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PRICING PARISIAN OPTIONS USING LAPLACE TRANSFORMS

CÉLINE LABART AND JÉRÔME LELONG

Abstract. In this work, we propose to price Parisian options using Laplace transforms.

Not only do we compute the Laplace transforms of all the different Parisian options, but

we also explain how to invert them numerically. We prove the accuracy of the numerical

inversion.

1. Introduction

The analysis of structured financial products often leads to the pricing of exotic options.
For instance, consider a re-callable convertible bond. The holder typically wants to recall
the bond if ever the underlying stock has been traded above or below a given level for too
long. Such a contract can be modelled with the help of Parisian options. Parisian options
are barrier options that are activated or cancelled depending on the type of option if the
underlying asset stays above or below the barrier long enough in a row. Parisian options
are far less sensitive to influential agent on the market than standard barrier options. It
is quite easy for an agent to push the price of a stock momentarily but not on a longer
period so that it would affect the Parisian contract.
In this work, we study the pricing of European style Parisian options using Laplace trans-
forms. Some other methods have already been proposed. On path dependent options,
crude Monte Carlo techniques do usually not perform well. An improvement of this strat-
egy using sharp large deviation estimates was proposed by Baldi et al. (2000). Techniques
using a two dimensional partial differential equation have also drawn much attention,
see for instance the works of Avellaneda and Wu (1999), Haber et al. (1999), or Wilmott
(1998). The PDE approach is quite flexible and could even be used for American style
Parisian option but the convergence is rather slow, which is badly suited for real time eval-
uation. In a quite similar state of mind, tree methods based on the framework of Cox et al.
(1979) were investigated by Costabile (2002). An original concept of implied barrier was
developed by Anderluh and van der Weide (2004), the idea is to replace the Parisian op-
tion by a standard barrier option with a suitably shifted barrier. The idea of using Laplace
transforms to price Parisian options was introduced by Chesney et al. (1997). Their work
is based on Brownian excursion theory in general and in particular on the study of the
Azéma martingale (see Azéma and Yor (1989)) and the Brownian meander. The prices
are then computed by numerically inverting the Laplace transforms. An original way of
doing so was proposed by Quittard-Pinon et al. (2004). They approximate the Laplace
transforms by negative power functions whose analytical inverse is well-known. But, there
is no upper bound for the error due to the inversion.
In this work, we give the formulae of the Laplace transforms of the prices of the different
Parisian options ready to be implemented. We also derive the formulae for the prices at
any time after the emission time. We prove an accuracy result for the numerical inversion
of the Laplace transforms to find the prices back.
First, we define the Parisian contract and introduce some material related to the excursion
theory. Then, we present a few parity relationships which enable to reduce the pricing of
the eight different types of Parisian options to the pricing of the down and in call — when
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2 Pricing Parisian Options using Laplace transforms

the barrier is smaller than the initial value — and the up and in call — when the barrier
is greater than the initial value. The Laplace transforms of the prices of the two latter
options are computed in Sections 4 and 5. Section 6 is devoted to the pricing at any time
after the emission time of the option. At this stage, we are able to compute the Laplace
transforms of the prices of all the different Parisian options, we only need a method to
accurately invert them. In Section 7, we study in details the numerical inversion of Laplace
transforms as introduced by Abate and Whitt (Winter 1995) and prove an upper bound
for the error. Finally, the last section is devoted to the comparison of our method with the
enhanced Monte Carlo method of Baldi et al. (2000) whose implementation in PREMIA1

has been used for the comparison. We have also implemented our method in PREMIA.

2. Definitions

2.1. Some notations. We consider a Brownian motion W = {Wt, t ≥ 0} defined on a
filtered probability space (Ω,F ,Q), which models a financial market. We assume that Q
is the risk neutral measure and that F = (Ft)t≥0 is the natural filtration of W . We denote
by T the maturity time. In this context, we assume that the dynamics of an asset price is
given by the process S

∀t ∈ [0, T ], St = x e(r−δ−σ2/2)t+σWt ,

where r > 0 is the interest rate, δ > 0 the dividend rate, σ > 0 the volatility
and x > 0 the initial value of the stock. The Cameron-Martin-Girsanov Theorem
(see Karatzas and Shreve (1991)) enables to state the following proposition for a finite
time horizon [0, T ] with T > 0.

Proposition 1. Let m = 1
σ

(
r − δ − σ2

2

)
and P be a new probability, which makes Z =

{Zt = Wt +mt, 0 ≤ t ≤ T} a P-Brownian motion. The change of probability is given by

dQ

dP |FT

= emZT −m2

2
T ,

and under P, the dynamics of S is given by

∀t ∈ [0, T ], St = x eσZt .

Remark 1. Since the drift term linking W and Z is deterministic, Ft is also the natural
filtration of Z.

Before explaining what a Parisian option is, we introduce the notion of excursion.

Definition 1 (Excursion). For any L > 0 and t > 0, we define

gS
L,t = sup{u ≤ t : Su = L} dS

L,t = inf{u ≥ t : Su = L}.
with the conventions sup ∅ = 0 and inf ∅ = +∞. The trajectory of S between gS

L, t and dS
L, t

is the excursion at level L, straddling time t.

Obviously, such an excursion can also be described in terms of the Brownian motion Z.
For a given barrier L for the process S, we introduce the corresponding barrier b for Z
defined by

b =
1

σ
log

(
L

x

)
.

1PREMIA is a pricing software developed by the MathFi team of INRIA Rocquencourt, see

http://www.premia.fr.

http://www.premia.fr
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Definition 2 (Stopping times Tb, T
−
b and T+

b ). Let b ∈ R and t > 0, we define the hitting
time of level b by

Tb(Z) = inf{u > 0 : Zu = b}.
In order to define T−

b (Z) and T+
b (Z), we introduce gb

t and db
t

gb
t = sup {u ≤ t : Zu = b}, db

t = inf {u ≥ t : Zu = b}.
Let T−

b (Z) denote the first time the Brownian motion Z makes an excursion longer than
some time D below the level b

T−
b (Z) = inf {t > 0 : (t− gb

t ) 1{Zt<b} ≥ D}.
For the excursion above b, we define

T+
b (Z) = inf {t > 0 : (t− gb

t ) 1{Zt>b} ≥ D}. (1)

When no confusion is possible, we write Tb, T
−
b and T+

b instead of Tb(Z), T−
b (Z) and

T+
b (Z).

Remark 2. Note that gb
t = gS

L,t and db
t = dS

L,t. Moreover, we can also write

T−
b (Z) = inf{t > D : ∀s ∈ [t−D, t] Zt < b}.
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Figure 1. Excursion of Brownian Motion

Definition 3 (Laplace transform). The Laplace Transform of a function f defined for all

t ≥ 0 is the function f̂ defined by

f̂(λ) =

∫ +∞

0
e−λtf(t)dt.

