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Abstract

Through a linear analysis, we show how to modify Godunov type schemes applied to the compressible

Euler system to make them accurate at any Mach number. This allows to propose all Mach Godunov type

schemes. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in

the barotropic case when the Godunov type scheme is a Roe scheme. We also underline that we have to

introduce a cut-off in the all Mach correction to avoid the creation of non-entropic shock waves.
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1. Introduction

In many situations, the Mach number in the nuclear core of a pressurized water reactor is close to zero.

This implies that the acoustic waves are often not crucial in the mass, momentum and energy balances to

model the thermalhydraulics in the nuclear core. As a consequence, a low Mach number model as the one

proposed in [1] can be a good approach, such a model being free of any acoustic waves. Nevertheless, in

some accidental situations, the Mach number is not always and/or not everywhere close to zero, which im-

plies that acoustic waves (which can be rarefaction and/or shock waves) cannot be neglected. The simplest

model which can model low Mach flows as well as rarefaction and/or shock waves is the compressible Euler

system 

∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0,

∂t(ρE) + ∇ · [(ρE + p)u] = 0

(1)
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which can be simplified into the barotropic Euler system



∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0

(2)

when we suppose that the flow is isentropic. In (1) and (2), ρ is the density, p is the pressure, u is the

velocity and E :=
|u|2
2
+ ε is the total energy, ε being the internal energy. To close (1) and (2), p, ρ and ε are

linked through the respective given functions p(ρ, ε) and p(ρ) which define the equation of state of the fluid.

At last, t ≥ 0 is the time variable and the spatial variable is defined by x ∈ Rd (d ∈ {1, 2, 3}). Of course, as a

nuclear core is a bounded domain Ω in Rd, we have also to define boundary conditions on ∂Ω (d ∈ {1, 2, 3}
is the dimension of the space and is chosen in function of the expected accuracy of the model).

To capture rarefaction and/or shock waves, a classical numerical approach is to discretize (1) or (2) using

a Godunov type scheme. In this paper, a Godunov type scheme is a sheme whose fluxes are constructed by

using an exact or an approximate Riemann solver (e.g. the Roe scheme [2] and the VFRoe scheme [3]).

Nevertheless, it is now well known that Godunov type schemes applied to (1) or (2) are most of the time

not accurate at low Mach number [4, 5, 6]. When the mesh is cartesian and when the boundary conditions

on ∂Ω are periodic, it is shown in [7] that this inaccuracy can be partially understood and can be cured by

studying the (dimensionless) linear equation



∂tq +
L
M

q = 0,

q(t = 0, x) = q0(x)

(3)

where q = (r,u)T ∈ R1+d, where L := L + δL is the acoustic operator perturbed by an operator δL coming

from the truncation error of the numerical scheme applied to the linear wave equation ∂tq+
L
M

q = 0 (M ≪ 1

is the Mach number). Indeed, it is underlined in [7] that when (3) is well-posed and when the initial

condition q0(x) is close to the incompressible subspace

E :=
{
q ∈ (L2(T))1+d : ∇r = 0 and ∇ · u = 0

}

(the physical space Ω is a torus T included in Rd since we apply periodic boundary conditions on ∂Ω), the

solution q(t, x) of (3) remains close to E at any time t ≥ 0 if E is an invariant subspace for (3) i.e.

q0(x) ∈ E =⇒ ∀t ≥ 0, q(t, x) ∈ E (4)

(see Theorem 2.2 in [7]). But, when δL is the truncation error of the Godunov scheme and when d ∈ {2, 3},
E is not invariant which implies that q(t > 0, x) may be far from an incompressible field1. Thus, we have

proposed to modify the Godunov scheme in such a way (4) were satisfied. The simplest choice proposed in

[7] to verify (4) was to center the discretization of the pressure gradient in the velocity equation. This low

Mach correction implies that

E = KerL (5)

1Let us underline that when d = 1 and when the boundary conditions are periodic, the Godunov scheme is accurate at low Mach

number [7, 8].
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which is stronger than (4). Although this approach gives a quite good understanding of the inaccuracy of

Godunov type schemes at low Mach number and a simple low Mach correction, and although numerical

results proposed in [7] justify this correction in the non-linear case, the analysis proposed in [7] is partial.

