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Universal Gauss-Thakur sums and L-series
∗†

Bruno Anglès‡ & Federico Pellarin§

January 16, 2013

Abstract. In this paper we study the behavior of the function ω of Anderson-Thakur evaluated at the

elements of the algebraic closure Falg
q of the finite field with q elements Fq. Indeed, this function, introduced

in [2], has quite a remarkable relation to explicit class field theory for the field K = Fq(θ). We will see

that these values, together with the values at Falg
q of its divided derivatives, generate over Falg

q the maximal

abelian extension of K which is tamely ramified at infinity. We will also see that ω is, in a way that we will

explain in detail, an universal Gauss-Thakur sum. We will then use these results to show the existence of

functional relations for a class of L-series introduced by the second author in [26]. Our results will be finally

applied to obtain a new class of congruences for Bernoulli-Carlitz fractions, and an analytic conjecture is

stated, implying an interesting behavior of such fractions modulo prime ideals of A = Fq[θ].
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1 Introduction, results

The present paper is divided in two parts (Section 2 for the first part and Sections 3 and 4 for the
second), both motivated by the interesting behavior that the function ω of Anderson and Thakur

exhibits at the roots of unit, and the consequence that this behavior has on analytic properties of
certain L-series introduced in [26].

We will first be concerned with the values of the function ω at the roots of unit and we will
prove, among several results, Theorem 1, which provides, we hope, an alternative approach to
explicit class field theory. We will also prove, in Theorem 3, that ω is, in a certain sense that will
be made more precise later, an universal Gauss-Thakur sum.

Theorem 3 will be used in in the second part, where we will consider a class of L-series that
was recently introduced by the second author in [26] and we will study their behavior at the roots
of unit. We will prove, in Theorem 4, functional identities in the same vein as in loc. cit., but in
a much more general multivariable setting. Among others, some applications to Bernoulli-Carlitz

numbers are given, in Theorem 5.

Here is, more specifically, the content of the present paper. Our purpose in Section 2, the first
part of this paper, is to focus on explicit class field theory for the field K. The classical Kronecker-
Weber theorem states that the maximal abelian extension Qab of the field of rational numbers Q

in the field of complex numbers C is generated by the values of the exponential function

ez =
∑

n≥0

zn

n!

at the elements
√
−1πρ, ρ ∈ Q, or, in other words, by the complex roots of the polynomials

Xn − 1, n ≥ 1.

The prominency of an analytic function in an algebraic problem is the essence of Kronecker’s
Jugendtraum (it later became the twelfth Hilbert’s problem) and was confirmed in other situations
by other authors, namely by Hayes in 1974, which in [19] analytically expressed a minimal set of
generators of the maximal abelian extension of the field K = Fq(θ) tamely ramified at infinity
by using the torsion values of Carlitz’s exponential function, and further constructed the maximal
abelian extension of K again relating it to the torsion of Carlitz’s module.
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We denote by v∞ the θ−1-adic valuation normalized, in all the following, by setting v∞(θ) = −1.
Let K∞ be the completion of K for v∞, and let us consider the completion C∞ of an algebraic
closure of K∞ for the unique extension of this valuation, in which we embed an algebraic closure
of K. Carlitz’s exponential function is the surjective, Fq-linear, rigid analytic entire function

exp : C∞ → C∞

defined by

exp(z) =
∑

n≥0

zq
n

dn
,

where

d0 = 1, dn = (θq
n − θ)(θq

n − θq) · · · (θqn − θq
n−1

), n > 0.

The kernel of this function, surjective, turns out to be generated by a period π̃, unique up to
multiplication by an element of F×

q , that can be computed by using the following product expansion

π̃ := θ(−θ)
1

q−1

∞∏

i=1

(1− θ1−q
i

)−1 ∈ (−θ)
1

q−1 K∞, (1)

once a (q − 1)-th root of −θ is chosen. According to Hayes [19], the maximal abelian extension
E∞ of K tamely ramified at ∞ in C∞ (1) is the smallest subfield of C∞ containing the algebraic
closure Falg

q of Fq in C∞ and the values

exp(π̃ρ), ρ ∈ K.

Anderson-Thakur function. This function, introduced in [2, Proof of Lemma 2.5.4 p. 177], is defined
by the infinite product

ω(t) = (−θ)
1

q−1

∏

i≥0

(
1− t

θqi

)−1

, (2)

with the same choice of the (q− 1)-th root as in (1), converges for t ∈ C∞ such that |t| ≤ 1 (where
| · | is an absolute value associated to v∞) and can be extended to a non-zero rigid analytic function
over

C∞ \ {θqk ; k ≥ 0}

with simple poles at θq
k

, k ≥ 0. In [30], many analogies with Euler’s gamma function are tracked.
For instance, variants of the translation formula, Gauss multiplication formulas and reflection for-

mulas for the gamma function hold for ω. We are going to study a further property of ω.
For ζ ∈ Falg

q , the product ω(ζ) in (2) converges to an algebraic element of C∞ (2). More
generally, consider the C∞-linear divided derivatives

Dn : C∞[[t]] → C∞[[t]], n ≥ 0

1That is, the maximal abelian extension of K contained in the perfection of the subfield of Newton-Puiseux series

∪n≥1F
alg
q ((θ−1/n)).

2In fact, it can be proved that if t is algebraic not of the form θq
k

with k ∈ Z, then ω(t) is well defined, and

furthermore algebraic over K if and only if t ∈ F
alg
q .
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defined by setting

Dntm =

(
m

n

)
tn−m.

Then, for all n ≥ 0, the formal series Dnω converges for all t ∈ C∞ such that |t| ≤ 1. For ζ ∈ Falg
q ,

the series (Dnω)(ζ) converges in fact to an element of Kalg (these properties will be apparent in
the paper). The first result of this paper is the following.

Theorem 1 The field E∞ is generated over Falg
q by the values (Dnω)(ζ) for all ζ ∈ Falg

q and n ≥ 0.

Thanks to the result of Hayes in [19], we immediately deduce the following Corollary.

Corollary 2 The higher derivatives of the function ω evaluated at the elements of Falg
q generate

over Falg
q the maximal extension of K which is abelian and tamely ramified at the infinity place.

In the proof of Theorem 1, new functions generalizing the function ω are introduced. These
are the functions ωa,j of Subsection 2.2. They generalize the function ω = ωθ,0 in the sense of
Proposition 16 and should be considered of same relevance as ω itself, being associated to the
kernel of φa (the image of a monic polynomial a ∈ A by Carlitz’s module) in the same way as ω is
associated to the kernel of φθ. These features will be discussed in detail in Subsection 2.2.

The second result of Section 2, closely related to Theorem 1, draws a portrait of Anderson-
Thakur’s function itself, as an universal Gauss-Thakur sum. This analogue of Gauss sums, in
Kab, was introduced by Thakur in [35]. Thakur established several analogues of classical results
about Gauss sums such as Stickelberger factorization theorem and Gross-Koblitz formulas and
other analogues of classical results (see for example [35, 36, 37]). We refer to Subsection 2.1.1 for
the background on Gauss-Thakur sums. We are going to describe a direct connection between
Gauss-Thakur sums and the function ω.

Let p be an irreducible monic polynomial of A of degree d, let ∆p be the Galois group of the
p-cyclotomic function field extension K(λp) of K, where λp is a non zero p-torsion element of Kalg.

Gauss-Thakur sums can be associated to the elements of the dual character group ∆̂p via the Artin

symbol (see [16, Sections 7.5.5 and 9.8]). If χ is in ∆̂p, we denote by g(χ) the associated Gauss-

Thakur sum. In particular, we have the element ϑp ∈ ∆̂p obtained by reduction of the Teichmüller

character [16, Definition 8.11.2], uniquely determined by a choice of a root ζ of p, and the Gauss-

Thakur sums g(ϑq
j

p ) associated to its qj-th powers, with j = 0, . . . , d− 1, which can be considered

as the building blocks of the Gauss-Thakur sums g(χ) for general χ ∈ ∆̂p.

Theorem 3 Let p be a prime element of A of degree d and ζ a root of p as above. We have:

g(ϑq
j

p ) = p′(ζ)
−qj

ω(ζq
j

), j = 0, . . . , d− 1.

In this theorem, p′ denotes the derivative of p with respect to θ. We anticipate that Theorem 3
will play an important role in the proof of the next Theorem 4. Also, The Theorems 1 and 3 are
closely related. We will see, by Corollary 29, that the field generated over Falg

q (θ) by the various

Gauss-Thakur sums g(ϑp), is also equal to the field generated over Falg
q by the elements λ ∈ K

which are a-torsion for a ∈ A squarefree. But the proof of Theorem 1 that we furnish, founded on
an analytic formula (Proposition 20), also tells us that the last field is generated, over Falg

q , by the

elements ω(ζ), ζ ∈ Falg
q (see Proposition 23).
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In Section 3 we keep studying the values of ω at the elements of Falg
q , but we change our point

of view by focusing now on certain L-series introduced in [26]. Let t be a variable in C∞ and let us
consider the ring homomorphism

χt : A → Fq[t]

defined by formal replacement of θ by t. In other words, χt may be viewed as the unique ring
homomorphism from A to the ring of rigid analytic functions C∞ → C∞ such that χt(θ) = t. More
generally, we shall consider s independent variables and consider the ring homomorphisms

χti : A → Fq[t1, . . . , ts], i = 1, . . . , s

defined respectively by χti(θ) = ti. To simplify our notations, we will write χξ(a) for the evaluation
at t = ξ of the polynomial function χt(a) at a given element ξ ∈ C∞. Let α be a positive integer
and let β1, . . . βs be non-negative integers. The following formal series was introduced in [26]:

L(χβ1

t1 · · ·χβs

ts , α) =
∑

d≥0

∑

a∈A+(d)

χt1(a)
β1 · · ·χts(a)βsa−α ∈ K∞[[t1, . . . , ts]]. (3)

Here and in all the following, A+(d) denotes the set of monic polynomials of A of degree d. It is
easy to see that this series is well defined. As claimed in [26, Remark 7], this series converges for
all (t1, . . . , ts) ∈ Cs∞ to a rigid analytic entire function of s variables t1, . . . , ts; see Proposition 32.

For the next result, we need further notation. For k a non-negative integer, we consider the
q-ary expansion k = k0 + k1q+ · · ·+ ksq

s, where k0, k1, . . . , ks are integers in the set {0, . . . , q− 1}.
We then denote by ℓq(k) the integer k0 + k1 + · · ·+ ks. The residue of ω(t) at t = θ is −π̃:

π̃ = − lim
t→θ

(t− θ)ω(t).

In [26, Theorem 1], it is proved that

L(χt, 1) =
π̃

(θ − t)ω(t)
.

Taking into account the functional equation

ω(t)q = (tq − θ)ω(tq)

apparent in (2), this implies that, for m ≥ 0 integer,

Vqm,1(t) := π̃−qmL(χt, q
m) =

1

(θqm − t)(θqm−1 − t) · · · (θ − t)
.

This result provides an awaited connection between the function ω of Anderson and Thakur and
the “even” values of the Goss zeta function (or Carlitz zeta values)

ζ(n) =
BCnπ̃

n

Π(n)
, n > 0, n ≡ 0 (mod q − 1)

where BCn and Π(n) denote respectively the n-th Bernoulli-Carlitz fraction and Carlitz’s factorial
of n, see Goss’ book [16, Section 9.1]. Indeed, evaluating at t = θ, we get

L(χθ, q
m) = ζ(qm − 1), m ≥ 1.
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More generally, it is proved in [26, Theorem 2] that, if α ≡ 1 (mod q − 1) and α ≥ 1, then

λα = π̃−αL(χt, α)ω(t)

is a rational function in Fq(θ, t). In [26], it is suggested that this result could be a source of
information in the study of the arithmetic properties of the Bernoulli-Carlitz fractions. However,
the methods of loc. cit. (based on deformations of vectorial modular forms and Galois descent) are
only partially explicit.