We also recall an elementary property of the Laplace transform of the convolution of two
functions.
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Proposition 2. Let f and g be two functions defined on R+ whose Laplace transforms
exist on (σf ,∞) and (σg,∞) respectively, then the Laplace transform of the convolution

f ⋆ g defined by (f ⋆ g)(t) =
∫ t
0 g(u)f(t− u)du exists on (max(σf , σg),∞) and is given by

f̂ ⋆ g(λ) = f̂(λ)ĝ(λ).

Parisian options can be seen as barrier options where the condition involves the time spent
in a row above or below a certain level and not only a hitting time. As for barrier options,
which can be activated or cancelled (depending whether they are In or Out) when the
asset S hits the barrier, Parisian options can be activated (In options) or cancelled (Out
options) after S has spent more than a certain time in an excursion. Parisian options are
defined in the following way

Definition 4 (Definition of θ, k and d). In the following, we define

θ =
√

2λ, k =
1

σ
log

(
K

x

)
, d =

b− k√
D
.

Definition 5 (Parisian Options). A Parisian option is defined by three characteristics:

• Up or Down,
• In or Out,
• Call or Put.

Combining the above characteristics together enables to distinguish eight types of Parisian
options. For example, PDIC denotes a Parisian Down and In call, whereas PUOP denotes
a Parisian Up and Out put.

In the following section, we present Parisian Down options.

2.2. Parisian Down options.

2.2.1. Parisian Down and In options. The owner of a Down and In option receives the
payoff if and only if S makes an excursion below level L older than D before maturity
time T . The price of a Down and In option at time 0 with payoff φ(ST ) is given by

e−rT EQ

(
φ(ST )1{T−

b
<T}

)
= e−(r+ m2

2
)T EP

(
1{T−

b
<T}φ(x eσZT ) emZT

)
. (2)

For the sake of clearness, we introduce the following notation

Definition 6 (the star notation). For any function f , we define

f⋆(t) = e(r+
1
2
m2)tf(t). (3)

From (2), we define the price of a Parisian Down and In call.

Definition 7 (Parisian Down and In call). Let PDIC(x, T ;K,L; r, δ) denote the value of
a Parisian Down and In call. Then,

PDIC(x, T ;K,L; r, δ) = e−(r+ 1
2
m2)T EP(1{T−

b
<T}(x eσZT −K)+ emZT ).

Using notation (3), we obtain

PDIC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

<T}(x eσZT −K)+ emZT ).
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2.2.2. Parisian Down and Out options. A Down and Out Parisian option becomes worth-
less if S reaches L and remains constantly below level L for a time interval longer than D
before maturity time T . The price of a Down and Out option at time 0 with payoff φ(ST )
is given by

e−rT EQ

(
φ(ST )1{T−

b
>T}

)
= e−(r+ m2

2
)T EP

(
1{T−

b
>T}φ(x eσZT ) emZT

)
. (4)

From (4), we define the price of a Parisian Down and Out call.

Definition 8 (Parisian Down and Out call). Let PDOC(x, T ;K,L; r, δ) denote the value
of a Parisian Down and Out call. Then,

PDOC(x, T ;K,L; r, δ) = e−(r+ 1
2
m2)T EP(1{T−

b
>T}(x eσZT −K)+ emZT ).

Using notation (3), we obtain

PDOC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

>T}(x eσZT −K)+ emZT ).

3. Relationship between prices

Parisian option prices cannot be computed directly. We are only able to give closed
formulae for their Laplace transforms w.r.t. the maturity time T . As we have seen it in the
above definitions, Parisian option prices depend on many parameters. The computation
of the Laplace transform of one option price (say PDOC) w.r.t T requires to distinguish
several cases, depending on the relative positions of x, L and K. The sign of b (= 1

σ log(L
x ))

plays an important role. In Section 3.2, we explain why computing the value of P̂DOC
⋆

when b > 0 can be reduced to computing the value of P̂DOC
⋆

with b = 0. As we will see it
in Section 3.1, there also exists an In and Out parity relationship between the prices. This
means that we can deduce the value of PDOC⋆ from the value of PDIC⋆. The following
scheme explains how to deduce the Laplace transforms of the different Parisian call prices
one from the others. Moreover, in Section 3.3, we state a call put parity relationship, which
enables to deduce the Parisian put prices from the corresponding call prices through the
Black Scholes formula.

3.1. In and Out parity. This part is devoted to make precise the way we compute the

value of P̂DOC
⋆

from the value of P̂DIC
⋆
. The technique developed below remains valid

for Parisian Up calls. We recall Definitions 7 and 8,

PDIC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

<T}(x eσZT −K)+ emZT ).

PDOC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

>T}(x eσZT −K)+ emZT ).

By summing the two previous equalities, we get

PDIC⋆(x, T ;K,L; r, δ) + PDOC⋆(x, T ;K,L; r, δ) = EP((x eσZT −K)+ emZT ). (5)

Definition 9. Let us define

BSC⋆(x, T ;K; r, δ) = EP((x eσZT −K)+ emZT ).

BSC is the price of a Black Scholes call option.

From (5), we get

P̂DOC
⋆
(x, λ;K,L; r, δ) = B̂SC

⋆
(x, λ;K; r, δ) − P̂DIC

⋆
(x, λ;K,L; r, δ).

Then, if we manage to get closed formulae for both P̂DIC
⋆

and B̂SC
⋆
, we can easily

deduce a closed formula for P̂DOC
⋆
. Since the pricing of a Parisian option can only

be achieved through the numerical inversion of its Laplace transform, it makes sense to
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P̂DIC
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Figure 2. Computation scheme of Parisian option prices

compute the Laplace transform of BSC — even though it can also be accessed through
the Black Scholes formula (see Black and Scholes (1973)) — to be able to implement the
different parity relationships straightaway.

The following proposition gives the value of B̂SC
⋆
(x, λ;K; r, δ)

Proposition 3. For K ≥ x,

B̂SC
⋆
(x, λ;K; r, δ) =

K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
.

For K ≤ x,

B̂SC
⋆
(x, λ;K; r, δ) =

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+

K e(m+θ)k

θ

(
1

m+ θ
− 1

m+ σ + θ

)
.

k is defined in Definition 4.

Proof. From Definition 9

BSC⋆(x, T ;K; r, δ) =

∫ +∞

−∞
emz(x eσz −K)+

1√
2πT

e−
z2

2T dz.
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Then,

B̂SC
⋆
(x, λ;K; r, δ) =

∫ +∞

−∞
emz(x eσz −K)+

∫ +∞

0

e−λt

√
2πt

e−
z2

2t dt dz. (6)

The computation of the second integral on the right hand side is given in Appendix B.
Combining (20) and (6), we find

B̂SC
⋆
(x, λ;K; r, δ) =

∫ +∞

k
emz(x eσz −K)

e−|z|θ

θ
dz. (7)

• In the case K ≥ x, k ≥ 0 and the result easily follows.
• In the case K ≤ x, we split the integral in (7) into two parts

B̂SC
⋆
(x, λ;K; r, δ) =

∫ 0

k
emz(x eσz −K)

ezθ

θ
dz +

∫ ∞

0
emz(x eσz −K)

e−zθ

θ
dz,

and an easy computation yields the result.

