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On an unified framework for approachability in games

with or without signals

Vianney Perchet ∗and M. Quincampoix†

January 16, 2013

Abstract

We unify standard frameworks for approachability both in full or partial monitor-
ing by defining a new abstract game, called the purely informative game, where the
outcome at each stage is the maximal information players can obtain, represented
as some probability measure. Objectives of players can be rewritten as the conver-
gence (to some given set) of sequences of averages of these probability measures.
We obtain new results extending the approachability theory developed by Blackwell
moreover this new abstract framework enables us to characterize approachable sets
with, as usual, a remarkably simple and clear reformulation for convex sets.

Translated into the original games, those results become the first necessary and
sufficient condition under which an arbitrary set is approachable and they cover and
extend previous known results for convex sets. We also investigate a specific class
of games where, thanks to some unusual definition of averages and convexity, we
again obtain a complete characterization of approachable sets along with rates of
convergence.

Introduction Repeated games can be studied by considering sequences of payoffs
and constructing, stage by stage, strategies with the requirement that the outcome at
the next stage will have good properties given the past ones. Perhaps, the most revealing
examples of this claim are Shapley’s [18] operator that describes the value of stochastic
zero-sum games, the exponential weight algorithm for predictions with expert advices (see
e.g. Cesa-Bianchi and Lugosi [10], Chapter 6) or Blackwell’s [6] approachability theory.

We recall that in a two-person repeated game with vector payoffs in some euclidian
space Rk, a player can approach a given set E ⊂ R

k, if he can insure that, after some stage
and with a great probability, the average payoff will always remain close to E. When
both players observe their opponent’s moves (or at least the payoffs), Blackwell [6] proved
that if E satisfies some geometrical condition – E is then called a B-set –, then Player 1
can approach it. He also deduced that either Player 1 can approach a convex set or
Player 2 can exclude it, i.e. he can approach the complement of one of its neighborhood.
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In the partial monitoring case, when players do not observe their opponent’s moves
but receive random signals (their laws may depend on the actions played), working on
the space of unknown payoffs might not be sufficient – except for specific cases, such as
the minimization of external regret as did Lugosi, Mannor and Stoltz [16].

Attempts were made to circumvent this issue, notably by Aumann and Maschler [4]
and Kohlberg [14] in the framework of repeated games with incomplete information.
Lehrer and Solan [15] also considered strategies that are defined, not as a function of
the unknown past payoffs, but as a function of the past signals, and they proved the
existence of strategies that satisfy an extension of the consistency property. Perchet [17]
also used this approach to provide a complete characterization of approachable convex
sets; it extends Blackwell’s one in the full monitoring case.

Games with partial monitoring

Formally, we consider a two player repeated game Γ with partial monitoring where, at
stage n ∈ N, Player 1 chooses an action in in a finite set I and, simultaneously, Player 2
chooses jn ∈ J . This generates a vector payoff ρn = ρ(in, jn) ∈ R

k where ρ is a mapping
from I × J to R

k, extended to ∆(I)×∆(J) by ρ(x, y) = Ex,y[ρ(i, j)] :=
∑

i,j xiyjρ(i, j),
where ∆(I) and ∆(J) stand for the sets of probability measures over I and J .

The important difference with usual repeated games with full monitoring is that, at
stage n, Player 1 does not observe Player 2’s action jn, nor his payoff ρn, but he receives a
random signal sn ∈ S (where S is the finite set of signals) whose law is s(in, jn) ∈ ∆(S).
The mapping s : I×J → ∆(S), known from both players, is also extended to ∆(I)×∆(J)
by s(x, y) = Ex,y[s(i, j)] ∈ ∆(S). On the other hand, Player 2 observes in, jn and sn.

In this framework, a strategy σ of Player 1 is a mapping from the set of past finite
observations H1 :=

⋃
n∈N(I × S)n into ∆(I); similarly, a strategy τ of Player 2 is a

mapping from H2 :=
⋃
n∈N(I×S×J)n into ∆(J). As usual, a couple of strategies (σ, τ)

generates a probability, also denoted by Pσ,τ on H∞ := (I × S × J)∞ endowed with the
cylinder topology.

We introduce the so-called maximal informative mapping s from ∆(J) to ∆(S)I by
s(y) = (s(i, y))i∈I . Its range S ⊂ ∆(S)I is a polytope (i.e. the convex hull of a finite
number of points) and any of its element is called a flag. Whatever being his move,
Player 1 cannot distinguish between two actions y0, y1 ∈ ∆(J) that generate the same
flag µ ∈ S, i.e. such that s(y0) = s(y1) = µ, thus s(y) – although not observed – is
the maximal information available to Player 1, given y ∈ ∆(J). Note that with full
monitoring, a flag is simply the law of the action of Player 2.

Approachability

Given a closed set E ⊂ R
k and δ ≥ 0, we denote by d(z,E) = infe∈E ‖z−e‖ (with ‖·‖ the

Euclidian norm) the distance to E, by Eδ = {ω ∈ R
k; d(ω,E) < δ} the δ-neighborhood

of E and finally by ΠE(z) = {e ∈ E; d(z,E) = ‖z − e‖} the set of closest points to z in
E (called projections of z). Given any sequence {am}m∈N and n ≥ 1, an = 1

n

∑n
m=1 am

is its average up to the n-th term.
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Blackwell [6] defined approachability as follows. A closed set E ⊂ R
k is approachable

by Player 1 if for every ε > 0, there exist a strategy σ of Player 1 and N ∈ N, such that
for every strategy τ of Player 2:

sup
n≥N

Eσ,τ [d(ρn, E)] ≤ ε.

In a dual way„ a set E is excludable by Player 2, if there exists δ > 0 such that the
complement of Eδ is approachable by Player 2.

In words, Player 1 can approach a set E ⊂ R
k if he has a strategy such that the

average payoff converges1 to E, uniformly with respect to the strategies of Player 2.
In the case of a convex set C, Blackwell [6] and Perchet [17] (see also Kohlberg

[14] for a specific case) provided a complete characterization with, respectively, full and
partial monitoring. Those results can be summarized thanks to the following notation
(that will furthermore ease statements of generalized results). Let X and X denote some
informative actions spaces and P be a multivalued application from X × X to R

k. In
our case, X = ∆(I) and X = S and P (x, ξ) =

{
ρ(x, y); y ∈ s−1(ξ)

}
for every x ∈ X

and ξ ∈ X ; with full monitoring, X reduces to ∆(J) and P (x, y) = {ρ(x, y)}.
Both conditions of Blackwell [6] and Perchet [17] reduce to the following succinct

one:

A convex set C is approachable by Player 1 if and only if ∀ ξ ∈ X , ∃x ∈ X, P (x, ξ) ⊂ C.
(1)

Actually, and as we shall see later, this result holds when X and X are any convex
compact sets of some Euclidian spaces and P : X × X ⇉ R

k is a L-Lipschitzian convex
hull. The latter condition means that for every x ∈ X, P (x, ·) is convex and that there
exists a family {pκ : X × X → R

k; κ ∈ K} of L-Lipschitzian functions such that, for
every (x, ξ) ∈ X × X , P (x, ξ) = co

{
pκ(x, ξ); κ ∈ K

}
, where co(·) stands for the convex

hull.

