons (see Figure 5).

0

1

11

1

2 0

1

3

3

2

Figure 5. Euler index of the Minkowski di¤erence of two squares

Euler index at a regular point of Hh � R
n+1

In higher dimensions, the question is more involved at the singular points.
However, the result remains true at the simple regular points.

Theorem 7 Let Hh � Rn+1 be a C!-hedgehog. At a simple regular point
x := xh (u) of Hh, the Euler index 1h (x) is equal to the value taken by the
Kronecker index ih on the connected component of Rn+1�Hh towards which
the unit normal vector �u is pointing to.

12



4. Proof of the results

Proof of Theorem 1. By the de�nition of the convolution product, we have

�
1K � 1

�
o

K

�
(x) :=

Z

Rn+1
1K (y)1

�
o

K
(x� y) d� (y) for x 2 Rn+1.

Fix x 2 Rn+1. The range of Fx : R
n+1 ! R, y 7�! 1K (y)1

�
o

K
(x� y) is

included in f0; 1g and

8y 2 Rn+1, Fx (y) = 1, y 2 K \

�
o

K + fxg

�
.

By the de�nition of Euler integral, we thus get

�
1K � 1

�
o

K

�
(x) :=

Z

Rn+1
Fx (y) d� (y) = �

�
K \

�
o

K + fxg

��
.

If x = 0Rn+1 thenK\

�
o

K + fxg

�
=

o

K and hence
�
1K � 1

�
o

K

�
(x) = (�1)

n+1

since
o

K is homeomorphic to an open (n+ 1)-ball.

Assume x 6= 0Rn+1 . If K \

�
o

K + fxg

�
= ? then �

�
K \

�
o

K + fxg

��
= 0.

Hence, we may assume that K\

�
o

K + fxg

�
6= ?. In this case,

o

K\

�
o

K + fxg

�

is homeomorphic to an open (n+ 1)-ball and its boundary is the disjoint union

of @K \

�
o

K + fxg

�
and K \ @ (K + fxg), where the boundary of a convex

body L is denoted by @L. Therefore, K \

�
o

K + fxg

�
is then the disjoint union

of
o

K \

�
o

K + fxg

�
and @K \

�
o

K + fxg

�
, which is homeomorphic to an open

n-ball, so that

�

�
K \

�
o

K + fxg

��
= �

�
o

K \

�
o

K + fxg

��
+ �

�
@K \

�
o

K + fxg

��

= (�1)
n+1

+ (�1)
n

= 0,

which achieves the proof. �

To prove Theorems 3 and 4, we shall need some intermediate results and
properties.
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Proposition 8 Under assumptions of Theorem 3, we have:

1h (x) =

8
<
:

= ih (x) = 0 if x =2 K + (�L)

(�1)
n+1

(1� � [(K + f�xg) \ @L]) if x 2 (K + (�L))�Hh.

Proof. We have

1K � 1
�
o

L
= 1K � (1�L � 1�@L) = (1K � 1�L)� (1K � 1�@L) ,

where �L (resp. �@L) denotes the re�ection of L (resp. @L) through the origin.
Now, we have 1K � 1�L = 1K+(�L) by Groemer�s theorem, so that

1K � 1
�
o

L
= 1K+(�L) � (1K � 1�@L) .

Let x 2 Rn+1. The range of Fx : R
n+1 ! R, y 7�! 1K (y)1�@L (x� y) is

included in f0; 1g and

8y 2 Rn+1, Fx (y) = 1, y 2 K \ (@L+ fxg) .

By the de�nition of Euler integral, we thus get

(1K � 1�@L) (x) :=

Z

Rn+1
Fx (y) d� (y) = � [K \ (@L+ fxg)] .

Using the translation y 7! y � x, we deduce that

(1K � 1�@L) (x) = � [(K + f�xg) \ @L] .

First assume x =2 K+(�L). Then 1K+(�L) (x) = 0 and (1K � 1�@L) (x) = 0
since (K + f�xg) \ @L 6= ? would imply x 2 K + (�@L). Consequently

1h (x) := (�1)
n+1

�
1K � 1

�
o

L

�
(x)

= (�1)
n+1 �

1K+(�L) (x)� (1K � 1�@L) (x)
�

= 0.