�

3.2. Reduction to the case b = 0. Assume that we know the value of P̂DOC
⋆

with
b ≤ 0. This section aims at proving that computing P̂DOC

⋆
with b > 0 boils down to

computing the value of P̂DOC
⋆

with b = 0, as suggested in Figure 2. First, we state a
Proposition which links PDOC⋆ with b > 0 to PDOC⋆ with b = 0.

Proposition 4. The price of a Parisian Down and Out call in the case b > 0 is given by

PDOC⋆(x, T ;K,L; r, δ) = L emb

∫ D

0
PDOC⋆,0(T − u;K/L; r, δ)µb(du)

where µb(du) is the law of Tb and

PDOC⋆,0(T ;K; r, δ) = EP

(
1{T−

0 ≥T}(e
σZT −K)+ emZT

)
.

Remark 3. Note that PDOC⋆,0(T ;K; r, δ) = PDOC(1, T ;K, 1; r, δ).

Proof. First, we recall the value of PDOC⋆

PDOC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

>T}(x eσZT −K)+ emZT ).

Since Z starts from 0 and b is positive, Tb < D on the set {T−
b ≥ T}. In fact, if Tb were

strictly greater than D, it would mean that Z would not have crossed b before D and
then T−

b would be equal to D, which is impossible since we are on the set {T−
b ≥ T}, and

T > D. Therefore, we can write

PDOC⋆(x, T ;K,L; r, δ) = EP(1{T−
b
≥T}1{Tb≤D}(x eσZT −K)+ emZT ).

Introducing ZTb
, we can also write

PDOC⋆(x, T ;K,L; r, δ) =

EP

(
1{Tb≤D}EP[1{T−

b
−Tb≥T−Tb}(x eσZT −ZTb

+b −K)+ em(ZT −ZTb
+b) | FTb

]
)
.

To compute the inner expectation in the previous formula, we rely on the strong Markov
property. Let B = {Bt = ZTb+t −ZTb

, t ≥ 0}. B is independent of FTb
and one can easily

prove that T−
b (Z) − Tb(Z) = T−

0 (B) a.s. on the set {T−
b ≥ T} .

Hence, we find

PDOC⋆(x, T ;K,L; r, δ) = E[1{Tb≤D}E[1{T−
0 ≥T−t}(x eσ(BT−t+b) −K)+ em(BT−t+b)]|t=Tb

].
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We get

PDOC⋆(x, T ;K,L; r, δ) =

∫ D

0
EP

(
1{T−

0 ≥T−u}(x eσ(BT−u+b) −K)+ em(BT−u+b)
)
µb(du),

where µb(du) is the law of Tb. As b = 1
σ ln

(
L
x

)
, we get

PDOC⋆(x, T ;K,L; r, δ) = L emb

∫ D

0
EP

(
1{T−

0 ≥T−u}(e
σBT−u −K/L)+ emBT−u

)
µb(du),

and the result follows. �

By using Proposition 4, we can state the following formula for the Laplace transform of
PDOC⋆(x, T ;K,L; r, δ).

Proposition 5. The Laplace transform of PDOC⋆ when b > 0 is given by

P̂DOC
⋆
(x, λ;K,L; r, δ) = L emb P̂DOC

⋆,0
(λ;K/L; r, δ)

∫ D

0
e−λu µb(du),

where ∫ D

0
e−λu µb(du) = e−θb N

(
θ
√
D − b√

D

)
+ eθb N

(
−θ

√
D − b√

D

)
.

Proof. From Proposition 4, we have

PDOC⋆(x, T ;K,L; r, δ) = e−λT L emb

∫ D

0
PDOC⋆,0(T − u;K/L; r, δ)µb(du)1{T>D}.

Using Proposition 2, it is quite easy to show that

P̂DOC
⋆
(x, λ;K,L; r, δ) = L emb

∫ D

0
µb(du) e−λu P̂DOC

⋆,0
(λ;K/L; r, δ).

We refer the reader to Appendix A for the computation of
∫ D
0 µb(du) e−λu. �

3.3. Call put parity. In this part, we explain how to deduce the put prices from the call
prices using a parity relationship.

Proposition 6. The following relationships hold

PDOP (x, T ;K,L; r, δ) = xK PUOC

(
1

x
, T ;

1

K
,
1

L
; δ, r

)
,

PUOP (x, T ;K,L; r, δ) = xK PDOC

(
1

x
, T ;

1

K
,
1

L
; δ, r

)
,

PUIP (x, T ;K,L; r, δ) = xK PDIC

(
1

x
, T ;

1

K
,
1

L
; δ, r

)
,

PDIP (x, T ;K,L; r, δ) = xK PUIC

(
1

x
, T ;

1

K
,
1

L
; δ, r

)
.

Proof. Let us consider a Parisian Down and Out put

PDOP (x, T ;K,L; r, δ) = E
(
emZT (K − x eσZT )+ 1{T−

b
>T}

)
e
−

“

r+ m2

2

”

T
.

One notices that the first time the Brownian motion Z makes an excursion below b longer
than D is equal to the first time the Brownian motion −Z makes above −b an excursion
longer than D. Therefore, by introducing the new Brownian motion W = −Z, we can
rewrite
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PDOP (x, T ;K,L; r, δ) = E
(
e−mWT (K − x e−σWT )+ 1{T+

−b
>T}

)
e
−

“

r+ m2

2

”

T
,

= xK E

(
e−(m+σ)WT

(
1

x
eσWT − 1

K

)+

1{T+
−b

>T}

)
e
−

“

r+ m2

2

”

T
.

Let us introduce m′ = −(m+ σ), δ′ = r, r′ = δ and b′ = −b. With these relations, we can

easily check that m′ = 1
σ

(
r′ − δ′ − σ2

2

)
and that r′ + m′2

2 = r + m2

2 . Moreover, we notice

that the barrier L′ corresponding to b′ = −b is 1
L .

Therefore, E

(
e−(m+σ)WT

(
eσWT

x − 1
K

)+
1{T+

−b
>T}

)
e
−

“

r+ m2

2

”

T
is in fact the price of an

Up and Out call PUOC
(

1
x , T ; 1

K ,
1
L ; δ, r

)
. Finally, we come up with the following relation

PDOP (x, T ;K,L; r, δ) = xK PUOC

(
1

x
, T ;

1

K
,
1

L
; δ, r

)
.

The three other assertions in Proposition 6 can be proved in the same way. �

4. Valuation of Parisian call options

Looking at Figure 2, we notice that we only need to compute P̂DIC
⋆

with b ≤ 0 and

P̂UIC
⋆

with b ≥ 0. With these values we can deduce the prices of all the other Parisian
call options.

4.1. The valuation of a Parisian Down and In call option with b ≤ 0. Before
computing the Laplace transform of PDIC⋆ in Section 4.1.2, we state some preliminary
results in Section 4.1.1. We give a new expression for PDIC⋆ in Proposition 7 and we

state in Lemma 1 a key result for the computation of P̂DIC
⋆
.