More recently, Perkins [31] investigated the properties of certain special polynomials associated

to variants of the functions L(χβt , α) with α ≤ 0 which turn out to be polynomial. He notably
studied the growth of their degrees. Moreover, by using Wagner’s interpolation theory for the map
χt, Perkins [32] generalized some unpublished formulas of the second author and obtained explicit
formulas for the series

L(χt1 · · ·χts , α), α > 0, 0 ≤ s ≤ q, α ≡ s (mod q − 1).

We quote here a particular case of Perkins’ formulas for the functions L(χt, α) with α ≡ 1 (mod q−
1)

L(χt, α) =

µ∑

j=0

d−1
j (t− θ)(t − θq) · · · (t− θq

j−1

)ζ(α − qj)L(χt, q
j), (4)

where µ is the biggest integer such that qµ ≤ α. It seems difficult to overcome the threshold s ≤ q
giving at once expressions for L(χt1 · · ·χts , α) with the effectiveness of Perkins’ results.

In the next Theorem, we extend the previous results beyond the mentioned threshold, providing
at once new quantitative information.

Theorem 4 Let α, s be positive integers, such that α ≡ s (mod q−1). Let δ be the smallest positive

integer such that, simultaneously, qδ − α ≥ 0 and s+ ℓq(q
δ − α) ≥ 2. The formal series:

Vα,s(t1, . . . , ts) = π̃−αL(χt1 · · ·χts , α)ω(t1) · · ·ω(ts)
s∏

i=1

δ−1∏

j=0

(
1− ti

θqj

)
∈ K∞[[t1, . . . , ts]] (5)

is in fact a symmetric polynomial of K[t1, . . . , ts] of total degree δ(α, s) such that

δ(α, s) ≤ s

(
s+ ℓq(q

δ − α)

q − 1

)
− s.

This statement holds if α = qm and s ≥ 2 (so that δ = m) assuming that empty products are equal
to one by convention. In this case, since s ≡ α (mod q− 1), we have s+ ℓq(q

δ−α) ≡ 0 (mod q− 1)
so that in fact, s ≥ max{2, q − 1}. The reader may have noticed that the choice α = qm and s = 1
is not allowed in Theorem 4. However, as mentioned above, the computation of Vqm,1 is completely
settled in [26]. This discrimination of the case α = qm, s = 1 should not be surprising neither;
similarly, the Goss zeta function associated to A has value 1 at zero, but vanishes at all negative
integers divisible by q − 1.

In Section 4, we will be more specifically concerned with Bernoulli-Carlitz numbers. A careful
investigation of the polynomials V1,s and an application of the digit principle to the function ω will
allow us to show that, for s ≥ 2 congruent to one modulo q − 1,

Bs = Π(s)−1V1,s(θ, . . . , θ)
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is a polynomial of Fq[θ] (Proposition 44) (3). We shall then show the next Theorem, which highlights
the interest of these polynomials in θ.

Theorem 5 Let s ≥ 2, s ≡ 1 (mod q − 1). Let us consider the expansion s =
∑r
i=0 siq

i of s in

base q. Let d be an integer such that qd > s and let p be a prime of degree d. Then:

Bs ≡
(−1)sBCqd−s

∏r
i=0 l

siq
i

d−i−1

Π(qd − s)
(mod p).

In this result, ld denotes the polynomial (−1)d
∏d
i=1(θ

qi −θ); we observe that the latter polynomial
is invertible modulo p just as Π(qd − s). The non-vanishing of Bs for fixed s signifies the existence
of an explicit constant c > 0, depending on s and q, such that for all d ≥ c,

BCqd−s 6≡ 0 (mod p), for all p such that deg p = d. (6)

However, the non-vanishing of Bs is also equivalent to the fact that the function

L(χt1 · · ·χts , 1)
s∏

i=1

(ti − θ)−1,

entire of s variables as we will see, is a unit when identified to an element of C∞[[t1− θ, . . . , ts− θ]];
we presently do not know how to prove this property for all s. Therefore, the property (6) is linked
with the following conjecture of nature analogue of classical results on the simplicity of the zeroes
of Goss zeta functions and L-series, which should be, we believe, true.

Conjecture 6 Let s ≥ 2 be congruent to one modulo q − 1. Then, locally at t1 = · · · = ts = θ, the
divisor of the zeroes of the function L(χt1 · · ·χts , 1) is equal to the set of zeroes of the polynomial∏
i(ti − θ).

Numerical computations on Bernoulli-Carlitz fractions made by Taelman provide some evidence to
support this hypothesis. The Conjecture follows from Perkins results [32] in the case s ≤ q and
α = s. The conjecture is also verified if ℓq(s) = q and α = 1, thanks to Corollary 46.

2 Algebraic values of the function of Anderson and Thakur

In this Section, we are going to pursue our investigation on the values of ω at the roots of unit
and we will prove Theorems 1 and 3. Before going on, we collect an amount of known facts and
necessary notations and definitions used all along this paper, for convenience of the reader.

2.1 Preliminaries

Carlitz’s module φ is the unique Fq-algebra homomorphism

φ : A → EndFq−lin.(Ga)

determined by
φθ = θ + τ,

3Note that B1 is not well defined
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with τ the map such that τ(c) = cq for all c ∈ C∞. We also recall that the Fq-algebra

EndFq−lin.(Ga(C∞))

can be identified with the skew polynomial ring C∞[τ ] whose elements are finite sums
∑

i≥0 ciτ
i

with the ci’s in C∞, submitted to the usual product rule. We shall write φa for the evaluation of
φ at a ∈ A.

For a ∈ A \ {0}, we set

λa = exp

(
π̃

a

)
.

This is a generator of the kernel
Λa = {φb(λa); b ∈ A}

of φa in C∞, an A-module isomorphic to A/aA.
In all the following, a monic irreducible element in A will be called a prime. Let p be a prime

polynomial of A = Fq[θ] of degree d. We denote by Kp = K(Λp) = K(λp) the p-th cyclotomic
function field extension of K in C∞. We refer the reader to [33, Chapter 12] for the basic properties
of cyclotomic function fields. We recall here that the integral closure OKp

of A in Kp equals the
ring A[λp].

The extension Kp/K is cyclic of degree qd−1, ramified in p and θ−1. It is in fact totally ramified
in p and the decomposition group at θ−1 is isomorphic to the inertia group, therefore isomorphic
to F×

q . We denote by ∆p the Galois group Gal(K(Λp)/K). There is an unique isomorphism (Artin
symbol, [16, Proposition 7.5.4])

σ : (A/pA)× → ∆p

such that
σa(λp) = φa(λp).

Let ζ1, . . . , ζd be the roots of the polynomial p in Fqd . We denote by Fp the field

Fq(ζ1, . . . , ζd).

Once a choice of a root ζ ∈ {ζ1, . . . , ζd} is made, the Teichmüller character (see [16, Section 8.11])
ωp induces an unique group homomorphism

ϑp : ∆p → F×
p ,

determined in the following way: if δ = σa ∈ ∆p for some a ∈ A, then

ϑp(δ) = a(ζ) = χζ(a).

We will refer to this homomorphism as to the Techmüller character allowing an abuse of language
(indeed, it is customary, in particular, that Teichmüller characters take values in Witt rings).

2.1.1 Gauss-Thakur sums

For any finite abelian group G, we shall write Ĝ for the group Hom(G, (Falg)×). In particular,

ϑp ∈ ∆̂p. For the background on Gauss-Thakur sums we refer to [16, Section 9.8]. In our approach,

however, we find it natural to associate Gauss-Thakur sums to elements of ∆̂p (compare with loc.
cit. Definition 9.8.1).
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Definition 7 With p, d, ϑp as above, the basic Gauss-Thakur sum g(ϑq
j

p ) associated to this data
is the element of Kab defined by:

g(ϑq
j

p ) =
∑

δ∈∆p

ϑp(δ
−1)q

j

δ(λp) ∈ Fp[λp].

The same sum is denoted by gj in [16, 35]. The basic Gauss-Thakur sums are be used to define

general Gauss-Thakur sums associated to arbitrary elements of ∆̂p. The group ∆̂p being isomorphic

to ∆p it is cyclic; it is in fact generated by ϑp. Let χ be an element of ∆̂p. There exists an unique
integer i with 0 < i < qd, such that χ = ϑip. Let us expand i in base q, that is, let us write

i = i0 + i1q + · · ·+ id−1q
d−1 with ij ∈ {0, . . . , d− 1}. Then, χ =

∏d−1
j=0 (ϑ

qj

p )ij .

Definition 8 The general Gauss-Thakur sum g(χ) associated to χ ∈ ∆̂p as above, is defined by:

g(χ) =

d−1∏

j=0

g(ϑq
j

p )ij .

More generally, let us now consider a non-constant monic polynomial a ∈ A. We denote by ∆̂a

the dual character group Hom(∆a, (F
alg
q )×). If χ is in ∆̂a, we set: Fq(χ) = Fq(χ(δ); δ ∈ ∆a) ⊂ Falg

q .
We also write

Fa = Fq(χ;χ ∈ ∆̂a)

and we recall that Gal(Ka(Fa)/K(Fa)) ≃ ∆a. We observe that ∆̂a is isomorphic to ∆a if and only
if a is squarefree. If a = p1 · · · pn with p1, . . . , pn distinct primes, then

∆̂a ≃
n∏

i=1

∆̂pi
.

Let us then assume that a is non-constant and squarefree. We want to extend the definition of
the Gauss-Thakur sums to characters in ∆̂a. For χ ∈ ∆̂a, χ 6= χ0, there exist r distinct primes
p1, · · · , pr and characters χ1, . . . , χr with χj ∈ ∆̂pj

for all j, with

χ = χ1 · · ·χr.

Definition 9 The Gauss-Thakur sum associated to χ is the product:

g(χ) = g(χ1) · · · g(χr).

The polynomial fχ = p1 · · · pr is called the conductor of χ; it is a divisor of a. The degree of fχ will
be denoted by dχ. If a itself is a prime p of degree d, then Fχ = p and dχ = d.

The following result collects the basic properties of the sums g(χ) that we need in the sequel,
and can be easily deduced from Thakur’s results in [35, Theorems I and II].

Proposition 10 Let a ∈ A be monic, squarefree of degree d. The following properties hold.

9



1. If χ = χ0 is the trivial character, then g(χ) = 1.

2. For all δ ∈ ∆a, we have δ(g(χ)) = χ(δ)g(χ).

3. If χ 6= χ0, then g(χ)g(χ−1) = (−1)dχfχ.

By the normal basis theorem, Ka is a free K[∆a]-module of rank one. Gauss-Thakur’s sums allow
to determine explicitly generators of this module:

Lemma 11 Let us write ηa =
∑

χ∈∆̂a
g(χ) ∈ Ka. Then :

Ka = K[∆a]ηa,

and

Aa = A[∆a]ηa,

where Aa is the integral closure of A in Ka.
Moreover, let χ be in ∆̂a. Then, the following identity holds:

Ka(Fa)g(χ) = {x ∈ Ka(Fa) such that for all δ ∈ ∆a, δ(x) = χ(δ)x}. (7)

Proof. Let us expand a in product p1 · · · pn of distinct primes pi. To show that Aa = A[∆a]ηa (this
yields the identity Ka = K[∆a]ηa) one sees that

Aa ≃ Ap1 ⊗A · · · ⊗A Apn
,

because the discriminants of the extensions Api
/A are pairwise relatively prime and the fields Kpi

are pairwise linearly disjoint (see [10]). One then uses [7, Théorème 2.5] to conclude with the second
identity.

We now prove the identity (7). We recall that if we set, for χ ∈ ∆̂a,

eχ =
1

|∆a|
∑

δ∈∆a

χ(δ)δ−1 ∈ Fq(χ)[∆a]

(well defined because p, the rational prime dividing q, does not divide |∆a|), then the following
identities hold:

• eχeψ = δχ,ψeχ (where δχ,ψ denotes Kronecker symbol),

• for all δ ∈ ∆a, δeχ = χ(δ)eχ,

• ∑χ∈∆̂a
= 1.

