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Abstract

Through a linear analysis of a perturbed wave equation, we show how to modify Godunov type schemes
applied to the compressible Euler system to make them accurate at any Mach number. This allows to
propose a family of all Mach Godunov type schemes and to justify existing all Mach schemes. In the
non-linear barotropic case and when the Godunov type scheme is a Roe scheme, a linear stability result
is proposed and a formal asymptotic analysis justifies the construction by showing how it is related with
the linear analysis of a perturbed wave equation. All the studied numerical results show that the all Mach
Godunov scheme is both accurate and stable for all Mach flows.

Key words:
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1. Introduction

In many situations, the Mach number in the nuclear core of a pressurized water reactor is close to zero.
This implies that the acoustic waves are often not crucial in the mass, momentum and energy balances
to model the thermal-hydraulics in the nuclear core. As a consequence, a low Mach number model as
the one proposed in [1, 2] can be a correct approach, such a model being free of any acoustic waves.
Nevertheless, in some accidental situations, the Mach number is not always and/or not everywhere close to
zero, which implies that acoustic waves (which can be rarefaction and/or shock waves) cannot be neglected.
The simplest model which can model low Mach flows as well as rarefaction and/or shock waves is the
compressible Euler system

0o+ V- (pu) =0,

d(pu) + V- (pu®u) + Vp = 0, (1)
8(0E) + V- [(pE + p)u] = 0
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which can be simplified into the barotropic Euler system

80 +V - (pu) = 0, ,
d(pu) + V- (pu®u) + Vp =0 @

when we suppose that the flow is isentropic. In (1) and (2), p is the density, p is the pressure, u is the

velocity and E := Ly + ¢ is the total energy, € being the internal energy. To close (1) and (2), p, p and &

are linked through the respective given functions p(p, €) and p(p) which define the equations of state of the
fluid. At last, r > O is the time variable and the spatial variable is defined by x € R? (d € {1, 2,3} is the
dimension of the space and is chosen as a function of the expected accuracy of the model). Of course, as a
nuclear core is a bounded domain Q in R, we also have to define boundary conditions on 9Q.

In order to capture rarefaction and/or shock waves, a classical numerical approach is to discretize (1)
or (2) by using a Godunov type scheme. In this paper, a Godunov type scheme is a finite volume type
scheme whose numerical fluxes are constructed by using an exact or an approximate 1D Riemann solver
in the normal direction of the edges of the mesh (e.g. the Roe scheme [3] and the VFRoe scheme [4]).
Nevertheless, it is now well known that Godunov type schemes applied to (1) or (2) are most of the time not
accurate at low Mach number [5, 6, 7]: for the sake of simplicity, we name in the sequel "low Mach number
problem” this loss of accuracy in the spatial periodic case for (1) or (2). When the mesh is cartesian and
when the boundary conditions on 9Q are periodic — in other words, the physical space Q is a torus T included
in R? —, it is shown in [8] that the low Mach number problem for (1) or (2) can be partially understood and
can be cured by studying the low Mach number problem for the (dimensionless) wave equation

L

at -4 = 07

{ q-+ Mq 3)
gt =0,%) = ¢°(x)

where M is the Mach number (0 < M < 1), ¢ := (r,u)T € R"*? and L(g) := a.(V - u, Vr)7 is the acoustic
operator (a. is a constant of order one) whose kernel is given by

KerL=¢  with  &:={ge(@*(T)"*:Vr=0and V-u=0}. (4)

More precisely, the low Mach number problem for (3) can be partially understood and can be cured by
studying the linear equation

L
0:q+—q=0,
tq Mq (5)

q(t = 0,%) = ¢°(x),
L := L + 6L being the acoustic operator L perturbed by a partial differential operator 6L coming from the
first order truncation error of the Godunov scheme applied to the linear wave equation (3). Let us underline
that £ is a continuous operator in [8]; its discrete version I is studied in [9]. It is underlined in [8] that
when (5) is well-posed, the condition

"When the initial condition q°(x) is close to the incompressible subspace &,
the solution q(t,x) of (5) remains close to its projection on & at any time.” (6)

1s satisfied under the sufficient condition

FPHee = V>0, 49t )€t (7)
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(see Point 2 of Theorem 2.2 in [8])'. The mathematical expression of (6) is recalled in the sequel (see (30)).
Condition (6) — which is satisfied by the solution of (3) — means that the flow remains close to an incom-
pressible flow at any time when it is initially the case.

When 6L is the first order truncation error of the Godunov scheme applied on a cartesian mesh and when d €
{2, 3}, we check that € is not an invariant subspace for (5) (see Point 2 of Lemma 4.2 in [8]) and that the
kernel of L verifies

KerL G € (8)

instead of (4) (see Point 3 of Lemma 4.3 in [8])%. As a consequence, (6) may not be satisfied ((7) is only
a sufficient condition) and ¢(¢, x) may be far from an incompressible flow. Thus, we have proposed in [8]
to modify the Godunov scheme in such a way that (7) is satisfied. In the case of the Godunov scheme, the
simplest choice to verify (7) is to center the discretization of the pressure gradient in the velocity equation
(see also Point 2 of Lemma 4.2 in [8]) by deleting the upwinding stabilization term in this equation. Indeed,
this low Mach correction — which defines the low Mach Godunov scheme — implies that

KerL =& )

(see Point 2 of Lemma 4.3 in [8]), which is stronger than (7). In the linear case (3), this theoretical approach
gives a quite good understanding of the low Mach number problem and defines a simple and efficient low
Mach correction for Godunov schemes. Moreover, numerical results proposed in [8] justify this correction
in the non-linear case (i.e. for compressible Euler and Navier-Stokes systems) on meshes which are or are
not cartesian. Nevertheless, the analysis proposed in [8] is partial and has been upgraded in [9] in fourth
directions:

1. Condition (6) is too weak to characterize an accurate scheme at low Mach number for (3). Indeed,
this condition does not exclude a priori a highly diffusive scheme in the incompressible space &, that
is to say a scheme for which ¢(¢, x) remains close to € at any time and goes to zero in short time. To
exclude this possibility, (6) has to be replaced by the stronger condition

"When the initial condition ¢°(x) is close to the incompressible subspace &,
the solution q(t,X) of (5) remains close to the projection on & of the initial condition ¢°
at any time.” (10)
Condition (10) is justified since the solution of (3) verifies (10). This point is implicitly used in [9]

and is detailed in this paper. More precisely, the mathematical expression of (10) will be specified in
the sequel (see (32)) and we will also prove that

€ C KerL a1

is a sufficient condition to satisfy (10) (see Point 2 of Theorem 2.2 in the sequel). Since (9) is satisfied
for the low Mach Godunov scheme, we obtain that (10) is also satisfied. This justifies the low Mach
correction proposed in [8].

I'The sufficient condition (7) means that € is an invariant subspace for (5).
When d = 1, € is invariant — more precisely (9) is verified —, which underlines that the monodimensional case is particular
(see Points 1 of Lemma 4.2 and 4.3 in [8]). In other words, the low Mach number problem does not exist when d = 1.

3



2. To explain the low Mach number problem on a cartesian mesh for (3), we have to prove that (10)
is not verified in the case of the Godunov scheme. This result is proved in [9] in the continuous
case by studying the short time behaviour of (5) and by using a Poincaré-Wirtinger inequality (see
Proposition 4.1 and Corollary 4.1 in [9]).

3. Itis also important to study the discrete version of the low Mach correction by analyzing the discrete
version I, of £. This is done in [9] where the link between KerlL;, and the discrete version &,
of € is studied on cartesian and triangular meshes (see Lemmas 5.1, 5.2 and 5.6 in [9]). Like in the
continuous case, we also study in [9] the short time behaviour of the (ordinary differential) equation

Ly
0ign + —qp =0,
t4h MQh (12)

qn(t = 0) = ¢°

which is the discrete version of the (partial differential) equation (5) (see Proposition 5.1 in [9]) by
using a discrete Poincaré-inequality whose proof can be found in [10]. This allows us to explain in
the semi-discrete case the low Mach number problem on a cartesian mesh.

4. The low Mach number problem does not exist when the mesh is triangular [11, 12]. We explain in [9]
this particular behaviour by proving that the discrete version KerlL, = &, of (9) is satisfied when the
mesh is triangular (see Lemma 5.1 in [9]). Indeed, this result implies that the discrete version of (10)
is satisfied without any low Mach correction.

The results proposed in [9] contribute to the understanding of the low Mach number problem and justify the
low Mach correction proposed in [8]. Nevertheless, as this low Mach correction is obtained by deleting a
part of the upwinding stabilization term in the Godunov scheme, the low Mach Godunov scheme may be
unstable in the case of the non-linear systems (1) and (2) when the Mach number is of order one (although it
is stable in the linear case when the Mach number is close to zero: this important point will be proved in this
paper, see Section 6). Thus, we propose and we justify in this paper an all Mach correction which allows to
recover the low Mach correction when the Mach number goes to zero, and the classical Godunov scheme
when the Mach number is of order one. This allows to obtain a modified Godunov scheme that we name
all Mach Godunov scheme. This all Mach correction is identical to the one proposed in [13] and similar to
the one proposed in [14, 15] when the Godunov type scheme is a Roe scheme. The difficulty to justify this
correction comes from the fact that the kernel of the operator £ associated to this all Mach Godunov scheme
is identical to the one obtained with the Godunov scheme — thus, it verifies (8) and does not verify (11) —
and from the fact that (10) is not verified. In this paper, we prove that the all Mach correction is such that

"When the initial condition ¢°(X) is close to the incompressible subspace &,
the solution q(t,X) of (5) remains close to the projection on & of the initial condition ¢°
for short times.” (13)

And we justify the use of the short time condition (13) instead of the long time condition (10) although
the solution of (3) verifies (10). This point also underlines that (11) is too strong to characterize a scheme
verifying (13). Then, we extend the all Mach correction in the non-linear case, we prove a linear stability
result for this all Mach scheme when the Godunov type scheme is a Roe scheme — which justifies from the

stability point of view the all Mach schemes proposed in [14, 15] — and we propose numerical results in
4



the linear and non-linear cases. All these results justify the proposed all Mach correction for Godunov type
schemes.

At last, we underline that the theoretical approach proposed in this paper is general in the sense that it can
be also used to analyze (and possibly to correct) the low Mach accuracy of schemes which are not at all
of Godunov type (e.g. schemes on staggered grids: see [9]). That is why we recalled in this introduction
the main steps studied in [8, 9] and that we explain in the next section the low Mach problem in a general
framework not restricted to Godunov type schemes before applying it to this type of schemes.

The outline of this paper is the following. In Section 2, we recall the low Mach number problem and
the theoretical framework that we use in [8, 9] and we clarify some of our previous results. We introduce in
Section 3 the definition of an accurate scheme at low Mach number in the linear case. In order to obtain an
all Mach Godunov scheme in the case of the linear wave equation, we propose and we justify in Section 4 an
all Mach correction. From this linear approach, we propose all Mach Godunov type schemes in Section 5 in
the case of the barotropic Euler system (2). We propose in Section 6 a linear stability result for these non-
linear schemes when the Godunov type scheme is a Roe scheme, and we justify in Section 7 the accuracy
of this non-linear scheme with a formal asymptotic expansion. Sections 6 and 7 concern also the all Mach
schemes proposed in [14, 15]. In Section 8, we extend the previous (barotropic) all Mach Godunov type
schemes to the compressible Euler system (1). We underline in Section 9 that the proposed approach to
obtain all Mach schemes is not restricted to Godunov type schemes. At last, we propose numerical results
in Section 10 obtained on triangular and cartesian meshes for the 2D compressible Euler system. These
numerical results show that the proposed non-linear all Mach Godunov scheme is stable and accurate for
low Mach test cases and for test cases whose Mach number is not small and even greater than one, and on
any mesh type.

2. The low Mach number problem

We recall in this section some results obtained in [8, 9].

2.1. The low Mach asymptotics in the non-linear case

Let us define the Mach number M := Z where u and a are respectively an order of the magnitude of the

a
fluid velocity and of the sound velocity in the domain . Then, when M is close to zero and when the initial
conditions are well-prepared in the following sense

p(t = 0,x) = p.(x), (14a)
p(t =0,%x) = p. + O(M?), (14b)
u(z=0,x) =u(x) + O(M) with V-u(x)=0 (14¢)

(the notation O(f) means of the order of f), the solution (p, u, p) of the (dimensionless) compressible Euler
system

dp + V- (pu) =0, (152)
Vp
d(pu) + V - (pu @ u) + = 0, (15b)

9(0E) + V - [(,;E +pu] =0 (15¢)



is close to (p, u, p) which satisfies p = p. and the incompressible Euler system

op+u-Vp=0, p(=0,x)=p.x),
V-u=0, u®=0,x)=uX), (16)
p(t,x)(0u+u-Vu) = -VIL

In (16), IT is a new unknown which has the dimension of a pressure. The pressure II is sometimes named
dynamic or mechanical pressure and can formally be related to the thermodynamic pressure p through the
expansion p = p, + M°TI + O(M?). Let us note that we do not take into account any boundary conditions
in [8, 9] and in the sequel. As a consequence, we suppose that the domain Q in which (15) is solved is a
torus T included in RY.

2.2. The low Mach asymptotics in the linear case

The dimensionless barotropic Euler system is given by

8,0+ V- (ou) = 0,
V) a7

6,(pu)+V-(pu®u)+W =0.

The sound velocity in (17) is given by +/p’(p)/M (we suppose that p’(p) > 0), which is high at low Mach
number (i.e. when M < 1). For smooth solutions, System (17) is equivalent to

L
g +H(g) + 5,(q) =0 (18)
with
(a, + Mr)V -u
o o w-Vr o\ . , M
q—( u ) H(q) ~—( W Vu )—(u Vig, Lg):=| P'le.(1+ a*r)]w
a.(1+ 2r)
where r(t,x) is such that
M
P, x) = ps |1 + —r(t,X) (19)
2=
with a. = +/p’(p+), p« being a positive constant of order one. The operator H is the non-linear transport

operator whose time scale is of order one; the operator £/M is the non-linear acoustic operator whose time
scale is of order M. The linearized barotropic Euler system is thus given by

L
0:q+ Hg + Mq =0 (20)

r u, - Vr L V-.u
Y A R R A

where u, = C{" and a. = CJ' such that O(ju.|) = O(a.) = 1. Let us underline that (20) can also be seen as
a linearization of the compressible Euler System (15) with p := p, (1 + 2—’11’) when we replace the energy
Equation (15¢) by s = C* where s is the entropy. Thus, (¢, x) can be considered as a pressure perturbation
in the sequel.

with
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Let us now introduce the sets

(L2(T)'+ .= {q = ( 1: ) : frzdx + f lu?dx < +oo}
T T

equipped with the inner product (g1, g2) = f q192dx and
T

& = [ge®m)*:Vr=0and V- u=0|
= {q e (LA(T)'* : A(a,b) e R and Ay € H'(T) such that r = aandu = b + V x w},
&t = {q e (L2 (T))+ . f rdx = 0 and 3¢ € H'(T) such that u = V¢} .
T

The subspaces & and &+ are respectively called incompressible subspace and acoustic subspace. In the
sequel, we use the following classical result:

Lemma 2.1.
gt = (LX(T))' and &1 et

In other words, any q € (LA(T)'* can be decomposed into
q=Pq+q"
where (Pq,q*) € € x &+

The operator P is the Hodge projection, g = Pg+g* is the Hodge decomposition of ¢ and we have (Pq, g*) =
0. With these tools, we can make explicit the low Mach asymptotics in the linear case (see Proposition 2.1
in [8]):

Proposition 2.1. Let ¢(t,X) be solution of

L
{(')tq+Hq+Mq:0,

21
q(t=0,%) = ¢°(x)
with ¢° € (L*(T)'*¢, and let q; be solution of
{ diq1 + Hgqy =0, o)
q1(t = 0,x) = Pg°(x).
Then, we have
q1(t,%) = (Pg°) (x — w.1) = Pg(,x) (23)
and
V120, llg-qili) = llg’ - Pq’l| (24)
which implies
I —PLl=CM = V>0, ”q Tt (qu)” ()= CM (25)

where T, 1 is the application defined by (T, +f)(X) = f(X — w.t) and where C is a positive constant, which
is equivalent to

I —PP=CM = V>0, |lg-Pglt) = CM. (26)
7



In Proposition 2.1, || - || is the L?-norm. Equality (25) allows to write that as soon as the initial condition qO
is close to the incompressible subspace &, the solution g(z,x) of (21) remains close at any time to the
solution g (¢, x) of (22). Thus, the transport Equation (22) defines the low Mach asymptotics of the linear
Equation (21). Estimate (26) means that, as soon as the initial condition qo is close to the incompressible
subspace €&, g(t, X) remains close to &.

Moreover, we can rewrite ||g° — Pg®]] = CM with the less accurate formulation [|¢° — P¢%|| = O(M). By
using (19), we easily obtain that the condition [|g° — Pg°|| = O(M) is equivalent to the well-prepared initial
condition (14b)-(14c¢) restricted to the case p. = p(p.) with p, = C®. Note that in the barotropic case, (14a)
has to be replaced by p(t = 0,x) = p. + O(M?) since p = p(p).