4.1.1. Preliminary results.

Proposition 7.

PDIC⋆(x, T ;K,L; r, δ) =

∫ ∞

k
emy(xeσy −K)h−b (T, y)dy,

where

h−b (t, y) =

∫ b

−∞

b− z

D
e−

(z−b)2

2D γ−(t, z − y)dz,

and

γ−(t, x) = EP


1{T−

b
<t}

e
− x2

2(t−T
−
b

)

√
2π(t− T−

b )


 .

Proof. Remember that the value of PDIC⋆ is given by

PDIC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

<T}(x eσZT −K)+ emZT ).

By conditioning with respect to FT−
b

, we can write

PDIC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

<T}EP[x e
σ(ZT −Z

T
−
b

+Z
T
−
b

) −K)+ e
m(ZT −Z

T
−
b

+Z
T
−
b

) |FT−
b

]).
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First, we deal with the conditional expectation. Let Bt = Zt+T−
b
− ZT−

b
for t ≥ 0. B is

independent of FT−
b

. So, we obtain

EP

[
(x e

σ(ZT −Z
T
−
b

+Z
T
−
b

) −K)+ e
m(ZT −Z

T
−
b

+Z
T
−
b

) |FT−
b

]
=

EP

[
(x eσ(BT−τ +z) −K)+ em(BT−τ +z)

]
|z=Z

T
−
b

, τ=T−
b

,

and

EP

[
(x eσ(BT−τ +z) −K)+ em(BT−τ +z)

]
=

1√
2π(T − τ)

(∫ ∞

−∞
emu(x eσu −K)+ e

− (u−z)2

2(T−τ) du

)
.

Hence, we get

PDIC⋆(x, T ;K,L; r, δ) = EP(1{T−
b

<T}PT−T−
b

(fx)(ZT−
b

)),

with
fx(z) = emz(x eσz −K)+,

and

Pt(fx)(z) =
1√
2πt

∫ ∞

−∞
fx(u) exp

(
−(u− z)2

2t

)
du.

As recalled by Chesney et al. (1997), the random variables ZT−
b

and T−
b are independent.

Denoting the law of ZT−
b

by ν−(dz) leads to

PDIC⋆(x, T ;K,L; r, δ) =

∫ ∞

−∞
EP(1{T−

b
<T}PT−T−

b
(fx)(z))ν−(dz),

=

∫ ∞

−∞
fx(y)h

−
b (T, y)dy,

where

h−b (t, y) =

∫ ∞

−∞
EP


1{T−

b
<t}

exp
(
− (z−y)2

2(t−T−
b

)

)

√
2π(t− T−

b )


 ν−(dz).

Using the expression of ν−(dz) given in Appendix C, we know that

h−b (t, y) =

∫ b

−∞

b− z

D
e−

(z−b)2

2D EP


1{T−

b
<t}

e
− (z−y)2

2(t−T
−
b

)

√
2π(t− T−

b )


 dz,

and the result follows. �

Definition 10. Let ψ : R → R denote

ψ(z)
∆
=

∫ +∞

0
xe−

x2

2
+zxdx = 1 + z

√
2πe

z2

2 N (z).

Remark 4. For the numerical inversion of Laplace transforms, it is important to notice
that ψ is analytic on the complex plane.

We can easily prove the following Lemma.

Lemma 1. Let Kλ,D : R → R be defined as

Kλ,D(a) =

∫ +∞

0
v e−

v2

2D
−|a−v|θ dv.
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Then,

Kλ,D(a) =





eθaDψ(−θ
√
D) if a ≤ 0,

e−θaDψ(θ
√
D) −Dθ

√
2πDeλD

{
N (θ

√
D − a√

D
)e−θa+

N (−θ
√
D − a√

D
)eθa

}
otherwise.

4.1.2. The Laplace transform of PDIC⋆(x, T ;K,L; r, δ).

Theorem 1. The value of P̂DIC
⋆

is given by the following formula

P̂DIC
⋆
(x, λ;K,L; r, δ) =

eθb

Dθψ(θ
√
D)

∫ ∞

k
emy(xeσy −K)Kλ,D(b− y)dy. (8)

For any λ > (m+σ)2

2 and for K > L, we get

P̂DIC
⋆
(x, λ;K,L; r, δ) =

ψ(−θ
√
D) e2bθ

θψ(θ
√
D)

K e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, (9)

and for K ≤ L

P̂DIC
⋆
(x, λ;K,L; r, δ) =

e(m+θ)b

ψ(θ
√
D)

(
2K

m2 − θ2

[
ψ(m

√
D) −m

√
2πD e

Dm2

2 N (m
√
D + d)

]

− 2L

(m+ σ)2 − θ2

[
ψ((m+ σ)

√
D) − (m+ σ)

√
2πD e

D
2

(m+σ)2 N
(
(m+ σ)

√
D + d

)])

+
K e(m+θ)k

θψ(θ
√
D)

(
1

m+ θ
− 1

m+ σ + θ

)[
ψ(θ

√
D) − θ

√
2πD eλD N (θ

√
D − d)

]

+
eλD

√
2πD

ψ(θ
√
D)

K e2bθ e(m−θ)k N (−d− θ
√
D)

(
1

m+ σ − θ
− 1

m− θ

)
. (10)

Proof. (9) and (10) easily follow from (8):

• if K > L, b− y < 0 ∀y ∈ [k,∞]. Then, using Lemma 1 and (8) yields

P̂DIC
⋆
(x, λ;K,L; r, δ) =

ψ(−θ
√
D) e2bθ

θψ(θ
√
D)

∫ ∞

k
e(m−θ)y(x eσy −K)dy,

and the result easily follows.
• if K < L, b − y is positive on [k, b] and negative on [b,∞]. We have to split the

integral

I
△
=

∫ +∞

k
emy(xeσy −K)Kλ,D(b− y)dy.

appearing in (8).

I =

∫ b

k
emy(xeσy −K)Kλ,D(b− y)dy +

∫ +∞

b
emy(xeσy −K)Kλ,D(b− y)dy

△
= I1 + I2.

I1 = Dψ(−θ
√
D)eθb

∫ +∞

b
emy(xeσy −K)e−θy = Dψ(−θ

√
D)emb

(
K

m− θ
− L

m+ σ − θ

)
.
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The integral I2 can be split into three terms

I21 = Dψ(θ
√
D)

∫ b

k
emy(xeσy −K)eθ(y−b)dy,

I22 = −Dθ
√

2πDeλD

∫ b

k
emy(xeσy −K)eθ(y−b)N (θ

√
D − b− y√

D
)dy,

I23 = −Dθ
√

2πDeλD

∫ b

k
emy(xeσy −K)eθ(b−y)N (−θ

√
D − b− y√

D
)dy.

An easy computation leads to

I21 = Dψ(θ
√
D)e−θb

{
e(m+θ)b

[
L

m+ σ + θ
− K

m+ θ

]
+Ke(m+θ)k

[
1

m+ θ
− 1

m+ σ + θ

]}
.