Indeed, we underline in this paper that when we analyze the inaccuracy of Godunov type schemes at low

Mach number with (3), the invariance property (4) is a too weak condition to characterize an accurate

scheme and has to be replaced by the sufficient condition

E ⊆ KerL. (6)

This point is coherent with the fact that Godunov type schemes seem to be accurate at low Mach number

when the mesh is triangular [9, 10] since we show in [8] that (6) is satisfied at the discrete level when the

mesh is triangular2 although it is not satisfied when the mesh is 2D cartesian (see Lemmae 5.1 and 5.2 in

[8]). Moreover, the low Mach correction proposed in [7] is not equal to zero when the Mach number is of

order one which may avoid the scheme to capture rarefaction and/or shock waves. Thus, we propose and

we justify in this paper an all Mach correction which is equal to the low Mach correction proposed in [7]

when the Mach number goes to zero and which is equal to zero when the Mach number is of order one.

This all Mach correction is similar to the one proposed in [11, 12]. We also underline in this paper that this

all Mach correction is such that Condition (6) is not satisfied, which is coherent with the fact that (6) is only

a sufficient condition: as a consequence, we have to study carefully the time behaviour of (3) to justify it.

The outline of this paper is the following. We recall in Section 2 some results proposed in [7, 8].

In Section 3, we construct and we justify an all Mach Godunov scheme in the case of the linear wave

equation. From this linear approach, we propose all Mach Godunov type schemes in Section 4 in the case

of the barotropic Euler system (2). We propose in Section 5 a linear stability result for these non-linear

schemes when the Godunov type scheme is a Roe scheme, and we justify in Section 6 the accuracy of

this scheme with a formal asymptotic expansion. In Section 7, we extend the previous (barotropic) all

Mach Godunov type schemes to the compressible Euler system (1). We introduce in Section 8 a cut-off

in the all Mach correction to avoid possible non-entropic shock waves. We underline in Section 9 that

the proposed approach to obtain all Mach schemes is not restricted to Godunov type schemes. At last, we

propose numerical results in Section 10.

2. The low Mach number problem

We recall in this section some results obtained in [7, 8].

2.1. The low Mach asymptotics in the non-linear case

Let us define the Mach number M :=
u

a
where u and a are respectively an order of the magnitude of the

fluid velocity and of the sound velocity in the domain Ω. Then, when M is close to zero and when the initial

conditions are well-prepared in the following sense


ρ(t = 0, x) = ρ∗(x), (a)

p(t = 0, x) = p∗ + O(M2), (b)

u(t = 0, x) = û(x) + O(M) with ∇ · û(x) = 0 (c)

(7)

2More precisely, we show that (5) is satisfied.
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(the notation O( f ) means of the order of f ), the solution (ρ,u, p) of the (dimensionless) compressible Euler

system 

∂tρ + ∇ · (ρu) = 0, (a)

∂t(ρu) + ∇ · (ρu ⊗ u) +
∇p

M2
= 0, (b)

∂t(ρE) + ∇ · [(ρE + p)u] = 0 (c)

(8)

is close to (ρ,u, p) which satisfies p = p∗ and the incompressible Euler system



∂tρ + u · ∇ρ = 0, ρ(t = 0, x) = ρ∗(x),

∇ · u = 0 and u(t = 0, x) = û(x),

ρ(t, x)(∂tu + u · ∇u) = −∇Π.

(9)

In (9), Π is a new unknow which has the dimension of a pressure (it is sometimes named dynamic pressure).

This pressure can formally be related to the pressure p through p = p∗ +M2Π+O(M3). Let us note that we

do not take into account any boundary conditions in [7, 8] and in the sequel. As a consequence, we suppose

that the domain Ω in which (8) is solved is a torus T included in Rd where d ∈ {1, 2, 3} is the dimension of

the space.

2.2. The low Mach asymptotics in the linear case

The dimensionless barotropic Euler system is given by



∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) +
∇p(ρ)

M2
= 0.