The proof of Proposition 2.1 uses the linearity of (21), the fact that £ = KerL and the conservation of the
energy E := (g, q) [8]. Atlast, let us underline that Proposition 2.1 may also be seen as a simple application
of a result by Schochet [16] obtained in the non-linear case (18).

Let us now suppose that u,. = 0 or equivalently H = 0. Thus, Proposition 2.1 becomes:

Corollary 2.1. Let g(t,x) be solution of

L
0q+ —q=0,
M (27)
q(t = 0,%) = ¢°(x)
with ¢° € (L>(T))'*. Then, we have Pq = Pq° and
Vi20, lg-Pq @) =llg" - Pq|
which allows to write that
I -PPl=CM = V>0, llg-PPlt) = CM (28)

where C is a positive constant.

As a consequence, the low Mach asymptotics of the linear wave Equation (27) is simply given by Pg°(x).
Figure 1 represents schematically the solution of the linear wave equation.

2.3. The low Mach asymptotics in the case of the perturbed linear wave equation

The key points to obtain (28) are that & = KerL and that (27) conserves the energy. In fact, we can relax
these two properties in the following way:

Theorem 2.2. Let L be a linear operator and let q(t,X) be solution of the linear equation

L
0:,g+—q =0,
q Mq (29)
q(t=0)=4°

supposed to be well-posed in such a way that ||q||(t) < Cli¢°|| for any t > 0, where C is a positive constant

(which in particular does not depend on M). We recall that the subspace & is invariant for (29) if ¢°(-) €
8



(1-IP)a(®)

Figure 1: Solution g of the linear wave Equation (27). The incompressible component of the solution is Pg° € € and its acoustic
component is g — Pg € £*.

E = VYt >0, g(t,”) € & (see (7)) where q is the solution of (29). Moreover, we recall that P is the

orthogonal projection on E. Let C be another positive constant. Then:

1) When € is invariant for (29), we have

I =P =CM = V>0, |lg - Pqli(t) < CCM. (30)
2) When L is such that
& C KerL, (31)
we have
I -PPll=CM = V>0, llg-Pgl(r) < CCM. (32)

This result is useful to have a first understanding of the low Mach number problem. Indeed, let us consider
that £ := L + 6L where 6L is a perturbation (which may depend on M) deduced from the truncation error
of a given numerical scheme applied to (27) on a cartesian mesh. Estimate (30) means that Equation (29)
does not create any acoustic waves of order one in the acoustic subspace &+ when ||q0 - IP’qoll = OM)
although the discretization introduces an error through 6L. Estimate (32) characterizes the fact that the
solution ¢g(t, x) of (29) remains close at any time to the low Mach asymptotics Pg° of the linear wave equa-
tion (27) when ||g°~P¢°|| = O(M) although the discretization introduces an error through the perturbation 5L
in L.

Proof of Theorem 2.2: The proof of Point I is written in [8] (see Point 2 of Theorem 2.2 in [8]). Neverthe-
less, since the proof of Point 2 follows the steps of the proof of Point I, we reproduce it here for the sake of
convenience.

Point 1: Let us define g(z, x) and g(z, x) solutions of (29) with the respective initial conditions '(}O = IP’qO
and Z]O = ¢ — P¢°. By linearity, we have ¢ = ¢ + g. Moreover

llg —Pqll = llg - Pg + g — Pqll = |lg - Pqll
9



since € is invariant for (29). Then, we have

llg - Pqll < |3l 33)

since (1 — P) is an orthogonal projection. On the other hand, we have ||g|| < C~‘II§O|| and ||Z]0|| =1¢° - P40 =
CM. Thus, we have

gl < CCM (34)
which allows to obtain ||g — Pg|| < CCM by using (33).

Point 2: Under Condition (31), we have g = P¢°. Thus, we have ¢ — P¢° = g which allows to obtain |lg —
P4°|| < CCM by using (34).0

2.4. A first definition of an accurate scheme at low Mach number

Estimate (32) suggests to write that the solution g(z, x) of (29) is accurate at low Mach number in the
incompressible regime of the linear wave equation if and only if the estimate

VC; e R, AC; € RS such that |g° = Pl = C1M = VYt >0, |lg - POll() < CoM (35)

is satisfied, C, being a positive parameter that depends on C; and that does not depend on M. In this defi-
nition, the “incompressible regime” means that we consider initial data that are close to the incompressible
space €. Point 2 of Theorem 2.2 means that a sufficient condition to be accurate at low Mach number in
the sense of (35) is that € C KerL. Let us underline that when & SZ Ker L, we cannot tell whether the
solution ¢(t,X) is or is not accurate at low Mach number in the sense of (35) since (31) is only a sufficient
condition. In that case, we have to carefully study the time behaviour of (29) to verify if Estimate (35) is or
is not satisfied.

In the same way, Estimate (30) leads us to say that the solution ¢g(z, x) of (29) is free of any spurious
acoustic wave if and only if the estimate

VC, € RY, AC; € RY such that |g° - Pg°|l = CiM = V1> 0, |lg - Pgli(r) < CoM (36)
is satisfied. Of course, (35) is stronger than (36) since for any ¢ and ¢°, we have |lg — Pql| < llg — P4°|l.
Point 1 of Theorem 2.2 underlines that the invariance of € in the energy space (L*(T))!* is a sufficient
condition to avoid spurious acoustic waves in the sense of (36). Nevertheless, the invariance of € is not
sufficient to be accurate at low Mach number in the sense of (35).

Estimates (35) and (36) are useful to analyze the accuracy of a given scheme at low Mach number and,
in particular, to propose a low Mach correction for low Mach flows, as we will see it in §2.5 and §2.6 in
the case of Godunov type schemes. Nevertheless, we will also see in Section 3 that in the case of Godunov
type schemes, we will have to relax (35) and (36) in order to propose and to justify an all Mach Godunov
type scheme.

10



2.5. A first explanation of the right or wrong behaviour of Godunov type schemes at low Mach number
through the study of discrete kernels
We show in this section that the low Mach number problem can be analyzed as we analyzed in §2.3 the
low Mach asymptotics in the linear perturbed case (29).

For that purpose, let us suppose that the domain Q included in R (d € {1, 2, 3}) is discretized by N cells Q.
Let I';; be the common edge or face of two neighboring cells €2; and ; and n;; be the unit vector normal
to I';; pointing from €; to Q;. The semi-discrete Godunov scheme applied to the resolution of the linear
wave equation (27) is given by

d a. 1

—ri — s — T 4w N+ — .:0’ 37
dlrl M 2] ri/gagil 1]| [(ul uj) n;; +r; }"]] (37a)
d a. 1

Suyt e STyl o+ k=) g g = 0 37b
dtu'+ M 20 rijcml ijl [r,+r]+/<(u, u;) n,J]n,J (37b)

with « = 1. We introduce the parameter « in (37b) for reasons that will appear in the sequel (let us note
that (37) is the Godunov scheme if and only if « = 1). This scheme can be written in the compact form

i " «,h -0

a T M i g, :=( "i ) (38)
0 u;

qn(t =0) = q;

where the subscript £ recalls that (38) comes from a spatial discretization of (27) (/4 is a characteristic length
of the mesh). The kernel KerlL, ;, of the discrete acoustic operator L, j is given by

KerlLp, = {( lrl‘ ) e RVNI+d  guch that E T [(ui +uj)-n;+r— rj] =0,
1
F[_,'C(?Q,‘

and Z II“,-jI[rl-+r.,-+/<(u,~—uj)-n,~j]nl~j:O . (39)
l"ijcaﬂi

We have the following result:

Lemma 2.2.

KerlLy=14 = {Qh = ( :;Z ) e RNUD sychthat FaeR, Yi: ri=c and (w;— uj)-n;; = O} (40)

and

KerLy—op = {qh = ( ;’; ) e RMHD  cych that Ja e R, Vi : ri=c

u; + llj
and Z Ir,’le ‘= 0} . (41)
riij)Qi
Moreover, we have
KerlLy=1, € KerlLy=o - (42)

11



By using Point 2 of Theorem 2.2 with Lemma 2.2, we obtain a first explanation of the right or wrong
behaviour of Godunov type schemes at low Mach number in 1D, 2D and 3D for different type of meshes.
Indeed, Lemma 2.2 shows that KerlL,=1 ; — which is the kernel in the case of the Godunov scheme — may
not be a good approximation of € because the continuity of u - n on each edge I';; of the mesh could be too
restrictive for particular meshes (e.g. when the mesh is cartesian). On the other hand, Lemma 2.2 shows
also that KerlL,-o, may be a good approximation of € for any mesh type because

u; + u;
> Fif=——m;= | V-udx. (43)
F,‘jCﬁQ,‘ Qi

Thus, by also using (42), we can say that at the discrete level, KerlL,-; , may not satisfy (31) and that KerlL,—o
may satisfy (31). These points are studied in [9] when the mesh is cartesian or triangular, and it is shown
that:

on a 2D triangular mesh: KerlLy-1 = 8,% C KerlLy=o p, (44a)
on a 1D cartesian mesh: KerlLy—1, = EE = KerlLy=o s, (44b)
on a 2D or 3D cartesian mesh.: Kerlly=1, & 8,'13 = KerlLy=o (44¢)

where Eﬁ and SE are ad hoc approximations of € which depend on the type of mesh (see Lemmas 5.1, 5.2
and 5.6 in [9]). In (44b) and (44c), we suppose that the number of cells is odd in each direction. If it is not
the case, we have to replace (44b) and (44c) by

{ on a 1D cartesian mesh: KerlLy=1p = EE C KerlLy=o 1,

on a 2D or 3D cartesian mesh: KerlL,—1, & EE C KerlLy=o

because of the existence of checkerboard modes in the kernel KerlL,—o ;. By using these relations between
the discrete kernels and the discrete incompressible spaces, and by using the sufficient condition (31), we
can say that in the sense of Definition (35):

on a 2D triangular mesh: the Godunov scheme (i.e. (37) with k = 1) is accurate at low Mach
number,

on a 1D cartesian mesh: the Godunov scheme (i.e. (37) with k = 1) is accurate at low Mach
number,

on a 2D or 3D cartesian mesh: the modified Godunov scheme obtained with (37) and k = 0 is accurate
at low Mach number.

This leads us to define in §2.6 the low Mach Godunov type scheme with (37) and k = 0. On the other hand,
we cannot conclude from (44c) anything about the accuracy on a 2D or 3D cartesian mesh of the Godunov
scheme (i.e. (37) with k = 1) in the sense of Definition (35) since (31) is only a sufficient condition.
However, by studying the short time behaviour of (37) when « = 1, we proved in [9] (see §5.3.2 in [9]) that

On a 2D or 3D cartesian mesh, the Godunov scheme (i.e. (37) with k = 1) is not accurate

at low Mach number.

Proof of Lemma 2.2: The proof uses the fact that for any g, € KerlL,, defined by (39), we have

DIy [(r,- — )+ k[ ) - nij]z] = 0. (45)
F,‘j
12



This relation was proven in [9] (see (88) in [9]). As a consequence, when k = 1, we obtain that Vi : r; = ¢
and (u; —u;) - n;; = 0. Let us now suppose that « = 0. Thus, when g, € KerlL,;, we only deduce from

(45) that Vi : r; = ¢. And, by injecting r; = ¢ in (39), we find Z IT';jl(w; +w;) - n;; = 0. The converse is

I“,-jc(iQ,-
obtained by using the fact that
>INy =0 (46)
F,'_/'Caﬂ,’
and
Z ITijlu; - mi; = w; - Z Iijn;j =0 (47)
I;;coQ; [;;coQ;

We obtain (42) by using again (46) and (47).L1

2.6. A low Mach Godunov type scheme in the linear and non-linear case

This approach leads us to modify the Godunov scheme by replacing « = 1 in (37) with x = 0 to recover
the accuracy at low Mach number. This corresponds to centering the discretization of Vr in the acoustic
operator.

The non-linear version of the linear scheme (37) with « = 0, applied to the compressible Euler system (1)
or to the barotropic Euler system (2), consists in modifying any X scheme of Godunov type (e.g. X = Roe [3]
or X = VFRoe [4]) in such a way that the discretization of the pressure gradient Vp is centered. We named
this class of schemes low Mach X schemes in [8]. Low Mach number numerical test-cases validate this
approach in [8].

2.7. Numerical results in the linear case with an initial condition ¢° € &

We illustrate the influence of the cell geometry on the Godunov scheme applied to the linear wave
equation (see Equation (44) of Section 2.5). We consider the 2D domain Q = [0, 1] with periodic boundary
conditions. The initial conditions ¢° := (+°,u®)” are given by

rt=0,x,y) = 1,
uet=0,xy) = sin’(rx)sin(2ny), (48)
uy(t=0,x,y) = —sin(2nx) sinz(ny)

which is periodic on the torus [0, 1]2. Thus, we have ¢° € € (that is to say ¢° = P¢”) which implies that

g=4" (49)

is solution of the linear wave equation (27). From a numerical point of view, we use periodic boundary
conditions and we project ¢° on SE (resp. &), which provides the numerical initial condition qu thus,
by construction, we have q2 = Phq2 where P, is the discrete Hodge projection on SE (resp. €;). We
choose a, = 1, M = 10~ and the final time is = 10x M = 1073. In Figure 2, we show that (49) is satisfied
at the discrete level when we solve the linear wave equation (27) with the linear Godunov scheme (37) on
a triangular mesh. In Figure 3, we show that (49) is not satisfied with the linear Godunov scheme on a
cartesian mesh since the solution is extremely diffused over time. On cartesian meshes, we need to correct
the linear Godunov scheme. If we use the linear low Mach Godunov scheme of §2.6 on cartesian meshes,
Figure 4 shows that (49) is satisfied again. From a theoretical point of view, all these results are explained by

the study of the discrete kernel of the spatial operator associated to the linear Godunov scheme (see (44)).
13
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Triangular mesh Legend Initial time Final time:

Godunov scheme

Figure 2: Velocity magnitude |ju|| obtained at initial time ¢ = 0 and at final time ¢+ = 10 = 10 x M with the linear Godunov
scheme on a triangular mesh (700 cells) for an initial incompressible state ¢° € €2 and a Mach number M = 10™*. According to
the first line of Equation (44), the initial incompressible state ¢° € &; is preserved over time with the linear Godunov scheme on a

triangular mesh.
0 . .

Cartesian mesh Legend Initial time Final time:

5

0.25

Godunov scheme

Figure 3: Velocity magnitude |ju]| obtained at initial time ¢ = 0 and at final time # = 10~ = 10 x M with the linear Godunov scheme
on a cartesian mesh (30 x 30 cells with Ax = Ay = 0.33) for an initial incompressible state ¢° € 8,‘!:' and a Mach number M = 107%.
According to the last line of Equation (44), the initial condition ¢° € EE is not preserved over time with the linear Godunov scheme
on a cartesian mesh. The solution is extremely diffused over time.
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Figure 4: Velocity magnitude |[ul| obtained at initial time ¢ = 0 and at final time r = 1073 = 10xM with the linear low Mach Godunov
scheme on a cartesian mesh (30 x 30 cells with Ax = Ay = 0.33) for an initial condition ¢° € € and a Mach number M = 107*,
According to the last line of Equation (44), the initial condition ¢° € SE is preserved over time with the linear low Mach Godunov
scheme on a cartesian mesh. The linear low Mach Godunov scheme allows to preserve ¢° € EE on cartesian meshes.

2.8. Toward an all Mach Godunov type scheme in the non-linear case

In the sequel of this paper, we modify the non-linear low Mach X scheme defined in §2.6 in such a
way that it is identical to the X scheme when the Mach number is greater than one. In other words, we
introduce all Mach Godunov type schemes which are expected to be stable and accurate on both rectangular
and triangular meshes and for any Mach number. For that purpose, we clearly define in Section 3 what
”accurate” means in the linear case. Then, we construct in Section 4 the all Mach Godunov type schemes
still in the linear case, and we extend it to the non-linear barotropic case in Section 5 and to the fully
compressible case in Section 8.

3. Definition of an accurate scheme at low Mach number in the linear case

Estimate (35) is suggested by Estimate (28) of Corollary 2.1 which concerns the linearization (21) of
the barotropic Euler System (18) with H := 0. But, when H # 0, Estimate (28) cannot be satisfied by the
solution ¢(,x) of (21) and has to be replaced by Estimate (25) of Proposition 2.1. Nevertheless, we have
the following result:

Lemma 3.1. Let g(t, x) be solution of

L
g+ Hg+ —q =0,
g+ g+ 5 (50)

q(t = 0,x) = ¢°(x)
with qo € LX(T) x (CH(T))?. Then, we have
V(C1,Cy) € (RY)?, AC; € R such that |l¢° — Pg°|| = C\M
= Vte[0,CoM], llg-Pg°ll(r) < C3M, (51)

C3 being a positive parameter that depends on (Cy, Cy) and that does not depend on M.
15



As a consequence, the important point is to verify if Estimate (35) is or is not satisfied only for short times.
Thus, we relax (35) and we propose the following definition:

Definition 1. The solution ¢(t,X) of
L
0iq + vikn 0,
q(t=0)=¢°

is said to be accurate at low Mach number for short times in the incompressible regime of the linear wave
equation if and only if the estimate

(52)

Y(C1,Cy) € (RY)?, AC3 € RY such that ||¢° - Pg°|| = C\M
= V1€ [0,CoM], llg - Pqll(r) < C3M  (53)

is satisfied, C3 being a positive parameter that depends on (C1, C») and that does not depend on M.