I22 and I23 are computed in the following way: we change variables (we intro-

duce v = θ
√
D − b−y√

D
(for the valuation of I22)) and we use the following equal-

ity
∫ a2

a1
N (v)ebvdv = 1

b [N (a2)e
a2b − N (a1)e

a1b − e
b2

2 (N (a2 − b) − N (a1 − b))], for
a1, a2, b ∈ R, b 6= 0 and a1 ≤ a2.

We refer to Proposition 11, to prove that λ must be greater than (m+σ)2

2 . Let us prove
(8). Using Proposition 7, we get

P̂DIC
⋆
(x, λ;K,L; r, δ) =

∫ ∞

k
emy(xeσy −K)

∫ ∞

0
e−λt h−b (t, y)dtdy.

We would like to compute ĥ−b (λ, y) =
∫∞
0 e−λt h−b (t, y)dt. Using the definition of h−b (t, y)

in Proposition 7 yields

ĥ−b (λ, y) =

∫ b

−∞

b− z

D
e−

(z−b)2

2D

∫ ∞

0
e−λt γ−(t, z − y)dt dz. (11)

So, we need to compute the Laplace transform of γ−(t, x).

∫ ∞

0
e−λt γ−(t, x)dt = EP



∫ ∞

T−
b

e−λt e
− x2

2(t−T
−
b

)

√
2π(t− T−

b )
dt


 .

The change of variables u = t− T−
b gives

∫ ∞

0
e−λt γ−(t, x)dt = EP(e−λT−

b )

∫ ∞

0
e−λu e−

x2

2u√
2πu

du.

Using results from Appendices A and B, we get
∫ ∞

0
e−λt γ−(t, x)dt =

e−(|x|−b)θ

θψ(θ
√
D)

.

Thanks to (11), we can rewrite

ĥ−b (λ, y) =
ebθ

Dθψ(θ
√
D)

∫ b

−∞
(b− z) e−

(z−b)2

2D
−|z−y|θ dz.

By changing variables v = b− z, we obtain

ĥ−b (λ, y) =
ebθ

Dθψ(θ
√
D)

∫ ∞

0
v e−

v2

2D
−|b−v−y|θ dv,

and (8) follows. �
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5. The Parisian Up calls

This section is devoted to the computation of the Laplace transforms of the Parisian Up
call prices. We will go exactly through the same points as in the previous section but
dealing with an Up and In call with b ≥ 0 instead of a Down and In call with b ≤ 0.

5.1. The valuation of a Parisian Up and In call with b ≥ 0. The owner of an Up
and In option receives the payoff if S makes an excursion above the level L longer than D
before the maturity time T , which is exactly the same as saying that the Brownian motion
Z makes an excursion above b longer than D. Using the previous notations, the price of
a Parisian Up and In call is given by

PUIC⋆(x, T ;K,L; r, δ) = EP(1{T+
b

<T}(x eσZT −K)+ emZT ),

where T+
b is defined by (1). The valuation of P̂UIC

⋆
in the case b ≥ 0 is similar to

the valuation of P̂DIC
⋆

in the case b ≤ 0 (see previous Section). Before computing the
Laplace transform of PUIC⋆ in Theorem 2, we give a new expression for PUIC⋆.

Proposition 8.

PUIC⋆(x, T ;K,L; r, δ) =

∫ ∞

k
emy(xeσy −K)h+

b (T, y)dy,

where

h+
b (t, y) =

∫ ∞

b

z − b

D
e−

(z−b)2

2D γ+(t, z − y)dz,

and

γ+(t, x) = EP


1{T+

b
<t}

e
− x2

2(t−T
+
b

)

√
2π(t− T+

b )


 .

The proof of Proposition 8 is the same as the proof of Proposition 7. We only need to
replace T−

b by T+
b .

Theorem 2. The value of P̂UIC
⋆

is given by the following formula

P̂UIC
⋆
(x, λ;K,L; r, δ) =

e−θb

Dθψ(θ
√
D)

∫ ∞

k
emy(xeσy −K)Kλ,D(y − b)dy.

For any λ > (m+σ)2

2 , we get for K > L

P̂UIC
⋆
(x, λ;K,L; r, δ) = 2 e(m−θ)b

√
2πD

ψ(θ
√
D)

[
K

m2 − θ2
e

Dm2

2 mN (m
√
D + d)

− L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N ((m + σ)
√
D + d)

]

+
e−2bθ

ψ(θ
√
D)

K e(m+θ)k eλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

+
e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(θ

√
D) − θ

√
2πD eλD N (d+ θ

√
D)
)
.
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and for K ≤ L

P̂UIC
⋆
(x, λ;K,L; r, δ) =

2 e(m−θ)b

ψ(θ
√
D)

[
K

m2 − θ2
ψ(m

√
D) − L

(m+ σ)2 − θ2
ψ((m + σ)

√
D)

]

+
e−2bθ ψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
.

Even if the computations involved in the proof of Theorem 2 are different from the one of
Theorem 1, we dare omit the proof here as the scheme of the proof of Theorem 1 applies
to the case of Up and In call.

6. Prices at any time t

So far, we have explained how to compute the prices at time 0 of the Laplace transforms of
the different Parisian option prices w.r.t. maturity time. From a practical point of view,
the real stake is to be able to hedge these options. This requires to compute the option
prices at any given time t between 0 and the maturity time T . In this part, we explain
how to deduce the prices at any time t > 0 from the prices at time 0.
In the following, we have chosen to focus on the Down and In call but the formula we
obtain can easily be extended to the other options by means of parity relationships. We
assume in the following computations that the relevant excursion has not occurred yet,
otherwise the Parisian option has turned into the corresponding vanilla option and its
price at time t is of common knowledge.

6.1. Down and In call. We introduce the r.v. Dt to count the time already spent in the
excursion below b straddling time t

Dt =

{
t− gb

t if St ≤ b,

0 if St > b.

Note that Dt is Ft-measurable.
Let PDIC(t,Dt, St, T ;K,L; r, δ) be the price of a Down and In call at time t. We know
that

PDIC(t,Dt, St, T ;K,L; r, δ) = e−r(T−t) EQ

(
(x eσ(WT +mT ) −K)+ 1{T−

b
≤T}|Ft

)
. (12)

Proposition 9. On the set {T−
b > t},

PDIC(t,Dt, St, T ;K,L; r, δ)

= e
−

“

r+ m2

2

”

T ′
{

1{St>L}E

(
emZ′

T ′ (x eσZ′
T ′ −K)+ 1{T ′−

b′ ≤T ′}

)

|x=St

+ 1{St≤L}1{D−Dt≤T ′}E
(
emZ′

T ′ (x eσZ′
T ′ −K)+ 1{T ′

b′≥D−d}
)
|x=St,d=Dt

+ 1{St≤L}E

(
emZ′

T ′ (x eσZ′
T ′ −K)+ 1{T ′

b′≤D−d}1{T ′−
b′ ≤T ′}

)

|x=St,d=Dt

}
. (13)

where Z ′ is a P−Brownian motion independent of Ft and

T ′ = T − t, b′ =
1

σ
ln

(
L

St

)
, T ′−

b′ = T−
b′ (Z

′), T ′
b′ = Tb′(Z

′).
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Proof. We can change the probability measure as we did at the beginning to make Z =
{Wt + mt; t ≥ 0} a P−Brownian motion (P is defined in Proposition 1). E denotes the
expectation under P. Then, by changing the probability in Equation (12) we can write

PDIC(t,Dt, St, T ;K,L; r, δ)

= e−r(T−t)
E
(
emZT − 1

2
m2T (x eσZT −K)+ 1{T−

b
≤T}|Ft

)

emZt− 1
2
m2t

,

= e−r(T−t)
E
(
emZt em(ZT −Zt)− 1

2
m2T (x eσZT −K)+ 1{T−

b
≤T}|Ft

)

emZt− 1
2
m2t

,

= e−(r+ m2

2
)(T−t) E

(
em(ZT −Zt)(St eσ(ZT −Zt) −K)+ 1{T−

b
≤T}|Ft

)
.