This yields eχηa = g(χ). Now, by Ka(Fa) = Ka(Fa)ηa, we get eχKa(Fa) = Ka(Fa)g(χ). The
second part of the Lemma then follows by observing that if M is an Fa[∆a]-module, then

eχM = {m ∈ M such that for all δ ∈ ∆a, δm = χ(δ)m}.

10



2.1.2 The function of Anderson and Thakur

For the basic properties of this function, introduced in [2], we also suggest to read [30, Section

3.1]. We recall from [26, Corollaries 5, 10] that t ∈ C∞ \ {θqk ; k ≥ 0} and ω(t) are simultaneously
algebraic if and only if t = ζ ∈ Falg

q . Moreover, we have the following Lemma.

Lemma 12 For ζ ∈ Fqd \ Fqd−1 , ω(ζ) belongs to the set

F×
qd
ρζ ,

where ρζ is a distinguished root of the polynomial

Xqd−1 − (ζ − θq
d−1

) · · · (ζ − θ) ∈ A[ζ][X ]. (8)

Moreover, regardless to the choice of ζ,

v∞(ω(ζ)) = − 1

q − 1
.

Proof. This is a simple consequence of [26, Corollary 5].

The function of Anderson and Thakur can also be defined, alternatively, by the series expansion:

ω(t) :=

∞∑

i=0

λθi+1ti =

∞∑

n=0

π̃q
n

dn(θq
n − t)

∈ (−θ)1/(q−1)K∞[[t]] (9)

converging for |t| < q.

The Tate algebra Tt is the C∞-algebra whose elements are the series
∑

i≥0 cit
i ∈ C∞[[t]] con-

verging in the bordered unit disk

D(0, 1) = {t ∈ C∞, |t| ≤ 1}.

Here, | · | denotes an absolute value associated to the valuation v∞. In all the following, for clarity,
we normalize it by setting |θ| = q.

We recall from [26, Section 4] that the Tate algebra Tt is endowed with the norm ‖ · ‖ defined
as follows: if f =

∑
i≥0 cit

i ∈ Tt with ci ∈ C∞ (i ≥ 0), then ‖f‖ = supi≥0 |ci|. Endowed with
this norm, Tt becomes a C∞-Banach algebra. For r > 0 a real number, we denote by Dr the
Fq[t]-submodule of Tt whose elements are the series f such that ‖f‖ < r. The operator τ extends
in an unique way to a Fq[t]-automorphism of Tt so we have at once all the Fq[t]-endomorphisms
φa − χt(a).

The evaluation operator (4)

e =
∑

i≥0

τ i

di
∈ K[[τ ]]

4In all the following, we denote by K[t][τ ] and K[[τ ]] respectively the skew polynomial rings in powers of τ with
coefficients in K[t] and the skew entire series rings in powers of τ with coefficients in K, endowed with the product
rule induced by the identity τt = tτ .
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associated to Carlitz’s exponential function introduced in [26, Section 4] also is Fq[t]-endomorphism
of Tt. The above formula (9) can be rewritten in a compact form as

ω(t) = Ee

(
− π̃

t− θ

)
.

We mention that in [30], following a suggestion of D. Goss, we discussed an analogy between the
above formula and the definition of the gamma function as a Mellin transform of the function e−z.

From (9), one deduces easily that ω belongs to Tt (see Subsection 2.2 below). It is also easy to
show that ω is a generator of the free Fq[t]-module of rank one, kernel of the operator

φθ − χt(θ) = τ + θ − t ∈ K[t][τ ],

so that
τω(t) = (t− θ)ω(t)

(see [25, Proposition 3.3.6]). This implies that ω is a generator of the intersection of the kernels in
Tt of the various operators

φa − χt(a),

with a monic as above (see [26, Lemma 29]). We are going to to provide, in Proposition 16, a
complete description of the kernels of these operators.

2.2 The functions ωa,j

The following Lemma holds.

Lemma 13 The kernel of the evaluation operator Ee is the submodule π̃A[t] of Tt. Its restriction

to D|π̃| is an isometry.

Proof. The kernel clearly contains π̃A[t]. Let m be an element of ker(Ee). Then, m =
∑
i≥0 cit

i

with ci ∈ C∞ and exp(ci) = 0, so that ci ∈ π̃A for all i. But then,

kerEe ⊂ π̃A[[t]] ∩ Tt = π̃A[t].

That this endomorphism is an isometry on D|π̃| was implicitly observed in [26]. This relies on the
fact that exp induces an isometry on the disk {z ∈ C∞; |z| < |π̃|} and the simple verification is left
to the reader.

In order to define the functions ωa,j we will compute, following [26, Section 4], the image of Ee

at various rational functions of Tt, and for this, we will need the next Lemma.

Lemma 14 Let a be a non-constant monic polynomial of A. Then, 1/(a− χt(a)) ∈ Tt.

Proof. It suffices to show that the roots ξ ∈ C∞ of the polynomial a−χt(a) ∈ A[t] are all such that
|ξ| > 1. But this is obvious, since we have |χξ(a)| > 1 if and only if |ξ| > 1.

We now fix a monic polynomial a of degree d > 0. Lemma 14 implies that, for j = 0, . . . , d− 1,
the series

ωa,j(t) = Ee

(
θj π̃

a− χt(a)

)

12



are well defined elements of Tt. When the reference to the polynomial a is clear, we will write ωj
instead of ωa,j. In particular, ωθ,0 = ω. By Lemma 13, we have

‖ωj‖ =

∥∥∥∥
θj π̃

a− χt(a)

∥∥∥∥ = |π̃θja−1| = |φθj (λa)| = q
q

q−1+j−d, j = 0, . . . , d− 1. (10)

To study the elements ωj as rigid analytic functions, it may be convenient to observe that the
function χt(a) (with a as above) induces a rigid analytic endomorphism of the bordered unit disk
D(0, 1) = {t ∈ C∞; |t| ≤ 1}. Hence, right composition in series of powers of a new variable x by
setting x = χt(a) induces a map Tx → Tt.

Assuming that τ is linearly extended to Tx by the rule τ(x) = x, let us now consider the series

ω∗
j (x) = ω∗

a,j(x) = Ee

(
π̃

a− x

)
=
∑

n≥0

exp

(
π̃

an+1

)
xn ∈ Tx, j = 0, . . . , d− 1.

Again, ω∗
θ,x(x) = ω(x). Furthermore, we notice that, for all j = 0, . . . , d − 1, ω∗

j has no zeroes on

the disk D(0, 1). Then,
ωj(t) = ω∗

j ◦ χt(a), j = 0, . . . , d− 1, (11)

and we see that these functions have no zeroes in the disk D(0, 1).

2.2.1 Kernel of the operators φa − χt(a)

We begin with a Lemma.

Lemma 15 If µ0, . . . , µd−1 ∈ Fq(t) are rational functions such that

d−1∑

j=0

µjωj = ϕ ∈ Tt, (12)

then µ0, . . . , µd−1 ∈ Fq[t].

Proof. Let Lt be the fraction field of Tt, endowed with the natural extension of the norm ‖·‖. If µ is
an element of Fq(t)

×, then ‖µ‖ = 1. We have that ‖ϕ‖ = maxj=0,...,d−1 ‖ωj‖ = ‖ωd−1‖ = |φθj (λa)|
by (10). We divide both sides of (12) by φθd−1(λa) and we apply τk:

µd−1τ
k

(
ωj

φθd−1(λa)

)
= τk

(
ϕ

φθd−1(λa)

)
−
d−2∑

j=0

µjτ
k

(
ωj

φθd−1(λa)

)
.

The limit for k → ∞ exists; on the left-hand side we find µd−1 (remember that for all j, ωj has no
zeroes on the disk D(0, 1)) while the limit of the right-hand side is the limit

lim
k→∞

τk
(

ϕ

φθd−1(λa)

)

which is a well defined polynomial of Fq[t] (compare with [25, Lemma 2.2.7]). This implies that
µd−1 ∈ Fq[t]. In particular, we have that

d−2∑

j=0

µjωj ∈ Tt,
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and we can apply again the same method to prove that µd−2 ∈ Fq[t]. It is clear now that the proof
can be completed by induction, this is left to the reader.

We shall now prove the next Proposition.

Proposition 16 The kernel in Tt of the operator φa − χt(a) is the free Fq[t]-module of rank d
generated by the series ωa,0, . . . , ωa,d−1.

Proof. We will write ωj at the place of ωa,j for simplicity. Let us consider the column matrix

Ωa(t) =




ω0

ω1

...
ωd−1


 ∈ Matd×1(Tt).

Let us write:

a = a0 + a1θ + · · ·+ ad−1θ
d−1 + θd ∈ A+, a0, . . . , ad−1 ∈ Fq.

By the identity

Ee

(
θdπ̃

a− χt(a)

)
= Ee

(
(a− χt(a) + χt(a)− a0 − a1θ − · · · − ad−1θ

d−1)π̃

a− χt(a)

)

= (χt(a)− a0)ω0 − a1ω1 − · · · − ad−1ωd−1,

We obtain

φθΩa = Ma(t)Ωa,

where

Ma(t) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−a0 −a1 −a2 · · · −ad−1




+




0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0
χt(a) 0 · · · 0




∈ GLd(Fq[t]),

compare with [16, Section 5.3]. Moreover, Ma(t) commutes with τ , therefore, the matrix a(Ma(t))
represents the scalar multiplication by χt(a) and

φaΩa = χt(a)Ωa.

This already shows that ω0, . . . , ωd−1 belong to the kernel of φa − χt(a).

We now show that these functions are linearly independent over Fq[t]. Let us assume by con-
tradiction that there exist elements µ0, . . . , µd−1 ∈ Fq[t], not all zero, such that

d−1∑

i=0

µi(t)ωi(t) = 0. (13)
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We may even assume, without loss of generality, that there exists a root ζ of a, and an index
i ∈ {0, . . . , d− 1}, such that µi(ζ) 6= 0. By (13), we see that

exp

(
π̃

a− χt(a)

d−1∑

i=0

µi(t)θ
i

)
= 0

and, by Lemma 13, there exists an element b ∈ A[t] such that

d−1∑

i=0

µi(t)θ
i = b(t)(a− χt(a)).

Evaluating at t = ζ now yields:
d−1∑

i=0

µi(ζ)θ
i = b(ζ)a.

The above hypothesis on the µi’s implies that b(ζ) 6= 0. However, the degrees in θ of the left- and
right-hand sides disagree, in contradiction with our assumption, so that ω0, . . . , ωd−1 are linearly
independent over Fq[t].

To finish the proof of the Proposition, we still need to show that the kernel of the operator
φa−χt(a) is the free Fq[t]-module of rank d generated by the functions ω0, . . . , ωd−1. Now, φa−χt(a)
operates on the fraction field Lt of Tt as well and its kernel is the Fq(t)-vector space generated by
ω0, . . . , ωd−1. Let f ∈ Tt be such that φa(f)− χt(a)f = 0. Then,

f =

d−1∑

j=0

µjωj

with µ0, . . . , µd−1 ∈ Fq(t). By Lemma 15, µ0, . . . , µd−1 ∈ Fq[t].

Remark 17 In analogy with Hölder’s Theorem for the gamma function, it is not difficult to show
that the functions

ω,D1ω, . . . ,Dnω, . . .
are algebraically independent over C∞(t).

Remark 18 Let n be a nonnegative integer. It is possible to show, with the same ideas as in the
proof of [30, Proposition 15], that the kernel of the operator

φpn+1 − χt(p
n+1),

of dimension nd where d is the degree of p, is spanned by the entries of the matrices

Ωp,D1Ωp, . . . ,DnΩp.