Since xh (S
n) � K + (�L), we also have ih (x) = 0 and thus 1h (x) = ih (x).

Now assume x 2 (K + (�L))�Hh. Then we get

1h (x) = (�1)
n+1

(1� � [(K + f�xg) \ @L]) .

�

Recall that we say that two submanifolds S1 and S2 of a manifold M are
transverse, and we write S1 t S2, if TmM = TmS1 + TmS2 for all m 2 S1 \ S2.
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Proposition 9 Let Hh be a C!-hedgehog of Rn+1 and let K,L � Rn+1 be con-
vex bodies of class C!+ such that Hh is representing the formal di¤erence K�L.
For every x 2 Rn+1 such that (K + f�xg) \ L 6= ? and @ (K + f�xg) t @L,
the following properties hold:

(i) (hx)
�1
(f0g) � @ (K + f�xg) \ @L;

(ii) (hx)
�1
(]�1; 0]) � @ (K + f�xg) \ L;

(iii) (hx)
�1
([0;+1[) � (K + f�xg) \ @L;

where � is the homeomorphism relation and (hx) (u) := h (u)�hx; ui, (u 2 Sn).

Proof. (i) It follows from the assumptions that (K + f�xg) \ L is a strictly
convex body with interior points, and thus that its support function

f : Sn �!R
u 7! sup fhp; ui jp 2 (K + f�xg) \ Lg

is continuously di¤erentiable (see, e.g., [22]). Denote by k and l the respective
support functions of K and L and let kx (u) := k (u) � hx; ui for all u 2 Sn.
Note that the zeros of hx = kx � l are the points u 2 S

n such that the support
hyperplanes with exterior normal vector u of K + f�xg and L coincide. Such

an u 2 (hx)
�1
(f0g) cannot be a regular point of xf . So, we can consider the

continuous map

� : (hx)
�1
(f0g)! @ (K + f�xg) \ @L

u 7�! xf (u) := (rf) (u) + f (u)u

To check that it de�nes a homeomorphism from the compact (hx)
�1
(f0g) to

@ (K + f�xg) \ @L, it su¢ces to prove that it is a bijection.
Let p 2 @ (K + f�xg) \ @L. Since @ (K + f�xg) t @L, there exists a pair

of non-antipodal points v and w on Sn, such that

p = xkx (v) = xl (w) .

Let D denote the shortest arc between v and w on Sn. Since we have clearly
hx (v) < 0 and hx (w) > 0, there exists some u 2 D such that hx (u) = 0.
It remains to prove that such an u 2 D is unique and such that � (u) = p.
For � 2 Sn, let Hkx (�) and Hl (�) (resp. H�

kx
(�) and H�

l (�)
�
denote the

respective support hyperplanes (resp. halfspaces) with exterior normal vector �
of K + f�xg and L. Note that: (B) The segment with endpoints xkx (u) and
xl (u), say � (u), is passing through the complementary of H

�
kx
(v)[H�

l (w); (C)

Hkx (u) = Hl (u) = (xkx (u)xl (u))+
�
v? \ w?

�
, where �? is the vector subspace

orthogonal to � 2 Sn and (xkx (u)xl (u)) the line through xkx (u) and xl (u).

Let u1; u2 2 D \ (hx)
�1
(f0g). From (B) and (C) with u = u1 and u = u2, it

follows that the support hyperplanes Hkx (u1) = Hl (u1) and Hkx (u2) = Hl (u2)
of the convex hull of (K + f�xg) [ L must coincide (in order that all the end-
points of the segments � (u1) and � (u2) lie in each of the support halfspaces
H�
l (u1) and H

�
l (u2), see Figure 6). Therefore, there exists a unique u 2 D

15



such that hx (u) = 0 and it satis�es � (u) = p. �

u

vw

xl u

xkx u

u

p xkx v xl w

n 1
Hkx v Hl w

Hl u

Figure 6. Projection view onto the plane (Rv + Rw)
?

The following corollary is immediate.

Corollary 10 Under the assumptions of the previous proposition, we have:
8
<
:

� [@ (K + f�xg) \ @L] = �h (x)
� [@ (K + f�xg) \ L] = ��h (x) + �h (x)
� [(K + f�xg) \ @L] = �h (x) + �

+
h (x)

where �h (x) := �
h
(hx)

�1
(f0g)

i
, ��h (x) := �

h
(hx)

�1
(]�1; 0[)

i
and �+h (x) :=

�
h
(hx)

�1
(]0;+1[)

i
.