(10)

The sound velocity in (10) is given by a(ρ) =
√

p′(ρ)/M (we suppose that p′(ρ) > 0). For smooth solutions,

System (10) is equivalent to

∂tq +H(q) +
L
M

(q) = 0 (11)

with 

q =

(
r

u

)
,

H(q) =

(
u · ∇r

(u · ∇)u

)
:= (u · ∇)q,

L(q) =



(a∗ + Mr)∇ · u

p′[ρ∗(1 +
M
a∗

r)]

a∗(1 +
M
a∗

r)
∇r



where r(t, x) is such that

ρ(t, x) := ρ∗

[
1 +

M

a∗
r(t, x)

]
(12)
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(ρ∗ = O(1), a∗ =
√

p′(ρ∗)). The operatorH is the non-linear transport operator whose time scale is of order

one; the operator L/M is the non-linear acoustic operator whose time scale is of order M. The linearized

barotropic Euler system is thus given by

∂tq + Hq +
L

M
q = 0 (13)

with 

q =

(
r

u

)
,

Hq =

(
u∗ · ∇r

(u∗ · ∇)u

)
:= (u∗ · ∇)q,

Lq = a∗


∇ · u

∇r



where u∗ = Cst
1

and a∗ = Cst
2

such that O(|u∗|) = O(a∗) = 1. Let us underline that (13) can also be seen

as a linearization of the compressible Euler System (8) with p := p∗[1 +
M
a∗

r] when we replace the energy

Equation (8)(c) by s = Cst where s is the entropy. Thus, r(t, x) can be considered as a pressure perturbation

in the sequel.

Let us now introduce the sets

(L2(T))1+d :=

{
q :=

(
r

u

)
:

∫

T

r2dx +

∫

T

|u|2dx < +∞
}

equipped with the inner product 〈q1, q2〉 =
∫

T

q1q2dx and



E =
{
q ∈ (L2(T))1+d : ∇r = 0 and ∇ · u = 0

}

=
{
q ∈ (L2(T))1+d : ∃(a,b) ∈ R1+d and ∃ψ ∈ H1(T) such that r = a and u = b + ∇ × ψ

}
,

E
⊥ =

{
q ∈ (L2(T))1+d :

∫

T

rdx = 0 and ∃φ ∈ H1(T) such that u = ∇φ
}
.

The subspaces E and E
⊥ are respectively called incompressible subspace and acoustic subspace. In the

sequel, we use the following classical result:

Lemma 2.1.

E ⊕ E
⊥ = (L2(T))1+d and E ⊥ E

⊥.

In other words, any q ∈ (L2(T))1+d can be decomposed into

q = Pq + q⊥

where (Pq, q⊥) ∈ E × E
⊥.

5



The operator P is the Hodge projection, q = Pq + q⊥ is the Hodge decomposition of q and we have

〈Pq, q⊥〉 = 0. With these tools, we can make explicit the low Mach asymptotics in the linear case (see

Proposition 2.1 in [7]):

Proposition 2.1. Let q(t, x) be solution of



∂tq + Hq +
L

M
q = 0,

q(t = 0, x) = q0(x)

(14)

with q0 ∈ (L2(T))1+d, and let q1 be solution of



∂tq1 + Hq1 = 0,

q1(t = 0, x) = Pq0(x).

(15)

Then, we have

q1(t, x) =
(
Pq0

)
(x − u∗t) = Pq(t, x) (16)

and

∀t ≥ 0, ||q − q1||(t) = ||q0 − Pq0|| (17)

which implies

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0,
∣∣∣∣
∣∣∣∣q − Tu∗,t

(
Pq0

)∣∣∣∣
∣∣∣∣ (t) = CM (18)

where Tu∗,t is the application defined by (Tu∗,t f )(x) = f (x− u∗t) and where C is a strictly positive constant,

which is equivalent to

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq||(t) = CM. (19)

In Proposition 2.1, || · || is the L2-norm. Equality (18) allows to write that as soon as the initial condition q0

is close to the incompressible subspace E, the solution q(t, x) of (14) remains close to the solution q1(t, x)

of (15). Thus, the transport Equation (15) defines the low Mach asymptotics of the linear Equation (14).

Estimate (19) means that, as soon as the initial condition q0 is close to the incompressible subspace E, q(t, x)

remains close to E.

Moreover, we can rewrite ||q0 − Pq0|| = CM with the less accurate formulation ||q0 − Pq0|| = O(M). By

using (12), we easily obtain that the condition ||q0 − Pq0|| = O(M) is equivalent to the well-prepared initial

condition (7)(b,c) restricted to the case p∗ = p(ρ∗). Note that in the barotropic case, (7)(a) has to be replaced

by ρ(t = 0, x) = ρ∗ + O(M2) since p = p(ρ).