Purely informative game

The introduction of two arbitrary compact sets X and X , endowed with the weak-⋆
topology, and a multivalued mapping P motivate the following definition of the abstract
purely informative game Γ̃. At stage n ∈ N, Player 1 chooses xn ∈ ∆(X), the set of
probability measures over X and, simultaneously, Player 2 chooses ξn ∈ ∆(X ). Those
choices generate the outcome (the term payoff will only be used in Γ):

θn = θ(xn, ξn) = xn ⊗ ξn ∈ ∆(X × X ),

where ⊗ stands for the product distribution. A strategy σ of Player 1 is now a mapping
from

⋃
n∈N (∆(X)×∆(X ))n to ∆(X) and similarly, a strategy τ of Player 2 is defined

as a mapping from
⋃
n∈N (∆(X)×∆(X ))n to ∆(X ). With these notations, a pair of

strategies (σ, τ) induces a unique sequence (xn, ξn)n∈N in (∆(X)×∆(X ))N.

1The almost sure convergence can also be required, but to the cost of cumbersome notations.
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Let θn be the average up to stage n of the measures θn which is defined as follows:
for every Borel subset F ⊂ X × X , θn(F ) := 1

n

∑n
m=1 θm(F ). Then a closed set Ẽ ⊂

∆(X × X ) is approachable by Player 1 if for every ε > 0 there exist a strategy σ of
Player 1 and N ∈ N such that for every strategy τ of Player 2:

∀n ≥ N,W2

(
θn, Ẽ

)
:= inf

θ∈Ẽ
W2(θn, θ) ≤ ε,

where W2 is the (quadratic) Wasserstein distance – defined later in a section devoted to
preliminaries –. For the definition of approachability, any distance metrizing the weak-⋆
convergence of measures could be suitable but for the characterization of approachability
- as we will demonstrate throughout the paper - the quadratic Wasserstein distance is
very convenient.

Organization and main results

The purely informative game Γ̃ unifies the framework of both games with or without
signals; we prove indeed in the first section (see Proposition 1) that a set is approachable
in a game Γ if and only if its image set is also approachable in Γ̃. And we exhibit in
the second section, see Proposition 2, a necessary and sufficient condition under which
the latter holds. So this gives immediately the same result for (non necessarily convex)
approachable sets with partial monitoring, for the first time in the literature.

We investigate the case of approachable convex sets, which usually benefits from a
quite simple characterization (condition (1)). We show in Section 3 that this is covered
by our first main result, Theorem 3 – that is actually more general.

In the last section, we are interested in specific games (that we called convex) and
thanks to a totally different notion of approachability (along with some unusual definition
of convexity) we obtain, not only another characterization of approachable sets, but also
rates of converges. Those main results are stated in Theorem 4 and Theorem 5.

1 Some preliminaries on Wasserstein Distance and on Nor-

mals

Here we define in a precise and concise way the distance W2 we have already used in
the introduction. We also introduce some material that will be used in the sequel. The
reader can refer for this part to the books [21, 11]. Moreover the projection onto a
nonconvex set in R

k is in general multi valued and a proper notion of normal should
be used (cf for instance [2]). So we need to adapt this definition to the set of measures
(following ideas of [9]).

For every µ and ν in ∆2
(
R
N
)

– the set of measures with a finite moment of order
2 in some euclidian space R

N –, the (squared) Wasserstein distance between µ and ν is
defined by:

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)
I[γ] = sup

(φ,ψ)∈Ξ
J(φ,ψ) = inf

U∼µ;V∼ν
E
[
‖U − V ‖2

]
, where (2)
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– U ∼ µ means that the law of the random variable U is µ;

– Π(µ, ν) is the set of probability measures γ ∈ ∆
(
R
N ×R

N
)

with first marginal µ
and second marginal ν and

I[γ] =

∫

RN×RN

‖x− y‖2dγ(x, y) ;

– Ξ is the set of functions (φ,ψ) ∈ L1
µ(R

N ,R)×L1
ν(R

N ,R) such that φ(x)+ψ(y) ≤
‖x− y‖2, µ⊗ ν-as and

J(φ,ψ) =

∫

RN

φdµ+

∫

RN

ψdν.

Furthermore, if the supports of µ and ν are included in a compact set, then we
can assume that Ξ is reduced to the set of functions (φ, φ∗) such that, for some
arbitrarily fixed x0 ∈ K,

φ∗(x) = inf
y∈K

‖x− y‖2 − φ(y), φ = (φ∗)∗ and φ(x0) = 0.

Since every function in Ξ is 2‖K‖-lipschitzian (where ‖K‖ is the diameter of K),
Arzela-Ascoli’s theorem implies that (Ξ, ‖‖∞) is relatively compact.

Actually, the infimum and supremum in (2) are achieved; we denote by Φ(µ, ν) the
subset of Ξ that maximizes J(φ, φ∗) and its elements are called Kantorovitch potentials
from µ to ν. Any probability measure γ ∈ ∆

(
R

2N
)

that achieves the minimum is an
optimal plan from µ to ν.

More details on the definition of W2, based on Kantorovitch duality, can be found
for example in Dudley [11], chapter 11.8 or Villani [21], chapter 2.

Brenier’s [8] theorem states that if µ ≪0 λ (i.e., the probability measure µ is ab-
solutely continuous with respect to the Lebesgue measure λ and has a strictly positive
density), then there exist a unique optimal plan γ and a unique convex Kantorovitch
potential from µ to ν. They satisfy:

dγ(x, y) = dµ(x)δ{x−∇φ(x)} or equivalently γ = (Id×(Id−∇φ)) ♯µ,
where for any ψ : RN → R

N , Borel measurable with at most a linear growth, ψ♯µ ∈
∆

(
R
N
)

is the push-forward of µ by ψ – also called the image probability measure of µ
by ψ. It is defined by

ψ♯µ(A) = µ
(
ψ−1(A)

)
∀A ⊂ R

N , Borel measurable

or equivalently by: for every Borel measurable bounded maps f : RN → R:
∫

RN

fd(ψ♯µ) =

∫

RN

f(ψ(x))dµ(x).

A classical approximation result (see e.g. Dudley [11])) is that for any convex compact
K ⊂ R

N with non-empty interior and any ε > 0, there exists ∆ε(K) a compact subset
of ∆0(K) = {µ ∈ ∆(K), µ ≪0 λ} such that, for every µ ∈ ∆(K), W 2

2 (µ,∆ε(K)) ≤ ε.
So Brenier’s theorem actually implies that

Φ is singlevalued and uniformly continuous on ∆ε(K)×K.
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Some geometrical properties of W2

Blackwell’s approachability results rely deeply on the geometry of Euclidian spaces. One
of our goals is to underline and establish required results for the measure space equipped
with W2. For instance, in Euclidian (and also Hilbert) spaces the projection onto a closed
convex set could be characterized equivalently by the minimization of the distance to the
set or by a characterization of the projection by the well-known condition with scalar
products. The Lemma 6 could be viewed as a way of writing this "condition with scalar
products" in the space of measures. Also Blackwell’s conditions requires suitable notions
of projections and normals we will introduce now.

In the space ∆(K) equipped with W2 we define the corresponding definitions of
proximal normals (see Bony [7]) to nonempty closed sets A ⊂ ∆(K) at some µ ∈ A.
As usual, we say that µ is a projection (with respect to the Wasserstein distance) of a
measure µ ∈ ∆(K) if W2(µ,A) := infθ∈AW2(µ, θ) =W2(µ, µ).