A second reason that justifies the study of ||g — IP’qOII(t) for short times and not for long times is that the
boundary conditions may have an important influence on the behaviour of |lg — Pg°||(r) for long times.
For example, |lg — P¢°||(f) may be small for short times and large for long times with periodic boundary
conditions although |lg — IP’qoll(t) could remain small for any time with transparent boundary conditions
when it is small for short times. In this paper, we impose periodic boundary conditions.

Thus, we will construct in the sequel a numerical scheme for which the solution of the associated first order
modified equation is accurate at low Mach number in the sense of (53) but not in the sense of (35).

Let us note that we can keep (36) for the spurious acoustic waves when H # 0 because of Estimate (26)
of Proposition 2.1. Nevertheless, when a solution ¢(¢, X) is accurate at low Mach number in the sense of
Definition 1, we are sure that this solution is free of any spurious acoustic wave in short time (this is a
consequence of the fact that for any ¢ and qo, we have ||g — Pql| < |lg — IP’qoll); but we can say nothing a
priori in long time. Thus, we also relax (36) with:

Definition 2. The solution q(t,X) of

L
dg+ =q=0,
tq MC] (54)
q(t=0)=¢°

is said to be free of any spurious acoustic wave for short times if and only if the estimate

Y(C1,Cy) € (RY)?, ACs € R such that |l¢° - Pg°|| = C1M
= V€ [0,CoM], |lg —Pqll(r) < C3M  (55)

is satisfied, C3 being a positive parameter that depends on (C1, Cy) and that does not depend on M.

Figure 5 describes three different behaviours based on Definitions 1 and 2: Figure 5(a) describes a
solution ¢(¢,x) which is accurate at low Mach number; Figure 5(b) describes a solution ¢(¢,x) which is
not accurate at low Mach number but which is free of any spurious acoustic wave; Figure 5(c) describes a
solution ¢g(¢, x) which is not accurate at low Mach number and which is not free of spurious acoustic waves.

The numerical results proposed in §4.3 will be coherent with Figure 5.
16
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(53) and (55) are verified

(53) is not verified, (55) is verified

(53) and (55) are not verified

Figure 5: Explanation of the low Mach problem: different behaviours based on Definitions 1 and 2.

Proof of Lemma 3.1: We have

lg = Pg°l0) < |lg = T (Pe°)]| @) + || T (P°) — P @)
where 7, ; is the application defined by (7, . f)(X) = f(x — u.f). Thus, by using (25), we obtain that

I -PP =M = Vr>0:llg—Pli(H) < C1M + |

Tuos (Pa°) - P’ o).

On the other hand, for any g := (7,u)” € €, we have (since 7 is a constant in space):
—_ e _ _
7eia=alf 0 = [ fx-w.n - Goofax.
T

d
But, forany u € (CI(T)) , we have
[a(x — u.t) —u(x)| < Iu*ltmrﬂa}x |Vul
d
with IVﬁl2 = Z IVukI2 where u := (uy,...,ug)", d is the spatial dimension and | - | is the euclidian norm
k=1
in R?. Thus
Vt € [0,CoM] : || Tu..q — || (1) < CoMIu,| max [Vl - [T
with [T| := fT dx. This allows to write that

Vi € [0,CoM] - |

T (Pq°) - IP’qOH (1) < CoMu, | max [Va”| - T|

where P¢° = (7°, "7, which gives the result with

C3 = C1 + Cofu.| max \va’| - [T

17



4. Construction and justification of an all Mach Godunov scheme in the linear case

In this section, we construct a modified Godunov type scheme which is asymptotically identical to the
linear low Mach Godunov scheme (see (37) with k = 0) when M < 1 and which is identical to the linear
Godunov scheme (see (37) with k = 1) when M = O(1). We justify this construction by using the tools
introduced in Section 2. We name this linear scheme all Mach Godunov scheme.

The non-linear versions of this linear all Mach Godunov scheme will be directly obtained in Sections 5
and 8 from the linear approach proposed below.

4.1. The case of the linear wave equation on a cartesian mesh

This subsection is devoted to the cartesian case. This case is interesting because it allows to propose an
all Mach Godunov type scheme through a simple study of the first order modified equation associated with
the Godunov scheme applied to the linear wave equation (27).

Let us define the 2D system

LV
0q + ul= 0, 56)
q(t = 0,%) = ¢°(x)
with X := (x,y), ¢ := (r,w)’, u := (uy, uy)T and
v, Ar
0%u,
L£,=L-MB, with Bg=|"""92 (57)
aZMy
vuya—y2
where
vi=(nve) €RY and vy = (v, v) € (R

Thus, (56) is a perturbed wave equation whose perturbation is given by 6L, = —MB,. In the 2D case (the
3D case is similar) [8], the first order modified equation of the Godunov scheme applied to the linear wave
equation (27) is given by (56)(57) with v = v¢ where

rG = a*ZATZ’ vg = a*zAT)/C[(l’ 1)

(Ax is the mesh size supposed to be identical in the directions x and y for the sake of simplicity). We prove
that (see Lemma 4.3 in [8]):

WO = (er, vfl;) and %

Lemma 4.1.
1) In 1D withv, >0, v, > 0:

KerL, = €.
2)In2Dwithv, >0, v, = Vu, = 0:

KerL, = €.

3)In 2D withv, 20, v, > 0 and Vu, > 0:

KerL, = {q = ( l: ) € (LXT))® suchthat AceR: r=c and O, = Oyuy = 0} G €. (58)
18



The extension of Lemma 4.1 to the 3D case is straightforward.

We deduce from Point 2 of Theorem 2.2 and from Point 3 of Lemma 4.1 that the solution g(z, x) of (56)(57)
may not be accurate at low Mach number in the incompressible regime as soon as the spatial dimension
is 2D (or 3D) and vy is not equal to zero. Indeed, in that case, we do not have & C KerL, (see (31)).
However, the situation is more involved since & C Ker L, is only a sufficient condition: as a consequence,
the knowledge of KerL, is not sufficient to have a correct understanding of the low Mach behaviour of the
Godunov scheme and of any modified Godunov scheme obtained by modifying the numerical viscosity v©.
Moreover, for a particular choice of v, we may expect that the short time estimate (53) is satisfied even if
the long time estimate (35) is not satisfied. In that case, the solution ¢(¢, x) would be accurate at low Mach
number in the sense of Definition 1.

This is illustrated by the following result:

Theorem 4.1. Let g(t,X) be the solution of the 2D equation (56)(57). Then, for any v, > O:
1) When vy = vf, for almost all function ¢° € (L*(T))?, ¢(t, X) verifies

VO eRY, 3(C2C3): NI -PPll=CiM = V=M, |lg-P () = C3Ax  (59)

C
as soonas M < C—3Ax, C; and Cx being positive parameters that respectively depend on T and (T, ¢°), and

that do not a’epenal1 on M and Ax.
2) When vy = vg and Ax = CoM, for any qo e (HX(T)), q(t,x) verifies
V(Co,Crl,C) e RY)', G Nlg" -Pll=CiM = Vi€ [0,CoM], llg -~ Pglll(t) < C3M, (60)
C3 being a positive parameter that depends on (T, ¢°, Cy, C1, C2) and that does not depend on M.
3) When vy = Mvg, for any qo € (HX(T)), q(t,x) verifies
V€, C) e R, ACs: NI -PPll=CiM = Vi€ [0,CoM], g - Pq°ll(5) < CsM,  (61)

C3 being a positive parameter that depends on (T, ¢°, C1, C») and that does not depend on M.

Again, we easily extend this result to the 3D case. This result shows that the short time behaviours
of (56)(57) with v = (vr,vg ) and with v = (v,, Mvg) are different although the kernels of 'E(vr,vﬁ) and
of L(v,-, MmyG) are identical (see Point 3 of Lemma 4.1). This is an illustration of the fact that Condition (31)
is only a sufficient condition to be accurate at low Mach number in the sense of Definition 1.

More precisely:

e Point 1 of Theorem 4.1 and its 3D version show that when the mesh is cartesian, for almost all ¢° €
(L*(T))™*?, the Godunov scheme in 2D/3D is not accurate at low Mach number in the sense of Defi-
nition 1 when M < Ax.
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Let us note that we do not prove that the solution g(z,x) of (56)(57) is not accurate at low Mach
number by producing in short time spurious acoustic waves (see Definition 2 for the notion of spurious
acoustic wave). In other words, we prove that the short time behaviour of ¢(, x) is characterized by
Figure 5(b) but we do not prove that it is characterized by Figure 5(c). Numerical results proposed
in §4.3 show that there exist initial conditions ¢° such that spurious acoustic waves are not created in
short time — which corresponds to Figure 5(b) — and such that spurious acoustic waves are created in
short time — which corresponds to Figure 5(c).

Point 2 of Theorem 4.1 and its 3D version show that when the mesh is cartesian, for any ¢° €
(H*(T))'*4, the Godunov scheme in 2D/3D is accurate at low Mach number in the sense of Defi-
nition 1 when Ax = O(M), which is too expensive from a computational point of view.

Point 3 of Theorem 4.1 and its 3D version show that when the mesh is cartesian, for any ¢° €
(H*(T))'*, the modified Godunov scheme obtained by replacing vfl; with val; is accurate at low
Mach number in the sense of Definition 1 even when M < Ax. Thus, this scheme is also free of any
spurious acoustic waves in the sense of Definition 2. This result is central in our way to construct
an all Mach Godunov scheme. At last, we underline that all the results proposed in Theorem 4.1 are
valid as soon as v, > 0, that is to say not only when v, = ¢

= r-

Proof of Theorem 4.1: Let g;(¢) be the solution of

L
01 + ﬁvéh =0,

(62)
g1 = 0,%) = (¢° - Pg")(x)
and g»(¢) be the solution of
L,
0iqp + —q2 =0,
192 M q2 (63)
g2t = 0,%) = Pg°(x)
where £, is defined as in (57). By linearity, the solution ¢(t, x) of (56)(57) satisfies
q(t,x) = q1(1,X) + q2(1, X).
Since [lg — Pg°lI(t) = llg1 + g2 — Pg°ll(r), we have
Ve>0: g —Pgl®) > |llgz — Pl - llgllo)| (64)
and
Vi>0: g =P ll®) < llgill@) + llg2 — POl (65)

Moreover, since (62) is a dissipative equation when v, > 0, v, > 0 and v, > 0 (see Lemma 4.1 in [8]), we

obtain [|g11|(¢) < |Ig° — Pq°|| which implies that

Vi>0: lqill®) < Ci1M
20
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since ||qO - qull = C M. We will use below (64), (65) and (66) to prove (59), (60) and (61).
Proof of Point 1:

Let us define the orthogonal projection P, on KerL, (P, = P if and only if v, > 0 and v, = Vu, = 0; in
particular, P, # P when v = v9). In [9], we prove that

ML Ax
Vi > g2 — Pg°ll(p) > ﬂnﬂ)qo - B,Pg|

*

where Lt is a constant which only depends on T (see Estimate (50) of Corollary 4.1 in [9]). Hence
Vi>CoM:  |lga — POll(r) = CAx (67)
L Pq° - P,Pg°
with Cp = =T and C = M
Ay 3L’]1‘
almost all function ¢° € (L*(T))?. Using (64), (66) and (67), we obtain

. In the sequel, we suppose that C is non-zero, which is the case for

Vi>CoM:  |lg-Pgl(t) > CAx — C 1 M. (68)

Let us now consider any M such that

Ci1M < C3Ax with Cs = g (69)
We deduce from (68) and (69) that
Vi> CoM g = Pg’lln) > CsAx
for any M < %Ax, which allows to obtain (59).
Proof of Points 2 and 3:
Since LPP = 0, we deduce from (63) that
/(g2 — Pq°) + %(qz - Pg°) = B.(q2 - Pq°) + B,P¢’. (70)

Then, by multiplying (70) with ¢» — P¢" and by integrating, we obtain

I d
5+ 7la2 = PgIP(®) = (@2 ~ Pq". Bi(q2 ~ Pg")) + (g2 — Pq". B/P4")

since (¢> — Pq°, L(g>» — P¢")) = 0. And since
(92~ Pq°, B,(q2 — P¢")) < 0,
(92 = Pq°, B,Pq") < llgz — P°ll - IB,P"ll,

we can write that

d
T2 = PUll(e) < IBPGll < max(viJ, i, D - 1Pl
21



by using the definition of B, in (57), which gives
Vi€ [0,CoM] 1 lig2 = Pglll(1) < CoaM - max (|, i ) - 1P’ 12

since |lg2 — P¢"||(0) = 0, that is to say

Ve [0,.CoM]: g = Pgll() < (€1 + Camax(lvi,l. i, ) - 1PG°ll2) M (71)
by using (65) and (66).
A C .
Let us now suppose that vy = vf,;. In that case, we have max(|v,,|, [v,,|) = % which implies that (71)

is given by
Cra.Ax
2M

Vre[0,CoM]: g —PgOll(r) < (61 + ||1P>q°||Hz)M

CoCras.
which allows to obtain (60) with C3 = Cy + 0Tza'lll[”cloll 2 when Ax = CoM.

We now suppose that vy, = Mv$. In that case, (71) is given by

Cra.Ax
2

Vi e [0,CoM]: g —PgOll(r) < (cl + ||Pq°||Hz) M

Cra.Ax

which allows to obtain (61) with C3 = C; + ||IF’qO||HzD

4.2. The case of the linear wave equation on any mesh type

In order to recover accuracy at low Mach number, Point 2 of Theorem 4.1 leads us to modify the
Godunov scheme applied to the linear wave equation

L
0q+ —q=0,
M (72)

gt = 0,x) = ¢°(x)

by replacing x = 1 (which is equivalent to v, = v§) with k = M (which is equivalent to vy, = MV§) in (37).
Thus, we propose the all Mach Godunov scheme

d a. 1
TSR
d as 1
P Y RToY]

Z I [(lli +uy)-n+r— rj] =0,
l"ijCc?Q,-

Z |1"ij| [r,- +rj+ (M) (u; —llj) . n,-j] n;; = 0
F,‘jC@Q,‘

(73)

with
6(M) = min(M, 1) (74)

which also allows to recover the Godunov scheme (37) when the Mach number is greater than one.

The all Mach Godunov scheme (73) may be rewritten as

d ( r ) 1 AM,Godunov
4 +o= > Il =0 (75)
dt u i |Ql| FUCQQ’- 13
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(DSM,Godunov

with the two following expressions for the numerical flux which are equivalent in this linear

case3:

o First expression:

0
q)éM,Godunov — q)QOdunov +[O(M) - 1 & 76
ij 1 [6(M) ]2M [(u; —u;) - n;j]n;; (76)
where (DSOd‘mOV is the unmodified Godunov flux ((DI.Gde”“‘W is easily deduced from (37)) and where 8(M) is
defined by (74). Thus, the simple corrective flux

a 0
OM) —1]— 77

L6(3) ]2M( [(w; —wu)) - n;j]n;; ) a7
defines an all Mach correction which is equal to zero when the Mach number is greater than one. This all
Mach correction introduces numerical anti-diffusion since (M) — 1 < 0. At last, we can note that the linear
all Mach Godunov scheme (75)(76) may be seen as the Godunov scheme plus a pressure correction since

as
th ti oM) -1
e correction [0(M) ]2M

[(u; —u;) - n;j]n;; in (77) is homogeneous to a pressure.

e Second expression: The flux (76) is equivalent to

(u-n)* . .
AM,Godunov _ G . Wk * ri+ Ty
Q)l_j = M( . ] with = H(M)rl.j +[1 - H(M)]T (78)
r i
where (7, (u - m)*) is solution of the 1D linear Riemann problem in the n;; direction
L
B,qg + MQ{ =0,
. _ _ ri
{<O'q§(t_o’§)_(ui~nij)’ (79)
r
>0: q/(t=0,0) = J
4 q;( 9 ( u) )

with g := ( ; ) and L;q; = a*az( Mr{ ) { being the coordinate in the n;; direction. This gives
, . , :

_ ri+r; + (ll,'—llj)'ll,‘j
T 2
(wj+wj)-n; ri—rj
(u.n);kz ! J i) ! J
J 2 2

The linear all Mach Godunov scheme (75)(78) — which is equivalent to (75)(76) — may be seen as a Godunov
type scheme whose Riemann solver is corrected to be accurate at low Mach number.

AM,Godunov

3The notation AM in (I)l.j means that this flux defines an All Mach scheme.
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4.3. Numerical results on a 2D cartesian mesh

Firstly, we justify the linear all Mach Godunov scheme (74)(75)(76) on cartesian meshes by testing it
with the initial condition qg € 8E used in §2.7. The results are presented in Figure 6 and can be com-
pared to the one obtained with the linear Godunov scheme (see Figure 3) which is defined with (75)(76)
where (M) := 1. Even if qg € 8E is not exactly preserved over time when we solve the linear wave equa-
tion (27) with the linear all Mach Godunov scheme on a cartesian mesh (because of (44c)), the results are
better with the linear all Mach Godunov scheme since the initial condition seems to be preserved over time.