We introduce Z ′
s = Zt+s −Zt for all s ≥ 0. Z ′ is a P−Brownian motion independent of Ft.

PDIC(t,Dt, St, T ;K,L; r, δ) = e−(r+ m2

2
)T ′

E
(
emZ′

T ′ (St eσZ′
T ′ −K)+ 1{T−

b
≤T}|Ft

)
.

The indicator 1{T−
b
≤T} can be split up in several parts describing the different possible

evolutions of Z ′ (see Figure 3). Either Zt is not smaller than b and a whole excursion
must be completed before T ′, or Z is already in an excursion below b. In the latter case,
there are two possibilities corresponding to the two curves in Figure 3: either the current
excursion will last longer than D (green curve), or Z will cross b before D − Dt (blue
curve) and a new excursion has to completed before T ′. Then, on the set {T−

b > t}, the
indicator 1{T−

b
≤T} can be rewritten as follows

1{T−
b
≤T} = 1{Zt>b}1{T ′−

b′ ≤T ′}+1{Zt≤b}

(
1{T ′

b′≥D−Dt}1{D−Dt≤T ′} + 1{T ′
b′<D−Dt}1{T ′−

b′ ≤T ′}

)
.

To find Equation (13), it is sufficient to notice that both T ′
b and T ′−

b are independent of
Z ′, whereas St and Dt are Ft−measurable. �
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Figure 3. Possible evolutions of an asset price
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In the sequel, we use the following decomposition based on Proposition 9

PDIC(t,Dt, St, T ;K,L; r, δ)
∆
= e

−
“

r+ m2

2

”

T ′ {
1{St>L}E1(St, T

′)

+1{St≤L}E2(St,Dt, T
′) + 1{St≤L}E3(St,Dt, T

′)
}
. (14)

From Equation (13), we notice that E1 is the star price of a Parisian Down and In call,

E1(x, T
′) = PDIC⋆(x, T ′;K,L; r, δ). (15)

Proposition 10. On the set {T−
b > t}, the price of a Down and In call at time t is given

by

PDIC⋆(t,Dt, St, T ;K,L; r, δ) = 1{Zt>b}PDIC
⋆(St, T − t,K,L; r, δ)

+ 1{Zt≤b}(1{D−Dt≤T−t}BSC
⋆(St, T − t;K; r, δ) + g(St,Dt, T − t)) (16)

where the function g is characterised by its Laplace transform

ĝ(St,Dt, λ) = emb′
∫ D−Dt

0
µb′ e

−λu du

(
L P̂DIC

⋆,0
(λ;

K

L
; r, δ)

− B̂SC
⋆
(L, λ;K; r, δ)

)
.

Proof. Let us go back to Equation (14). E1 is already known (see (15)) and gives the first
term on the r.h.s of (16). First, we deal with E2 and after with E3.
Step 1 : Laplace transform of E2.

E2(x, d, t) = E
(
emZt(x eσZt −K)+ 1{T ′

b′≥D−d}1{D−d≤t}
)

= 1{D−d≤t}BSC
⋆(x, t;K; r, δ) − 1{D−d≤t}E

(
emZt(x eσZt −K)+ 1{T ′

b′≤D−d}
)

∆
= E21(x, d, t) − E22(x, d, t).

The term E21 corresponds to the first half of the second term on the r.h.s of (16). By
conditioning w.r.t FT ′

b′
and introducing Xu = Zu+T ′

b′
− b′, which is a Brownian motion

independent of FT ′
b′
, we get

E22(x, d, t) = 1{D−d≤t}E
(
1{T ′

b′≤D−d}E
(
emXt−τ emb′(x e+σb′ eσXt−τ −K)+

)
|τ=T ′

b′

)
,

= 1{D−d≤t}

∫ D−d

0
emb′ E(emXt−u(x eσb′ eσXt−u −K)+)µb′(u)du,

where µb′ is the density function of the hitting time T ′
b′ .

Using Proposition 2, it is quite easy to show that

Ê22(St,Dt, λ) = emb′ B̂SC⋆(L, λ;K; r, δ)

∫ D−Dt

0
e−λu µb′(u)du.

Step 2: Laplace transform of E3. From Equation (14),

E3(x, d, t) = E

(
emZ′

t(x eσZ′
t −K)+ 1{T ′

b′≤D−d}1{T ′−
b′ ≤t}

)

To compute E3, we condition w.r.t FT ′
b′

and introduce Xu = Z ′
u+T ′

b′
− b′. X is a Brownian

motion independent of FT ′
b′
. Hence, we get

E3(x, d, t) = E
(

E
(
emZ′

t(x eσZ′
t −K)+ 1{T ′

b′≤D−d}1{T ′−
b′ ≤t}|FT ′

b′

))
,

= emb′ E
(
1{T ′

b′≤D−d}E
(
e
mXt−T ′

b′ (x eσb′ e
σXt−T ′

b′ −K)+ 1{T ′−
b′ ≤t}|FT ′

b′

))
.
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Moreover on the set {T ′
b′ ≤ D − d}, T ′−

b′ (Z ′) = T ′
b′(Z

′) + T−
0 (X) a.s.. Hence, we find

E3(x, d, t) = emb′ E
(
1{T ′

b′≤D−d}E
(
e
mXt−T ′

b′ (x eσb′ e
σXt−T ′

b′ −K)+ 1{T−
0 ≤t−T ′

b′}
|FT ′

b′

))

= emb′ E

(
1{τ≤D−d}E

(
emXt−τ (x eσb′ eσXt−τ −K)+ 1{T−

0 ≤t−τ}

)
|τ=T ′

b′

)

= emb′
∫ D−d

0
E
(
emXt−τ (x eσb′ eσXt−τ −K)+ 1{T−

0 ≤t−τ}

)
µb′(τ)dτ.

Using Proposition 2, one can show that

Ê3(x, d, λ) = x e(m+σ)b′ P̂DIC
⋆,0

(λ;K e−σb′ /x; r, δ)

∫ D−d

0
e−λτ µb′(τ)dτ.