Lemma 11 Under assumptions of Theorem 3, we have:

1h (x) = ih (x) = 1� (�1)
n
��h (x)

if @ (K + f�xg) and @L are externally tangent.
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Proof. Let a = b� x be the point of tangency of @ (K + f�xg) and @L, where
(a; b) 2 K � L. By Proposition 8, we have

1h (x) = (�1)
n+1

(1� � [(K + f�xg) \ @L]) .

Since (K + f�xg) \ @L = fag, this implies 1h (x) = 0.
Let u be the point of Sn such that a = xkx (u) = xl (�u). For all " > 0,

x" := x + "u is such that (K + f�x"g) \ L = ? and hence x" =2 K + (�L).
Therefore, ih (x") = 0 for all " > 0 and hence ih (x) = 0.
Finally, by noticing that ��h (x) is constant on each connected component

of Rn+1�Hh and that (hx)
�1
(]�1; 0[) is homeomorphic to an open n-ball Bn

when the Euclidean norm of x is su¢ciently large, we see that

��h (x) = � (Bn) = (�1)
n
,

which achieves the proof: �

Lemma 12 Let Hh � R
n+1 be an analytic hedgehog. For every x 2 Rn+1�Hh,

the index 1h (x) is given by

1h (x) = 1 + (�1)
n+1

��h (x) ,

where ��h (x) := �
h
(hx)

�1
(]�1; 0[)

i
.

Proof. From Proposition 8 and Lemma 11, we can assume without loss of gen-
erality that x 2 (K + (�L))�Hh and @ (K + f�xg) t @L. Then, by Proposi-
tion 8 and Corollary 10, we have:

1h (x) = (�1)
n+1 �

1�
�
�h (x) + �

+
h (x)

��
.

But

��h (x) + �h (x) + �
+
h (x) = � (S

n) and � (Sn) = 1 + (�1)
n
,

so that

1h (x) = 1 + (�1)
n+1

��h (x) .

�

Proof of Theorems 3 and 4. Let Heh � R
n+1 be the hedgehog with support

function eh (�u) = �h (u), (u 2 Sn). Note that Hh and Heh have:

- the same geometric realization since xeh (�u) = xh (u) for all u 2 S
n;

- the same transverse orientation (resp. opposite transverse orientations) at
each point xeh (�u) = xh (u) if n+ 1 is even (resp. odd).

Therefore ieh = (�1)
n+1

ih on R
n+1�Hh. Thus if we prove that, under assump-

tions of Theorem 3, ih (x) = �
+
h (x) + (�1)

n+1
for all x 2 Rn+1�Hh, then

17



ih (x) = (�1)
n+1

ieh (x)

= (�1)
n+1

�
�+
eh
(x) + (�1)

n+1
�

= 1 + (�1)
n+1

�+
eh
(x)

= 1 + (�1)
n+1

��h (x) for all x 2 Rn+1�Hh,

and hence ih = 1h on R
n+1�Hh by Lemma 12. So it remains only to prove

that:

8x 2 Rn+1�Hh, ih (x) = �
+
h (x) + (�1)

n+1
.

Since ih (x) is equal to 0 and (hx)
�1
(]0;+1[) homeomorphic to an open n-

ball when the distance of x from the origin is su¢ciently large, it su¢ces to

prove that the map x 7! ih (x)�
�
�+h (x) + (�1)

n+1
�
is constant on Rn+1�Hh.

Since the maps x 7! ih (x) and x 7! �+h (x) are constant on each connected
component of Rn+1 �Hh, we only need to prove that ih (x)� �

+
h (x) remains

constant whenever x crosses Hh transversally at a regular point.
Recall that, at a regular point xh (u) of Hh, the transverse orientation of

Hh is given by sign [Rh (u)]u, where sign is the sign function and Rh the
curvature function of Hh. Therefore, the Kronecker index ih (x) decreases by
one unit whenever x crosses Hh transversally at a simple regular point xh (u)
in the direction of sign [Rh (u)]u. Thus it is su¢cient to prove that �

+
h (x) also

decreases by one unit whenever x crosses Hh transversally at a simple regular
point xh (u) in the direction of sign [Rh (u)]u.
Let xh (u) be a simple regular point of Hh. As the point xh (u) is regular, the

curvature function of Hh is nonzero at u: Rh (u) 6= 0. Recall that Rh (u) is the
product of the principal radii of curvature R1h (u), . . . , R

n
h (u) of Hh at u, which

are de�ned as the eigenvalues of xh at u. Denote by p (resp. q) the number
of principal radii of curvature of Hh at u that are positive (resp. negative),�
(p; q) 2 N2 and p+ q = n

�
.