[[all

]E]
075

05

T

EO.ZS
0

Cartesian mesh Legend Initial time Final time:
all Mach Godunov scheme

Figure 6: Velocity magnitude |ju|| obtained at initial time ¢ = 0 and at final time ¢ = 103 = 10 x M with the linear all Mach
Godunov scheme on a cartesian mesh (30 x 30 cells with Ax = Ay = 0.33) for an initial condition ¢° € EE (see Equation (48)) and
a Mach number M = 10*. The linear all Mach Godunov scheme gives better results than those obtained with the linear Godunov
scheme (see Figure 3).

Secondly, we justify Points I and 3 of Theorem 4.1 and the linear all Mach Godunov scheme with
numerical results obtained on a 2D cartesian mesh by studying the error ||g; — Phqgll(t) obtained with the
linear Godunov scheme and with the linear all Mach Godunov scheme. For that purpose, we modify a little
bit the initial condition of §2.7 by adding an orthogonal component of the order of M. This means that we
can write the initial condition qg as q2 = ‘12,1 +M q272 where qg’l € EE and ‘12,2 € (8,'1])l with ||q2,2|| = 1.
This initial condition is given by

rit=0,x,y) = 1 + 0 ,
. . 27x) cos(2my)
=0 = sin? 2 M cos(
us(t =0, x.y) S0 sin@ay) -+ M G cos2y). — sin@an) sm@oy | (80)
. . — sin(2mx) sin(27ry)
r= 07 5 = - 2 2 M . .
y( x) sin(2zx) sin(ay) -+ [1(0, cos(2mx) cos(2my), — sin(2mx) sin(27y))|

Moreover, we consider a coarse cartesian mesh (30 x 30 cartesian mesh with Ax = Ay = 0.033) and a small
Mach number M = 107. In Figure 7, we plot the error ||g, — Phqgll(t) generated with each scheme as a
function of time. The linear Godunov scheme is not accurate at low Mach number in the sense of Defintion 1

(see Point I of Theorem 4.1). Indeed, with the linear Godunov scheme, the norm of the deviation ||g, —
24



qull(t) is greater than Ax = Ay = 0.033 for times of the order of M = 10~*. However, the linear all
Mach Godunov scheme is accurate at low Mach number (see Point 3 of Theorem 4.1) since the norm of
the deviation ||g, — ]P’qgll(t) remains of the order of M for times of the order of M = 107*: this is exactly
the configuration of Figure 5(a). In Figure 7, we also represent ||g, — qull(t) obtained with the linear all
Mach Godunov scheme until an asymptotic state is reached. This point justifies Definition 1 which only
considers the short time behaviour on which the linear all Mach Godunov scheme is accurate although its
long time behaviour is the same as the one of the linear Godunov scheme in a periodic domain. Figure 8
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Figure 7: Norm of the deviation ||g; — ]P’q2||(t) as a function of time for M = 10™* (0 < t/M < 10 for the top pictures and 0 < t/M <

10/M for the bottom picture) obtained with an initial condition ¢° = q‘l’ + M qg € ShD + (EE)l (see Equation (80)) on a 30 x 30
cartesian mesh. The scales are not the same for all figures. The linear Godunov scheme is not accurate at low Mach number (see
Point 1 of Theorem 4.1) since the norm of the deviation ||g, — qull(t) (top left picture) is much greater than Ax = Ay = 0.033 for
times of the order of M = 107*. The linear all Mach Godunov scheme is accurate at low Mach number (see Point 3 of Theorem 4.1)
since the norm of the deviation ||, — qull(t) (top right picture) remains of the order of M for times of the order of M = 107*: this
is exactly the configuration of Figure 5(a). The bottom picture represents ||q, — Pqﬁll(t) obtained with the linear all Mach Godunov
scheme until an asymptotic state is reached. This point justifies Definition 1 which only considers the short time behaviour. Indeed,
the long time behaviours of the linear Godunov scheme and of the linear all Mach Godunov scheme are the same in a periodic
domain.

represents |lg, — PgylI(?) = llg; || for 0 < /M < 10 with M = 10~* where gy is the projection of g in (SE)L.

Here, the important point is that the Godunov scheme is such that the energy ||g;, — Pgyl|(¢) = ||q,f||(t) of the

acoustic part of the solution remains of the order of M on a time scale of order M although ||g;, — ]P’qgll(t)

is of order one (see Figure 7). In this particular case, the Godunov scheme is not accurate at low Mach
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number in the sense of Definition 1 (see Figure 7) but is free of spurious acoustic waves in the sense of
Definition 2. This is exactly the configuration of Figure 5(b). This particular result is due to the form of the
incompressible part qg, | = IP’q2 of the initial condition (80) which satisfies (’3xxxug’ s Byyyu(?’ , = 0. Indeed,
setting Du := dyyxldx + dyyyity, it may be proved by simple algebraic manipulations that when v, = v, =: v,
the triplet (r, V - u, Du) solves the following equations:

0+ 2V u—v,Ar =0,
M
OV -u) + Z—;Ar —yDu =0,
8i(Du) + Z—;(axxxx + Oy )1 + Vxy(V - W) — vA(Du) = 0,

so that when starting from an initial condition such that O =1,V-u® = 0and Du’ = 0, the solution (r, u)
remains in the incompressible space €. And thus the initial incompressible part of the solution q(l) does not

transfer energy from the incompressible space EE to the acoustic space (EE)L. Let us note that in the case
of the initial condition (80), we can also verify this result by computing the exact solution u;(¢). Indeed,
(80) implies that

1 1

”(1) . = sin2(7rx) sin(2ry) = 3 sin(2my) — 3 cos(2mx) sin(2my),
1 1

u(l)y = - sinz(ny) sin(2rx) = ) sin(27x) + 3 cos(2my) sin(2mx),

and it can be checked that (1, % sin(2my), —% sin(27rx))T is in the kernel of the perturbed wave operator, and
that (0, — cos(2rx) sin(27ry), cos(2y) sin(27x)) is an eigenvector of the perturbed wave operator when Vi, =
Vu, =: v, associated to the eigenvalue 47%y. Thus, the initial condition (80) gives rise to

1 1
uy (1) 3 sin(2ry) — 3 cos(2mrx) sin(2my) exp(—47r2vt),

1 1
) sin(27x) + 3 cos(2my) sin(2mx) exp(—47r2vt).

ul,y(t)

As a consequence, the solution is free of spurious acoustic waves in the sense of Definition 2 although it is

inaccurate at low Mach number in the sense of Definition 1 when v = vS.

To better understand the behaviour of the Godunov scheme and the all Mach Godunov scheme in the
general case, we modify the incompressible part qg | = qu of the initial condition (80) such that qg , does
not satisfy (9xxxu2’  + (9yyyu(y)’ , = 0. This new initial condition is given by

rt=0,x,y) = 1 + 0 ,
. . cos(2mx) cos(2my)
(t=0,xy) = 2sin? 4 M . : ,
bl x5 sin(rx)sinday) -+ [1(0, cos(2mx) cos(2ny), — sin(2mx) sin(27y))|| (81)
. . — sin(27x) sin(27y)
(=0 = —sin(2 22 M
oy 5) sin(2x) sin*(2my) -+ [1(0, cos(2mx) cos(2rmy), — sin(2mx) sin(2ry))||

The conclusion of Figure 9 is the same as the one of Figure 7: the all Mach Godunov scheme is accurate at

low Mach number and the Godunov scheme is not accurate at low Mach number in the sense of Definition 1.
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Figure 8: Norm of the acoustic wave |lg; — Pg,ll(r) = llg;||(t) as a function of time for 0 < /M < 10 with M = 10~* obtained
with an initial condition ¢° = ¢° + M ¢9 € € + (EE)L (see Equation (80)) on a 30 x 30 cartesian mesh (Ax = Ay = 0.033). The
linear Godunov scheme does not produce spurious acoustic waves in (EE)L since |lg, — Pg,ll(t) = llg;|I(z) remains of the order

of M for times of order M = 107*. This is due to the fact that the initial incompressible part 421 = IF’qg of the initial condition
satisfies 9, u° L+ 8,,,,.u‘34| = 0. In this particular case, the linear Godunov scheme is not accurate at low Mach number in the sense

X,

of Definition 1 (see Figure 7) but is free of spurious acoustic waves in the sense of Definition 2: this is exactly the configuration of
Figure 5(b).

However, if we focus on ||g;, — Pgyl|() = ||q,f||(t) (see Figure 10), we see that the energy |lg, — Pgxll(t) =
IIq;II(t) of the acoustic part of the solution grows up to values of the order of Ax = 0.033 on a time scale of

order M. Thus, by transfering energy from the incompressible space SE to the acoustic space (SE)L, the

1
Godunov scheme is no longer free of spurious acoustic waves in (8,?) : this is exactly the configuration of
Figure 5(c). However, the linear all Mach Godunov scheme is free of spurious acoustic waves in the sense
of Definition 2 since ||g, — Pgyl|(¢) = ||6],f||(t) remains of the order of M for times of the order of M = 107,

Thirdly, we justify Point 2 of Theorem 4.1. Figure 11 shows that the Godunov scheme is accurate at
low Mach number if we take a mesh such that Ax = Ay <« M. For this illustration, we consider a finer
cartesian mesh (100 x 100 cartesian mesh with Ax = Ay = 0.01) and a larger Mach number M = 107!,
The norms of the deviations from the initial condition ||gj, — qull(t) obtained with the Godunov scheme and
the all Mach Godunov scheme remain of the order of M for times of the order of M = 10~!. This property
is no more satisfied for long times. We note that this computation can be done because the Mach number
is not so small (M = 10"). Indeed, the computation cannot be done on a classical computer for a mesh
satisfying Ax = Ay < M if M = 107*. This remark also justifies the all Mach Godunov scheme because
of the numerical cost of the Godunov scheme on cartesian meshes such that Ax = Ay < M for small Mach
number M.

5. Construction of all Mach Godunov type schemes in the barotropic case

We now extend the linear all Mach Godunov schemes (75)(76) and (75)(78) to the non-linear case when
the linear wave equation (72) is replaced by the barotropic Euler system (2). This leads us to propose the
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Figure 9: Norm of the deviation ||, — Pqﬁll(t) as a function of time for M = 10~* (0 < ¢/M < 10 for the top pictures and 0 < /M <

10/M for the bottom picture) obtained with an initial condition ¢° = ¢% + M ¢J € € + (8,'13')i (see Equation (81)) on a 30 x 30
cartesian mesh. The scales are not the same for all figures. The linear Godunov scheme is not accurate at low Mach number (see
Point 1 of Theorem 4.1) since the norm of the deviation ||g;, — ]P’q2||(t) (top left picture) is much greater than Ax = Ay = 0.033 for
times of the order of M = 107*. The linear all Mach Godunov scheme is accurate at low Mach number (see Point 3 of Theorem 4.1)
since the norm of the deviation ||g; — IP’qZII(l) (top right picture) remains of the order of M for times of the order of M = 107*: this
is exactly the configuration of Figure 5(a). The bottom picture represents ||q; — ]P’q2||(t) obtained with the linear all Mach Godunov
scheme until an asymptotic state is reached. This point justifies Definition 1 which only considers the short time behaviour. Indeed,
the long time behaviours of the linear Godunov scheme and of the linear all Mach Godunov scheme are the same in a periodic

domain.
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Figure 10: Norm of the spurious acoustic wave [lg; — Pgyl(t) = llg; [|(t) as a function of time for 0 < /M < 10 with M = 1074
obtained with an initial condition ¢° = q? +M qg € 8,‘1:' + (EhD)L (see Equation (81)) on a 30 x 30 cartesian mesh (Ax = Ay = 0.033).
The linear Godunov scheme produces spurious acoustic waves in (EhD)L since the energy llg, — Pgxll(t) = llg;|I(¢) of the acoustic
part of the solution grows up to values of the order of Ax on a time scale of order M: this is exactly the configuration of Figure 5(c).

The linear all Mach Godunov scheme is free of spurious acoustic waves in the sense of Definition 2 since |lg, — PglI(t) = llg;|I(2)
remains of the order of M for times of order M = 107,
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Figure 11: Norm of the deviation ||g), — qull(t) as a function of time for 0 < t/M < 10 and M = 107! obtained with an initial

condition ¢° = q? +M ‘1(2) € EhD + (8',12')l (see Equation (81)) on a 100 x 100 cartesian mesh. The Godunov scheme and the all Mach
Godunov scheme are accurate at low Mach number on fine cartesian meshes (Ax = Ay = M/10) (see Point 2 of Theorem 4.1).
Indeed, the norms of the deviations ||g, — Pqﬁll(t) obtained with the Godunov scheme and with the all Mach Godunov scheme
remain of the order of M for times of the order M = 10~!. This property is no more satisfied for long times. Moreover, the all
Mach Godunov scheme is more accurate at low Mach number than the Godunov scheme.
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non-linear all Mach Godunov type scheme

d 1
( P )+— Do =0 (82)

dt\ pu : ij
dr\ p |€2] 0,

with again two possible expressions for the numerical flux <I>3M’X. In (82), X is a Godunov type scheme:
e.g. X=Godunov [17], X = Roe [3], X = VFRoe [4] or X = Lagrange + Projection type scheme (see §6.5).

The two possible expressions for ®$M’X

are the following:

o First expression: The non-linear version of (76) is given by

AMX _ aX o (. 1\Pii%ij 0
@y = 6= D=3 ([(Ui_llj)'nij]nij) (83)

where (Dl?j. is the unmodified flux given by the X scheme and where
0;j = 0(M;;) with O(M) = min(M, 1), (84)

M;;, pij and a;; being estimates at the edge I';; respectively of the Mach number, the density and the sound
velocity. Thus, the all Mach correction is now given by

Pijdij 0
@i;—1) ) ( [(ul_ —uj)- nl_j] n;; ) (85)

and introduces anti-diffusion since 6;; — 1 < 0. The flux @?M’Roe obtained with (83) and when X is the Roe
scheme [3] is specified in Annex B in the subsonic case (see (160)).

e Second expression: The non-linear version of (78) is given by

pi+pj
2

with p;ﬁjf = [jp;'kj + (1 - 9”‘) (86)

AMX _ pr(u-m)’ ]
ij - * * * EES
p(@* -n)u* + p*n .

ij
where (p*,u”) is solution of a 1D (linearized or non-linearized) Riemann problem. Let us note that p**
in (86) replaces p* := p(p*). As in the linear case (see (75)(78)), the non-linear all Mach X scheme (82)(86)

may be seen as a Godunov type scheme whose Riemann solver is corrected to be accurate at low Mach
number.

We underline that the non-linear all Mach X schemes (82)(83) (which is the non-linear version of (75)(76))
and (82)(86) (which is the non-linear version of (75)(78)) are not equivalent although the linear schemes (75)(76)
and (75)(78) are equivalent.
u. .
Definition of the Mach number A/;;: The Mach number M;; in (84) may be defined with M;; := M or
a; j
lw;; - )

with M;; := , the second one giving a less dissipative scheme (especially for shear flows for which
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we may have u;; L n;;). Moreover, the linear stability result proposed in Theorem 6.1 is valid with these
two definitions of the Mach number M;;. Nevertheless, the numerical results proposed in this paper are

u. .
obtained by using M;; := M to define the all Mach correction (85).
a

t

We know that the Godunov scheme applied to the barotropic Euler system (2) is stable (and entropic)
for any Mach number and is not always accurate at low Mach number (for example on a two or three-
dimensional cartesian mesh). The aim of the all Mach Godunov scheme is to obtain an accurate scheme
at low Mach number on any mesh type. However, since in the all Mach Godunov scheme we reduce the
numerical diffusion of the Godunov scheme, we are not sure that the all Mach Godunov scheme remains
stable for any Mach number. In the following two sections, we partly justify the stability and the accuracy
of the all Mach Godunov scheme applied to the barotropic Euler system (2) on any mesh type and for any
Mach number. More precisely:

e In Section 6, we (partly) justify the stability question by proposing a linear stability result in the
subsonic case for (82)(83) when the X scheme is the Roe scheme [3].

e In Section 7, we (partly) justify the accuracy question with a formal asymptotic expansion applied
to (82)(83) when the X scheme is the Roe scheme [3].
6. A linear stability result in the subsonic barotropic case

We now prove a linear stability result for the all Mach Godunov type schemes (82)(83). This result
(partly) justifies the stability question of the all Mach Godunov type schemes.

We study this stability question by extending the linear Godunov scheme (75)(76) to the linear system

L
0ig+Hg+ —qg=0,
{ tq q Mq 87)

q(t=0,%) = ¢°(x)
where u, € R? (d € {1,2,3}) is a constant velocity field. Here, it is important to take into account the linear

transport operator Hg := (u. - V)g because the discretization of this operator has an impact on the stability
of the all Mach Godunov scheme as we will see below. This is due to the fact that the Godunov approach

does not split the material and acoustic waves (respectively described with d,q+ Hg = 0 and 0,9 + ik 0).

This leads us to conclude this section with a remark on the Lagrange + Projection approach which splits the
material and acoustic waves.