The proof of Proposition 2.1 uses the linearity of (14), the fact that E = KerL and the conservation of the

energy E := 〈q, q〉 [7]. At last, let us underline that Proposition 2.1 may also be seen as a simple application

of a result by Schochet [13] obtained in the non-linear case (11).

Let us now suppose that u∗ = 0 or equivalently H = 0. Thus, Proposition 2.1 becomes:
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Corollary 2.1. Let q(t, x) be solution of



∂tq +
L

M
q = 0,

q(t = 0, x) = q0(x)

(20)

with q0 ∈ (L2(T))1+d. Then, we have Pq = Pq0 and

∀t ≥ 0, ||q − Pq0||(t) = ||q0 − Pq0||

which allows to write that

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq0||(t) = CM (21)

where C is a strictly positive constant.

As a consequence, the low Mach asymptotics of the linear wave Equation (20) is simply given by Pq0(x).

Figure 1 represents schematically the solution of the linear wave equation.

Fig. 1

2.3. The low Mach asymptotics in the case of the perturbed linear wave equation

The key points to obtain (21) are that E = KerL and that (20) conserves the energy. In fact, we can relax

these two properties in the following way:

Theorem 2.2. Let L be a linear operator and let q(t, x) be solution of the linear equation



∂tq +
L
M

q = 0,

q(t = 0) = q0

(22)

supposed to be well-posed in such a way that ||q||(t) ≤ C̃||q0|| for any t ≥ 0, where C̃ is a strictly positive

constant (which does not depend on M). Let C be another strictly positive constant. Then:
7



1) When E is invariant for (22), we have

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq||(t) ≤ CC̃M. (23)

2) When L is such that

E ⊆ KerL, (24)

we have

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq0||(t) ≤ CC̃M. (25)

This result is usefull to have a first understanding of the low Mach number problem. Indeed, let us consider

that L := L + δL where δL is a perturbation (which may depend on M) deduced from the truncation error

of a given numerical scheme applied to (20) on a cartesian mesh. Estimate (23) means that Equation (22)

does not create any acoustic waves of order one in the acoustic subspace E
⊥ when ||q0 − Pq0|| = O(M)

although the discretization introduces an error through δL. Estimate (25) characterizes the fact that the

solution q(t, x) of (22) remains close to the low Mach asymptotics Pq0 of the linear wave equation (20)

when ||q0 − Pq0|| = O(M) although the discretization introduces an error through δL.

Thus, Estimate (25) leads us to propose the definition:

Definition 1. The solution q(t, x) of 

∂tq +
L
M

q = 0,

q(t = 0) = q0

(26)

is said to be accurate at low Mach number in any time in the incompressible regime of the linear wave

equation if and only if the estimate

∀C1 ∈ R+∗ : ||q0 − Pq0|| = C1M =⇒ ∀t ≥ 0, ||q − Pq0||(t) ≤ C2M (27)

is satisfied, C2 being a strictly positive parameter that does not depend on M.

Point 2 of Theorem 2.2 means that a sufficient condition to be accurate at low Mach number in the sense of

Definition 1 is that E ⊆ KerL. Let us underline that when E * KerL, we cannot say if the solution q(t, x) is

or is not accurate at low Mach number in the sense of Definition 1 since (24) is only a sufficient condition.

In that case, we have to study carrefully the time behaviour of (26) to verify if estimate (27) is or is not

satisfied.

Estimate (23) leads us to propose the definition:

Definition 2. The solution q(t, x) of 

∂tq +
L
M

q = 0,

q(t = 0) = q0

(28)

is said to be free of any spurious acoustic wave in any time if and only if the estimate

∀C1 ∈ R+∗ : ||q0 − Pq0|| = C1M =⇒ ∀t ≥ 0, ||q − Pq||(t) ≤ C2M (29)

is satisfied, C2 being a strictly positive parameter that does not depend on M.
8



Of course, Definition 1 is stronger than Definition 2 since for any q and q0, we have ||q − Pq|| ≤ ||q − Pq0||.

Point 1 of Theorem 2.2 underlines that the invariance of E in the energy space (L2(T))1+d is a sufficient

condition to avoid spurious acoustic waves in the sense of Definition 2 but is not sufficient to be accurate at

low Mach number in the sense of Definition 1.