Let us consider the variation of �+h (x) when x, moving on the normal line
to Hh at xh (u), crosses Hh at xh (u) in the direction of transverse orientation
(that is, in the direction of (�1)

q
u). We �rst consider the case where the sec-

tional curvature �xh(u) of Hh at xh (u) is positive (i.e., (p; q) = (n; 0) or (0; n)).
In the sequel of the proof, Bn will denote an open n-ball. If q = 0, then the
e¤ect of the crossing on �+h (x) is to add � (B

n)� � (Sn), that is �1, to �+h (x).

If q = n, then the e¤ect of the crossing on �+h (x) is to add (�1)
n+1

� (Bn), that
is �1, to �+h (x). Thus, in both cases, the e¤ect of this crossing in the direction
of transverse orientation is that �+h (x) decreases by one unit.

We now turn to the case where p and q are nonzero. If we consider (hx)
�1
(f0g),

which is a (not necessarily connected) smooth orientable hypersurface of Sn for
any x 2 Rn+1 � Hh (since rhx (u) 6= 0 whenever hx (u) = 0), the e¤ect of
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the crossing in the direction of transverse orientation can then be viewed as a
surgery performed on the hypersurface. If q is even (resp. odd), the �surgery�
consists in cutting out a piece of hypersurface homeomorphic to Sq�1 � Dp

(resp. Dq � Sp�1
�
and replacing it by a piece of hypersurface homeomorphic

to Dq � Sp�1 (resp. Sq�1 �Dp
�
, where Dm+1 is the closed m-ball bounded by

Sm, (m 2 N). Recall that such a surgery is possible by the fact that Sp�1�Sq�1

can be regarded as the boundary of Sq�1�Dp or as the boundary of Dq�Sp�1.
When we consider (hx)

�1
([0;+1[), the e¤ect of the "surgery" is to remove

(resp. to add) a cell complex that is homeomorphic to Dp � Bq if q is even
(resp. odd). Since Euler characteristic is multiplicative under cross products,

the e¤ect of the crossing on �+h (x) is thus to add (�1)
q+1

� (Bq), that is -1. �

Proof of Corollary 5. By Theorem 4, if n+1 is even, for every x 2 Rn+1�Hh,
ih (x) = 1 + ��h (x) = �+h (x) + 1 and hence ih (x) = 1 + 1

2

�
��h (x) + �

+
h (x)

�
.

Since ��h (x) + �h (x) + �
+
h (x) = � (Sn) = 1 + (�1)

n
, it follows that ih (x) =

1� 1
2�h (x).

Now, if n + 1 is odd then, for every x 2 Rn+1�Hh, ih (x) = 1 � ��h (x) =
�+h (x)� 1 and hence ih (x) =

1
2

�
�+h (x)� �

�
h (x)

�
. �

Proof of Theorem 6. We shall give later a proof valid in any dimension n+1,
(n 2 N�). But, in order to deal with the case of cusp points, we present a slightly
di¤erent proof in the plane.

Let K;L � R2 be convex bodies of class C!+ such that Hh is representing
the formal di¤erence K � L in R2. We shall denote by k and l their respective
support functions. Following the proof of Proposition 8 for n+ 1 = 2, we get

1h (x) = 1� � [(K + f�xg) \ @L] ,

since x := xh (u) = xk (u) + (�xl (u)) 2 K + (�L).
Note that @ (K + f�xg) and @L are internally tangent at the point xl (u)

since xl (u) = xkx (u), where kx (u) := k (u)� hx; ui,
�
u 2 S1

�
. Here �internally�

means that the two convex curves lie in the same side of their common tangent.
Since x := xh (u) is assumed to be a regular point of Hh, we have Rh (u) 6= 0
and thus Rkx (u) 6= Rl (u).