Actually, proximal normals can be defined in two different ways, depending on which
equivalent definition of W2 is used.

– Proximal potential normal: a continuous function φ : K → R is a proximal poten-
tial normal to A at µ if φ is a Kantorovitch potential from µ to some µ ∈ ∆(K)
where µ is a projection of µ on A.

NCpA
(
µ
)
=

{
φ : K → R; φ proximal potential normals to A at µ

}
.

– Proximal gradient normal (adapted from [1]): a map p ∈ L2
µ(R

N ,RN ) is a proximal

gradient normal to A at µ if p ∈ Pγ(µ, µ) for some µ 6∈ A that projects on µ and

some optimal plan γ ∈ Π(µ, µ), where, for every µ, ν ∈ ∆(RN ) and γ ∈ Π(µ, ν),

Pγ(µ, µ) =

{
p ∈ L2

µ

(
R
N ,RN

)
; ∀ψ ∈ CLB ,

∫

RN

〈ψ(x), p(x)〉dµ(x) =
∫

R2N

〈ψ(x), x − y〉dγ(x, y)
}

with CLB the sets of Borel measurable map ψ : RN → R
N with at most a linear

growth. Riesz representation theorem ensures the non-emptiness of Pγ(µ, µ) (see
[9]).

NCgA
(
µ
)
=

{
p ∈ L2

µ(R
N ,RN ); p proximal gradient normals to A at µ

}
.

Observe that Brenier’s Theorem also implies that both definitions of proximal nor-
mals are, in some sense, quite close. Indeed, if A is a compact subset of ∆(K) and µ ∈ A
and µ≪0 λ then

φ ∈ NCpA(µ) =⇒ ∇φ ∈ NCgA(µ).

2 Equivalences between approachability in both games

Recall that we represent a game Γ by two compact convex action spaces X and X
and a L-Lipschitzian convex hull P . We define the set of outcomes compatible with
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θ ∈ ∆(X × X ) by:

ρ(θ) =

∫

X×X
P (x, ξ)dθ ⊂ R

k

where the integral is in Aumann [3]’s sense: it is the set of all integrals of measurable
selection of P . For every subset Ẽ ⊂ ∆(X ×X ), the set of compatible outcomes ρ(Ẽ) ⊂
R
k is defined by:

ρ(Ẽ) =
{
ρ(θ); θ ∈ Ẽ

}
⊂ R

k.

Reciprocally, for every E ⊂ R
k, the set of compatible measures ρ−1(E) ⊂ ∆(X × X ) is

defined by:
ρ−1(E) = {θ ∈ ∆(X × X ); ρ(θ) ⊂ E} .

The mapping s does not appear in the description of Γ̃ but only in the definition of ρ
that links Γ and Γ̃: given a set E ⊂ R

k in Γ, we introduced the image set Ẽ = ρ−1(E) ⊂
∆(X × X ) in Γ̃. And it is quite intuitive that E is approachable if and only Ẽ is (see
Proposition 1 below, whose proof – mainly technical – is delayed to the Appendix in
order to keep some fluency).

Proposition 1

i) A set E ⊂ R
k is approachable in Γ if and only if ρ−1(E) ⊂ ∆(X × X ) is approach-

able in Γ̃;

ii) If a set Ẽ ⊂ ∆(X × X ) is approachable in Γ̃ then the set ρ(Ẽ) ⊂ R
k is approachable

in Γ;

iii) For every convex set C ⊂ R
k, ρ−1(C) ⊂ ∆(X × X ) is a (possibly empty) convex

set and for every convex set C̃ ⊂ ∆(X × X ), ρ(C̃) is a convex set.

Notice that point ii) cannot be an equivalence. Consider the case ρ = 0 and Ẽ =
{x0 ⊗ y0} for some x0 and y0. Then ρ(Ẽ) = {0} is approachable but Ẽ is not, since
Player 2 just has to play y1 6= y0 at each stage. This is a consequence of the usual

inclusions ρ
(
ρ−1(E)

)
⊂ E and ρ−1

(
ρ(Ẽ)

)
⊃ Ẽ.

3 Approachability of B̃-sets

Blackwell [6] noticed that a closed set E that fulfills the following geometrical condition
– E is then call a B-set – is approachable by Player 1 with full monitoring. Formally, a
closed subset E of Rk is a B-set, if

∀z ∈ R
k, ∃p ∈ ΠE(z), ∃x ∈ ∆(I), 〈ρ(x, y)− p, z − p〉 ≤ 0, ∀y ∈ ∆(J).

An equivalent formulation using NCE(q), the set of proximal normals to E at q, appeared
in [2]. Indeed E is a B-set if and only if

∀p ∈ E, ∀q ∈ NCE(p), ∃x ∈ ∆(I), ∀y ∈ ∆(J), 〈ρ(x, y) − p, q〉 ≤ 0.
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Blackwell [6] and Spinat [20] proved that E is approachable in Γf if and only if it contains
a B-set.

Our definition of proximal potential normals gives to W2 a structure close to a
Hilbert. This allows to extend Blackwell’s definition of a B-set as follows.

Definition 1 A set Ẽ ⊂ ∆(X × X ) is a B̃-set if for every θ not in Ẽ there exist
θ ∈ Π

Ẽ
(θ), φ ∈ Φ(θ, θ) and x (= x(θ)) ∈ ∆(X) such that :

∫

X×X
φ d(θ − x⊗ ξ) ≤ 0, ∀ξ ∈ ∆(X ).

Or stated in terms of proximal potential normals:

∀θ ∈ Ẽ, ∀φ ∈ NCp
Ẽ
(θ), ∃x ∈ ∆(X), ∀ξ ∈ ∆(X ),

∫

X×X
φ d(θ − x⊗ ξ) ≤ 0.

The concept of B̃-sets is indeed the natural extension of B-sets because of the fol-
lowing proposition.

Proposition 2 A set Ẽ ⊂ ∆(X × X ) is approachable if and only if it contains a B̃-set.

Proof: We only prove here the sufficient part, i.e. a B̃-set is approachable by Player 1
(by adapting Blackwell [6]’s ideas to our framework). Again, we postpone the proof
of the necessary part (almost identical to the full monitoring case) to the Appendix to
prevent cumbersomeness.

Let ε > 0 be fixed. For every probability distribution θ ∈ ∆(X × X ), we denote by
θε ∈ ∆ε(X × X ) any arbitrary approximation of θ such that W 2

2 (θ, θ
ε) ≤ ε.