6.1. The linear all Mach Godunov scheme in the subsonic case

When the Godunov scheme is applied to System (87) and when the flow is subsonic i.e.
[u,] < i—; (subsonic condition), (88)
the Godunov flux CDS’.Od““OV is given by (see (158) in Annex A)

(I)godunov — q)godunov,convectlon + cDgodunov,acoustlc (89)
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where

(DQ_Odunov,convection — l [ (ll* ' nij) [I’,‘ + T + (ll,' B uj) ' n’.j] ] (90)
N 2{ (u.-my) [(lli+uj)+(”i—i’j)nij] = |u, - nyj [(ui_uj)xnij] X n;;
and
@Godunov.acoustic _ Qs ) ] 1)
" M [r,-+rj+(u,-—uj)-n,-j]n,-j

Fluxes (90) and (91) discretize respectively the linear convection operator Hq and the linear acoustic oper-
ator %q. Flux (91) is of course identical to the Godunov flux in (37).

To obtain the all Mach version d);f‘]‘.M’GOd”“OV of @SOdunOV defined by (89), we just add the all Mach correc-

tion (77) to q)g’."d““ov as in (76). Thus, this consists in replacing the acoustic flux CI)fj".Od‘mOV’aco“Stic defined

by (91) by the all Mach acoustic flux

(D?M,Godunov,acoustic — q)iG.odunov,acoustic + [9( M) _ 1]& 4 0 ) )

7 J 2M [(ul—uj)-n,j]n,j

with (M) := min(Mach, 1) = Iu*lM since Mach = |ll/>;:/1 < 1, a./M being the sound velocity in (87). In
a, a.

other words, we do not correct the convective flux @?Odunov’mnvemon defined by (90), which is coherent with
the fact that the low Mach number problem is only linked to a wrong discretization of the acoustic operator
at low Mach number.

To summarize, under the subsonic condition (88), the linear all Mach Godunov scheme applied to (87)
is given by

d 1
it o Lijl § (s - ) |7 + 1y + y(M)(w; — ;) - njj
dfr+2|9ilr..c§m.| il {(u nij) [ri + rj + y(M)(w; - ;) - ;]
ij i
Ay
o [ +uj) -+ 7 - r,]} =0, (92a)
d

u; + ﬁ Z I {(U* - 1) [(lli +uy) + {(M)(ri - Fj)nij]

dt Fl-jcaﬂ,-

—ﬁ(M)|ll*< . nijl [(ui - llj) X Ilij] Xn;; + CZ_A; [l’i +trj+ Q(M)(lll - llj) . Ill'j] Ill'j} =0 (92b)

with (y,Z,8)(M) := (1,1, 1). The parameters y(M), {(M) and (M) are introduced in (92) to also study be-
low the influence of the consistency error terms (u;—u;)-n;; in (92a), (r;—r;)n;; in (92b) and [(ui —uj) Xn; j]x
n;; in (92b) on the stability. When 6(M) := min (%M, 1), we will see below that (92) is stable for any y(M),
{(M) and S(M) such that w € [0, 1] and B(M) > 0. This suggests that we can improve the accuracy
of the all Mach Godunov scheme with particular choices of y(M), (M) and S(M): in [14, 15], the authors
propose all Mach schemes which are equivalent in the linear case to (92) with (M) := min (%M, 1) and
with particular choices of y(M), /(M) and B(M). At last, it is important to underline that y(M), {(M) and
B(M) do not have any influence on the low Mach number problem introduced in Section 2 when |y(M)|,
|£(M)| and B(M) > 0 are lower than a positive constant independent of the Mach number M (see Section 7):

only the parameter (M) has an influence on the low Mach number problem.
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6.2. L?-stability in the semi-discrete subsonic case

Ey= )19 (r7 + uil?).
i

We have the following L2-stability result (we recall that '3—i|M below is equal to the Mach number since a../M
defined the sound velocity in (87)):

Let us define the energy

Theorem 6.1. Let (r,u) be solution of (92). Under the subsonic condition (88), for any y(M), {(M) and
B(M) such that w € [0,1] and B(M) > 0:

1) When O(M) := 1, we have:

d
—E, <0. 93
2 Eh 93)
Thus, in particular, the Godunov scheme (obtained also with y(M) = {(M) = B(M) = 1) satisfies (93).
2) When 6(M) := min (lu*lM, 1), we have:
d
—E, <0. 94
2 e %94)

Thus, in particular, the all Mach Godunov scheme (obtained also with y(M) = {(M) = B(M) = 1) satisfies
(94).

3) When (M) := 0, we have:

d YM) + {(M) 2

By ; I3l s gl oy =) my | (95)
ij

Thus, in particular, the low Mach Godunov scheme (obtained also with y(M) = {(M) = B(M) = 1) satisfies

(95).

The three points of Theorem 6.1 are justified with numerical results in §6.3. Let us note that Point 2 of

Theorem 6.1 is also satisfied with (M) := lu. n|M instead of (M) := Iu*lM.

* *

Discussion about Theorem 6.1: Before discussing about this theorem, it is important to underline that
v(M), {(M) and B(M) do not have any influence on the low Mach number problem introduced in Section 2
when |[y(M)|, |{(M)| and B(M) > 0 are lower than a positive constant independent of the Mach number M
(see Section 7): only the parameter (M) has an influence on the low Mach number problem.

Inequality (93) confirms that the Godunov scheme is stable. Inequality (94) shows that the all Mach Go-
dunov scheme is stable and, thus, justifies from the stability point of view the all Mach correction (85). In-
equality (94) underlines also that the numerical dissipation of the linear (respectively non-linear) Godunov
scheme is (respectively may be) too high when the flow is subsonic.

Moreover, inequalities (93) and (94) with (y, £, 8) # (1,1, 1) suggest that we can also improve the accuracy
of the Godunov scheme and of the all Mach Godunov scheme by choosing for example y(M) = {(M) =

B(M) = min (%M, 1): in [14], Rieper proposes an all Mach scheme that corresponds to the choices {(M) =
) 33



B(M) = 1 and y(M) = O(M) = min(%M, 1); in [15], OBwald et al. propose an all Mach scheme that
corresponds to the choices {(M) = 1 and y(M) = S(M) = 6(M) := min (|Z—ﬂM, 1). Of course, other choices
are possible: for example y(M) = {(M) = (M) = (M) := min (M, 1) or y(M) = -£(M) = B(M) =
o(M) = min(%M, 1).

d
Inequality (95) prevents from obtaining EEh < 0 when u, # 0 and w # 0. As a consequence, we

may observe numerical instabilities with the low Mach Godunov scheme when u, # 0 and w # 0.
Nevertheless, when u, := 0 — i.e. when we restrict the stability analysis to the low Mach Godunov scheme
applied to the linear wave equation (i.e. to scheme (37) with « = 0) —, the low Mach Godunov scheme is
stable. On the other hand, inequality (95) suggests also that we can choose (M) = 0 from the stability point
of view when we choose {(M) = —y(M). In §6.3, we will study the scheme obtained with {(M) = (M) =
—y(M) = 1 and 8(M) = O (together with the all Mach Godunov scheme, the scheme of Rieper [14] and the
scheme of OBwald er al. [15]).

Proof of Theorem 6.1: Before proving Points 1, 2 and 3, we perform some preliminary calculations.

Preliminary calculations: By multiplying (92a) by 2|Q;|r; and by summing with respect to i, we obtain
d
T2, == > Iyl [ mip [+ g+ v~ ) g g
i i l",-jcé)Qi

Ay
+M [(ll,' +llj) -1 +ri— rj] ri] . (96)

On the other hand, by using (46), we obtain

Z Z IC;jl(u,. - my)r? = Z [l’,-zll* . Z |Fij|nij] =0.

i rl‘jCOQ,' i Fifcagi

Moreover

D0 D Iyl mipriry = 0l [ - (g + )| riry = 0

i F[_,'C(?Q,‘ 1“[,-

since n;; + nj; = 0. We deduce from the last two equalities that

D0 D Il - my)r + i =0, (97)

i F,‘jCﬁQi
‘We have also

Z Z T /| (w.-m; ) [(lli -uj)- nij] ri = Z IT;l(w,-m;;) [(lli -u;)- nij] ri+Z IT;1(a,n ;) [(llj -u) - nji] r;
i T;;co0; Iy Lij
which gives
D0 Iyl mp [ —wp - mgg| = T 0 ) [ =) - mgg| (= ). (98)

i F,‘_/C(’)Q,’ rij
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Moreover

% Z |rij|[(ui+uj)‘nij]ri:%2 Z Tl Ca; - myj)r;

i Tco0 i TijcoQ

by using again (46). We have also that

Ay Ay
I Z Tl - my)ri = MZIFUI [rillj'nij+rjlli'nji],
i rijC5Qi F,'j
which allows to write
Ay [/
TP Z T [(lli +uj) - nij] = Z T [rillj - rjui] ‘. (99)
l r,'jCaQ,' Fij
At last, we have
a. a. a.
i Z Tl (ri = rj)ri = " Z [Tl (ri = rj)ri + ” Z \Tyl(rj = ri)r;.
i Tco0 Ly Lij
Hence
(4™ (4™
a7 2u 2 Tulti=rpri= 30 ) Iyl i = rif (100)
1 I“,-jc(in- F,-_,

Thus, by using (96), (97), (98), (99) and (100), we find

dit Z Qulrf = - Z I [Y(M)(ll* - ;) [(lli —-uj)- nij] (ri = 1))
i r;

7

2%
o |G = rjug) - + i - rj|2]] . (101)

Let us now multiply (92b) by 2|Q;|u;. By summing with respect to i and using the fact that for any vector w
there holds that (w X n) - u = —w - (u X n), we obtain

dit Dl == > Il | ng) (s + wp) + 2D = iy w

i Fijcaﬂ,«

+ BODI, -1y [0 = w)) ] - (X mgp) + 57 [ri 4 7+ O = w)) -] - u,-)] . (102)

On the other hand, by using the arguments used to obtain (97) and (99), we respectively find

>0 Iyl mp) + ) w =0 (103)
i r,'jCaQ,'
and
a. a.
” Z ICijl(ri + ) - wi) = Z |Tij1(rju; — riuj) - myj. (104)
i FijC5Qi l"l-j

‘We have also

D Il i = M w) = > Tl mg) = ) ) + > Tl n ) = )i - w))
i F,’jC(?Q,‘ r,'_,' r,'_/'
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which allows to write

Z Z |rlj|(u* nz])(rz rj)(nlj u;) = Z |rlj|(u* nz]) [(uz u}) nz]] (ri —rj). (105)
i F,jCl()Q 1/
Moreover
a. a.
u Z I [(Ui -u)- nij] (mjj - wj) = Z I [(Ui -u)- nz’j] (n;; - uy)
i F;jCGQ,v rij

+ Z—/*[ Z [T';;l [(llj -u)- nji] (nj; -uj)

ij

and therefore

ax ay 2
” Z I [(lli -uj)- nij] (n;; -w;) = ” Z T |(lli -uj)- nij| : (106)
i F,«jcaﬂi rij
At last, we obtain
DL D iyl [ =) xng |- (i xmy)) = Z Il o) o —wpy xmg*.(107)
i T;jcoQy Lij

Thus, by using (102), (103), (104), (105), (106) and (107), we find

d
= = Zw e, - mp @i = wp - ng i =
+B(M) |u,. - ;| |(w; - uj)xn,,| +— [(r,u, riug) - mg; + 0(M) |(u; — u;) -y ]} (108)

Finally, by summing (101) and (108), we obtain

d

—En =~ Zw [y(M) + Z(M)](w. - nij) [(w; =) - ] s = )

J
+BODI. - mig [0y = wp) x g+ S 1 =+ 0wy = wp) - m |} 109)
Moreover, we have
2 2
—2(w - n;;) [(lli -uj)- nij] (ri = rj) < |u -y [|(lli —u)) - nl" + | —rjl ] (110)

Thus, by using the subsonic condition (88) and since |u. - n;;| < |u.|, we obtain
Sews =) -ni:l (7 — i T —a) -l 4+ - 2
=20, i) [ = w)) - myg| s = ) < gl G =) g+ 2l = (111)

By using (109), this allows to write

d (M) + (M)
—En< - FZ I {|u* ;| (B(M) | —up) x| - LI 5 M), - u))- nij|2)
y(M)+ (M) | a. )
- | 3

Ay 2
+M9(M)|(ui—uj)-n,~j| +[1 5
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that is to say

d . (M) + {(M)
d_Eh< le"ljl{[a o(M) — 7%IU*-Ilijl]|(lli—llj)'llij|2

l/

(M) + (M) ] a,
+[1_—7 24 ]%u—rﬂz} (112)

for any (M) > 0.

d
Proof of Points 1 and 2: Let us suppose that (M) := 1 (¢f. Point I). Since |u,-n;;| < |u.|, we obtain d_tEh <0
|| M

*

when w € [0, 1] by using the subsonic condition (88) and the inequality (112). When 6(M) :=
(cf. Point 2), we deduce from (112) that

d y(M M
—Eh Z Tl {[l « = Ml u, llijl} |(lli -uj)- nij|2 +[1-

Y(M) + (M) %|l"—”'|2
2 M

d
which also gives d_tEh < 0 when w € [0, 1].

Proof of Point 3: When 6(M) := 0 and Z222<%D ¢ [0 1], we deduce from (112) that
(M) + (M) 2
ZEn < )% Z Tl o - myj |(lli -uj)- nij| .
L)
O

6.3. Numerical results on the L?-stability in the linear subsonic case

We illustrate Points 1, 2 and 3 of Theorem 6.1 with numerical results obtained on a 2D cartesian mesh.
For that purpose, we consider the initial condition of §2.7 given by (48) and we study in Figure 12 the
energy Ej(f) obtained with the linear Godunov scheme (i.e. y(M) = (M) = B(M) = (M) = 1), with
the linear all Mach Godunov scheme (i.e. y(M) = (M) = f(M) = 1 and (M) := min(I“ ol g, 1)) with
the linear low Mach Godunov scheme (i.e. y(M) = {(M) = B(M) = 1 and (M) = 0), with the all Mach
scheme of Rieper [14] ({(M) = B(M) = 1 and y(M) = 6(M) := min(lg*lM 1)) with the all Mach scheme
of OBwald et al. [15] ({(M) = 1 and y(M) = B(M) = 6(M) := min (M, 1)) and with an hybrid all
Mach scheme (obtained with (M) = S(M) = —y(M) = 1 and 6(M) = 0). In §2.7, the convective part was

not taken into account. In other words, (87) was solved in §2.7 with (92) by choosing u. = 0. Now, we
choose u. = (1,0)7 in (87) and (92). The parameter M is fixed to 0.5 and a. = 1. In that case, the Mach

number is equal to M and the subsonic condition (88) is satisfied. Let us note that for the scheme of

*

Rieper and for the scheme of OBwald et al., we have y(M) = min ( %M, l) and {(M) = 1. Thus, the stability

. . . in(2037,1)+1
w € [0, 1] of Theorem 6.1 is satisfied for these two schemes since w < 1. Of

course, the stability condition w € [0, 1] is also satisfied by the low Mach Godunov scheme, the all
Mach Godunov scheme and the hybrid all Mach scheme.

condition
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Figure 12 shows that the energy Ej () decreases with time with the Godunov scheme, with the all Mach
Godunov scheme, with the scheme of Rieper, with the scheme of OBwald ef al. and with the hybrid scheme,
which is coherent with Points 1, 2 and 3 of Theorem 6.1. Moreover, the low Mach Godunov scheme is not
stable since Ej(t) explodes with time, which is coherent with Point 3 of Theorem 6.1. We can also remark
that the scheme of OBwald et al. is less dissipative than the scheme of Rieper: this point is mentioned in
[15]. Nevertheless, the scheme of OBwald ef al. is more dissipative than the hybrid scheme which is the
least dissipative scheme. These last two remarks are also coherent with Point 3 of Theorem 6.1.

At last, let us note that the results obtained with the all Mach Godunov scheme and with the scheme of
Rieper are similar. This can be explained by noting that the decreasing of the energy differs between these
two schemes only through the quantity

Z T jly(M)(u, - n;) [(ui -u;)- nij] (ri—rj)
T,

(see (109)) — which is the discrete version of

y(M) (Ax “*,x(axr, Oxuy) + Ay u*,y<ayra ayuy>)

(see (119) below) —, by noting that y(M) = 1 for the all Mach Godunov scheme and that y(M) = min (lg—:lM, 1) =
% for the scheme of Rieper (since, in the present case, |[u.| = a, = 1 and M = %) and also by noting that r;(¢)

is close to a constant (equal to 1 in the present case: see (48)) for any i and any ¢ > O since this is initially
the case.

5.5 T T T 14 T T T
Godunov —+— Godunov. ——
5 L AM-Godunov ----&---- * | AM-Godunov ----a----
LM-Godunov --e - i 1.35 Rieper ---s--- )
45 L Rieper - i i % Ofwald et al. X
’ Ofwald et al. % ! 0=0,(=B=-y=1 —o—
é 4| 0=0,(=F=-y=1 —o— | é 13 F
o o
= =
= 35 | ] =
o Pt
Y | i
Il Il
5 2.5 1 S 1.2 |
2+ ]
1.15 +
1.5 F 4
1 1.1 I I I I I I I I I
3.5 0 1 2 3 4 5 6 7 8 9 10

Figure 12: Linear L?-stability study: norm of the energy E,(f) as a function of time for 0 < t/M < 10 and M = 0.5 obtained
with an initial condition ¢° € 8,[,] (see Equation (48)) on a 30 x 30 cartesian mesh. The energy E,(f) decreases with time with
the Godunov scheme, with the all Mach Godunov scheme, with the scheme of Rieper [14] (whose results are similar to those
obtained with the all Mach Godunov scheme), with the scheme of OBwald et al. [15] and with the hybrid scheme obtained with
(M) =B(M) = —y(M) =1 and 6(M) = 0. However, the low Mach Godunov scheme is not stable since the energy E,(¢) explodes
with time. Moreover, the hybrid scheme is the least dissipative scheme. These numerical results are coherent with Points 1, 2 and
3 of Theorem 6.1.