Finally, we get

Ê3(St,Dt, λ) = L emb′ P̂DIC
⋆,0

(λ;K/L; r, δ)

∫ D−Dt

0
e−λτ µb′(τ)dτ.

Noticing that E3(St,Dt, λ) − E22(St,Dt, λ) = ĝ(St,Dt, λ) ends the proof. �

6.2. Other Parisian options. The price at time t of an Up and In call can be computed
by closely following what has been done for the Down and In call and it is sufficient to
replace PDIC by PUIC in the above formula. All the other Parisian option prices can
be deduced using either an In and Out parity or a call put parity relationship.

7. The inversion of Laplace transforms

This section is devoted to the numerical inversion of the Laplace transforms computed pre-
viously. We recall that the Laplace transforms are computed with respect to the maturity
time. We explain how to recover a function from its Laplace transform using a contour
integral. The real problem is how to numerically evaluate this complex integral. This is
done in two separate steps involving two different approximations. First, as explained in
Section 7.2 we replace the integral by a series. The first step creates a discretisation error,
which is handled by Proposition 12. Secondly, one has to compute a non-finite series.
This can be achieved by simply truncating the series but it leads to a tremendously slow
convergence. Here, we prefer to use the Euler acceleration as presented in Section 7.3.
Proposition 13 states an upper-bound for the error due to the accelerated computation of
the non finite series. Theorem 1 gives a bound for the global error.

7.1. Analytical prolongations. Because the Laplace inversion is performed in the com-
plex plane, we have to extend to the complex plane the expressions obtained for the Laplace
transforms computed above. To do so, we introduce the analytic prolongation of the nor-
mal cumulative distribution function on the complex plane. From Proposition 11, it is
quite easy to show that the expressions obtained for a real value of the Laplace parameter
are still valid for a complex one with the function N defined by Lemma 2.

Proposition 11 (abscissa of convergence). The abscissa of convergence of the Laplace

transforms of the star prices of Parisian options is smaller than (m+σ)2

2 . All these Laplace

transforms are analytic on the complex half plane {z ∈ C : Re (z) > (m+σ)2

2 }.
Proof. It is sufficient to notice that the star price of a Parisian option is bounded by
E(emZT (x eσWT +K)).

E(emZT (x eσWT +K)) ≤ K e
m2

2
T +x e

(m+σ)2

2
T = O(e

(m+σ)2

2
T ).
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Hence, Widder (1941, Theorem 2.1) yields that the abscissa of convergence of the Laplace

transforms of the star prices is smaller that (m+σ)2

2 . The second part of the proposition
ensues from Widder (1941, Theorem 5.a). �

Lemma 2 (Analytical prolongation of N ). The unique analytic prolongation of the normal
cumulative distribution function on the complex plane is defined by

N (x+ iy) =
1√
2π

∫ x

−∞
e−

(v+iy)2

2 dv. (17)

Proof. It is sufficient to notice that the function defined above is holomorphic on the
complex plane (and hence analytic) and that it coincides with the normal cumulative
distribution function on the real axis. �

With the definition of N given by Equation (17), it is clear that all the expressions obtained
so far for the Laplace transforms are also valid for complex values of λ satisfying Re (λ) >
(m+σ)2

2 since their are analytic on the complex half plane {z ∈ C : Re (z) > (m+σ)2

2 }.
7.2. The Fourier series representation. Thanks to Widder (1941, Theorem 9.2), we
know how to recover a function from its Laplace transform.

Theorem 3. Let f be a continuous function defined on R+ and α a positive number.
Assume that the function f(t) e−αt is integrable. Then, given the Laplace transform f̂ , f
can be recovered from the contour integral

f(t) =
1

2πi

∫ α+i∞

α−i∞
est f̂(s)ds, t > 0. (18)

The variable α has to be chosen greater than the abscissa of convergence of f̂ . In our case,
α must be chosen strictly greater than (m+ σ)2/2.

For any real valued function satisfying the hypotheses of Theorem 3, we introduce a
trapezoidal discretisation of Equation (18) of step π/t.

fπ/t(t) =
eαt

2t
f̂(α) +

eαt

t

∞∑

k=1

(−1)k Re

(
f̂

(
α+ i

kπ

t

))
. (19)

Proposition 12. If f is a continuous bounded function satisfying f(t) = 0 for t < 0, we
have ∣∣eπ/t(t)

∣∣ ∆
=
∣∣f(t) − fπ/t(t)

∣∣ ≤ ‖f‖∞
e−2αt

1 − e−2αt
.

A proof of Proposition 12 can be found in Labart and Lelong (2008).

Remark 5. For the upper bound in Proposition 12 to be smaller than 10−8 ‖f‖∞, one has
to choose 2αt = 18.4. In fact, this bound holds for any choice of the discretisation step h
satisfying h < 2π/t.

Simply truncating the series in the definition of fπ/t to compute the trapezoidal integral
is far too rough to provide a fast and accurate numerical inversion. One way to improve
the convergence of the series is to use the Euler summation.

7.3. The Euler summation. To improve the convergence of a series S, we use the Euler
summation technique as described by Abate et al. (1999), which consists in computing
the binomial average of q terms from the p-th term of the series S. The binomial average
obviously converges to S as p goes to infinity. The following proposition describes the
convergence rate of the binomial average to the infinite series fπ/t(t) when p goes to ∞.
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Proposition 13. Let f be a function of class Cq+4 such that there exists ǫ > 0 s.t.

∀k ≤ q + 4, f (k)(s) = O(e(α−ǫ)s), where α is the abscissa of convergence of f̂ . We define
sp(t) as the approximation of fπ/t(t) when truncating the non-finite series in (19) to p
terms

sp(t) =
eαt

2t
f̂(α) +

eαt

t

p∑

k=1

(−1)k Re

(
f̂

(
α+ i

πk

t

))
,

and E(q, p, t) =
∑q

k=0C
k
q 2−qsp+k(t). Then,

∣∣fπ/t(t) − E(q, p, t)
∣∣ ≤ teαt |f ′(0) − αf(0)|

π2

p! (q + 1)!

2q (p+ q + 2)!
+ O

(
1

pq+3

)
,

when p goes to infinity.

Using Propositions 12 and 13, we get the following result concerning the global error on
the numerical computation of the price of a Parisian call option.

Corollary 1. Let f be the price of a Parisian call option. Using the notations of Propo-
sition 13, we have

|f(t) − E(q, p, t)| ≤ S0
e−2αt

1 − e−2αt
+
eαtt |f ′(0) − αf(0)| p! (q + 1)!

π22q (p+ q + 2)!
+ O

(
1

pq+3

)
,

for any α > (m+σ)2

2 .

We refer the reader to Labart and Lelong (2008) for a proof of Corollary 1 and Proposi-
tion 13.
For 2αt = 18.4 and q = p = 15, the global error is bounded by S010

−8 +
t |f ′(0) − αf(0)| 10−11. As one can see, the method we use to invert Laplace transforms
provides a very good accuracy with few computations.