2.3 Analytic identities

In this subsection we proceed to review the main properties of the Tate algebra and higher deriva-
tives we need and then, we describe two families of analytic identities that will be of crucial use in
the proof of Theorem 1.
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2.3.1 Tate algebras and higher derivatives

Let t1, . . . , ts be independent variables. Extending the observations of the beginning of Section 2.2,
we consider now the Tate algebra in s variables Tt1,...,ts , that is, the C∞-subalgebra ofC∞[[t1, . . . , ts]]
whose elements f are formal series

f =
∑

i1,...,is∈Z≥0

fi1,...,is t
i1
1 · · · tiss , fi1,...,is ∈ C∞ (14)

converging in the bordered unit polydisk D(0, 1)s. The algebra Tt1,...,ts is endowed with the norm
‖ · ‖ generalizing the norm used in Section 2.2 and defined as follows. Let f ∈ Tt1,...,ts as in (14).
Then,

‖f‖ := sup
i1,...,is

|fi1,...,is | = max
i1,...,is

|fi1,...,is |.

We recall that with this norm, Tt1,...,ts is a C∞-Banach algebra. Furthermore, in this setting, we
can extend τ to a Fq[t1, . . . , ts]-automorphism and we have the Fq[t1, . . . , ts]-endomorphism Ee.

It is helpful to also notice that if f0, f1, . . . , fs are elements of Tt1,...,ts with ‖fi‖ ≤ 1 for i =
1, . . . , s, then the composition of functions f0(f1, . . . , fs) also defines an element of Tt1,...,ts . Let
T
sym
t1,...,td be the sub-algebra of Tt1,...,td of functions which are symmetric in the variables t1, . . . , td.

The automorphism τ induces a Fq[t1, . . . , td]
sym-automorphism of Tsym

t1,...,td , where we have denoted
by Fq[t1, . . . , td]

sym the subring of polynomials which are symmetric in t1, . . . , td.
We will need the following Lemma.

Lemma 19 Let p be a prime of A of degree d, let ζ1, . . . , ζd be its roots in Falg
q , let us consider an

element f ∈ T
sym
t1,...,td . Then,

(τf)(ζ1, . . . , ζd) = f(ζ1, . . . , ζd)
q.

Proof. Since the series of f can be expanded as a series in the elementary symmetric polynomials

αn(t1, . . . , td) =
∑

I⊂{1,...,d}

(
∏

i∈I

ti

)
, n = 1, . . . , d

(the sum running over the subsets I of {1, . . . , d} of size n), we only need to verify the Lemma for
f = αn, n = 1, . . . , d. But in this case,

(ταn)(ζ1, . . . , ζd) = αn(ζ1, . . . , ζd) = αn(ζ1, . . . , ζd)
q,

because ζ1, . . . , ζd are conjugate.

We will need to compute the higher derivatives of ω and other allied functions. For the back-
ground on higher derivatives (also called hyperderivatives), we refer to the work of Jeong [21] noticing
that the specific tools we are interested in are also contained in Teichmüller’s paper [34].

The C∞-linear higher derivative (Dt,n)n≥0 (also denoted by (Dn)n≥0 in this text) defined by

Dt,m(tn) =

(
n

m

)
tn−m, m, n ≥ 0

induces C∞-linear endomorphisms of Tt. As an example of computation, we have

Dt,n(θ − t)−1 = (θ − t)−n−1, n ≥ 0. (15)
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This higher derivative can be defined over more general C∞-algebras of rigid analytic functions
of the variable t as well. It also satisfies the chain rule, see [21, Section 2.2] and [34, Equation (6)].
In other words, for all n ≥ 1, there exist polynomials

Fn,i(X1, . . . , Xn+1−i) ∈ Fp[X1, . . . , Xn+1−i], i = 1, . . . , n

(where p is the prime dividing q) with the following property. For f, g rigid analytic functions with
g defined over a non-empty open subset O ⊂ C∞ and C∞-valued in such a way that f ◦ g is a well
defined rigid analytic function O → C∞,

Dt,n(f ◦ g) =
n∑

i=1

Fn,i(Dt,1g, . . . ,Dt,n+1−ig)(Dt,if) ◦ g. (16)

Moreover, one easily sees that

Fn,n = Xn
1 , Fn,1 = Xn, n ≥ 1.

This property holds in particular in Tt for f, g ∈ Tt and ‖g‖ ≤ 1, when f ◦ g ∈ Tt. Clearly, for all
n, Dn commutes with Ee. We will often write Dn instead of Dt,n to simplify our notations.

More generally, for all i = 1, . . . , s, (Dti,n)n≥0 is a higher derivative of Tt1,...,ts , just as (Dt,n)n≥0,
where

Dt,n =
s∑

i=1

Dti,n,

which furthermore, induces a higher derivative on T
sym
t1,...,ts .

2.3.2 A first family of analytic identities

The next result we need is Proposition 20 below. For i = 0, . . . , d− 1, we set:

ai = ai+1 + ai+2θ + · · ·+ ad−1θ
d−i−2 + θd−i−1,

so that, in particular, a1 = a1 + a2θ + · · ·+ ad−1θ
d−2 + θd−1, ad−2 = ad−1 + θ, ad−1 = 1. We also

set a−1 := a for completeness.

Proposition 20 (First family of analytic identities) The following identity holds in Tt:

ω(t) =

d−1∑

i=0

χt(ai)ωi(t). (17)

Moreover, for all n ≥ 1, there exists an element Ωn of the submodule of Tt

n∑

i=0

d−1∑

j=0

Fq[t](Diωj)

such that

(Dnω)(t) =
d−1∑

j=0

χt(aj)(Dnωj)(t) + Ωn. (18)
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Proof. In Fq[t, θ], we have the elementary identity:

a− χt(a)

θ − t
=

d−1∑

j=0

χt(aj)θ
j . (19)

Multiplying both sides of it by π̃ and dividing by a− χt(a), we obtain the identity

π̃

θ − t
=

d−1∑

j=0

χt(aj)
θj π̃

a− χt(a)
,

which holds in Tt by Lemma 14. The first part of the proposition follows after evaluation of both
sides by Ee.

Let us now consider again (19) and apply Dn on both left- and right-hand sides. By (15) and
the chain rule (Subsection 16), we verify by induction that

Dn
(

1

a− χt(a)

)
=

χt(a
′)n

(a− χt(a))n+1
+ Ξn, (20)

where Ξn is an element of the submodule of Tt:

Fq[t]
χt(a

′)n

(a − χt(a))n
+ · · ·+ Fq[t]

χt(a
′)n

a− χt(a)
. (21)

Therefore, by (19),

1

(θ − t)n+1
=

d−1∑

j=0

θj
(

χt(aj)χt(a
′)n

(a− χt(a))n+1
+Υj,n

)
,

where Υj,n again are elements of the submodule (21). These identities hold in Tt and since Dn
commutes with Ee, we get, multiplying by π̃ and applying Ee:

(Dnω)(t) =

d−1∑

j=0

χt(aj)χt(a
′)nEe

(
π̃θj

(a− χt(a))n+1

)
+Ωj,n

=

d−1∑

j=0

χt(aj)χt(a
′)n(Dnω∗

a,j)(χt(a)) + Ωj,n

=
d−1∑

j=0

χt(aj)(Dnωa,j)(t) + Ωj,n

where Ωj,n is an element of

Fq[t]ωa,j + · · ·+ Fq[t](Dn−1ωa,j).

18



2.3.3 A second family of analytic identities

Our second family of identities holds in T
sym
t1,...,td

, for d ≥ 1. We begin with some elementary
remarks. Let us consider indeterminates X,X1, . . . , Xd, Y1, . . . , Yd over a field L. Let us define the
polynomials:

P = P (X,X1, . . . , Xd) =

d∏

i=1

(X −Xd)

and

U = U(X,X1, . . . , Xd, Y1, . . . , Yd) =

d−1∑

i=0

(−1)d−1−iα∗
i (X1, . . . , Xd, Y1, . . . , Yd)X

i,

with
α∗
d−j(X1, . . . , Xd, Y1, . . . , Yd) =

∑
∗ Yi1Xi2 · · ·Xij , j = 1, . . . , d

where the sum is over the j-tuples (i1, i2, . . . , ij) of pairwise distinct integers 1 ≤ i1, . . . , ij ≤ d, so
that

α∗
0 =

d∑

j=1

Yj
∏

i6=j

Xi,

α∗
d−1 =

d∑

j=1

Yj .

For example, if d = 3, we have

α∗
0 = X1X2Y3 +X1X3Y2 +X2X3Y1,

α∗
1 = X1Y2 +X1Y3 +X2Y1 +X2Y3 +X3Y1 +X3Y2,

α∗
2 = Y1 + Y2 + Y3,

and
U = α∗

2X
2 − α∗

1X + α∗
0.

If σ is a permutation of {1, . . . , d}, then

α∗
j (Xσ(1), . . . , Xσ(d), Yσ(1), . . . , Yσ(d)) = αj(X1, . . . , Xd, Y1, . . . , Yd)

for all j.
The following formula can be easily proved by induction on d ≥ 1:

d∑

i=1

Yi
X −Xi

=
U

P
.

In particular, if a is a polynomial of L[X ], we get

d∑

i=1

a(Xi)

X −Xi
=

Ua
P

, (22)
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with
Ua(X1, . . . , Xd) = U(X1, . . . , Xd, a(X1), . . . , a(Xd)) ∈ Rsym,

where R is the ring L[X1, . . . , Xd] and Rsym denotes the subring of symmetric polynomials.
Let us consider the higher derivation (∂n)n≥0 of the fraction field of Rsym(X), where

∂n = DX,n +DX,n =

d∑

j=1

DXj ,n +DX,n.

The next Lemma collects some simple remarks on how this higher derivation interacts with the
polynomials P,Ua.

Lemma 21 The following identities hold:

1. ∂nUa = UDX,na, for all n ≥ 0.

2. U1 = DX,1P .

3. ∂nP = 0, for all n ≥ 1.

4. ∂n

(
Ua
P

)
=

UDX,na

P
, for all n ≥ 0.

Proof. The first identity is a simple consequence of the next elementary identity after multiplication
of both sides of (22) by P :

∂n


a(Xi)

∏

j 6=i

(X −Xj)


 = (DX,na)(Xi)

∏

j 6=i

(X −Xj).

The second identity is obvious. All the remaining identities are direct consequences of the previous
and their verification is left to the reader.

In the next proposition, we will choose L = Fq and apply the above arguments to the choices
X = θ, Xi = ti, i = 1, . . . , d. Therefore, from now on, we will use the polynomials

P = P (θ, t1, . . . , td) ∈ Fq[t1, . . . , td]
sym[θ],

Ua = Ua(θ, t1, . . . , td, a(t1), . . . , a(td)) ∈ Fq[t1, . . . , td]
sym[θ].

Proposition 22 (Second family of analytic identities) Let a be an element of A of degree d.
The following identity holds in the algebra T

sym
t1,...,td :

d∑

i=1

χti(a)ω(ti) = Ee

(
π̃Ua

P

)
.

Moreover, for all n ≥ 1, we have the identity in T
sym
t1,...,td :

d∑

i=1

a(ti)(Dnω)(ti) = (−1)n+1Ee

(
(Dθ,1P )nUa

Pn+1

)
+ Λn + Γn,
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where Λn is an element of
n∑

i=1

Fq[t1, . . . , td]
symEe

(
π̃Fq[θ]

P i

)
,

and Γn is an element of
d∑

i=1

n∑

k=1

Fq[ti](Dkω)(ti) ∩ T
sym
t1,...,td .

Proof. The first identity follows by multiplying both sides of (22) by π̃ (once performed the necessary
replacement of variables) and applying Ee.

For all n ≥ 0, we have, by the chain rule,

Dθ,n
(
Ua

P

)
= (−1)n

(Dθ,1P )nUa

Pn+1
+Θn, (23)

with Θn an element of the module

n∑

i=1

Fq[t1, . . . , td]
sym[θ]P−i. (24)

Applying Lemma 21 and (23), we get:

Dt,n
(
Ua

P

)
=

UDθ,na

P
−Dθ,n

(
Ua

P

)

= (−1)n+1 (Dθ,1P )nUa

Pn+1
+Φn,

where Φn is another element of the module defined in (24).
Applying Dt,n on both sides of (22) we now get

d∑

i=1

a(ti)
1

(θ − ti)n+1
= (−1)n+1 (Dθ,1P )nUa

Pn+1
+Φn +Σn, (25)

where Σn is an element of
d∑

i=1

n∑

k=1

Fq[ti]
1

(θ − ti)k
∩ T

sym
t1,...,td .