6.4. L2-stability in the continuous subsonic case
To get a better understanding of the importance of the convection operator in Theorem 6.1, it is inter-

esting to study the L?-stability of the 1 order modified equation associated with (92) when the mesh is
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cartesian. When we suppose for the sake of simplicity that the dimension is 2D, this equation is given by

Ly
0gq+Hqg+ —q =0,
g (113)

q(r=0.%) = ¢°(x)
where, in the 2D case, H is the perturbed convection operator defined by
1 V(M) yAxO% 1t + y (M) yAyOF 1y
Hqg=Hg - 5 LM DX, 1 + BOM) ity | Ay D5, (114)
B 1| AXD: 1ty + LMy AYOS 1
and where £, is the perturbed linear acoustic operator defined by
Ax0% 1 + Ayﬁgyr
O(M)AxO* u, |. (115)
oM )Ayagyuy

as
Lyg=Lg- 5

By defining the energy with
E:=(q.q)= f (r + Juf)ax,
Td
we obtain the following result which is the continuous version of Theorem 6.1:

Theorem 6.2. Let g(t,x) be solution of (113). Under the subsonic condition (88), for any y(M), {(M) and
B(M) such that Y22 ¢ [0, 1] and B(M) > 0:

1) When O(M) := 1:
d
—E <0. 116
dr (116)
. .|
2) When (M) := m P M, 1
d
—FE <0. 117
SE< (117)
3) When 6(M) := 0:
d . y(M)+ L)
5 < YOS (] 1l + Ayl 1) (118)

Proof of Theorem 6.2: The proof is similar to the proof of Theorem 6.1. Nevertheless, it is more simple
since the operators are continuous.

Preliminary calculations: By multiplying (113) with ¢ and by integrating over €, we obtain that

d
TE=- [y (M) + ZMDT (Ax e (D, Bit) + Ay 1t (Dyr, Dyuiy))

+ BM) (At y| - 19yl + Axlits ] - 10518y |17)

Ay
o [ (AxI0.rI + Ayl riP) + 60) (Axlid el + Aynayuyuz)]} (119)
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which is the continuous version of (109). Moreover, we have
—2AX 1ty (D1, Dty) < Axluts ol (1010l + 10.r1?)
which is the continuous version of (110). Thus, under the subsonic condition (88), we can write that
—2AX thy (DT, Dxth) < Axlit o] - 1020, + ij—;na’xrn2
which is the continuous version of (111). In the same way, we have
2 ax 2
—2Ay u*,y<ayra ay”y> < Aylu*,yl : ”ayuy” + AyMHayrH .

Then, we deduce from (119) that

d . (M) + £(M) . (M) + {(M)
TE<- {Ax[i—/IG(M) - %m,xq 920> + Ay Z—ﬁ(M) - %'”W' e
M M)\ a.
R N R )

for any S(M) > 0, which is the continuous version of (112).

Proof of Points 1, 2 and 3: We conclude the proof as in the semi-discrete case (see the proof of Theo-
rem 6.1).C]

6.5. A remark on the Lagrange + Projection approach

The potential loss of stability when 8(M) := 0 (see Point 3 of Theorems 6.1 and 6.2) is directly linked
to
U cAXO? 11y + u*,yAyagyuy

1
&@q) = -5 Ui xAXO? 1

u*,yAyagyr
in (114) which is the non-dissipative part of the truncation error of the Godunov scheme applied to the
linear equation (87). The existence of this non-dissipative truncation error is a consequence of the fact that
the Godunov scheme is built by taking into account at the same time the convective and acoustic waves (see
Annex A). This suggests that a Lagrange + Projection approach — which consists in splitting the acoustic
and convective waves — may not have any stability problem when 8(M) := 0.

Indeed, a Lagrange + Projection approach applied to the linear equation (87) consists, at any time step n, in
computing an estimate of the solution by solving

L
8,qL + MqL =0,

(Lagrange step) (120)
q"(t = nAt,x) = ¢"(x)
and, then, to correct this estimate by solving
0q+ Hg =0,
(Projection step) (121)
q(t = nAt,x) = g~ (n + 1AL, x).
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Let us now suppose that we solve (120) with the all Mach Godunov scheme (75)(76) and that we solve (121)
with the Godunov scheme (i.e. with the classical upwind scheme). For this particular Lagrange + Projection
scheme, the 1% order modified equation is given by

L
8,q+‘Hq+VMq=O,

(122)
q(t =0,x) = ¢°(x)
where, in the 2D case, H is the perturbed convective operator
|t x| AXOL, 1 + 1t y | AYOL
1
Hq=Hq -5 It x| AXO% 1t + 14 y | AYOF 11 (123)

|t x| AXD% 11y + |ty | AY O} 1ty
and where £, is the perturbed linear acoustic operator defined by (115). In that case, we easily obtain:

Theorem 6.3. Let ¢(t,X) be solution of (122). For any 6(M) > 0, we have:

d
—E<0.
dr ~

It would be also easy to obtain the semi-discrete version of Theorem 6.3.

Point 3 of Theorem 6.2 and Theorem 6.3 underline the fact that if the low Mach correction (i.e. 6(M) := 0)
is identical for any Godunov type schemes, the stability analysis of the low Mach scheme obtained with the
low Mach correction strongly depends on the type of Godunov type scheme. On the other hand, Point 2 of
Theorem 6.2 suggests that the all Mach correction is better than the low Mach correction from a stability
point of view, which is coherent since the all Mach correction is less anti-dissipative than the low Mach
correction.

7. Formal asymptotic analysis in the barotropic case

We now (partly) justify the accuracy question with a formal asymptotic analysis applied to the all Mach
Godunov type scheme (82)(83) when X is the Roe scheme [3]. This analysis is classical [5, 12, 14]. The
original point in the following calculus is that we clearly link this formal asymptotic analysis to the point
of view proposed in §2.5. Moreover, we introduce the parameters y(M), {(M) and B(M) already introduced
in the linear scheme (92) to show that these parameters do not have any influence on the low Mach number
problem when |y(M)|, |{(M)| and S(M) > 0 are lower than a positive constant independent of the Mach
number M, these parameters having only an influence on the stability of the scheme (see Section 6). This
will allow us to also justify the all Mach schemes proposed in [14, 15] from the low Mach number problem
point of view, the all Mach schemes proposed in [14, 15] being similar to (82)(83) when X is the Roe
scheme.
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When the X scheme is the Roe scheme [3], the dimensionless all Mach Roe scheme deduced from (82)(83)
and restricted to the subsonic case is given by (see (167) in Annex B)

d 1
Epi + m Z |rij| [(plul +pjuj) n;; + V(M)M (uz/ ntj)(ul uj) gL (124a)
.. . aij
I;;coQ;

+ j;(p pj)]=

@

(Pz u;) + 2|Q| Z |rij|{Pi(ui‘nij)ui +pj(u; - njju; +§(M)ﬁ(/0i - Pj) [uij + (llij'llij)llij]
F,jC@Q,‘

= B(M)pijlu;j - njj| [(Ui —uj) X nij] Xmjj + V(M)M% [(lli —uj)- nij] u;;

ij

0. .
— pijaij(u; = uj) nij:| nij} =0 (124b)

1
W(pi +pj)+ M

Pi—Dj

i J

with y(M) = {(M) = B(M) = 1, px = p(ok), a?j if p; # pj and a = p’(p;) otherwise, and

eij = Q(Mij) with Q(M,'j) = min(M,-j, 1) (125)
In (125), the local Mach number M;; is given by M;; = M— 3 . Thus, we can write that M;; = O(M) which
a;j
means that
@ <C (126)
T

where C is a constant of order one (since M;; < 1). The parameters y(M), {(M) and S(M) are introduced in
(124) to also study the all Mach schemes proposed in [14, 15] which are equivalent to (124)(125) but with
(v, ¢, B)(M) = (1,1, 1) (see Discussion about Theorem 6.1 in §6.1 and the numerical results in §6.3). We
recall that for stability reasons, y(M), (M) and B(M) are such that

yM) +{(M)
2

(see Theorems 6.1 and 6.2). Moreover, we now suppose that

€[0,1] and B(M) =0

AC >0 suchthat YM>0: max[|y(M)|, |{(M)], B(M)] < C. (127)

At last, we impose periodic boundary conditions.
Let us now assume the asymptotic expansion for ¢ = (p,u)
¢ =0 + MpV + MpP + ... (128)

We remark that since p = p(p), there holds that p©@ = p (p(o)) and p\¥ = p/ (p(o)) oM. Moreover, ( (?))

p(())—p(o) if p(o) # p(O) and( (O)) = p(l)—p(l) =P (p )Otherwise. Under the (sufficient) condition (127), by
o; o;

pluggmg (128) in (124) and by separatlng the orders M~! and M°, we obtain:
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Order M~': We deduce from (124a) that
Z |Fu|61(0) (0) (0)> 0.

I;;coQ;

Thus, we have Z pl(p) Z T"; J|a(0)( © p(.o)) = 0 which gives
i

F,‘_,‘CBQ
(0) (0) (0) (0) ©) ( _(0) ) O] _
erul i )p,' +aji (Pj —P; ),Oj ]_0 (129)
with a(o) (;)) Then, we obtain

0)( (0 0)\2
Z|Fz]|a() (‘) f)) -0

which implies that
vi: p”=p00 (130)

1/2
because for all i and j, al(.;.)) > 0. Thus, pgo) = p(o)(t) and al(.;.)) =a%@) = (p' (po(t))) / . Moreover, if
|C(M))| is of order one, we deduce from (124b) and (126) that

Z |rij| [ P(l) + p(l)) n;; + {(M)a(O)( ('O) PEO)) (ulj + (ul/ nl/)nll)] 0
F,‘jCﬁQi
which gives

D0 (p” + p)mgj =0 (131)
r;jCBQ,'

by using (130). If |{(M)] is of order M* with a > 0, we directly deduce (131) from (124b) and (126).
Let us note that Equation (131) is equivalent to

1 0 0
Z T [P + 7 + k0 @a@@® — u?) - myy|ny; = 0 (132)
F,’jCﬁQi

with ¥ = O for the all Mach Roe scheme. Note that we obtain the same relation (132) with x = 0 for
the all Mach schemes of Rieper [14] and OBwald et al. [15]. In the case of the Roe scheme — which
is defined by (124) and 6;; = 1 instead of (125) —, we obtain (132) with x = 1.

Order M°: We deduce from (124a) and (130) that
9500+ g 3 Il W0 ) mg a0 =0 a3
I“,,»C(?Q,-

On the other hand, we have
Z Z |Fij|p(0) u(O) +u(O)) n;; = P(O)Z|rzj| [(“50) +u§.°))-n,-j +( © +u(0)) nj,-] =0
i T;;coQ; T;j
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and

SN @ (o - ) Z|r| [a© (o = ) + a® (o)) = p)] = 0.

i F,»,»c@Q

d d
Thus, by using (133), we obtain Z (2|Qi|d—tp(0)(t)) = 0 and therefore Ep(o)(t) = 0. In other words,
i

we have
vi: p”=c" (134)

and, thus, pE = C* and a( ) = C¥. By plugging (134) in (133), we obtain that

Z I | [p(O) (u(O) + u(O)) n;; +a® (PE-D _ p(jl))] -0
I;jcoQ;

which gives
3 [p0%a® (@ +u®) g+ (50 - p0)] = 0 (135)
I';;coQ;

5 DM
by using the fact that (a(o)) = p(l) p“) if p (O) pE.O).
P =p;

To summarize, we have proved that a necessary condition of validity of the expansion (128) is that ( M u(.o)) €

R3V satisfies l
Z IT; |[p(0) (0)( (0>+u(0>) nu+(P(1) §1>)] -0,
I;;coQ;

DT [PV + P + ko0 (u® — ) - nyj|mi; =0
I';;coQ;

(136)

with k = 0 in the case of the non-linear all Mach Roe scheme (124)(125). Note that we obtain the same
necessary condition (136) with x = O for the all Mach schemes of Rieper [14] and OBwald et al. [15].
)
In the case of the Roe scheme, we obtain (136) with « = 1. Thus, by defining r; := p(§+a@, we obtain that
when (ri, uEO)) € R3N satisfies (136), (ri, ugo)) belongs to the kernel (39) of the discrete acoustic operator L .
By using Theorem 2.2 and Lemma 2.2, we obtain that the low Mach asymptotic solution of the non-linear
all Mach Roe scheme (i.e. (124) with 6;; = 6(M;;)) can be any of the elements of the discrete incompressible
space €, and may thus be an accurate approximation of the exact solution, while the low Mach asymptotic
solution of the non-linear Roe scheme (i.e. (124) with 6;; = 1) only belongs to a very small subspace of el
and will thus not be an accurate approximation of the exact solution.

8. Construction of all Mach Godunov type schemes for the compressible Euler system

We extend in this section the all Mach Godunov type schemes (82)(83) and (82)(86) obtained for the
barotropic Euler system (2) to the compressible Euler system (1).

The previous sections show that the low Mach number inaccuracy can be studied and cured in the
barotropic case, which underlines that the energy equation may not have any influence on this question.
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This leads us to test the all Mach correction obtained and justified without energy equation to the case with
energy equation. In other words, we propose the all Mach Godunov type scheme

P
d 1
“lou|+— Z I @AMX = ¢ (137)
dr 1€%] Y
pE F,'_/'CaQ[
with two possible expressions for the numerical flux QSM’X (we recall that X is a Godunov type scheme):

o First expression:

0
Diidi
(DS.M’X = (Dl)j + (9,']' — 1) UZ <l [(ll,' - llj) . Il,'j] n;; (138)
0

where (I)f.i. is the unmodified flux given by the X scheme and where

0;j = 0(M;;) with O(M) = min(M, 1), (139)

M;;, pij and a;; being estimates at the edge I';; respectively of the Mach number, the density and the sound
velocity. Thus, the all Mach correction is now given by

0
0iidi
0= D=5 | [ =y - my]ng; |, (140)
0
Let us note that we could replace (140) by
0
aijj
(6ij — 1)7 [(Piui - pjuj) - nij] n;; (141)
0
or by
1 0
®ij = D3 |(piaiw; = pjaju)) - mij|my; | (142)
0

The flux @;?M’Roe obtained with (138) and when X is the Roe scheme [3] is specified in Annex C in the
subsonic case (see (173a), (173c) and (174)).

e Second expression:

p(a-n)*
Pi+Dpj

AN
2

1

(@ -mu* + p”n with p?; = Gijpfj +(1-6;) (143)

(0'E" + pu-m ),
where (p*,u*, E*) is solution of a 1D (linearized or non-linearized) Riemann problem.
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Definition of the Mach number M;;: As in the barotropic case, the Mach number M;; in (139) may

. Ju;| . u;; - nj . o
be defined with M;; := —L or with M; jo= Y the second one giving a less dissipative scheme
a; j a; j
especially for shear flows for which we may have u;; L n;;). The numerical results proposed in this paper
P y y J J prop pap

W

are obtained by using M;; := M to define the all Mach correction (140). Let us underline that the linear
aijj

stability result proposed in Theorem 6.1 is valid with these two definitions of the Mach number M;;.

Concerning the stability of the non-linear all Mach schemes (137)(138) and (137)(143): These all Mach
schemes — directly deduced from the barotropic case — are justified to cure the accuracy problem at low Mach
number. But, it is not obvious that the linear stability result obtained in Section 6 in the barotropic case when
the X scheme is the Roe scheme remains valid. Indeed, the energy equation is as important as the other two
equations in any stability analysis. This point will have to be studied carefully in a future work. However,
numerical results obtained in Section 10 by using the Godunov scheme with (137)(143) (which means that
states -* are given by solving an exact 1D Riemann problem [17]) do not show any stability problem. This
justifies the extension of our all Mach Godunov scheme to the full Euler system.

Introduction of the parameters y(M), /(M) and S(M) in (137)(138) when X is a Roe scheme: When X
is a Roe scheme, it is also possible to introduce the parameters y(M), (M) and (M) in (137)(138) — and,
thus, in (173a), (173c) and (174) — to reduce the numerical dissipation, as it has been done in the linear case
(92) and in the non-linear barotropic case (124). Nevertheless, we do not study in this paper the influence of
these parameters in the non-linear case (137)(138) with numerical test cases although we propose in Section
6 theoretical and numerical results concerning this question in the linear case.