Let us underline that Definitions 1 and 2 are preliminary definitions: we will relax them in Section 3 in

order to be able to introduce the notion of all Mach Godunov type scheme.

Proof of Theorem 2.2: The proof of Point 1 is written in [7] (see Theorem 2.2 in [7]). Nevertheless, we

write again this proof below for reader’s convenience. Indeed, the proof of Point 2 uses the steps written in

the proof of Point 1.

Point 1: Let us define q̃(t, x) and q(t, x) solutions of (22) with the respective initial conditions q̃0 = Pq0 and

q0
= q0 − Pq0. By linearity, we have q = q̃ + q. Moreover

||q − Pq|| = ||̃q − Pq̃ + q − Pq||
= ||q − Pq||

since E is invariant for (22). Then, we have

||q − Pq|| ≤ ||q|| (30)

since (1 − P) is an orthogonal projection. On the other hand, we have ||q|| ≤ C̃||q0|| and ||q0|| = ||q0 − Pq0|| =
CM. Thus, we have

||q|| ≤ CC̃M (31)

which allows to obtain ||q − Pq|| ≤ CC̃M by using (30).

Point 2: Under Condition (24), we have q̃ = Pq0. Thus, we have q − Pq0 = q which allows to obtain

||q − Pq0|| ≤ CC̃M by using (31).�

2.4. The Godunov scheme applied to the linear wave equation on any mesh type and its kernel

We show in this section that the low Mach number problem can be analyzed as we analyzed in §2.3 the

low Mach asymptotics in the linear perturbed case (22).

Let us suppose that the domain Ω is discretized by N cells Ωi. Let Γi j be the common edge of two neigh-

boring cells Ωi and Ω j and ni j be the unit vector normal to Γi j pointing from Ωi to Ω j. The semi-discrete

Godunov scheme applied to the resolution of the linear wave equation (20) is given by



d

dt
ri +

a∗
M
· 1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|[(ui + u j) · ni j + ri − r j] = 0, (a)

d

dt
ui +

a∗
M
· 1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|[ri + r j + κ(ui − u j) · ni j]ni j = 0 (b)

(32)
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with κ = 1. We introduce the parameter κ in (32)(b) for reasons that will appear in the sequel (let us note

that (32) is the Godunov scheme if and only if κ = 1). This scheme can be written in the compact form



d

dt
qh +

Lκ,h

M
qh = 0,

qh(t = 0) = q0
h

with qh :=

(
ri

ui

)
(33)

where the subscript h recalls that (33) comes from a spatial discretization of (20) (h is a characteristic length

of the mesh). The kernel KerLκ,h of the discrete acoustic operator Lκ,h is given by

KerLκ,h :=



(
ri

ui

)
∈ R3N such that



∑

Γi j⊂∂Ωi

|Γi j|[(ui + u j) · ni j + ri − r j] = 0,

∑

Γi j⊂∂Ωi

|Γi j|[ri + r j + κ(ui − u j) · ni j]ni j = 0



. (34)

We have the following result:

Lemma 2.2.

KerLκ=1,h =

{
qh :=

(
rh

uh

)
∈ R3N such that ∃a ∈ R, ∀i : ri = a and (ui − u j) · ni j = 0

}
(35)

and

KerLκ=0,h =


qh :=

(
rh

uh

)
∈ R3N such that ∃a ∈ R, ∀i : ri = a and

∑

Γi j⊂∂Ωi

|Γi j|
ui + u j

2
· ni j = 0


.

(36)

Morover, we have

KerLκ=1,h ⊆ KerLκ=0,h. (37)

Proof of Lemma 2.2: The proof uses the fact that for any qh ∈ KerLκ,h defined by (34), we have

∑

Γi j

|Γi j|{(ri − r j)
2 + κ[(ui − u j) · ni j]

2} = 0. (38)

This relation was proven in [8] (see (88) in [8]). As a consequence, when κ = 1, we obtain that ∀i : ri = c

and (ui − u j) · ni j = 0. Let us now suppose that κ = 0. Thus, when qh ∈ KerLκ=0,h, we only deduce from

(38) that ∀i : ri = c. And, by injecting ri = c in (34), we find
∑

Γi j⊂∂Ωi

|Γi j|(ui + u j) · ni j = 0. The converse is

obtained by using the fact that ∑

Γi j⊂∂Ωi

|Γi j|ni j = 0. (39)

We obtain (37) by using the fact that
∑

Γi j⊂∂Ωi

|Γi j|ui · ni j = ui ·
∑

Γi j⊂∂Ωi

|Γi j|ni j = 0.�
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2.5. A first explaination of the bad behaviour of Godunov type schemes at low Mach number

By using the Point 2 of Theorem 2.2 with Lemma 2.2, we obtain a first explaination of the bad behaviour

of Godunov type schemes at low Mach number in 2D/3D and of its good behaviour in the 1D case.