Consider the strategy σε of Player 1 that plays, at stage n ∈ N, x(θ̄εn−1) given by

the definition of a B̃-set, where θ̄εn−1 is the average of the n− 1 first (θm)
ε. Then, if we

denote by θεn−1 the projection of θ̄εn−1 over Ẽ and let wn =W 2
2

(
θ̄εn, Ẽ

)
:

wn =W 2
2

(
θ̄εn, Ẽ

)
≤W 2

2

(
θ̄εn, θ

ε
n−1

)
=W2

(
θεn−1,

n− 1

n
θ̄εn−1 +

θεn
n

)

= sup
φ∈Ξ

∫

X×X
φ dθεn−1 +

∫

X×X
φ∗d

(
n− 1

n
θ̄εn−1 +

θεn
n

)

=

∫

X×X
φn dθεn−1 +

∫

X×X
φ∗nd

(
n− 1

n
θ̄εn−1 +

θεn
n

)

≤ n− 1

n
wn−1 +

1

n

(∫

X×X
φndθ

ε
n−1 −

∫

X×X
φ∗ndθ

ε
n

)

where φn is the optimal Kantorovitch potential from θεn−1 to n−1
n
θ̄εn−1+

θεn
n

. Let us denote
by φ0 the optimal Kantorovitch potential from θεn−1 to θ̄εn−1 and by ωε(·) the modulus

of continuity of Φ restricted to the compact set Ẽ ×∆ε(X × X ).
The definition of W 2

2 implies that

W 2
2

(
θ̄εn−1,

n− 1

n
θ̄εn−1 +

θεn
n

)
≤ 1

n
W 2

2 (θ̄
ε
n−1, θ

ε
n) ≤

4‖X × X ‖2
n

,
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therefore ‖φ0 − φn‖∞ ≤ ωε(2‖X‖/√n) and

wn ≤ n− 1

n
wn−1 +

1

n

(∫

X×X
φ0dθ

ε
n−1 +

∫

X×X
φ∗0dθ

ε
n

)
+

2

n
ω

(
2‖X × X ‖√

n

)
.

Recall that θεn is such that that
∫
X×X φ0dθn+

∫
X×X φ

∗
0dθ

ε
n ≤W 2

2 (θn, θ
ε
n, ) ≤ ε, therefore

wn ≤ n− 1

n
wn−1 +

1

n

(∫

X×X
φ0dθ

ε
n−1 −

∫

X×X
φ0dθn

)
+

2

n
ω

(
2‖X × X ‖√

n

)
+
ε

n
.

Since Ẽ is a B̃-set and because of the choice of xn ∈ ∆(X), for every ξn ∈ ∆(X ),∫
X×X φ0d

(
θεn−1 − xn ⊗ ξn

)
≤ 0, thus

wn ≤ n− 1

n
wn−1 +

2

n
ωε

(
2‖X × X ‖√

n

)
+
ε

n

and this yields, by induction, that

W 2
2

(
θ̄εn, Ẽ

)
≤ 1

n+ 1
W 2

2

(
θε1, Ẽ

)
+

2

n+ 1

n∑

m=1

ωε
(
2‖X × X ‖√

k

)
+ ε.

Since ωε(2‖X × X ‖/
√
k) converges to 0 when k goes to infinity, then wn is asymptot-

ically smaller than ε. The fact that W2

(
θn, Ẽ

)
≤ W2

(
θ̄εn, Ẽ

)
+ ε implies that Ẽ is

approachable by Player 1. 2

4 Characterization of convex approachable sets

There also exists in Γ̃ a complete characterization of approachable convex sets :

Theorem 3 A convex set C̃ is approachable if and only if:

∀ξ ∈ ∆(X ), ∃x ∈ ∆(X), θ(x, ξ) = x⊗ ξ ∈ C̃.

Proof: Once again, we will follow the idea of Blackwell. Assume that there exists ξ such

that, for every x ∈ ∆(X), θ(x, ξ) /∈ C̃. The application x 7→ W2

(
θ(x, ξ), C̃

)
is continu-

ous on the compact set ∆(X), therefore there exists δ > 0 such that W 2
2

(
θ(x, ξ), C̃

)
≥ δ.

Consider the strategy of Player 2 that consists of playing ξ at every stages, then

θn = xn ⊗ ξ, θn = xn ⊗ ξ = θ(xn, ξ) and W 2
2

(
θn, C̃

)
≥ δ > 0. Therefore C̃ is not

approachable by Player 1.

Reciprocally, assume that for every ξ ∈ ∆(X ) there exists x ∈ ∆(X) such that
θ(x, ξ) ∈ C̃. We claim that this implies that C̃ is a B̃-set.
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Let θ be a probability measure that does not belong to C̃ and assume (for the
moment) that θ ≪0 λ. Denote by θ ∈ C̃ any of its projection then, by definition of the
projection and convexity of C̃:

W2(θ, θ) ≤W 2
2

(
(1− λ)θ + λx⊗ ξ, θ

)
= sup

φ∈Ξ

∫

X×X
φd ((1− λ)θ + λx⊗ ξ) +

∫

X×X
φ∗dθ

= sup
φ∈Ξ

∫

X×X
φdθ +

∫

X×X
φ∗dθ − λ

∫

X×X
φd(θ − x⊗ ξ)

=

∫

X×X
φλdθ +

∫

X×X
φ∗λdθ − λ

∫

X×X
φλd(θ − x⊗ ξ)

≤
∫

X×X
φ0dθ +

∫

X×X
φ∗0dθ − λ

∫

X×X
φλd(θ − x⊗ ξ)

=W 2
2 (θ, θ)− λ

∫

X×X
φλd(θ − x⊗ ξ)

where φλ (resp. φ0) is the unique potential from (1−λ)θ+λx⊗ξ (resp. θ) to θ. Therefore,
for every λ > 0, λ

∫
X×X φλd(θ − x⊗ ξ) ≤ 0. Dividing by λ > 0 yields:

∫

X×X
φλd(θ − x⊗ ξ) ≤ 0, ∀λ > 0.

Since (1−λ)θ+λx⊗ ξ converges to θ, any accumulation point of (φλ)λ>0 has to belong
(for every x and ξ) to Φ(θ, θ) = {φ0}. Stated differently, given φ0 ∈ Φ(θ, θ), one has:

max
ξ∈∆(X )

min
x∈∆(X)

gφ0(x, ξ) := max
ξ∈∆(X )

min
x∈∆(X)

∫

X×X
φ0d(θ − x⊗ ξ) ≤ 0.

The function gφ0 is linear in both of its variable, so Sion’s Theorem implies that

max
ξ∈∆(X )

min
x∈∆(X)

gφ0(x, ξ) = min
x∈∆(X)

max
ξ∈∆(X )

gφ0(x, ξ)

hence C̃ is a B̃-set.
Assume now that θ 6∈ ∆0(X×X ) and let θn ∈ ∆ 1

n
(X×X ) be a sequence of measures

that converges to θ, (θn)n∈N a sequence of their projections, and φn ∈ Φ(θn, θn). Up
to subsequences, we can assume that θn and φn converge respectively to θ and φ0.
Necessarily, θ is a projection of θ onto C̃ and φ0 belongs to Φ(θ, θ). Therefore:

∫

X×X
φ0d(θ − x⊗ ξ) = lim

n→∞

∫

X×X
φnd(θ − x⊗ ξ) ≤ 0

and C̃ is a B̃-set. 2

Let us go back and quickly show that the characterization (1) of approachable convex
sets with full monitoring is a consequence of Theorem 3:
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Proof of characterization (1) By Proposition 1, a convex subset C of R
k is

approachable if and only if the convex set ρ−1(C) ⊂ ∆(X × X ) is approachable in Γ̃.
Therefore, using Theorem 3, if and only if for every ξ ∈ ∆(X ), there exists x ∈ ∆(X)
such that ρ(x⊗ ξ) ⊂ C. Let us denote by Ex ∈ X and Eξ ∈ X the expectations of any
x ∈ ∆(X) and ξ ∈ ∆(X ). Then, in the case of games with partial monitoring, one has
that ρ(δEx

⊗ δξ) ⊂ ρ(x⊗ δξ) and ρ(δx ⊗ ξ) ⊂ ρ(δx ⊗ δEξ
).