To conclude, we must apply the operator Ee on both sides of (25) after having multiplied by π̃.
On the left-hand side, we find

d∑

i=1

a(ti)(Dnω)(ti).

As for the right-hand side, the first term delivers the function of Tsym
t1,...,td

(−1)n+1Ee

(
(Dθ,1P )nUa

Pn+1

)
.
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The second term, Ee(Φn), yields an element Λn of

n∑

i=1

Fq[t1, . . . , td]
symEe

(
π̃Fq[θ]

P i

)
.

The third term, Ee(Σn), gives an element Γn of

d∑

i=1

n∑

k=1

Fq[ti](Dkω)(ti) ∩ T
sym
t1,...,td ,

and the Proposition follows.

2.4 Proof of Theorem 1

Let E∞ be the maximal abelian extension of K tamely ramified at infinity which, by virtue of
Hayes result in [19], equals the field

Falg
q (θ, λa; a ∈ A).

Furthermore, let L∞ be the field

Falg
q (θ, (Dnω)(ζ); ζ ∈ Falg

q , n ≥ 0),

where Dn denotes the n-th divided derivative with respect to the variable t in Tt (see Subsection 16).
Theorem 1 states that L∞ = E∞. The proof relies on two families of analytic identities allowing to
check the required double inclusion between these fields. Let n be an integer and consider the set
En whose elements are the monic polynomials a of A such that for all p a prime dividing a, pn+1

does not divide a. Let us define the following subfields of Kalg:

En = Falg
q (φb(λa); a ∈ En, b ∈ A)

Ln = Falg
q (ω(ζ), (D1ω)(ζ), . . . , (Dnω)(ζ); a(ζ) = 0 for some a ∈ En+1).

We have E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ · · · , L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂ · · · , and ∪∞
i=0Ei = E∞, ∪∞

i=0Li = L∞.
We will prove (see Corollary 27) the identities En = Ln by using induction on n ≥ 0 a the next
Proposition indicates; Theorem 1 follows by a limit process.

The next result constitutes the main step to prove Theorem 1.

Proposition 23 Let p be a prime of degree d, let Fp be the extension of Fq generated by the roots

of p. For all n ≥ 0, we have the following identity of fields.

FpKpn+1 = Fp((Dkω)(ζ), ζ ∈ Fp, 0 ≤ k ≤ n).

The proof of the above Proposition will proceed by induction on n ≥ 0. Let us denote by Lp,n

the field Fp((Dkω)(ζ), ζ ∈ Fp, 0 ≤ k ≤ n) and by Ep,n the field FpKpn+1. We have to show that
Lp,n = Ep,n for all n ≥ 0. To ease the reading we will consider the case n = 0 separately, before
considering the general case, although this discrimination of the two cases is not strictly necessary.

To prove the case n = 0, we will use the following Lemma.
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Lemma 24 Let p be a prime of degree d, let ζ1, . . . , ζd ∈ Fp be its roots. Let us also consider a

polynomial a ∈ A. Then,
d∑

j=1

a(ζj)ω(ζj) = φap′(λp).

Proof. Compare with [30, Proposition 29]. Applying the first part of Proposition 22, we observe
that, in the Tate algebra T

sym
t1,...,td , we have, setting X = θ, Xi = ti, the identity

d∑

i=1

a(ti)ω(ti) = Ee

(
π̃Ua
P

)
.

with P =
∏d
i=1(θ − ti). If we replace ti = ζi (i = 1, . . . , d) conjugate elements of Fqd , we have

P (θ, ζ1, . . . , ζd) = p, Ua = p′a and the Lemma follows applying Lemma 19 because:

Ee

(
π̃Ua
P

)∣∣∣∣
ti=ζi

= exp

(
π̃p′a

p

)
= φap′(λp)

(remember that Ua and P are polynomials which are symmetric in t1, . . . , td).

Proof of Proposition 23 in the case n = 0. We begin by applying the first part of Proposition 20,
with a = p. In this case we get, for ζ ∈ Fp a root of p, ω(ζ) ∈ Fp(ω

∗
p,0(0), . . . , ω

∗
p,d−1(0)) = Ep,0

(by (11)), from which the inclusion of fields Lp,0 ⊂ Ep,0 follows. For the reverse inclusion we notice
that Ep,0 = Fp(λp) = Fp(φp′(λp)) because p and p′ are relatively prime. By Lemma 24 with a = 1,
we see that φp′(λp) ∈ Lp,0. Therefore, Lp,0 = Ep,0.

To prove the case n > 0 of the Proposition 23, we will use two Lemmas. The next Lemma is
about the evaluation of higher derivatives of the functions ωa,j at roots of unit.

Lemma 25 Let p be a prime of degree d and ζ a root of p. Let n ≥ 1 and 0 ≤ 0 ≤ d−1 be integers.

Then, there exists an element µn ∈ Ep,n−1 such that

(Dnωp,j)(ζ) = (p′(ζ))nφθj (λpn+1) + µn.

Proof. By (11) and the chain rule, (Dnωp,j)(ζ) is equal to (p′(ζ))n(Dx,nω∗
p,j)(0) plus a linear

combination of values (Dx,iω∗
p,j)(0) with i = 0, . . . , n− 1 and coefficients in Fp.

Lemma 26 Let p be a prime of degree d, let ζ1, . . . , ζd ∈ Fp be its roots, and let us consider an

integer n ≥ 0. Furthermore, let us also consider a polynomial a ∈ A. Then, there exist an element

νn ∈ Ep,n and an element γn ∈ Lp,n such that

d∑

j=1

a(ζj)(Dnω)(ζj) = φa(p′)n+1(λpn+1) + νn + γn.

Proof. By the second part of Proposition 22 and Lemma 19, we have

d∑

i=1

a(ζi)(Dnω)(ζi) = (−1)n+1 exp

(
(p′)n+1a

pn+1

)
+ Λn(ζ1, . . . , ζd) + Γn(ζ1, . . . , ζd).
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The Lemma follows by setting νn = Λn(ζ1, . . . , ζd), belonging to Ep,n, and γn = Γn(ζ1, . . . , ζd),
belonging to Lp,n. Indeed, exp((p

′)n+1a/pn+1) = φ(p′)n+1aλpn+1 .

Proof of Proposition 23 in the case n ≥ 0. We proceed by induction on n; the case n = 0 being
already proved, let us assume that n > 0 and that Ep,i = Lp,i for i = 0, . . . , n − 1. We first show
that Lp,n is contained in Ep,n. To do so, it suffices to show that (Dnω)(ζ) ∈ Ep,n for all ζ root of p.

By the second part of Proposition 20 with t = ζ, we have

(Dnω)(ζ) =
d−1∑

j=0

pj(ζ)(Dnωp,j)(ζ) + Ωn(ζ),

where it is obvious that Ωn(ζ) ∈ Ep,n−1. By Lemma 25, the sum over j equals

d−1∑

j=0

pj(ζ)p
′(ζ)nφθj (λpn+1) + µn,

with µn ∈ Ep,n−1. This shows the inclusion Lp,n ⊂ Ep,n.

Let us now show the opposite inclusion. Since p is prime, the class of (p′)n+1 is a generator of the
A-module A/pn+1. Therefore, in view of Lemma 26, we will only need to show that φ(p′)n+1(λpn+1) ∈
Lp,n. But νn and γn are elements of Lp,n−1 by hypothesis, so that Lemma 26 implies that Ep,n ⊂
Lp,n. The proof of Proposition 23 is complete.

Corollary 27 We have, for all n ≥ 0, En = Ln.

Proof. On one side, En is the compositum of all the fields Ep,n with p varying in the set of primes
of A. On the other side, Ln is the compositum of all the fields Lp,n, with p varying in the set of
primes of A. The result follows from Proposition 23.

Theorem 1 follows at once by taking n → ∞.

Remark 28 Theorem 1 does not seem to be directly related to Anderson’s result in [5], where
he proves that the compositum of all the subfields of Qalg that are at once quadratic over Qab

and Galois over Q is generated by algebraic Γ-monomials satisfying the Koblitz-Ogus condition.
However, an analogue of our result concerning the Akhiezer-Baker function Γ(s− t) as in [30] and
its composition with t =meromorphic integral-periodic functions should hold.

2.5 Proof of Theorem 3

By the second part of Proposition 10, we have that for δ ∈ ∆p and χ ∈ ∆̂p,

δ(g(χ)) = χ(δ)g(χ). (26)
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Let ζ be the root of p such that ϑp(σθ) = ζ. We have, for j = 0, . . . , d− 1:

g(ϑq
j

p ) = −
∑

δ∈∆p

ϑp(δ
−1)q

j

δ(λp)

= −
∑

a∈(A/pA)×

ϑp(σa)
−qjσa(λp)

= −
∑

a∈(A/pA)×

ϑp(σa)
−qjφa(λp).

By (26) and Lemma 24 (ζ1, . . . , ζd again denote the zeros of p):

χζ(p
′)q

j

g(ϑq
j

p ) = σp′(g(ϑq
j

p ))

= −
∑

a∈(A/pA)×

ϑp(σap′)−q
j

φap′(λp)

= −
∑

a∈(A/pA)×

ϑp(σap′)−q
j

d∑

k=1

a(ζk)ω(ζk)

= −
d−1∑

i=0

ω(ζq
i

)
∑

a∈(A/pA)×

ϑp(σa)
qi−qj ,

where the last identity follows from the fact that {ζ1, . . . , ζd} = {ζ, ζq, . . . , ζqd−1}. Now, the sum
∑

a∈(A/pA)×

ϑp(σa)
qi−qj

always vanishes except when i = j, case in which the sum equals −1. Therefore:

ω(ζq
j

) = ω(ϑp(σθ)
qj ) = χζ(p

′)q
j

g(ϑq
j

p )

hence completing the proof of the Theorem.

We shall also mention the following result.

Corollary 29 Let ζ be the root of p such that ϑp(σθ) = ζ. The following identity holds:

FpKp = Fp(g(ϑp)).

Proof. By Proposition 23, we have FpKp = Fp(ω(ζ)). Theorem 3 now implies that Fp(ω(ζ)) =
Fp(g(ϑp)).

3 Functional identities for L-series

In this section, we prove Theorem 4. We will need a few preliminary results that we shall study in
this subsection. Let d, s be nonnegative integers. We begin with the study of the vanishing of the
sums

Sd,s = Sd,s(t1, . . . , ts) =
∑

a∈A+(d)

χt1(a) · · ·χts(a) ∈ Fq[t1, . . . , ts],
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which are symmetric polynomials in t1, . . . , ts of total degree ≤ ds, with the standard conventions
on empty products. We recall that, for n ≥ 0,

∑

a∈Fq

an

equals −1 if n ≡ 0 (mod q − 1) and n ≥ 1, and equals 0 otherwise. We owe the next Lemma to D.
Simon [9]. We give the proof here for the sake of completeness.

Lemma 30 (Simon’s Lemma) We have Sd,s 6= 0 if and only if d(q − 1) ≤ s.

Proof. Since

Sd,s =
∑

a0∈Fq

· · ·
∑

ad−1∈Fq

s∏

i=1

(a0 + a1ti + · · ·+ ad−1t
d−1
i + tdi ),

the coefficient cv1,...,vs of tv11 · · · tvss with vi ≤ ds (i = 1, . . . , s) is given by the sum:

∑

a0∈Fq

· · ·
∑

ad−1∈Fq

av1 · · · avs ,

if we set ad = 1. The last sum can be rewritten as:

cv1,...,vs =


 ∑

a0∈Fq

aµ0

0


 · · ·


 ∑

ad−1∈Fq

a
µd−1

d−1


 , (27)

where µi is the cardinality of the set of the indices j such that vj = i, from which one notices that

d−1∑

i=0

µi ≤ s

(notice also that s−∑i µi is the cardinality of the set of indices j such that vj = d). For any choice
of µ0, . . . , µd−1 such that

∑
i µi ≤ s, there exists (v1, . . . , vs) such that (27) holds.