9. Other all Mach schemes

The analysis used to justify the all Mach correction (140) is not limited to Godunov type schemes
applied to the compressible Euler system (1). For example, the previous analysis applied to the Rusanov
scheme [18] would lead us to use the all Mach correction (141) with a;; replaced by |4;;| := max(|u;; - n;; —
a;jl, [w;; - m;; + a;j]) in order to define the all Mach Rusanov scheme

P
d 1
pE ! r,'_,'CBQ,'
with
0
y , Aij
(D?}M,Rusdnov — (I)Susanov + (gij _ 1)|21| [(Piui _Pjuj) . nij] n;; (145)

0

where GDE”S"‘“"V is the unmodified Rusanov flux and where 6;; = 6(M;;) (0(M) is defined by (139)). We could
also formally justify the non-linear all Mach Rusanov scheme (144)(145) with a formal asymptotic analysis
similar to the one used to justify the all Mach Roe scheme (124).
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In the same way, when the mesh is 2D cartesian with Ax = Ay, the all Mach Lax-Friedrichs scheme is

given by
af o)1 AMLE
| pu |+ — > e =0 (146)
dt 1€ Y
pE ; r,'_,'C(?Q,'
with
A 0
x
CD?J.M’LF = O + (0, - 1)2_At [(,Oiui - pju;) - nij] n;; (147)
0

A
where CDI.L].F is the unmodified Lax-Friedrichs flux [19]. In (147), I); is equal to max (lux,,- * ajl, luy; £ ail) /CFL
l
with CFL < 1.

Concerning the stability of the all Mach schemes (144)(145) and (146)(147):

As in the case of the Godunov type schemes applied to the compressible Euler system (1) (see Section 8),
the stability of these all Mach schemes will have to be carefully studied. This is out of the scope of this

paper.

Let us also note that a Lagrange + Projection type scheme can also be corrected with a similar low Mach
correction, and that the stability of this type of scheme should not be affected by the all Mach correction:
see §6.5.

10. Numerical results

We study the behaviour of the all Mach Godunov scheme given by (137) where CD;.AJ.M’X is given by (143)
and where (p*,u*, E*) is solution of a 1D non-linearized Riemann problem [17] (i.e. X is the Godunov
scheme) and 6;; = min(Mach;;, 1). We consider that the fluid follows a perfect gas equation of state p =
(y — Dpe with a specific heat ratio y = 1.4. For a perfect gas law, the Mach number is equal to

Mach = M where ¢ = ,/yg.
¢ P

We discretize the time operators in (137) with a first order Euler scheme, and the global scheme is explicit.
Thus, the time step At is linked to the mesh size through a classical CFL condition. For all numerical tests,
the CFL number is set to 0.4.

We will test schemes on both low Mach and order 1 Mach number test cases. The first test is a one
dimensional Sod shock tube. In one dimension, the Godunov scheme is as accurate at low Mach number
as the all Mach Godunov scheme. This test shows that even if the all Mach Godunov scheme reduces the
numerical diffusion of the Godunov scheme (at low Mach number) the scheme stays stable. We briefly show
that the low Mach Godunov scheme, corresponding to 6;; = 0 in (143) (i.e. centered discretization for the
pressure gradient), is not stable in the non-linear case. This is coherent with Point 3 of Theorem 6.1 (stability
analysis in the linear case) and with the numerical results proposed in §6.3. In the second numerical test, we
consider a two-dimensional low Mach flow. We show the influence of the cells geometry on the behaviour

of the Godunov scheme at low Mach number and the improvement of the all Mach Godunov scheme against
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the Godunov scheme for low Mach flows. The third numerical test is a two-dimensional compressible flow.
This test shows the stability of the all Mach Godunov scheme on cartesian and triangular meshes. All
computations are done with the toolbox CDMATH [20, 21].

10.1. A one dimension space compressible flow: Sod shock tube
We consider the classical Sod shock tube [22]. The initial conditions are

P’(x<05)=1, p%(x > 0.5) = 0.125,
P(x <0.5) =1, and P°(x>0.5) = 0.1, (148)
W (x<05) =0 u’(x > 0.5) = 0.

The domain Q is equal to [0, 1] and we study the numerical solution before the waves reach the boundary 9<.
Thus, we impose the boundary conditions

(o, p,u)(t > 0,x € 0Q) = (p°, p°, u®)(x € 6Q).

In Figure 13, we test the stability of the Godunov, of the all Mach Godunov and of the low Mach Godunov
schemes. With the Godunov scheme and the all Mach Godunov schemes, the norm [u? + p?| stays bounded
with time. With the low Mach Godunov scheme, the norm |u? + p2| explodes which means that the low Mach
Godunov scheme is not stable. These results are coherent with Theorem 6.1. In Figure 14, we compare the
Godunov scheme and the all Mach Godunov scheme to the exact solution at time ¢t = 0.2 s. The number of
cells is equal to N = 1000. The resulting Mach number verifies 0 < Mach < 0.95, so that we have both low
Mach and order 1 Mach values. Both schemes show a correct agreement with the exact solution. The all
Mach Godunov scheme is slightly less diffusive than the Godunov scheme. Let us underline that although
parts of the solutions clearly do not belong to the low Mach regime since M = 0.95, the all Mach Godunov
scheme is stable and provides right numerical results. In Figure 15, we perform a convergence study on the
density variable. The coarser and finer meshes contain N = 200 and N = 3 200 regular cells respectively,
and Ax = Ilv It may be checked that the convergence rate is very close to 0.65 in the L' norm for both
schemes [23, 24] but the all Mach Godunov scheme is more accurate than the Godunov scheme.

Godunov —+—
AM-Godunov ----s----
LM-Godunov -~

[u? + p?|[

15 f LA

0 0.001  0.002  0.003  0.004 0.005  0.006  0.007
t

Figure 13: Sod shock tube (compressible flow) : [u?> + p?|(¢) as a function of time for 0 < ¢ < 0.007 s. With the Godunov scheme
and the all Mach Godunov scheme, the quantity [u?> + p?|(¢) stays bounded with time. The low Mach Godunov scheme is not stable
since [u? + p?|(¢) explodes with time.
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Figure 14: Sod shock tube (compressible flow) : density p (top left), velocity u (top right), pressure p (bottom left) and Mach
number Mach (bottom right) at time # = 0.2 s with N = 1 000 regular cells. Both schemes show a correct agreement with the exact
solution. The all Mach Godunov scheme is stable and slightly less diffusive than the Godunov scheme.
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Figure 15: Sod shock tube (compressible flow) : L' norm of the error for the density at time ¢ = 0.2 s. The coarser and finer meshes
contain N = 200 and N = 3 200 regular cells respectively, and Ax = ﬁ The all Mach Godunov scheme is more accurate than the
Godunov scheme. It may be checked that the convergence rate is very close to 0.65 in L' norm [23, 24].
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10.1.1. A two-dimensional low Mach flow: a Vortex in a box

We consider the low Mach test performed in [25, 26]. This test shows the influence of the cells geometry
on the behaviour of the Godunov scheme at low Mach number. Indeed, the Godunov scheme is accurate
at low Mach number on triangular meshes while it is not the case on cartesian meshes. We also show the
improvement of the all Mach Godunov scheme against the Godunov scheme when we consider cartesian
meshes. The computational domain is Q = [0, 1] with an initial condition given by

pO(x,y) = 1 - tanh (y - 1),

ud(x,y) = 2sin®(zx) sin(zry) cos(xry) = sin®(zx) sin(27y), (149)
ul(x,y) = =2 sin(rx) cos(rx) sin®(y) = — sin(27x) sin®(zy),

p%(x,y) = 1000

No-slip boundary conditions are imposed on the domain boundaries. We consider as reference solution the
solution obtained by the Godunov scheme on a 400 x 400 cartesian mesh with Ax = Ay = 0.0025: see
Figure 16. Indeed, according to Point 2 of Theorem 4.1 (obtained in the linear case), the Godunov scheme
is accurate at low Mach if Ax = Ay <« Mach. Here, we have Ax = Ay = Mach/10. On Figure 16, the final
time of computation is 0.125 s and we verify that the Mach number for the resulting flows is of order 0.026
so that we are in the low Mach regime.

In Figure 17, we plot the velocity magnitude |u| obtained with the Godunov scheme and the all Mach
Godunov scheme on a coarser cartesian mesh (50 x 50 cells with Ax = Ay = 0.02) and with the Godunov
scheme on a triangular mesh with 2 300 cells. We observe that the Godunov scheme is not accurate at
low Mach number on this cartesian mesh (Ax = Ay ~ 10 X Mach), the solution being extremely diffused
over time. However, the all Mach Godunov scheme is accurate at low Mach number on the same cartesian
mesh (Ax = Ay =~ 10 X Mach). Indeed, the solution obtained with the all Mach Godunov scheme is close
to the reference solution. Thus, the accuracy of the Godunov scheme at low Mach number on cartesian
meshes depends on the size of the cells and on the Mach number — which is coherent with Points I and
2 of Theorem 4.1 — while this accuracy only depends on the cell size for the all Mach Godunov scheme —
which is coherent with Point 3 of Theorem 4.1. In particular, the all Mach Godunov scheme is accurate at
low Mach number on a cartesian mesh verifying Ax = Ay > Mach. On triangular meshes, the solution
obtained with the Godunov scheme is close to the reference solution at low Mach number which means
that the Godunov scheme is accurate at low Mach number on triangular meshes independently of the Mach
number.

The all Mach Godunov scheme on cartesian meshes can also be justified by the numerical cost of the
Godunov scheme at low Mach number. Indeed, to be accurate at low Mach number, the Godunov scheme
needs a mesh size of Ax = Ay ¥ Mach/10. This equality is satisfied for the reference solution in Figure 16
but the computation lasts 6 hours. The results obtained with the all Mach Godunov scheme on the 50 x 50
cartesian mesh (see Figure 17) are as accurate as those obtained with the Godunov scheme on the 400 x 400
cartesian mesh but the computation only lasts 0.03 hours.

10.1.2. A two-dimensional compressible flow: a 2D-Riemann problem
We consider a 2D Riemann problem that consists of 4 shock waves [26, 27]. This example tests the
stability of the all Mach Godunov scheme for a compressible flow. We consider the domain Q = [0, 112
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Figure 16: Vortex in a box (low Mach flow): velocity magnitude [u| (left picture) and Mach number (right picture) at time # = 0.125 s
for the reference solution obtained with the Godunov scheme on a 400x400 cartesian mesh (Ax = Ay = 0.0025). Indeed, according
to Point 2 of Theorem 4.1, the Godunov scheme is accurate at low Mach number if Ax = Ay = 0.0025 <« Mach = 0.01.

The initial condition is
(0.1308, 1.206, 1.206, 0.029), if x <0.5andy < 0.5,

(0.5323, 0.000, 1.206, 0.300), if x> 0.5andy <0.5,

0
(s 2, uy, p) (x,3) = _ (150)
(0.5323, 1.206, 0.000, 0.300), ifx<0.5andy > 0.5,

(1.5000, 0.000, 0.000, 1.500), otherwise.

We impose exact boundary conditions. This means that we impose at the boundary of the domain the exact
value of the solution. In fact, the value at each boundary corresponds to the resolution of a one dimensional
shock. The final time of computation is t = 0.4 s. This configuration leads to a Mach number that ranges
from 107> to 3.15 (see Figure 18). Thus, according to the regions of the computational domain, the flow
belongs to the low Mach regime or to the order 1 Mach regime. We did the computation on cartesian and
triangular meshes (see Figures 19 and 20).

We consider as a reference solution the approximation obtained with the Godunov scheme on a 600x600
cartesian mesh. In Figure 18, we plot the velocity magnitude |u| and the Mach number of the reference
solution. In Figure 19 (respectively Figure 20), we display the velocity magnitude |u| obtained on a 200x200
cartesian mesh (respectively on a triangular mesh with 40 300 cells) with the Godunov scheme and the all
Mach Godunov scheme. We see that the all Mach Godunov scheme is stable for this test case which has
regions with low and order 1 Mach number values. Moreover, since the all Mach Godunov scheme reduces
the numerical diffusion of the Godunov scheme, the wave pattern at the center of the domain is better
captured (on cartesian and triangular meshes) when one uses the all Mach Godunov scheme. This allows to
apply the all Mach Godunov scheme on hybrid meshes containing triangular and cartesian cells. Our results
are similar to those obtained by Chalons, Girardin and Kokh in [26] with a corrected Lagrange + Projection
scheme on cartesian meshes (this scheme is described in §6.5 in the linear case).

11. Conclusion

Through the study of the linear wave equation discretized with a Godunov scheme, we have proposed

a simple all Mach correction to apply to any Godunov type scheme solving the compressible Euler system
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Figure 17: Vortex in a box (low Mach flow): velocity magnitude |u| obtained at time + = 0.125 s on a 50 x 50 cartesian mesh
(Ax = Ay = 0.02) on the top row and on a triangular mesh with 2300 cells on the bottom row. The Godunov scheme is not accurate
at low Mach number on this cartesian mesh (top middle): the solution is strongly diffused over time. The all Mach Godunov scheme
(top right) is accurate at low Mach number on this cartesian mesh: the solution is close to the reference solution (see Figure 16).

On triangular meshes, the Godunov scheme (bottom right) is accurate at low Mach number: the solution is close to the reference
solution (see Figure 16).
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Figure 18: 2D-Riemann problem: velocity magnitude |u| (left) and Mach number (right) for the reference solution obtained with
the Godunov scheme on a 600 x 600 cartesian mesh with Ax = Ay = 0.0017.
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Figure 19: 2D-Riemann problem: velocity magnitude [u| obtained on a 200 x 200 cartesian mesh. The all Mach Godunov scheme
is stable. Moreover, since we reduce the numerical diffusion of the scheme, the all Mach Godunov scheme is closer to the reference
solution than the Godunov scheme.
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Figure 20: 2D-Riemann problem: velocity magnitude |u| obtained on a triangular mesh with 40 300 cells. The all Mach Godunov
scheme is stable on triangular meshes. Moreover, since we reduce the numerical diffusion of the scheme, the all Mach Godunov
scheme is closer to the reference solution than the Godunov scheme.
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to make this scheme accurate in the incompressible regime as well as in the compressible regime. We have
named this modified scheme all Mach Godunov type scheme.

The short time behaviour of the solution of the first order equivalent equation associated with the all Mach
Godunov scheme applied to the linear wave equation justifies this correction when the mesh is cartesian. In
the non-linear barotropic case and when the Godunov type scheme is a Roe scheme, we justify this approach
with a formal asymptotic expansion. At last, a linear stability result shows that this all Mach Roe scheme
should be stable in the non-linear barotropic case.

We have proposed numerical results which justify this approach in the case of the compressible Euler system
when the Godunov type scheme is the Godunov scheme.

At last, the proposed theoretical results have been obtained in the periodic case. Since the aim of this study
is to obtain all Mach Godunov type schemes that can be applied to the modelling of a nuclear core and
since a nuclear core is not a periodic domain, we will have to study the influence of non-periodic boundary
conditions on the accuracy and stability of these all Mach Godunov type schemes.

A. The linear Godunov scheme and the subsonic case

A.l. The linear Godunov scheme
The linear equation
8tq+u*-Vq+;l—;Lq=0 (151)

may be written as
0iq +Ax0q +Ay0yq+ A0, =0

where
ey = 0 0 ny 0 = 0 w. 0 0 =
a. M 0 Ao4 0 0 0 Ag
— U Uy
Ac=l oy e 000 LA e Y and A=l 50w, 0
0 0 ey O u 0 wu.y O a 2
0 0 0 u, 0 0 0 uy w 0 0 e
System (151) can also be written as
01q + A(M)d;q = 0, (152)
where A(n) = A,n, + Ayny, + A;n;, that is to say
0 &nT
A = -ml+| 4 M,
—n 0
M

1 being the identity matrix in R***. By integrating (152) on Q; and by applying the Gauss law, we obtain
d
d_ f q(t,xX)dx + Z f A(nij)qu =0.
o ri;co0; YT
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By supposing that g(z, x) is constant and equal to g;(¥) in €; and by approximating the flux A(m)g with
A(n;)qrp;;j on each edge I';; where ggrp;; is the solution of the one-dimensional Riemann problem in the n;;

direction
0:q + A(n;)dzq = 0,
if £ <0, (153)
gt =0,0) = qﬂf
q] 1 g Z Ov
we obtain the (semi-discrete) Godunov finite volume scheme
d
Qil =g+ D Dot = o, (154)

dt Fi‘,ﬂcaQ,-

Since the matrix A does not depend on ¢, the Godunov flux d)l.cj’.Odunov can also be written as

qi+q; |Am;)) _ :
PG = AT~ =5 (g q)  with  JAmp) = ) I ®L  (155)
k=1
where A are the eigenvalues of A(n)
A n- = L =u.-n A3=u,-n A= on+ 2
1_u* M Z_u* b 3_u>‘< 9 4_u* Ma
with a complete set of linearly independent right eigenvectors
1 0 0 1
rlzﬁ(_n), I‘2=(ta ), r3:(tb)’ 1‘42,3(“)
and left eigenvectors
0 0 :
I 23 7 = 7 = 7 = 28
1 n |’ 2 = ’ CHE A 471 n
t¢ t -
2B

where 8> = 1/2 and (t%,t’, n) defines an orthonormal basis of R>. The left eigenvectors 1, are such that
L, T, = 6un (Omn is the Kronecker symbol). Knowing this, the Godunov flux (155) can be written as

lll'+llj

ri + rj
——— . n .
Godunov _ 2 s 2 Y
q)ijo UHOV_u*,nl,j ll,'+llj +M ri+rj
2 2 M
1 a, 0
__u*‘nij__’ (rj_ri)_(uj_ui)‘nij( )__|u*'nij|( ]
4 M [ ] —-n 2 —[(llj—ll,')Xl'lij]an‘j
Hy n+“jk )+ (u;—u) -y : (156)
—_—— % . .. —_— r~ —_— r. + — . . ..
4 RNV KA ]
because [(uj -u;)- tf’}] t?j + [(uj L DE tlbj] tl.bj = - [(uj —w;) X nl-j] x n;;. Indeed, for any v € R3, we have
(VO + (v-t))t? = —(vxn) xn. In 3D, it is slightly more complicated to work with tl.“l. and tf.’j because the
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basis (t?j, tfj) has to be constructed, while n;; is usually at hand. Nevertheless, the operator X has no sense
in 1D and 2D but we can also use (156) if we use the following notation

0, in 1D,
(vXn)Xn:= (157)
—(v-t)t, in2D,

where in 2D t is easily deduced from n.