Assume that C is approachable; since the condition holds in particular for ξ = δξ,
there exists x such that ρ(x⊗ δξ) ⊂ C, therefore some x ∈ X such that ρ(δx ⊗ δξ) ⊂ C
(one just has to take x = Ex).

Reciprocally, if C is not approachable; there exists ξ such that (in particular) for any
δx, ρ(ξ ⊗ δx) 6⊂ C, therefore there exists some ξ ∈ X such that ρ(δξ ⊗ δx) 6⊂ C (one just
has to take ξ = Eξ).

We obtain the stated result as a consequence:

C is approachable if and only if ∀ ξ ∈ X , ∃x ∈ X, ρ(δx ⊗ δξ) = P (x, ξ) ⊂ C

2

This also explains why there exist convex sets that are neither approachable, nor
excludable with partial monitoring (see Perchet [17]) which cannot occur with full mon-
itoring (see Blackwell [6]): it simply due to the fact that ρ−1(C) can be empty.

5 Convex games

We restrict ourselves in this section to the particular class of games called convex games
which have the following property: for every q ∈ ∆(X × X ):

ρ(q) =

∫

X×X
P (x, ξ)dq(x, ξ) ⊂ P (Eq [x] ,Eq [ξ]) .

For instance, this reduces in games with full monitoring to ρ(q) = ρ (Eq[x],Eq[ξ]).

Example 1 The following game where the payoffs of Player 1 are given by the matrix
on the left and signals by the matrix on the right, is convex.

L C R L C R
T (0,-1) (1,-2) (2,-4) T a a b
B (1,0) (2,-1) (3,-3) B a a b

In this game I = {T,B}, J = {L,C,R} and S = {a, b}. If Player 1 receives the signal
a, he does not know whether Player 2 used the action L or C.

We introduce the notions of displacement interpolation and convexity (see e.g. Vil-
lani [21] for more details) that will play the role of classic linear interpolation and con-
vexity.
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Given µ, ν ∈ ∆2(RN ) and t ∈ [0, 1], a displacement interpolation between µ and ν
at time t is defined by µ̂t = σt♯γ, where γ ∈ Π(µ, ν) is an optimal plan and σt is the
mapping defined by σt(x, y) = (1− t)x+ ty. A set Ĉ is displacement convex if for every
µ, ν ∈ Ĉ, every t ∈ [0, 1] and every optimal plan γ ∈ Π(µ, ν), σt♯γ ∈ Ĉ.

Let Γ̂ be a new game defined as follows. At stage n ∈ N, Player 1 (resp. Player 2)
chooses xn ∈ X (resp. yn ∈ X ) and the payoff is θn = δxn ⊗ δyn = δ(xn,yn) ∈ ∆(X × X ).

We do not consider average payoffs in the usual sense (as in Γ̃) but we define a sequence
of recursive interpolation by:

θ̂n+1 = σ 1

n+1

♯γn+1, where γn+1 ∈ Π(θ̂n, θn+1) is an optimal plan.

By induction, this implies that θ̂n = δxn ⊗ δyn . Indeed, θ̂1 = δx1 ⊗ δy1 and θ2 = δx2 ⊗ δy2
therefore:

γ2 = (δx1 ⊗ δy1)⊗ (δx1 ⊗ δy1) and θ̂2 = σ 1

2

♯γ2 = δx1+x2
2

⊗ δ y1+y2
2

.

Definition 2 A closed set Ê ⊂ ∆(X × X ) is displacement approachable by Player 1
if for every ε > 0 there exist a strategy σ of Player 1 and N ∈ N such that for every
strategy τ of Player 2:

∀n ≥ N,W2

(
θ̂n, Ê

)
≤ ε.

Consider any set E ⊂ R
d and assume that ρ−1(E) is displacement approachable

by Player 1. Since θ̂n = δxn ⊗ δyn , the convexity of the game implies that ρ(θn) ⊂
ρ(θ̂n) and thus ρ−1(E) is also approachable in the sense of Γ̃. The use of displacement
approachability provides however explicit and optimal bounds (see Theorem 4 below).
This is the reason we investigate this special case.

In this framework, we use proximal gradient normals to define a B̂-set:

Definition 3 A closed subset Ê ⊂ ∆(X × X ) is a B̂-set if for every θ not in Ê there
exist a projection θ ∈ Π

Ê
(µ), p ∈ NP g

Ê
(θ) and x = x(θ) ∈ ∆(X) such that for every

y ∈ X , there exists an optimal plan γ(x, y) ∈ Π(θ, δx ⊗ δy) and p(x, y) ∈ P(γ(x, y)) such
that:

〈p, p(x, y)〉L2(θ) ≤ 0.

This notion of B̂-set extends Blackwell’s one to Γ̂ because of the following Theorems 4
and 5.

Theorem 4 A set Ê is approachable in Γ̂ if and only if it contains a B̂-set. Given a

B̂-set, the strategy described by xn+1 = x(θ̂n) ensures that W2

(
θ̂n, Ê

)
≤ K/

√
n, for

some K > 0

Proof: Assume that Player 1 plays, at stage n, xn = x(θ̂n−1) and denote by θn =
δxn ⊗ δyn the outcome at stage n. For every n ∈ N, the displacement average outcome

is θ̂n = δxn ⊗ δyn = δ(xn,yn).
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If we denote by θn ∈ Ê the projection of θ̂n on Ê, then the optimal plan from θn to
θ̂n is θn ⊗ θ̂n. So the proximal normal pn ∈ NP

Ê
(θn) is defined by pn(z) = z − (xn, yn).

Similarly, θn⊗
(
δxn+1,yn+1

)
is an optimal plan from θn to δxn+1

⊗ δyn+1
, thus if we define

pn+1(z) = z − (xn+1, yn+1), the assumption that Ê is a B̂-set (along with the choice of
xn+1 = x(θ̂n)) ensures that 〈pn, pn+1〉θn ≤ 0.

As usual, we note that W 2
2 (θ̂n+1, Ê) ≤W 2

2 (θ̂n+1, θn) which satisfies:

W 2
2

(
θ̂n+1, θn

)
=

∫

(X×X )2
‖x− z‖2 dθ̂n+1 ⊗ θn =

∫

X×X

∥∥(xn+1, yn+1

)
− z

∥∥2 dθn(z)

=

∫

X×X

∥∥∥∥
n

n+ 1
(xn, yn) +

1

n+ 1
(xn+1, yn+1)− z

∥∥∥∥
2

dθn(z)

=

(
n

n+ 1

)2 ∫

X×X
‖(xn, yn)− z‖2 dθn(z)

+

(
1

n+ 1

)2 ∫

X×X
‖(xn+1, yn+1)− z‖2 dθn(z)

+ 2
n

(n+ 1)2

∫

X×X
〈(xn, yn)− z, (xn+1, yn+1 − z)〉dθn(z).

Therefore,

W 2
2

(
θ̂n+1, θn

)
=

(
n

n+ 1

)2

W 2
2

(
θ̂n, θn

)
+

(
1

n+ 1

)2

W 2
2 (θn+1, θn)

+ 2
n

(n+ 1)2
〈pn, pn+1〉θn ≤

(
n

n+ 1

)2

W 2
2

(
θ̂n, Ê

)
+

(
K

n+ 1

)2

.