If s < d(q − 1), for all (v1, . . . , vs) as above, there exists i such that, in (27), µi < q − 1 so that
Sd,s = 0. On the other hand, if s ≥ d(q − 1), it is certainly possible to find (v1, . . . , vs) such that,
in (27), µ0 = · · · = µd−1 = q − 1 so that the sum does not vanish in this case.

As an immediate corollary of Lemma 30, we see that the series

Fs = Fs(t1, . . . , ts) =
∑

d≥0

Sd,s =
∑

d≥0

∑

a∈A+(d)

χt1(a) · · ·χts(a)

defines a symmetric polynomial of Fq[t1, . . . , ts] of total degree at most s2

q−1 . In the next Lemma,
we provide a sufficient condition for the vanishing of the polynomial Fs.

Lemma 31 If s ≥ 1, then, Fs = 0 if and only if s ≡ 0 (mod q − 1).
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Proof. Let us assume first that s ≡ 0 (mod q − 1). The hypothesis on s implies that

∑

a∈A,degθ(a)=d

χt1(a) · · ·χts(a) = −Sd,s.

We denote by A(≤ d) the set of polynomials of A of degree ≤ d and we write

Gd,s =
∑

a∈A(≤d)

χt1(a) · · ·χts(a).

We then have:

G s
q−1 ,s

= −Fs.

Let us choose now distinct primes p1, . . . , ps of respective degrees d1, . . . , ds ≥ s/(q − 1) and f =
p1 · · · ps. For all i = 1, . . . , s, we choose a root ζi ∈ Falg

q of pi. Let us then consider the Dirichlet
character of the first kind χ = χζ1 · · ·χζs . We have:

Fs(ζ1, . . . , ζs) = −G s
q−1 ,s

(ζ1, . . . , ζs)

= −
∑

a∈A(≤s/(q−1))

χ(a)

= −
∑

a∈A(≤d1+···+ds)

χ(a)

= −
∑

a∈(A/fA)×

χ(a)

= 0,

by [33, Proposition 15.3]. Since the set of s-tuples (ζ1, . . . , ζs) ∈ (Falg
q )s with ζ1, . . . , ζs as above is

Zariski-dense in As(C∞), this implies the vanishing of Fs. On the other hand, if s 6≡ 0 (mod q− 1),
then Fs(θ, . . . , θ) = ζ(−s) the s-th Goss’ zeta value which is non zero, see [15].

3.1 Analyticity

The functions L(χt1 · · ·χts , α) are in fact rigid analytic entire functions of s variables. This property,
mentioned in [26], can be deduced from the more general Proposition 32 that we give here for
convenience of the reader.

Let a be a monic polynomial of A. we set:

〈a〉 = a

θdegθ(a)
∈ 1 + θ−1Fq[θ

−1].

Let y ∈ Zp, where p is the prime dividing q. Since 〈a〉 is a 1-unit of K∞, we can consider its
exponentiation by y:

〈a〉y =
∑

j≥0

(
y

j

)
(〈a〉 − 1)j ∈ Fq[[θ

−1]].
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Here, the binomial
(
y
j

)
is defined, for j a positive integer, by extending Lucas formula. Writing

the p-adic expansion
∑
i≥0 yip

i of y (yi ∈ {0, . . . , p − 1}) and the p-adic expansion
∑r

i=0 jip
i of j

(ji ∈ {0, . . . , p− 1), we are explicitly setting:

(
y

j

)
=

r∏

i=0

(
yi
ji

)
.

We also recall, from [16, Chapter 8], the topological group S∞ = C×
∞ ×Zp. For (x, y) ∈ S∞ and

d, s non-negative integers, we define the sum

Sd,s(x, y) = Sd,s(x, y)(t1, . . . , ts) = x−d
∑

a∈A+(d)

χt1(a) · · ·χts(a)〈a〉y ∈ x−dK∞[t1, . . . , ts],

which is, for all x, y, a symmetric polynomial of total degree ≤ ds.
Let us further define, more generally, for variables t1, . . . , ts ∈ C∞ and (x, y) ∈ S∞, the series:

L(χt1 . . . χts ;x, y) =
∑

d≥0

Sd,s(x, y)(t1, . . . , ts).

For fixed choices of (x, y) ∈ S∞, it is easy to show that

L(χt1 . . . χts ;x, y) ∈ C∞[[t1, . . . , ts]],

and with a little additional work, one also verifies that this series defines an element of Tt1,...,ts . Of
course, if (x, y) = (θα,−α) with α > 0 integer, we find

L(χt1 . . . χts ; θ
α,−α) = L(χt1 . . . χts , α).

The next Proposition holds and improves results of Goss; see [18, Theorems 1, 2]).

Proposition 32 The series L(χt1 , . . . , χts ;x, y) converges for all (t1, . . . , ts) and for all (x, y) ∈
S∞, to a continuous-analytic function on Cs∞ × S∞ in the sense of Goss.

The proof of this result is a simple consequence of the Lemma below. The norm ‖ · ‖ used in
the Lemma is that of Tt1,...,ts .

Lemma 33 Let (x, y) be in S∞ and let us consider an integer d > (s − 1)/(q − 1), with s > 0.
Then:

‖Sd,s(x, y)‖ ≤ |x|−dq−q
⌊d−

s−1
q−1

⌋

.

Proof. Let us write the p-adic expansion y =
∑

n≥0 cnp
n, with cn ∈ {0, · · · , p − 1} for all n.

Collecting blocks of e consecutive terms (where q = pe), this yields a “q-adic” expansion, from
which we can extract partial sums:

yn =

en−1∑

k=0

ckp
k =

n∑

i=0

uiq
i ∈ Z≥0,

where

ui =

e(i+1)−1∑

j=ei

cjp
j−ei ∈ {0, . . . , q − 1}.
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In particular, for n ≥ 0, we observe that ℓq(yn) ≤ (n+ 1)(q − 1). Since

Sd,s(x, yn) =
1

xdθdyn

∑

a∈A+(d)

χt1(a) · · ·χts(a)ayn

=
1

xdθdyn
Sd,r(t1, . . . , ts, θ, . . . , θ︸ ︷︷ ︸

u0 times

, θq, . . . , θq︸ ︷︷ ︸
u1 times

, . . . , θq
n

, . . . , θq
n

︸ ︷︷ ︸
un times

)

with r = s+ ℓq(yn), if d(q − 1) > s+ ℓq(yn), we have by Simon’s Lemma 30:

Sd,s(x, yn) = 0.

This condition is ensured if d(q − 1) > s+ (n+ 1)(q − 1).

Now, we claim that

‖Sd,s(x, y) − Sd,s(x, yn)‖ ≤ |x|−dq−qn+1

.

Indeed,

Sd,s(x, y)− Sd,s(x, yn) = x−d
∑

a∈A+(d)

χt1(a) · · ·χts(a)
∑

j≥0

((
y

j

)
−
(
yn
j

))
(〈a〉 − 1)j ,

and
(
y
j

)
=
(
yn
j

)
for j = 0, . . . , qn+1− 1 by Lucas’ formula and the definition of the binomial, so that

∣∣∣∣∣∣

∑

j≥0

((
y

j

)
−
(
yn
j

))
(〈a〉 − 1)j

∣∣∣∣∣∣
≤ q−q

n+1

.

The Lemma follows by choosing n = ⌊d− 1− s−1
q−1⌋.

In particular, we have the following Corollary to Proposition 32 which generalizes [18, Theorem
1], the deduction of which, easy, is left to the reader.

Corollary 34 For any choice of an integer α > 0 and non-negative integers M1, . . . ,Ms, the

function

L(χM1
t1 · · ·χMs

ts , α) =
∑

d≥0

∑

a∈A+(d)

χt1(a)
M1 · · ·χts(a)Msa−α

defines a rigid analytic entire function Cs∞ → C∞.

3.2 Computation of polynomials with coefficients in K∞

Lemma 35 For all d ≥ 0, we have:

Sd(−α) =
∑

a∈A+(d)

a−α 6= 0.
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Proof. This follows from [16, proof of Lemma 8.24.13].

We introduce, for d, s, α nonnegative integers, the sum:

Sd,s(−α) =
∑

a∈A+(d)

χt1(s) · · ·χts(a)a−α ∈ K[t1, . . . , ts],

representing a symmetric polynomial of K[t1, . . . , ts] of exact total degree ds by Lemma 35. We
have, with the notations of Section 3.1:

Sd,s(−α) = Sd,s(θ
α,−α).

From the above results, we deduce the following Proposition.

Proposition 36 Let l ≥ 0 be an integer such that ql − α ≥ 0 and 2 ≤ ℓq(q
l − α) + s ≤ d(q − 1).

Then:

Sd,s(−α) ≡ 0 (mod

s∏

j=1

(tj − θq
l

)).

Furthermore, assume that s ≡ α (mod q − 1). With l as above, let k be an integer such that

k(q − 1) ≥ ℓq(q
l − α) + s. Then:

k∑

d=0

Sd,s(−α) ≡ 0 (mod
s∏

j=1

(tj − θq
l

)).

Proof. Let us write m = ℓq(q
l − α). We have s − 1 + m < d(q − 1) so that, by Simon’s Lemma

30, Sd,s−1+m = 0. Now, let us write the q-ary expansion ql − α = n0 + n1q + · · · + nrq
r with

ni ∈ {0, . . . , q − 1} and let us observe that, since ql − α ≥ 0,

Sd,s(−α)(t1, . . . , ts−1, θ
ql) =

∑

a∈A+(d)

χt1(a) · · ·χts−1(a)a
ql−α

=
∑

a∈A+(d)

χt1(a) · · ·χts−1(a)χθ(a)
n0χθq(a)

n1 · · ·χθqr (a)nr

= Sd,s−1+m(t1, . . . , ts−1, θ, . . . , θ︸ ︷︷ ︸
n0 times

, θq, . . . , θq︸ ︷︷ ︸
n1 times

, . . . , θq
r

, . . . , θq
r

︸ ︷︷ ︸
nr times

)

= 0.

Therefore ts− θq
l

divides Sd,s(−α). The first part of the Proposition follows from the fact that this
polynomial is symmetric. For the second part, we notice by the first part, that the condition on k

is sufficient for the sum Sd,s(−α)(t1, . . . , ts) to be congruent modulo (ts− θq
l

) for all d ≥ k+1. On
the other hand, by Lemma 31 and the above computation, we have

∑

d≥0

Sd,s(−α)(t1, . . . , ts−1, θ
ql) = Fs(t1, . . . , ts−1, θ, . . . , θ

qr ) = 0.

But then, thanks to the condition on k,

k∑

d=0

Sd,s(−α) ≡ −
∑

d>k

Sd,s(−α) ≡ 0 (mod (ts − θq
l

))
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and the Proposition follows again because the sum we are inspecting is a symmetric polynomial.

We further have the result below.

Proposition 37 Let s, α ≥ 1, s ≡ α (mod q − 1). Let δ be the smallest positive integer such that

qδ ≥ α and s+ ℓq(q
δ − α) ≥ 2. Then, the function of Theorem 4

Vα,s(t1, . . . , ts) = L(χt1 · · ·χts , α)ω(t1) · · ·ω(ts)π̃−α




s∏

i=1

δ−1∏

j=0

(
1− ti

θqj

)


is in fact a symmetric polynomial of K∞[t1, · · · , ts]. Moreover, its total degree δ(α, s) is not bigger

than s
(
s+ℓq(q

δ−α)
q−1

)
− s.

Proof. Let δ be the smallest positive integer such that qδ − α ≥ 0 and s + ℓq(q
δ − α) ≥ 2. We fix

an integer k such that

k(q − 1) ≥ s+ ℓq(q
δ − α). (28)

We also set:

N(k) = δ + k − s+ ℓq(q
δ − α)

q − 1
.