Indeed, Lemma 2.2 shows that KerLκ=1,h – which is the kernel in the case of the Godunov scheme – may

not be a good approximation of E because the continuity of u · n on each edge Γi j of the mesh could be

too restrictive for particular meshes (e.g. when the mesh is cartesian). Nevertheless, it shows also that

KerLκ=0,h may be a good approximation of E for any mesh type because

∑

Γi j⊂∂Ωi

|Γi j|
ui + u j

2
· ni j ≃

∫

Ωi

∇ · udx. (40)

Thus, by also using (37), we can say that at the discrete level, KerLκ=1,h may not satisfy (24) and that

KerLκ=0,h may satisfy (24). These points are studied in [8] when the mesh is cartesian or triangular by

showing that:


on a triangular or tetrahedral mesh : KerLκ=1,h = E
∆
h
⊂ KerLκ=0,h,

on a 1D cartesian mesh: KerLκ=1,h = E
�

h
= KerLκ=0,h,

on a 2D or 3D cartesian mesh: KerLκ=1,h ( E
�

h
= KerLκ=0,h

where E
∆
h

and E
�

h
are ad hoc approximations of E which depend on the type of mesh (see §5 in [8]).

This approach leads us to modify the Godunov scheme by replacing κ = 1 in (32) with κ = 0 to recover the

accuracy at low Mach number. This corresponds to center the discretization of ∇r in the acoustic operator.

2.6. A low Mach Godunov type scheme in the non-linear case

The non-linear version of linear scheme (32) with κ = 0, applied to the compressible Euler system (1)

or to the barotropic Euler system (2), consists in modifying any X scheme of Godunov type (e.g. X = Roe

[2] or X = VFRoe [3]) in such a way that the discretization of the pressure gradient ∇p is centered. We

named this class of schemes low Mach X schemes in [7]. Numerical low Mach number test-cases validate

this approach in [7].

2.7. Toward an all Mach Godunov type scheme in the non-linear case

In the sequel of this paper, we modify the non-linear low Mach X scheme defined in §2.6 in such a way

it is identical to the X scheme when the Mach number is greater than one. In other words, we introduce all

Mach Godunov type schemes which are expected to be stable and accurate on any mesh type and for any

Mach number which belongs to [0, β] with β greater than one.

3. Construction and justification of an all Mach Godunov scheme in the linear case

In this section, we construct a modified Godunov type scheme which is asymptotically identical to the

linear low Mach Godunov scheme (see (32) with κ = 0) when M ≪ 1 and which is identical to the linear

Godunov scheme (see (32) with κ = 1) when M = O(1). We justify this construction by using the tools

introduced in Section 2. We name this linear scheme all Mach Godunov scheme.

The non-linear version of this all Mach Godunov scheme will be directly obtained in Sections 4 and 7 from

the linear approach proposed below.
11



3.1. Definition of an accurate scheme at low Mach number in the linear case

Definition 1 is suggested by Estimate (21) of Corollary 2.1 which concerns the linearization (14) of the

barotropic Euler System (11) with H := 0. But, when H , 0, Estimate (21) cannot be satisfied by the

solution q(t, x) of (14) and has to be replaced by Estimate (18) of Proposition 2.1. Nevertheless, we have

the following result:

Lemma 3.1. Let q(t, x) be solution of


∂tq + Hq +
L

M
q = 0,

q(t = 0, x) = q0(x)

(41)

with q0 ∈ L2(T) × (C1(T))d. Then, we have

∀(C1,C2) ∈ (
R+∗

)2
: ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0,C2M], ||q − Pq0||(t) ≤ C3M, (42)

C3 being a strictly positive parameter that does not depend on M.