We conclude by induction over n ∈ N.

We sketch the proof of the necessary part. Conclusions of Lemma 8 (delayed to
Appendix) hold in Γ̂ and the proof of the first two points are identical. Hence it remains
to prove the third point, i.e. that a set which is not a B̂-set has a secondary point (see
Definition 4 also in Appendix). Let θ be not in Ê, θ one of its projection on Ê, and
p ∈ NCg

Ê
(θ) the associated proximal normals such that:

∀x ∈ X,∃y ∈ X , 〈p, p(x, y)〉θ =
∫

X×X
〈p(z), z − (x, y)〉dθ > 0.

Sion’s theorem implies the existence of δ > 0 and y ∈ X such that for every x ∈ X,
〈p, p(x, y)〉θ ≥ δ. If we denote by θλ = (Id, σλ) ♯θn⊗ θn+1 then using the same argument
as in the proof of Lemma 6, we show that

W2(θ, θλ) ≤W2(θ, θ) +
Kλ2 − 2λδ

2W2(θ, θ)
≤W2(θ, θ)−

λδ

2W2(θ, θ)
,

for λ small enough. Hence, θ is a secondary point. 2

The following Theorem is the characterization of displacement convex approachable
sets.
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Theorem 5 A displacement convex set Ĉ is approachable by Player 1 in Γ̂ if and only
if

∀ y ∈ X ,∃x ∈ X, θ(x, y) = δx ⊗ δy ∈ Ĉ.

The proof is based on the following lemma that extends to Wasserstein space the usual
characterization of the projection on a convex set in an Euclidian space .

Lemma 6 Let X be a compact subset of RN and A be a displacement convex subset of
∆(X). Fix θ ∈ A. Then for all p ∈ NCgA(µ) and all θ1 ∈ A we have

∀p ∈ P(θ, θ1),

∫

RN

〈p(x), p(x)〉dθ(x) := 〈p, p〉θ ≤ 0. (3)

Proof: Let us consider θ, θ0 ∈ A and p ∈ NP gA(θ). We denote by θ /∈ A the measure
outside A and γ ∈ Π(θ, θ) the optimal plan given by the definition of proximal gradient
normals. Define γ′ = T♯γ where T : (x, y) 7→ (y, x) so that γ′ is obviously an optimal
plan from θ to θ.

Let γ̃ ∈ Π(θ, θ0) be an optimal plan from θ to θ0 and for any λ ∈ [0, 1] we define
θλ := σλ♯γ̃ and γ̃λ = (Id, σλ)♯γ̃ which belongs respectively to the displacement convex
set A and to Π(θ, θλ).

By the disintegration of measure theorem for any y ∈ R
N there exists a probability

measure γ̃λ,y on R
N such that γ̃λ =

∫
RN (δy ⊗ γ̃λ,y)θ(dy) which means that for any

continuous bounded function u(y, z) : R
2N 7→ R

∫

R2N

u(y, z)γ̃λ(dy,dz) =

∫

RN

[∫

RN

u(y, z)γ̃λ,y(dz)

]
θ(dy)

We define γ̂ ∈ Π(θ, θλ) by:

∀φ ∈ Cb,

∫

R2N

φdγ̂ =

∫

R3N

φ(x, z)γ̃λ,y(dz)γ
′(dx,dy).

Since θλ ∈ A and γ̂ ∈ Π(θ, θλ), we obtain:

W 2
2 (θ, θ) ≤W 2

2 (θ, θλ) ≤
∫

R2N

‖x− z‖2dγ̂

=

∫

R3N

‖x− z‖2γ̃λ,y(dz)γ′(dx,dy)

=

∫

R3N

‖x− y‖2γ̃λ,y(dz)γ′(dx,dy) + 2

∫

R3N

〈x− y, y − z〉γ̃λ,y(dz)γ′(dx,dy)

+

∫

R3N

‖y − z‖2γ̃λ,y(dz)γ′(dx,dy) = a+ b+ c

where a, b and c denote respectively the three integral terms in the above equality. It
remains to estimate the three terms a, b and c.

a =

∫

R2N

‖x− y‖2γ′(dx,dy) =W 2
2 (θ, θ).
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b = 2

∫

R2N

〈
x− y,

∫

RN

(y − z)γ̃λ,y(dz)

〉
γ′(dx,dy)

= 2

∫

R2N

〈
y − x,

∫

RN

(x− z)γ̃λ,x(dz)

〉
γ(dx,dy) (by definition de γ′)

= −2

∫

RN

〈
p(x),

∫

RN

(x− z)γ̃λ,x(dz)

〉
θ(dx) (from the definition of p)

= −2

∫

R2N

〈p(x), x− z〉 γ̃λ,x(dz)θ(dx)

= −2

∫

R2N

〈p(x), x− z〉 γ̃λ(dx,dz) (by the desintegration formula)

= −2

∫

R2N

〈p(x), x− [(1− λ)x+ λz]〉 γ̃(dx,dz) (by definition of γ̃λ)

= −2λ

∫

R2N

〈p(x), x− z〉 γ̃(dx,dz) = −2λ

∫

R2N

〈p(x), p(x)〉 θ(dx).

And this holds for any p ∈ P(θ, θ0).
The disintegration of measure formula together with the definition of γ̃ yield

c =

∫

R2N

∥∥y − [(1− λ)y + λz]
∥∥2dγ̃(y, z) = λ2

∫

R2N

∥∥y − z
∥∥2dγ̃(y, z)

hence c = λ2W 2
2 (θ, θ0).

Summarizing our estimates, we have obtained

W 2
2 (θ, θ) ≤W 2

2 (θ, θ)− λ

∫

R2N

2 < p(x), p(x) > θ(dx) + λ2W 2
2 (θ, θ0).

Thus for any λ ∈ (0, 1),

0 ≤ λ2W (θ, θ1)− 2λ

∫

R2N

< p(x), p(x) > θ(dx).

Dividing firstly by λ > 0 and letting secondly λ tend to 0+, this gives the wished
conclusion. 2

Proof of Theorem 5. Let θ be any measure not in Ẽ and denote by θ ∈ Π
Ĉ
(θ) any

of its projection and p ∈ NP
Ĉ
(θ), associated to some γ ∈ Π(θ, θ), any proximal normal.

For every x ∈ X and y ∈ X the only optimal plan from θ to δx ⊗ δy is γ̂ = θ⊗ (δx ⊗ δy).
The function h : X × X defined by

h(x, y) =

∫

(X×X )2
< p(u), u − v > dγ̂(x, y)

is affine in both of its variable since:

h(x, y) =

∫

X×X
〈p(u), u〉 dθ(u)−

〈∫

X×X
p(u)dθ(u), (x, y)

〉
= z − 〈z, (x, y)〉,
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where z =

∫

X×X
〈p(u), u〉dθ(u) and z =

∫

X×X
p(u)dθ(u).

Since for every y ∈ X , there exists x ∈ X such that δx⊗δy ∈ C, Proposition 6 implies
that for every y ∈ X there exists x ∈ X such that h(x, y) ≤ 0. X and X are compact
sets, therefore Sion’s theorem implies that there exists x ∈ X such that h(x, y) for every
y ∈ X . Hence Ĉ is a B̂-set and is approachable by Player 1.