Obviously, N(k) ≥ δ. Let l be an integer such that

δ ≤ l ≤ N(k).

We claim that we also have

k(q − 1) ≥ s+ ℓq(q
l − α).

Indeed, let us write the q-ary expansion α = α0 + α1q + · · ·+ αmqm with αm 6= 0. Then, δ = m if
α = qm and s ≥ 2 and δ = m+ 1 otherwise. If l is now an integer l ≥ δ, we have

ql − α = ql − qδ + qδ − α

= qδ(q − 1)

(
l−δ−1∑

i=0

qi

)
+ qδ − α,

where the sum over i is zero if l = δ, and

ℓq(q
l − α) = (q − 1)(l − δ) + ℓq(q

δ − α)

because there is no carry over in the above sum. Now, the claim follows from (28).

By Proposition 36 we have, with k as above, that the following expression

Wk,s,α :=




s∏

i=1

N(k)∏

j=δ

(
1− ti

θqj

)−1



k∑

d=0

Sd,s(−α)
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is in fact a symmetric polynomial in K[t1, . . . , ts]. By Lemma 35, Sd,s(−α) ∈ K[t1, . . . , ts] is
a symmetric polynomial of total degree ds; indeed, the coefficient of td1 · · · tds is exactly Sd(−α).

Hence, the total degree of
∑k

d=0 Sd,s(−α) is exactly ks. The total degree of the product

s∏

i=1

N(k)∏

j=δ

(
1− ti

θqj

)

is equal to s(1 +N(k)− δ) so that, by the definition of N(k):

deg(Wk,s,α) = sk − s− sN(k) + sδ

= sk − sk − sδ + sδ − s+ s

(
s+ ℓq(q

δ − α)

q − 1

)

= s

(
s+ ℓq(q

δ − α)

q − 1

)
− s,

independent on k. We now let k tend to infinity. The Proposition follows directly from the definition
(2) of ω as an infinite product, the fact that, in (2), π̃θ−1/(q−1) ∈ K∞, and the definition of
L(χt1 · · ·χts , α).

3.3 An intermediate result on special values of Goss L-functions

Let χ be a Dirichlet character of the first kind, that is a character

χ : (A/aA)× → (Falg
q )×,

where a is a non-constant squarefree monic element of A which we identify, by abuse of notation,
to a character of ∆̂a still denoted by χ, of conductor f = fχ, and degree d = degθ f .

Let s(χ) be the type of χ, that is, the unique integer s(χ) ∈ {0, · · · , q − 2} such that:

χ(ζ) = ζs(χ) for all ζ ∈ F×
q .

We now consider the generalized α-th Bernoulli number Bα,χ−1 ∈ Fq(χ)(θ) associated to χ−1, [8,
Section 2], and the special value of Goss’ abelian L-function [16, Section 8]:

L(α, χ) =
∑

a∈A+

χ(a)a−α, α ≥ 1.

The following result is inspired by the proof of [8, Proposition 8.2]:

Proposition 38 Let α ≥ 1, α ≡ s(χ) (mod q − 1). Then:

L(α, χ)g(χ)

π̃α
= (−1)d

Bα,χ−1

fα−1
∈ Fq(χ)(θ).

The proposition is known to be true for the trivial character (see [16, Section 9.2]); in this case, we
notice that:

Bα,χ−1
0

=
BCα
Π(α)

, α ≥ 1, α ≡ 0 (mod q − 1),
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where we recall that BCα is the α-th Bernoulli-Carlitz number and Π(α) is the Carlitz factorial of
α (see [16, Definition 9.2.1]). We now assume that χ 6= χ0. Since:

exp(z) = z
∏

a∈A\{0}

(
1− z

π̃a

)
,

We have:
1

exp(z)
=
∑

a∈A

1

z − π̃a
.

Let b ∈ A be relatively prime with f and let σb ∈ Gal(Kf/K) be the element such that σb(λf) =
φb(λf). We have:

1

exp(z)− σb(λf)
= −

∑

n≥0

fn+1

π̃n+1

(
∑

a∈A

1

(b+ af)n+1

)
zn.

Therefore, we obtain:

∑

b∈(A/fA)×

χ(b)

exp(z)− σb(λf)
= −

∑

n≥0

fn+1

π̃n+1




∑

a∈A\{0}

χ(a)

an+1


 zn.

If n+ 1 6≡ s(χ) (mod q − 1), we get:

∑

a∈A\{0}

χ(a)

an+1
= 0,

and if n+ 1 ≡ s(χ) (mod q − 1), we have:

∑

a∈A\{0}

χ(a)

an+1
= −L(n+ 1, χ).

Thus:
∑

b∈(A/fA)×

χ(b)

exp(z)− σb(λf)
=

∑

i≥1, i≡s(χ) (mod (q−1))

fiL(i, χ)

π̃i
zi−1. (29)

But note that by the second part of Lemma 11:

∑

b∈(A/fA)×

χ(b)

exp(z)− σb(λf)
∈ g(χ−1)Fq(χ)(θ)[[z]].

Since by Proposition 10,

g(χ)g(χ−1) = (−1)df,

where d = degθ fχ, we get the result by comparison of the coefficients of the series expansion of
both sides of (29).
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Remark 39 In the above proof of Proposition 38, if we set α = 1 we have, by comparison of the
constant terms in the series expansions in powers of z in (29):

π̃−1fL(1, χ) = −
∑

b∈(A/fA)×

χ(b)

σb(λf)
∈ g(χ−1)Fq(χ)(θ).

Assuming that f is not a prime, by [33, Proposition 12.6], λf is a unit in the integral closure Af of
A in Kf. Therefore, ∑

b∈(A/fA)×

χ(b)

σb(λf)
∈ g(χ−1)Fq(χ)[θ]

and we deduce that
π̃−1L(1, χ)g(χ) ∈ Fq(χ)[θ].

This remark will be crucial in the proof of Corollary 41.

3.4 Proof of Theorem 4

The next Lemma provides a rationality criterion for a polynomial a priori with coefficients in K∞,
again based on evaluation at roots of unit.

Lemma 40 Let F (t1, . . . , ts) ∈ K∞[t1, . . . , ts] such that for all ζ1, . . . , ζs ∈ Falg
q , pairwise not con-

jugate over Fq,

F (ζ1, . . . , ζs) ∈ K(ζ1, . . . , ζs).

Then F (t1, . . . , ts) ∈ K[t1, . . . , ts].

Proof. We begin by pointing out that if elements a1, . . . , as ∈ K∞ areK⊗Fq
Falg
q -linearly dependent,

then they also are K-linearly dependent. The proof proceeds by induction on s ≥ 1. For s = 1,
this is obvious. Now, let

s∑

i=1

λsas = 0 (30)

be a non-trivial relation of linear dependence with the λi ∈ K ⊗ Falg
q \ {0}. We may assume that

λs = 1 and that there exists i ∈ {1, . . . , s− 1} such that λi 6∈ K. Then, there exists

σ ∈ Gal(K∞ ⊗ Falg
q /K∞) = Gal(K ⊗ Falg

q /K) = Gal(Falg
q /Fq)

such that σ(λi) 6= λi. Applying σ on both left- and right-hand sides of (30) and subtracting, yields
a non-trivial relation involving at most s− 1 elements of K∞ on which we can apply the induction
hypothesis.

We can now complete the proof of the Lemma. Let F be a polynomial in K∞[t1, . . . , ts] not
in K[t1, . . . , ts]. It is easy to show that there exist a1, . . . , am ∈ K∞, linearly independent over K,
such that

F = a1P1 + · · ·+ amPm,

where P1, . . . , Pm are non-zero polynomials of K[t1, . . . , ts]. Let us suppose by contradiction that
there exists F ∈ K∞[t1, . . . , ts] \ K[t1, . . . , ts] satisfying the hypotheses of the Lemma. Since the
set of s-tuples (ζ1, . . . , ζs) as in the statement of the Lemma is Zariski-dense in As(C∞), there
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exist a choice of such roots of unit ζ1, . . . , ζs and i ∈ {1, . . . ,m} such that Pi(ζ1, . . . , ζm) 6= 0. This
means that a1, . . . , am are K ⊗ Falg

q -linearly dependent, thus K-linearly dependent by the previous
observations; a contradiction.

Proof of Theorem 4. In view of Lemma 40, we want to show that the polynomial

Vα,s = π̃−αL(χt1 · · ·χts , α)ω(t1) · · ·ω(ts)




s∏

i=1

δ−1∏

j=0

(
1− ti

θqj

)
 ∈ K∞[t1, · · · , ts]

of Proposition 37 takes values in K(ζ1, · · · , ζs) for all ζ1, · · · , ζs ∈ Falg
q pairwise non conjugate over

Fq. Let (ζ1, . . . , ζs) be one of such s-tuples of roots of unit and, for i = 1, . . . , s, let pi ∈ A be the
minimal polynomial of ζi, so that p1, . . . , ps are pairwise relatively prime. We choose the characters
ϑpi

so that ϑpi
(σθ) = ζi for all i. We construct the Dirichlet character of the first kind χ defined,

for a ∈ A, by

χ(a) = χζ1(a) · · ·χζs(a).

By Proposition 38, we have

L(α, χ)g(χ)

π̃α
= (−1)dχ

Bα,χ−1

fα−1
χ

∈ Fq(χ)(θ).

Since

L(α, χ) = L(χζ1 · · ·χζs , α),

we get:

Vα,s(ζ1, . . . , ζs) = L(α, χ)ω(ζ1) · · ·ω(ζs)π̃−α

=
L(α, χ)g(χ)

π̃α
ω(ζ1) · · ·ω(ζs)

g(χ)

= (−1)dχ
Bα,χ−1

fα−1
χ

χζ1(p
′
1) · · ·χζs(p′s)

∈ K(ζ1, . . . , ζs),

where in the next to last step, we have used Theorem 3. The proof of Theorem 4 now follows from
Lemma 40.

4 Congruences for Bernoulli-Carlitz numbers

In this Section, we shall prove Theorem 5. This is possible because in Theorem 4, more can be said
when α = 1. In this case, one sees that the integer δ of Theorem 4 is equal to zero and s ≥ q, so
that, with the notations of that result,

V1,s = π̃−1L(χt1 · · ·χts , 1)ω(t1) · · ·ω(ts).

In the next Subsection we will show that this is a polynomial of A[t1, . . . , ts].
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4.1 Functional identities with α = 1

We begin with the following Corollary of Theorem 4. The main result of this subsection is Propo-
sition 44.

Corollary 41 Let s ≥ 2 be such that s ≡ 1 (mod q − 1). Then the symmetric polynomial V1,s ∈
K[t1, . . . , ts] of Theorem 4 is in fact a polynomial of Fq[T ][t1, . . . , ts] of total degree ≤ s2/(q−1)−s
in the variables t1, . . . , ts.

Proof. It follows from a simple modification of the proof of Proposition 38. Let p1, . . . , ps be distinct
primes in A, let us write a = p1 · · · ps and let us consider the Dirichlet character χ associated to
ϑp1 · · ·ϑps

that we also loosely identify with the corresponding element of ∆̂a. Since a is not a
prime power, Remark 39 implies that

π̃−1L(1, χ)g(χ) ∈ Fq(χ)[θ]. (31)

Now, specializing at ti = ζi the root of pi associated to the choice of characters ϑpi
for all i = 1, . . . , s,

we obtain
V1,s(ζ1, . . . , ζs) = π̃−1L(1, χ)g(χ) ∈ Fq(ζ1, . . . , ζs)[θ],

and the result follows from Lemma 40, the bound on the degree agreeing with that of Theorem 4.

4.1.1 Digit principle for the function ω and the L-series

Let ϕ : Tt → Tt be the C∞-linear map defined by

ϕ



∑

n≥0

cnt
n


 =

∑

n≥0

cnt
qn, cn ∈ C∞.