A.2. The linear Godunov scheme in the subsonic case

We write the linear Godunov scheme (154) (156) in the subsonic case
[u,] < Z—; (subsonic condition).

Then, we have u, - n — 75 < 0 and u, - n + 5 > 0 and the Godunov flux <1)l.Gj°G“m°V (156) takes the form

Godunov ._
o

1 (u, - n;j) [ri +rj+(w—uy)- nij] }
2 (u, - m;)) [(lli +u;) + (ri — I’j)nl’j] — |w, - nj [(ui —u;) X nij] X 1

a. (u,~+uj)-n,~j+r,~—rj
+_
2M [

]. (158)

ri+rj+(u,-—uj)-n,-j]n,-j

B. The all Mach Roe scheme in the barotropic case

We firstly construct the Roe scheme applied to the barotropic Euler system (2) when the flow is subsonic.
Then, we specify the all Mach version of this scheme deduced from (137) and (138). Finally, we write the
dimensionless version of this all Mach Roe scheme used in the asymptotic expansion proposed in Section 7.

B.1. The Roe scheme in the barotropic case

Let us apply the finite volume scheme

d
a—,tfgiﬂ(t,x)dx+ Z ff(ﬂ)-ndszo (159)

T; j CaQ,' rij

to the barotropic Euler system (2) written in 3D. In (159), U := (p,pu)’ and the flux f(U) is the 4 x 3
matrix

T
_ pu _.
f((Z/{) - ( pu®u+p1 ) - (fx,fy,fz)
(1 is the identity matrix in R**®). Thus, the flux in the direction n is defined by
pu-n pu-n
B | puxu-n+pn, |
f(U) -n = (nf, + nf, +n L )(U) = pwu-n+pn, || pa-n)u+pn

ou 0 -n + pn,
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The Roe scheme is an approximation of (159) given by
d
QIZ U0+ Y INRfe =0 (160)
l"ijc()Ql-
where d)g.oe is an approximation on the interface I';; of f(2) - n. Since the Roe scheme is an upwind
scheme [17], <I>5.°e is given by
2 Mt

where An;; (U;,U;) is an approximation on I';; of the jacobian matrix

O = (U~ Uy, (161)

DEU)-n 0 n’

DU n—(@u-mu u®n+@-m1 )

An(U) =

More precisely, An; (Ui, Uj) = An,(U;;) where U;; is an average state on I';; satisfying
(FU)) = £(U) - iy = A (U (U; - Us).
Then, U;; is computed with the Roe average state [17]

VPillxi + \Pjltxj  NPillyi + \Pjltyj NPtz + Pz j

Pij = \PiPj> Uxjij = s Uyij = s Ugij =
R R T R TR o
and A
D .
—, if Ap # 0,
2 Ap

P’ (pi), otherwise

with the notation A(-) = (-);—(-);. Now, we have to compute |A (UL, UR)|- (Ap, A(pu))T. One of the features
of the Roe scheme is that the mean states (p;;, u;;) satisfy the relation

A(pu) = p;jAu + (Ap)u;;.

4
Moreover, for any (U;, U;,n), |An(U;, U))| = |An(U;)j)| = Z I/Iklr;(" ® l;{" where
k=1
Adil=u-n-a, A =u-n, A3 =u-n, A4 =u-n+a

are the eigenvalues of A,(U{) with a complete set of linearly independent right eigenvectors

_ 1 Y (0 _ 1
"=\ u-gn) 2=\ g ) B=le ) ““=\ u+an

and left eigenvectors

1+u-n (@ ¢ 1 u-n
lT_ 2 261 lT_ —tu lT_ —tu lT_ 2 2(1
1= n ’ 2 = @ | 3= o | 4 =
" 2a 2a



where (n, t%, t?) is an orthonormal basis of R3. The left eigenvectors 1, are such thatl,, - r, = 6un (6 1s the
Kronecker symbol). Noting a/;c] = l;{’ ((Ll = (Ll;), the Roe-flux (I)}.Ql."e can also be written as

(U + £(U;) Uy iy i
CIDE.OE’:—I 5 ! -nij—EZI/lglang
k=1

where

aiJ:%Ap—sz"fjA(u-n), a;]:pijA(u-t?j), a;’:pijA(u-tl.bj), aZ’:%Ap+%A(u-n).

Then, we obtain the following flux in the barotropic case

f(U;) +£(U)) 1 bij :

— s m— g Juij -y —aij| | Ap — a_[jA(“ m;) u;j — ajjn;;

| 0 1 Pij 1

-3 |u,~j . nij|pij( _ [Au % nij] X nj; ) T |uij ‘n;; + aij| (Ap + Z,jA(u ’ nij))( u;j + a;jn;; ) (162)

Roe __
DR =

because [Au . tf]] t?j + [Au . tf?j] tf.’j =- [Au X 1 j] x n;;. Nevertheless, the operator X has no sense in 1D and
2D but we can also use (162) if we use the notation (157).

Moreover, we know that the Roe scheme is not entropic for sonic points. The entropy fix of van Leer
and al. [28] (or Harten [29]) is applied on the acoustic waves (k = 1 and k = 4) and corresponds to adding
viscosity near sonic points. We replace the absolute value || = [u;; - n;; — ;| and [2}| = [u;; - n;; + a;j] in
formula (162) by a smooth parabolic regularization | - |* defined by

o if 141 2 284, ) = (Wi i (s <0< (),
| = (1) with Al = (163)
IO + Ady, otherwise, 0, otherwise.

For small Mach number, there is no sonic point and this correction has no influence on the scheme.

B.2. The Roe scheme in the barotropic and subsonic case

We write the barotropic Roe scheme (160)(162) in the subsonic case
;- mjjl < ajj.

Then, we have u;; - n;; — a;; < 0 < w;; - n;; + a;; and we can write (162) as

f(u) +f(Uj 1 w;-ng 1 1 1
Roe _ ! JIo 2 Y J .. ..
O Ty MR A (wm){ ;)7 2% g,

0
B %a’j (uij'nif)Ap( 1? )_ %aijpijA(u'nii)( ll(z)'j )_ % ’uij . nij|pij[ —[Auxnlj] X 1 ) (164)

)
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Thus, by using (160) and (164), we obtain

d 1 Pij
Pt 3o Z I [(Pilli + o)) - i+ = (g - M)W — w)) - myj + agjp; —Pj)} =0, (165a)
t | z| l—l_j o0, dij

(Pz D+ 2|Q | Z I {Pi(ui )W + p (- niu; + aii(pi — pj) [uij + (uj; - nij)nij]
F,jC@Q,’

pij(ui; - njj) [
dijj

+ [Pi +pj +pijaij(; — ;) - nij] n;; } =0 (165b)

— pijluij - myj [(lli —u)) X nij] Xmn;; + (w; —uj) - nij] u;;

Pi” P if p; # pj and a?j = p’(p;) otherwise.

i L

with pi = p(ox) and a7 =

B.3. The all Mach Roe scheme in the barotropic and subsonic case
We deduce from (82), (83) and (165) that the all Mach Roe scheme in the barotropic and subsonic case
is given by

d 1 Pij
—Pi + 557 Z I [(Pilli +pjuj) i+ = (W M) — ;) - myj + ap; _Pj)} =0, (166a)
dt 2|Q4] F,-,C(?Q; aij

(Pz i)+ 2|Q| Z I {Pi(lli'nij)ui+Pj(l1j'Ilij)llj+6lij(/)i—Pj) [llij+(llij'nij)nij]
r,jCBQ,‘
pij(u;j - ;)
— pijlwgj - myj [(lli —uj) X nij] Xn;; + % [(Ui -u))- nij] u;;
ij

+ [Pi +pj+ bijpijaij(w; —uy) - nij] n;; } =0 (166b)

with 6;; = 0(M;;) := min(M;;, 1) and M;; = M The difference between (165) and (166) is only in the last
aij

term of the left hand side of (165b) and (166b).

B.4. Dimensionless version of the all Mach Roe scheme in the barotropic and subsonic case

The dimensionless version of (166) is obtained by replacing in (166) p;, p; and a;; respectively by
pi/M?, p;/M? and a;;/M where M is an order of the local Mach number M;;. This gives

d 1 a,-j
_pl+ﬁ Z |rz]| (plul+pju]) nz]+M (uz] nz])(uz uj)'nij+ M(pi_pj) =0
€2 r,, o0 dij
aijj
(Pz i)+ 2|Q| Z I {pi(ui TR+ (W) i+ - (i = pj) [uij + (ujj - nij)nij]

T;jCoQ; (167)

pij(u;j - 1))
aijj

+ W(pi +pj)+ ﬁpijaij(“i -u)- n,-j] ij } =0

—pijla;; - nj| [(lli —u;) X nij] xn;; +M [(w; — u)) - n;j]uy;

with 6;; = (M;;) := min(M;;, 1) and M;; = MM
ajj
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C. The Roe scheme for the compressible Euler system

C.1. The Roe scheme for the compressible Euler system
Let us apply the finite volume scheme

dit fg;i U(t,x)dx +

to the compressible Euler system (1) written in 3D. In (168), U := (p, pu, pE)" and the flux f(U) is the 5x3
matrix

Z f £(U) -nds = 0 (168)
FijC5Qi Fi/

pu’
f(U)=| pueu+pl |=: (.1, 1)
(PE + p)u
(1 is the identity matrix in R**®). Thus, the flux in the direction n is defined by
pu-n pou-n
puxu - N+ pny
f(U) -n = (nd; + nyfy + nf)(U)=| puypu-n+pn, |=| p(w-mu+pn
puu-n+ pn,
(WE + p)u-n (WE+ p)u-n
The Roe scheme is an approximation of (168) given by
d
Q= U + Y T =0 (169)
F,_icag,-

where CI)E.Oe is an approximation on the interface I';; of f(2) - n. Since the Roe scheme is an upwind
scheme [17], d)goe is given by

(U +£(Up) . |An,;, (U;, U )

DR = 5 ij 5 (U - Uy) (170)
where An;; (U;,U)) is an approximation on I';; of the jacobian matrix
0 n’ 0
An(ﬂ)::%= (JH-a>n—-(u-mu (u-n)l+u®n-9neu m | _ 4
%u ‘n [(i/ - 2)H - az] Hn' - UK n)u’ yu-n

where H = E + p/p,a = \/yp/p and § = y — 1. More precisely, An, (U, U;) = Ay, (U;;) where U;; is an
average state on I';; satisfying

(FCu)) - £(UD) -y = An (U (U; - Us).

5
Moreover, for any (U;, U, n;;), IAnI.j((LI,-,(LIj)l = |Anl.j((L{,- D= Z I/lklr;j ® l;{’ where A; are the eigenvalues
k=1
of A, (U;)), associated with the left eigenvectors I/ and to the right eigenvectors r;’ such that L, - 1) = 6,un
(Omn 1s the Kronecker symbol). A, () has five real eigenvalues

Ai=u-n—-a, A=u-n A3=u-n, Ag=u-n Ads=u-n+a
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with a complete set of linearly independent right eigenvectors

1 1 0 0 1
r; = u—an , Ip= u , I3= t¢ , Iy= t’ , Is= u+an
H-(u-n)a [u>/2 u-t u-t H+(u-n)a

where (n, t%, t?) is an orthonormal basis of R3. Noting a/;(j = l;cj (7/( = (L(,-) the wave strengths, the Roe-
flux (I)E."e can also be written as

ke — £(U;) + f(fu ) Z i

Defining the average states -;; by

VPillxi + Pl e = VPillyi + [P jUy,j . VPillz,i + Pjlz,j
voi+t e Y voi+ o T Voi+ \pj

Vpitli + \JpjH; u;j - Uy

Hy = YT NOIT - , = Ay = Dhys,

Y NP+ D WmHiT Ty aij = N = Dhij

and using the relation U; — U; = Zk | al rk , we find

Pij = \PiPj, Uxij =

-+ Ap—pia;iA(a-n) i Ap
o = Jzazf .o =Ap——, = pijAu - t),
ij ij
- Ap+p;ia;iA(a - n)
ijo_ ¢b ij _ jYij
@, = pijA( tl.j), s = 261,-2]- .
Then, the Roe-flux (1)5.0e is given by
Roe (U +1(U)) Ap — pijaijA (ll : nij) !
(Dijoe: —2 -n,-j—§|uij.n,-j—a,-j| 2 uij_aijnij
2“," HA._( ) .
J ;= mgj)a;j
1 0
Ap . 1
|“u | [Ap ] Ui;l.ljui- =5l mileg| - [Auxn;|xn;
l] T] —u;; - [[All X n,-j] X l’lij]
1
1 | Ap+pijaijA(u‘nij) u;; + a;jn;; 171
—5 u,-j-nl-j+a,-j| oy L L=y ( )
ij H,-j+(u,-j-n,-j)a,-j
because [Au . tf}] t?j + [Au . tf’j] tf’j =- [Au X 1; j] x n;;. Nevertheless, the operator X has no sense in 1D and

2D but we can also use (171) if we use the notation (157).

Moreover, we know that the Roe scheme is not entropic for sonic points. Here, we correct as in the
barotropic case, that is we replace the absolute value I/l” | = Ju;; - ny; — a5 and I/IJ | = lu; - ny; + a5 in
formula (171) by a smooth parabolic regularization | - |* defined by (163). For small Mach number, there is

no sonic point and this correction has no influence on the scheme.
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C.2. The Roe scheme for the compressible Euler system in the subsonic case

We write the Roe scheme (169)(171) for the compressible Euler system in the subsonic case
lw;j - n;j| < aj.

Then, we have u;; - n;; — a;; < 0 <w;; - n;; + a;; and we can write (171) as

1 1
£(U) + (U ) 1 wj-n; 1A
QRoe = 2 )7, = _pij—l] ”A(“ : n,-‘,-) L7 ~=L£ Wij
2 2 a;i 2 ajj
! Hij '\ Hij
0 0
1 A 1
Y\ o mg; Wij - 1y
1 0
A - 1
|uu nu|( - a_f] uuju ) uij - mijlpis| [Auxmxm; | (72
ij " Yij
Y T —lll'j . [[Au X l’lij] X Ilij]

Thus, by using (169) and (172), we obtain

d

1
P 3 2 Tl

I;,coQ;

Di—Ppi
(lell+,0/ll/) nzj+|llzj nz/l( —Pj— l D) J}
al.j
pl] 1
— i) —uy) - mij + —=(pi = pj)| =0, (173a)
ij tj

pij(W;j - mjj)
(,01 u) + 2|Q| Z I {pi(ui'nij)ui+Pj(llj'llij)llj+M[

- (lli—uj)'nij]llij
F,jCﬁQi L

Pi—pi Pi—pi
+—= [uij+(uij'nij)nij]+|uij'nij|(pi_,0j_ laz J}uij
ij

aijj
— pijluij - il [(lli —u)) X nij] Xn;j + [Pi +pj + pijaij(u; —u;) - nij] nij} =0, (173b)

pij(u;j - n;;) [ (

1y

u;—uj)- nij] H;;

2

pi—p i

[Hz]+(ul] nl]) ]‘l‘lut] nljl[pl Pj— az ]] 2]
ij

(Pz i)+ 2|Q| Z |Fij|{,0iEi(lli'nij)+,0jEj(llj'nij)+
F,jCﬂQi

+ Pi—Dj
aij

— pijluij - mjjlu; - [[(lli —u;) X nij] X nij]

+ [Pi(ui ‘ny;) + pi(u; - ng;) + pjia;i(w;; - ng)(w - ) - nij]} =0. (173¢)
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C.3. The all Mach Roe scheme for the compressible Euler system in the subsonic case

We deduce from (137), (138) and (173) that the all Mach Roe scheme for the compressible Euler system

in the subsonic case is given by (173a), (173c) and (173b) is replaced by

with Qij = H(Mij) = Hlin(M,‘j, 1) and Mij =

pij(uij - 0;))
(Pz u;) + 2|Q| Z T {pi(ui'nij)ui"'Pj(uj'nij)uj u[(u, u))- n,J]u,J
! FijC()Qi Y
Pi—Dj Pi—Dj
+ la” . [Uij+(llij'nij)nij]+|llij'llij| Pi_pj_% u;;
ij

ij
— pijluij - il [(lli —u)) X nij] Xm;jj + [Pi +pj+ bijpijaij(; — ;) - nij] nij} =0 (174)
uijl

. The difference between the Roe scheme for the compress-
aijj

ible Euler system and the all Mach Roe scheme for the compressible Euler system is only in the last term in
the left-hand side of (173b) and (174).
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