Reciprocally, assume that there exists y ∈ X such that δx ⊗ δy 6∈ Ĉ for every x ∈ X.

Since X is compact, there exists η > 0 such that infx∈XW2

(
δx ⊗ δy, Ĉ

)
≥ η. The

strategy of Player 2 that consists of playing at each stage δy ensures that θ̃n = δxn ⊗ δy
is always at, at least, δ > 0 from Ĉ. Therefore it is not approachable by Player 1. 2

Concluding remarks

Recall that action spaces in Γ̃ (resp. Γ̂) are ∆(X) and ∆(X ) (resp. X and X ). Assume
now that in Γ̃ players are restricted to X and X ; then a B̃-set should satisfy:

∀θ ∈ Ẽ, ∀φ ∈ NCp
Ẽ
(θ), ∃x ∈ X, ∀y ∈ X ,

∫

X×X
φ d (θ − δx ⊗ δy) ≤ 0.

The proof of the sufficient part of Theorem 2 does not change when we add this assump-
tion, thus a B̃-set is still approachable. However, both the proof of the necessary part of
Theorem 2 and the proof of Theorem 3 are no longer valid (due to the lack of linearity).

Similarly, assume that in Γ̂ players can choose action in ∆(X) and ∆(X ) and, at
stage n ∈ N, the outcome is θn = xn ⊗ ξn. Strictly speaking, given such outcomes that
might not be absolutely continuous with respect to λ, the sequence of interpolation θ̂n
may not be unique. However, we can assume that the game begins at stage 2 and that
θ1 = λ/λ(X × X ); then, see e.g. Villani [21], Proposition 5.9, θ̂2 ≪ λ and is unique.
By induction, the sequence of θ̂n is unique. Once again, using the same proof, we can
show that a B̂-set is displacement approachable, but we cannot extends the necessary
part nor the characterization of displacement approachable convex sets.

A Proof of Proposition 1

Let us first state and prove the following (implicitly stated) lemma:

Lemma 7 If the two functions ρ and s are linear both in x ∈ ∆(I) and µ ∈ S, then
the multivalued mapping (x, µ) 7→ P (x, µ) =

{
ρ(x, y); y ∈ s−1(µ)

}
is a L-Lipschitzian

convex hull.

Proof: Since the graph of s−1 is a polytope of RSI×R
J , there exists a finite family of (so

called) extreme points functions {yκ(·); κ ∈ K} from S into ∆(J) that are all piecewise
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linear and continuous (thus Lipschitzian) such that s−1(µ) = co {yξ(µ); κ ∈ K}, for
every µ ∈ S. Since ρ(x, ·) is linear on ∆(J):

P (x, µ) =
{
ρ(x, y); y ∈ s−1(µ)

}
= {ρ(x, y); y ∈ co {yκ(µ), κ ∈ K}} = co

{
ρ(x, yκ(µ)); κ ∈ K

}
.

Therefore P is indeed a L-Lipschitzian convex hull. 2

We now turn to the actual proof of Proposition 1:
Proof of Proposition 1
The third point is obvious, so we only need to prove that if Ẽ ⊂ ∆(X × X ) is

approachable in Γ̃ then ρ(Ẽ) ⊂ R
k is approachable in Γ (see part 1) and that if E ⊂ R

k

is approachable in Γ then ρ−1(E) ⊂ ∆(X × X ) is also approachable (see part 2). The
remaining easily follows from the fact that ρ

(
ρ−1(E)

)
⊂ E.

part 1: The proof consists in two steps. First, we link the Wasserstein distance
between two probability measures θ, θ ∈ ∆(X × X ) and the distance between the two
sets ρ(θ) ⊂ R

k and ρ(θ) ⊂ R
k. We will prove this step with the use of the 1-Wasserstein

distance defined below. In the second step, we transform a strategy in Γ̃ into a strategy
in Γp.

Step 1: The 1-Wasserstein distance between µ and ν in ∆(X) is defined by:

W1(θ, θ) = inf
γ∈Π(θ,θ)

∫

X

‖x− y‖dγ(x, y) = sup
φ∈Lip1(X,R)

∫

X

φ dθ−dθ = inf
U∼θ,V∼θ

E[‖U −V ‖],

where Lip1(X,R) is the set of 1-Lipschitzian functions from X to R. Jensen’s inequality
and the probabilistic interpretation imply that W1(θ, θ) ≤W2(θ, θ).

Let P is a L-Lipschitzian convex hull, then since P (x, ξ) = co
{
pκ(x, ξ);κ ∈ K

}
where

every pκ is L-Lipschitzian, for every θ ∈ ∆(X ×X ), by convexity of the integral (see e.g.
Klein and Thompson [13], Theorem 18.1.19):

∫

X×X
P (x, ξ)dθ =

∫

X×X
co {pκ(x, ξ); κ ∈ K} dθ = co

{∫

X×X
pκ(x, ξ)dθ; κ ∈ K

}
.

The mapping pκ is L-Lipschitzian, so d
(∫

X×X pκ(x, ξ)dθ, ρ(θ)
)
≤

√
kLε and since the

set ρ(θ) is convex, d
(
ρ(θ), ρ(θ)

)
≤

√
kLε. Therefore,

W2

(
θ, Ẽ

)
≤ ε =⇒ sup

z∈ρ(θ)

d(z, ρ(Ẽ)) ≤
√
kLε .

Step 2: This step transforms a strategy in Γ̃ into a strategy in Γ and is quite standard
in games with partial monitoring (see e.g. Lugosi, Mannor and Stoltz [16]); its proof,
which relies deeply Hoeffding-Azuma’s [12, 5] inequality, is therefore only sketched.

Let σ̃ be a strategy of Player 1 that approaches (up to ε > 0) a set Ẽ ⊂ ∆(X × X ).
This strategy cannot be directly played in Γ in order to approach ρ(Ẽ) for two reasons:
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1) in Γ, Player 1 chooses an action i ∈ I and not some x ∈ ∆(∆(I));

2) at stage n in Γ, the flag µn = s(in, jn) is not observed, but only a signal sn whose
law is s(in, jn).

The usual trick is to divide N into blocks of length N ∈ N – where N is big enough.
The n-th block in Γ will correspond to the n-th stage in Γ̃ and σ is defined inductively.
Assume that σ̃ dictates to play xn ∈ ∆(X) at the n-th stage of Γ̃. In Γ and independently
at every stage t of the n-th block, with probability η the action it is chosen uniformly
over I, and with probability 1− η accordingly to Exn ∈ X.

The stages where it was chosen uniformly allow to build an unbiased estimator that
will be arbitrarily close (if N is big enough) to µn, the average flag during the n-th block.
Since the choice of actions are independent, it is easy to show that the average payoff on
the n-th block is arbitrarily close to the η-neighborhood of P (Exn , µn) = ρ(Exn , δµn

).

So it is enough to act as if Player 2’s action in Γ̃ was δµn
.

In order to obtain the almost surely convergence, we can use a classical doubling trick
argument (see e.g. Sorin [19]), which consists in a concatenation of these strategies with
increasing N and decreasing η.