If Rh (u) > 0, then Rkx (u) > Rl (u), so that, in a neighborhood of the
tangent point, (@L)� fxl (u)g lie in the interior of K + f�xg. It follows that

� [(K + f�xg) \ @L] =
1

2
(� [@ (K + f�xg) \ @L]� 1) =

1

2
n0h (x) ,

where n0h (x) = �
��
v 2 S1 � fug jhx (v) = 0

	�
. Thus 1h (x) is then equal to

1 � 1
2n

0
h (x), which is the value taken by ih on the connected component of

R2�Hh towards which the unit normal vector �u is pointing to.
If Rh (u) < 0, then Rkx (u) < Rl (u), so that, in a neighborhood of the

tangent point, (@ (K + f�xg))� fxl (u)g lie in the interior of L. It follows that
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� [(K + f�xg) \ @L] =
1

2
(� [@ (K + f�xg) \ @L] + 1) =

1

2
n0h (x) + 1,

where n0h (x) = �
��
v 2 S1 � fug jhx (v) = 0

	�
. Thus 1h (x) is then equal to

� 1
2n

0
h (x), which is the value taken by ih on the connected component of R

2�Hh

towards which the unit normal vector �u is pointing to.
Following the same approach for a simple cusp point c := xh (v) and noticing

that Rh = Rkx �Rl changes sign at v, we obtain

1h (c) = 1�
1

2
n0h (c) ,

where n0h (c) = �
��
v 2 S1 � fvg jhx (v) = 0

	�
, which is the required value for

1h (c). �

Proof of Theorem 7. Let K;L � Rn+1 be convex bodies of class C!+ such
that Hh is representing the formal di¤erence K�L in R

n+1. Denote by k and l
their respective support functions. Following the proof of Proposition 8, we get

1h (x) = (�1)
n+1

(1� � [(K + f�xg) \ @L]) ,

since x := xh (u) = xk (u) + (�xl (u)) 2 K + (�L). Note that @ (K + f�xg)
and @L are internally tangent at the point xl (u) since xl (u) = xkx (u), where
kx (u) := k (u)� hx; ui, (u 2 S

n).

The result is the consequence of the following four observations:

(i) The proof of Proposition 8 can be adapted to obtain � [(K + f�xg) \ @L] =
�h (x) + �

+
h (x) in the present case;

(ii) ��h (x) + �h (x) + �
+
h (x) = � (S

n) = 1 + (�1)
n
;

(i) At x = xh (u), �
�
h : Rn+1 ! Z, p 7! �

h
(hp)

�1
(]�1; 0[)

i
takes the same

value as the one it takes on the connected component of Rn+1�Hh towards
which �u is pointing to;

(ii) On this connected component, ih (p) = 1+ (�1)
n+1

��h (p) by Theorem 4.�

5. Further remarks and applications

Euler characteristic of an analytic hedgehog

Let Hh � R
n+1 be an analytic hedgehog. De�ne its Euler characteristic by:

� (Hh) :=

Z

Rn+1
1h (x) d� (x) .

Proposition 13 Any analytic hedgehog of Rn+1 has Euler characteristic 1.
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Proof of proposition. LetHh be a C
!-hedgehog of Rn+1 and letK, L � Rn+1

be convex bodies of class C!+ such that Hh is representing the formal di¤erence
K � L. By the de�nitions of � (Hh) and 1h, we have:

� (Hh) :=

Z

Rn+1
(�1)

n+1
�
1K � 1

�
o

L

�
(x) d� (x) .

Convolution behaves has expected in CF
�
Rn+1

�
[2] and by reversing the

order of integration, we get immediately:

� (Hh) = (�1)
n+1

�Z

Rn+1
1K (x) d� (x)

��Z

Rn+1
1
�
o

L
(x) d� (x)

�
,

that is, � (Hh) = (�1)
n+1

� (K)�

�
�
o

L

�
= (�1)

n+1
� (D)�

�
o

D

�
= 1, where

D is the closed (n+ 1)-ball bounded by Sn in Rn+1, (n 2 N). �

Remark. For any analytic hedgehog Hh � R
n+1, � (Hh) can also be regarded

as the Euler characteristic of the complementary of the unbounded connected
component of Rn+1 �Hh, which is a compact contractible tame set.