Remark 6. Considering the case of call options in Theorem 1 is sufficient since put prices
are computed using parity relationships and their accuracy is hung up to the one of call
prices.

8. a few graphs

In this section, we perform a few numerical experiments with the method we have studied
so far and compare it with the enhanced Monte Carlo method of Baldi et al. (2000).
First, we consider a dynamic delta hedging simulation of a Parisian Up and Out call. We
simulate an asset path and try to hedge along this trajectory. For this purpose, we use
the formulae to derive the price of Parisian options at any time strictly positive. The
delta simply ensues from a finite difference scheme. The discrete delta hedging proves
quite efficient even though as one can see it on Figure 4, there are huge variations in the
hedging portfolio when the option is about to be activated or cancelled. This phenomena
introduces some hedging error because the hedging is performed in discrete time. In this
example, the hedging portfolio could be rebalanced three times a day.
Now, we would like to compare the prices obtained with our method with the prices given
by the Monte Carlo method of Baldi et al. (2000). The Monte Carlo computation uses
10000 samples and 250 discretisation steps between 0 and T . Figure 5 shows the evolution
w.r.t the delay of the price of a Down and Out put computed either with the invert
Laplace transform method or the enhanced Monte Carlo method. The evolution of the
prices provided by our method is much smoother than the one given by Monte Carlo. As
one can see, the accuracy of the Monte Carlo method has nothing to do with the accuracy
of our method. Let us recall that our prices are accurate up to 10−6 (when S0 = 100) as
stated in Theorem 1. Concerning the computational costs of the two methods, the invert
Laplace transform method runs a thousand times faster than the corrected Monte Carlo.
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Figure 4. Example of delta hedging of a PUOC
S0 = 100 K = 100 T = 1 L = 110
D = 20 day σ = 0.2 r = 0.025 δ = 0
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Figure 5. Comparison with improved Monte Carlo method in the case of a PDOP
S0 = 100 K = 100 T = 1 L = 90
σ = 0.2 r = 0.025 δ = 0
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9. Conclusion

In this work, we provide all the Laplace transforms of the different Parisian option prices,
be it through explicit formulae or parity relationships. We also explain how to invert these
formulae to compute the prices. The detailed study of the inversion algorithm enables to
prove the accuracy and then the efficiency of the method. The efficiency is confirmed by
the comparison with the enhanced Monte Carlo, which in fact is already very efficient
when one thinks of how difficult it is to price Parisian options.
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Appendix A. The Laplace transform of µb in the case b > 0

We already know that µb(u) = |b|√
2πu3

e

“

−b2

2u

”

. We use the notation θ =
√

2λ.

∫ D

0
e−λuµb(du) =

∫ D

0
e−

θ2

2
u b√

2πu3
e

−b2

2u du

The change of variable t =
√

b
θ

1√
u

leads to

∫ D

0
e−λuµb(u)du =

∫ +∞
√

b√
θD

√
2bθ

π
exp

(−θb
2

(
1

t2
+ t2

))
dt,

=

∫ +∞
√

b√
θD

√
2bθ

π
exp

(
−θb
2

(
1

t
− t

)2
)
e−θbdt,

a new change of variable v = 1
t − t gives

=

√
bθ

2π
e−θb

∫ q

θD
b
−

√
b√

θD

−∞
e

−θb
2

v2

(
1 − v√

v2 + 4

)
dv,

we set u =
√
θbv

=
1√
2π
e−θb

∫ θ
√

D− b√
D

−∞
e−u2/2

(
1 − u√

u2 + 4θb

)
du.

A last change of variable v =
√
u2 + 4θb ends the computation

µ̂b(λ) = e−θbN
(
θ
√
D − b√

D

)
+ eθbN

(
−θ

√
D − b√

D

)
.

If we let D go to infinity, we can deduce the Laplace transform of Tb, for any real b

E[e−λTb ] = e−
√

2λ|b|.

Appendix B. The valuation of
∫ +∞
0 e−λu e−

x2

2u√
2πu

du

Once again we introduce θ =
√

2λ.

The change of variable u = |x|t2
θ straightly gives the new expression

∫ +∞

0
e−λu e−

x2

2u√
2πu

du =

∫ +∞

0

√
2 | x |
πθ

exp

(
−θ | x |

2

(
1

t2
+ t2

))
dt,

=

√
2 | x |
πθ

e−θ |x|
∫ +∞

0
exp

(
−θ | x |

2

(
1

t
− t

)2
)
dt.

Once again, we can use the change of variable s = u − 1
u , which maps [0,+∞[ into

] − ∞,+∞[ and we have du = ds
2

(
1 + s√

s2+4

)
. The second term is odd, so its integral

over R cancels and we get
√

|x|
2πθ

e−θ |x|
∫ +∞

−∞
e−

θ |x|
2

s2
ds.
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Finally, we obtain
∫ +∞

0
e−λu e−

x2

2u√
2πu

du =
1

θ
e−θ |x|. (20)

Appendix C. Some results around Brownian meanders

In this part, we recall some useful results about Brownian motion and it excursion theory.
We are interested in the law of (T−

b , ZT−
b

) and (T+
b , ZT+

b
). Such results can be found in

Azéma and Yor (1989); Revuz and Yor (1999); Chung (1976).
In the following, we consider a standard Brownian motion Z.

C.1. Case b = 0.

P(ZT− ∈ dx) = − x

D
e−

x2

2D 1{x<0}dx and P(ZT+ ∈ dx) =
x

D
e−

x2

2D 1{x>0}dx.

E
(
e−

1
2
λ2T−

)
=

1

ψ(λ
√
D)

and E
(
e−

1
2
λ2T+

)
=

1

ψ(λ
√
D)

.

This kind of formula goes back to the work of Wendel (1964).

C.2. Case b < 0. This case can be reduced to the previous one with the help of the
stopping time Tb. By introducing a new Brownian motion W = {Wt = ZTb+t − b; t ≥ 0}
independent of FTb

, we can write T−
b = Tb +T−(W ) a.s.. Tb and T−

0 (W ) are independent,
hence we find

E(e−
1
2
λ2T−

b ) = E(e−
1
2
λ2Tb)E(e−

1
2
λ2T−

0 (W )).

As E(exp(−1
2λ

2Tb)) = exp(−|b|λ), we get

E
(
e−

1
2
λ2T−

b

)
=

ebλ

ψ(λ
√
D)

.

Concerning the law of ZT−
b

, we have

P(ZT−
b

∈ dx) = P(WT−
b

(Z)−Tb(Z) ∈ dx− b) = P(WT−
0

∈ dx− b).

Finally, we obtain

ν−(dx) = P(ZT−
b

∈ dx) =
b− x

D
e−

(x−b)2

2D 1{x<b}dx.

C.3. Case b > 0. Following closely the above reasoning, we find

E
(
e−

1
2
λ2T+

b

)
=

e−bλ

ψ(λ
√
D)

.

ν+(dx) = P(ZT+
b
∈ dx) =

x− b

D
e−

(x−b)2

2D 1{x>b}dx.
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