We also set, for N a non-negative integer with its expansion in base q, N = N0 +N1q+ · · ·+Nrq
r,

Ni ∈ {0, . . . , q − 1}:

ωN (X) =

r∏

i=0

ϕi(ω(X))Ni .

We then have the next Lemma.

Lemma 42 The following identity holds:

ωN(ϑp(σθ)) = ϑp(σp′ )Ng(ϑNp ).

Proof. This is a direct application of Theorem 3. Indeed,

ωN (ϑp(σθ)) =

d−1∏

i=0

ω(ϑp(σθqi ))
Ni =

d−1∏

i=0

ϑp(σp′)q
iNig(ϑq

i

p )Ni .

Let X,Y be two indeterminates over K. We introduce a family of polynomials (Gd)d≥0 in
Fq[X,Y ] as follows. We set G0(X,Y ) = 1 and

Gd(X,Y ) =

d−1∏

i=0

(X − Y qi), d ≥ 1.

36



This sequence is closely related to the sequence of polynomials Gn(y) of [2, Section 3.6]: indeed,
the latter can be rewritten in terms of the former:

Gd(y) = Gd(T
qd , yq), d ≥ 1,

in both notations of loc. cit. and ours (5). The polynomial Gd is monic of degree d in the
variable X , and (−1)dGd is monic in the variable Y of degree (qd − 1)/(q − 1). We now define, for
N = N0 +N1q + · · ·+Nrq

r a non-negative integer expanded in base q, the polynomial

HN (t) =
r∏

i=0

Gi(t
qi , θ)Ni =

r∏

i=0

i−1∏

j=0

(tq
i − θq

j

)Ni .

We also define the quantities associated to N and q:

µq(N) =

r∑

i=0

Niiq
i,

µ∗
q(N) =

N

q − 1
− ℓq(N)

q − 1
,

ℓ′q(N) =
r∑

i=0

Nii.

Lemma 43 Let N be a non-negative integer. The following properties hold.

1. The polynomial HN (t), as a polynomial of the indeterminate t, is monic of degree µq(N).

2. As a polynomial of the indeterminate θ, HN (t) has degree µ∗
q(N) and the leading coefficient

is (−1)ℓ
′
q(N).

3. We have HN (θ) = Π(N) and v∞(HN (θ)) = µq(N), where v∞ is the ∞-adic valuation of C∞.

4. We also have, for all ζ ∈ Falg
q , v∞(HN (ζ)) = −µ∗

q(N).

Proof. Easy and left to the reader.

We observe that:

ϕdω(t) =
1

Gd(tq
d , θ)

ω(t)q
d

= ωqdN (t), d ≥ 0

5As an aside remark, we also notice that we recover in this way the coefficients of the formal series in K[[τ ]]
associated to Carlitz’s exponential and logarithm

e =
∑

i≥0

d−1
i τ i, l =

∑

i≥0

l−1
i τ i,

because di = Gi(θq
i
, θ) and li = Gi(θ, θq). Moreover, if p is a prime of A of degree d, we observe that

p =
d∏

i=1

(θ − ζi) =

d−1∏

j=0

(θ − ϑp(σθq
j )) = Gd(θ, ϑp(σθ)).
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so that, with N as above,

ωN (t) =
ω(t)N∏r

i=0 Gi(t
qi , θ)Ni

=
ω(t)N

HN (t)
. (32)

The following Proposition was inspired by a discussion with D. Goss.

Proposition 44 Let s ≥ 2 be an integer. Let M1, . . . ,Ms be positive integers such that M1 + · · ·+
Ms ≡ 1 (mod q − 1). Then:

W (t1, . . . , ts) = π̃−1L(χM1
t1 · · ·χMs

ts , 1)ωM1(t1) · · ·ωMs
(ts) ∈ Fq[θ, t1, · · · , ts].

For all i, the degree in ti of W satisfies

degti(W ) ≤ Mi

(∑
j Mj

q − 1
− 1

)
− µq(Mi)

Proof. We shall write

H =

s∏

i=1

HMi
(ti).

We know from Lemma 43 that degti(H) = µq(Mi). Let us consider the function

V = π̃−1L(χM1
t1 · · ·χMs

ts , 1)ωM1(t1) · · ·ωMs(ts),

so that by (32),
V = WH.

Corollary 41 implies that:
V ∈ Fq[θ, t1, · · · , ts]

and we are done if we can prove that H divides V in Fq[θ, t1, . . . , ts].
Let p1, . . . , ps be distinct primes of A such that |pi| − 1 > Mi, and let ζ1, . . . , ζs be respective

roots of these polynomials chosen in compatibility with the characters ϑp1 , . . . , ϑps
. Let us also

write
χ = ϑM1

p1
· · ·ϑMs

ps
.

By Lemma 42,
ωM1(ζ1) · · ·ωMs

(ζs) = ϑp1(σp′
1
)M1 · · ·ϑps

(σp′
s
)Msg(χ).

Therefore,
W (ζ1, . . . , ζs) = π̃−1L(1, χ)g(χ)ϑp1(σp′

1
)M1 · · ·ϑps

(σp′
s
)Ms .

By (31), π̃−1L(1, χ)g(χ) ∈ Fq(χ)[θ], while
∏s
i=1 ϑpi

(σp′
i
)Mi ∈ Fq(χ) so that

W (ζ1, · · · , ζs) ∈ Fq(χ)[θ] = Fq(ζ1, . . . , ζs)[θ].

Now, H is a polynomial in θ with leading coefficient in F×
q (see Lemma 43). Dividing V by H

as polynomials in θ we find
V = HQ+R,

where Q,R are polynomials in Fq[θ, t1, . . . , ts], and degθR < degθH =
∑

i µ
∗
q(Mi) (the last in-

equality by Lemma 43). But for ζ1, . . . , ζs as above, we must have Q(θ, ζ1, . . . , ζs) = W (ζ1, · · · , ζs)
and

R(ζ1, . . . , ζs) = 0.

This implies R = 0 and thus W = Q ∈ Fq[θ, t1, . . . , ts].
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4.1.2 The polynomials Ws

By Proposition 44, the function

Ws(t) = π̃−1L(χst , 1)ωN (t) =
L(χst , 1)ω(t)

s

π̃Hs(t)

is a polynomial of Fq[t, θ]. Furthermore, we have:

Proposition 45 Assuming that s ≥ 2 is an integer congruent to 1 modulo q−1 and is not a power

of q, the following properties hold.

1. The degree in t of Ws does not exceed s(s− 1)/(q − 1)− s− µq(s),

2. the degree in θ of Ws is equal to (ℓq(s)− q)/(q − 1).

By the remarks in the introduction, we know how to handle the case of s = qi; we then have

Wqi (t) =
1

θ − tqi
.

Proof of Proposition 45. The bound for the degree in t is a simple consequence of Proposition 44
and Lemma 43. To show the property of the degree in θ, we first notice that, by Lemma 43, for all
ζ ∈ Falg

q ,

v∞(Ws(ζ)) = − ℓq(s)− q

q − 1
. (33)

The computation of Ws(ζ) is even explicit if ζ ∈ Fq. Indeed, with the appropriate choice of a
(q − 1)-th root of (ζ − θ), the fact that χζ = χsζ , Lemma 12 and [26, Theorem 1],

Ws(ζ) =
L(χsζ , 1)ω(ζ)

s

π̃Hs(ζ)

=
L(χζ , 1)ω(ζ)

s

π̃Hs(ζ)

=
L(χζ , 1)ω(ζ)

s

π̃(ζ − θ)
s−ℓq(s)

q−1

= (ζ − θ)−
1

q−1 (θ − ζ)−1(ζ − θ)
s

q−1 (ζ − θ)
ℓq(s)−s

q−1

and

Ws(ζ) = −(ζ − θ)
ℓq(s)−q

q−1 . (34)

Let us write:

Ws(t) =

g∑

i=0

ait
i, ai ∈ A.

By (34), we have

a0 = Ws(0) = −(−θ)
ℓq(s)−q

q−1 (35)

and for all ζ ∈ Falg
q we have, by (33),

|Ws(ζ)| = |a0|.
This means that for i = 1, . . . , g, |ai| < |a0|, and the identity on the degree in θ follows as well.
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Corollary 46 If ℓq(s) = q, then Ws = −1.

Proof. By (34), Ws = a0 = −1 in virtue of (35).

By Corollary 41, the function

V1,s(t1, . . . , ts) = π̃−1L(χt1 · · ·χts)ω(t1) · · ·ω(ts)

is, for s ≡ 1 (mod q − 1) and s ≥ 2, a polynomial of A[t1, . . . , ts]. Since

ω(t) =
π̃

θ − t
+ o(1),

where o(1) represents a function locally analytic at t = θ, the function L(χt1 · · ·χts , 1) vanishes on
the divisor

D =

s⋃

i=1

Di,

where

Di = {(t1, . . . , ti−1, θ, ti+1, . . . , ts) ∈ C∞}.

In other words, in C∞[[t1 − θ, . . . , ts − θ]], we have

L(χt1 · · ·χts) =
∑

i1,...,is≥1

ci1,...,is(t1 − θ)i1 · · · (ts − θ)is , ci1,...,is ∈ C∞, (36)

where on both sides, we have entire analytic functions (see Corollary 34). This can also be seen,
alternatively, by considering the function Fs−1 of Lemma 31, which vanishes, and observing that

L(χt1 · · ·χts , 1)|ti=θ = Fs−1(t1, . . . , ti−1, ti+1, . . . , ts).

Let us focus on the coefficient c1,...,1 in the expansion (36). We then have

c1,...,1 =

(
d

dt1
· · · d

dts
L(χt1 · · ·χts)

)∣∣∣∣
t1=···=ts=θ

so that

V1,s(θ, . . . , θ) = (−1)sπ̃s−1
∑

d≥0

∑

a∈A+(d)

a′s

a
= (−1)sπ̃s−1c1,...,1 ∈ Fq[θ]

(by Corollary 34, the series on the right-hand side is convergent). Now, by Proposition 44, Π(s)
divides the polynomial V1,s(θ, . . . , θ) in A. We then set, as in the introduction:

Bs =
V1,s(θ, . . . , θ)

Π(s)
= Gs(θ) ∈ A.
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4.2 Proof of Theorem 5

We begin the proof with a couple of simple remarks. Firstly, if B is a polynomial of A[t] and if p
is a prime of degree d > 0, then

τdB ≡ B (mod p).

The reason for this is that p divides the polynomial θq
d − θ. In particular,

(τdB)(θ) ≡ B(θ) (mod p). (37)

Secondly, recalling the C∞-linear operator ϕ of subsection 4.1.1, we have

τϕ = ϕτ = ρ,

where ρ is the operator defined by ρ(x) = xq for all x ∈ C∞((t)). In particular, if s =
∑r
i=0 siq

i is
expanded in base q and if d ≥ r ≥ i, from

τdϕi = τd−iτ iϕi = τd−iρi

we deduce

(τdωs)(t) =
r∏

i=0

((τd−iω)(t))siq
i

,

so that

(τdωs)(t) =

r∏

i=0

Gd−i(t, θ)
siq

i

ω(t)s. (38)

We can finish the proof of Theorem 5. By (37),

Bs ≡ (τdWs)(θ).

We shall now compute (τdWs)(θ). If d > r, we can write

Gd−i(t, θ)
siq

i

= (t− θ)siq
i
d−i−1∏

j=1

(t− θq
j

)siq
i

,

and
r∏

i=0

Gd−i(t, θ)
siq

i

= (t− θ)sF (t),

where F (t) is a polynomial such that

F (θ) =

r∏

i=0

lsiq
i

d−i−1.

Since

(τdWs)(t) = π̃−qdL(χst , q
d)(t− θ)sω(t)sF (t)
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and limt→θ(t− θ)ω(t) = −π̃, we get

lim
t→θ

(τdWs)(t) = (−1)sπ̃−qdζ(qd − s)π̃s
r∏

i=0

lsiq
i

d−i−1

= (−1)s
BCqd−s
Π(qd − s)

r∏

i=0

lsiq
i

d−i−1.

Our Theorem 5 follows at once.
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