Part 2: Assume that E ⊂ R
k is approachable in Γ by Player 1. Consider the game

where Player 1 observes in addition µn = s(jn) and his payoff is Exn [ρ(in, jn)] where xn
is the law of in. This new game is easier for Player 1 because he has more information
and actions, hence he can still approach E ⊂ R

k. Since P (x, ·) is convex, allowing
Player 2 to play any action in ∆(X ) does not make the game harder for Player 1. Thus
we can assume that at stage n ∈ N, Player 1 observes ξn ∈ ∆(X ) = ∆(S), that he plays
deterministically xn ∈ ∆(X) = ∆(∆(I)) and that his payoff belongs to ρ(xn ⊗ ξn). We
call this new game by Γd.

The fact that E is approachable in Γd implies that for every ε there exists a strategy
σε in Γd and Nε ∈ N such that for every n ≥ Nε and strategy τ of Player 2:

d

(∑n
m=1 ρ (xm ⊗ ξm)

n
,E

)
:= sup

{
d(z,E); z ∈

∑n
m=1 ρ (xm ⊗ ξm)

n

}
≤ ε. (4)

If we denote as before θn = xn ⊗ ξn ∈ ∆(X × X ) then equation (4) becomes:

∀ε > 0, ∃Nε ∈ N, ∀n ≥ Nε, θn ∈ ρ−1(Eε).

Let us define similarly ρ−1(E)δ =
{
θ ∈ ∆(X × X ) ; W2

(
θ, Ẽ

)
≤ δ

}
. Since the se-

quence of compact sets ρ−1 (Eε) converges (as ε converges to zero) to ρ−1(E), for every
δ > 0, there exists ε such that for every 0 < ε ≤ ε, ρ−1 (Eε) ⊂ ρ−1(E)δ . Therefore,
for every δ > 0, there exists N ∈ N such that for every n ≥ N and every strategy τ of
Player 2, θn belongs to ρ−1(E)δ . Thus ρ−1(E) is approachable by Player 1. 2

B Proof of the necessary part of Theorem 2

The necessary part of Theorem 2 is an immediate consequence of Lemma 8, greatly
inspired from Spinat [20]; it requires the following definition.
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Definition 4 A point θ ∈ ∆(X×X ) is δ-secondary for Ẽ if there exists a corresponding
couple: a point ξ ∈ ∆(X ) and a continuous function λ : ∆(X) → (0, 1] such that

minx∈∆(X)W2

(
λ(x)θ + (1− λ(x))x⊗ ξ, Ẽ

)
≥ δ. A point θ is secondary to Ẽ if there

exists δ > 0 such that x is δ-secondary to Ẽ.
We denote by PP(Ẽ) ⊂ Ẽ the subset of primary point to Ẽ (i.e. points of Ẽ that are

not secondary).

Lemma 8 (Spinat [20])

i) Any approachable compact set contains a minimal approachable set;

ii) A minimal approachable set is a fixed point of PP;

iii) A fixed point of PP is a B̃-set.

Proof: i) Let B =
{
B̃ ⊂ Ẽ

∣∣∣ B̃ is an approachable compact set
}

be a nonempty family

ordered by inclusion. Every fully ordered subset of B has a minorant B̃ (the intersection
of every elements of the subset) that belongs to B since it is an approachable compact
subset of Ẽ. Thus Zorn’s lemma yields that B contains at least one minimal element.

ii) We claim that if Ẽ is approachable then so is PP(Ẽ), hence a minimal approach-
able set is necessarily a fixed point of PP . Indeed, if θ is δ-secondary there exists an
open neighborhood V of θ such that every point of V is δ/2-secondary, because of the
continuity of W2. Hence PP(Ẽ) is a compact subset of Ẽ.

Let θ0 be a δ-secondary point of an approachable set Ẽ and ξ, λ the associated couple
given in Definition 4. Let ε < δ/4 and consider σ a strategy of Player 1 that ensures that
θn is, after some stage N ∈ N, closer than ε to Ẽ. We will show that θn must be close
to θ0 only a finite number of times; so Player 1 can approach Ẽ\{θ}. Indeed, assume
that there exists a stage m ∈ N such that W2(θm, θ0) ≤ δ/4 and consider the strategy of
Player 2 that consists in playing repeatedly ξ from this stage on. It is clear that (if m is
big enough) after some stage θ will be δ/2-closed to λ (xn,m) θ0+(1− λ (xn,m))xn,m⊗ ξ

where xn,m is the average action played by Player 1 between stagem andm+n. Therefore

W2

(
θn, Ẽ

)
≥ δ/2 > ε and since W2(θn, θ0) can be bigger than δ/4 only a finite number

of times, the strategy of Player 1 approaches Ẽ\{θ}. This is true for any secondary
point, so Player 1 can approach PP(Ẽ).

iii) Assume that Ẽ is not a B̃-set: there exists θ 6∈ Ẽ such that for any projection
θ ∈ Π

Ẽ
(θ), any φ ∈ Φ(θ, θ) and any x ∈ ∆(X), there exists ξ ∈ ∆(X ) such that∫

X×X φd(θ−x⊗ξ) > 0. This last expression is linear both in x and ξ, so Von Neumann’s
minmax theorem imply that there exists ξ(= ξ(θ, φ)) and δ such that

∫
X×X φd(θ − x⊗

ξ) ≥ δ > 0, for every x ∈ ∆(X).
We can assume that θ ∈ ∆0(X × X ). Otherwise, let (θn ∈ ∆ 1

n
(X × X ))n∈N be a

sequence of measures that converges to θ , (θn)n∈N a sequence of projection of θn onto
Ẽ and φn0 ∈ Φ(θn, θn). Up to two extractions, we can assume that θn converges to θ0 a
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projection of θ and φn0 converges to φ0 ∈ Φ(θ, θ0). Therefore, for n big enough and for
every x ∈ ∆(X),

0 <
δ

2
≤

∫

X×X
φn0d (θn − x⊗ ξ(θ0, φ0))

since the right member converges to
∫
X×X φ0d (θ0 − x⊗ ξ(θ0, φ0)) ≥ δ.

For every λ ∈ [0, 1] and x ∈ ∆(X), we denote by φλ,x the unique (we assumed that
θ ≪0) Kantorovitch potential such that:

W 2
2

(
(1− λ)θ + λx⊗ ξ, θ

)
=

∫

X×X
φλ,xd ((1− λ)θ + λx⊗ ξ) +

∫

X×X
φ∗λ,xdθ

=

∫

X×X
φλ,xdθ +

∫

X×X
φ∗λ,xdθ − λ

∫

X×X
φλ,xd(θ − x⊗ ξ).

Since (λ,x) 7→ φλ,x is continuous, φλ,x converges to φ0, for every x ∈ ∆(X) which is
compact. Hence there exists λ ∈ (0, 1] such that:

∣∣∣∣
∫

X×X
(φλ,x − φ0) d(θ − x⊗ ξ)

∣∣∣∣ ≤ δ/4, ∀λ ≤ λ,∀x ∈ ∆(X).

Therefore, one has
(
W2

(
θ, (1 − λ)θ + λx⊗ ξ

) )2
≤

(
W2(θ, θ)

)2
− λ δ4 so

W2

(
θ, (1− λ)θ + λx⊗ ξ

)
≤W2(θ, θ)−

λδ

8W2(θ, θ)
:= W2(θ, θ)− η

which implies that W2

(
(1− λ)θ + λx⊗ ξ, Ẽ

)
≥ η and θ is η-secondary to Ẽ.

Consequently, a fixed point of PP , i.e. a set without any secondary point, is necessary
a B̃-set. 2
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