Sturm-Hurwitz type theorems

The Sturm-Hurwitz theorem states that any continuous real function of the
form

f (�) =

+1X

n=N

(an cosn� + bn sinn�) ,

for some sequences of real numbers (an) and (bn), has at least as many zeros as
its �rst nonvanishing harmonics: # f� 2 [0; 2�[ jf (�) = 0g � 2N .

For C2-functions, this result is closely related to the index ih (x) of a C
2-

hedgehog Hh � R
2 with respect to a point x 2 R2�Hh and to its relationship

with the number of zeros of hx (u) = h(u) � hx; ui,
�
u 2 S1

�
[11, 16]. So, our

results suggest that, in higher dimensions, Sturm-Hurwitz type theorems might
resort to the Euler characteristic.

Mixed volume of analytic hedgehogs

As a consequence of Theorems 2 and 3, we have:

Given hedgehogs with support functions h1; : : : ; hn+1 2 C
! (Sn;R), the real

function P : Rn+1 �! R given by

P (B1; : : : ; Bn+1) := vn+1

 
n+1X

k=1

Bkhk

!
=

Z

Rn+1

�
1B1h1 � : : : � 1Bn+1hn+1

�
(x) d� (x) ,
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where � denotes the Lebesgue measure on Rn+1, is a homogeneous polynomial
the coe¢cients of which are the mixed volumes of Hh1 ; : : : ;Hhn+1 up to a con-
stant factors.

On the mixed area of K;L � R2 when L is centered

Proposition 14 Let K and L be convex bodies of class C2+ in R
2. Denote by k

and l their respective support functions and let kx be the support function of K
with respect to x: kx (u) := k (u)�hx; ui ;

�
u 2 S1

�
. Denote by �L the re�ection

of L through the origin and bl its support function: bl (u) = l (�u),
�
u 2 S1

�
. We

have:

v2 (k; c (l)) =
1

8

Z

K+(�L)

nk�l (x) d� (x) ,

where c (l) is the centered part of l, that is, c (l) = 1
2

�
l + bl

�
and nk�l (x) =

# (kx � l)
�1
(f0g) = #

�
u 2 S1 jkx (u) = l (u)

	
. In particular, if L is centered

(i.e., centrally symmetric with respect to the origin), then

v2 (K;L) =
1

8

Z

K+L

nk�l (x) d� (x) .

Proof. As we have recalled, for any C2-hedgehog Hh, we have [8]:

8x 2 R2�Hh, ih (x) = 1�
1

2
nh (x) ,

where nh (x) denotes the number of cooriented support lines of Hh through x,
that is, the number of zeros of hx : S

1 ! R, u 7! h(u) � hx; ui. Therefore,
we have:

8x 2 (K + (�L))�Hh,
�
i
k+bl � ik�l

�
(x) =

1

2
nk�l (x) .

By integrating over K + (�L), we get:

v2

�
k + bl

�
� v2 (k � l) =

1

2

Z

K+(�L)

nk�l (x) d� (x) .

Since v2

�
k + bl

�
�v2 (k � l) = 2v2

�
k; l + bl

�
�
�
v2 (l)� v2

�
bl
��
and v2

�
bl
�
= v2 (l),

it follows that:

v2 (k; c (l)) =
1

8

Z

K+(�L)

nk�l (x) d� (x) .

�

Remark. This result gives a geometrical interpretation of the mixed area when
one of the arguments is a centered convex body since nk�l (x) is the number of
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common support lines of K + f�xg and L.

In higher even dimensions

Starting from Corollary 5, we can easily obtain the following result in much
the same way.

Proposition 15 Let K and L be convex bodies of class C!+ in Rn+1, where
n+1 is even. Denote by k and l their respective support functions and let kx be
the support function of K with respect to x: kx (u) := k (u) � hx; ui ; (u 2 Sn).
Denote by �L is the re�ection of L through the origin and bl its support function:
bl (u) = l (�u), (u 2 Sn). We have:

vn+1

�
k + bl

�
� vn+1 (k � l) =

1

2

Z

K+(�L)

�k�l (x) d� (x)

where �k�l (x) = �
h
(kx � l)

�1
(f0g)

i
= � [fu 2 Sn jkx (u) = l (u)g].
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