As a consequence, the important point is to verify if Estimate (27) of Definition 1 is valid or not only for

short times. Thus, we relax Definition 1 in the following way:

Definition 3. The solution q(t, x) of 

∂tq +
L
M

q = 0,

q(t = 0) = q0

(43)

is said to be accurate at low Mach number for short times in the incompressible regime of the linear wave

equation if and only if the estimate

∀(C1,C2) ∈ (
R+∗

)2
: ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0,C2M], ||q − Pq0||(t) ≤ C3M (44)

is satisfied, C3 being a strictly positive parameter that does not depend on M.

In the sequel, we will construct a numerical scheme for which the solution of the associated first order

modified equation is accurate at low Mach number in the sense of Definition 3 but not in the sense of

Definition 1.

Let us note that we can keep Definition 2 for the spurious acoustic waves when H , 0 because of

Estimate (19) of Proposition 2.1. Nevertheless, when a solution q(t, x) is accurate at low Mach number in

the sense of Definition 3, we are sure that this solution is free of any spurious acoustic wave in short time

(this is a consequence of the fact that for any q and q0, we have ||q − Pq|| ≤ ||q − Pq0||); but we can say

nothing a priori in long time. Thus, we also relax Definition 2 with:

Definition 4. The solution q(t, x) of 

∂tq +
L
M

q = 0,

q(t = 0) = q0

(45)

is said to be free of any spurious acoustic wave for short times if and only if the estimate

∀(C1,C2) ∈ (
R+∗

)2
: ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0,C2M], ||q − Pq||(t) ≤ C3M (46)

is satisfied, C3 being a strictly positive parameter that does not depend on M.
12



Fig. 2: Fig. 3: Fig. 4:

(44) and (46) are verified (44) is not verified, (46) is verified (44) and (46) are not verified

Figures 2-4 describe three different behaviours based on Definitions 3 and 4: Figure 2 describes a

solution q(t, x) which is accurate at low Mach number; Figure 3 describes a solution q(t, x) which is not

accurate at low Mach number but which is free of any spurious acoustic wave; Figure 4 describes a solution

q(t, x) which is not accurate at low Mach number and which is not free of spurious acoustic waves. The

numerical results proposed in §3.4 will be coherent with Figures 2-4.

Proof of Lemma 3.1: We have

||q − Pq0||(t) ≤
∣∣∣∣
∣∣∣∣q − Tu∗,t

(
Pq0

)∣∣∣∣
∣∣∣∣ (t) +

∣∣∣∣
∣∣∣∣Tu∗,t

(
Pq0

)
− Pq0

∣∣∣∣
∣∣∣∣ (t)

where Tu∗,t is the application defined by (Tu∗,t f )(x) = f (x − u∗t). Thus, by using (18), we obtain that

||q0 − Pq0|| = C1M =⇒ ∀t ≥ 0 : ||q − Pq0||(t) ≤ C1M +
∣∣∣∣
∣∣∣∣Tu∗,t

(
Pq0

)
− Pq0

∣∣∣∣
∣∣∣∣ (t).

On the other hand, for any q := (r,u)T ∈ E, we have

∣∣∣
∣∣∣Tu∗,tq − q

∣∣∣
∣∣∣2 (t) =

∫

T

|u(x − u∗t) − u(x)|2dx.

But, for any u ∈
(
C1(T)

)d
, we have

|u(x − u∗t) − u(x)| ≤ |u∗|t max
T

|∇u|

with |∇u|2 :=

d∑

k=1

|∇uk|2 where u := (u1, . . . , ud)T , d is the spatial dimension and | · | is the euclidian norm in

Rd. Thus

∀t ∈ [0,C2M] :
∣∣∣
∣∣∣Tu∗,tq − q

∣∣∣
∣∣∣ (t) ≤ C2M|u∗|max

T

|∇u| · |T|

with |T| :=
∫
T

dx. This allows to write that

∀t ∈ [0,C2M] :
∣∣∣∣
∣∣∣∣Tu∗,t

(
Pq0

)
− Pq0

∣∣∣∣
∣∣∣∣ (t) ≤ C2M|u∗|max

T

|∇u
0| · |T|

where Pq0 = (r0,u
0
)T , which gives the result with

C3 = C1 +C2|u∗|max
T

|∇u
0| · |T|.

�
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3.2. The case of the linear wave equation on a cartesian mesh

This subsection is devoted to the cartesian case. This case is interesting because it allows to propose an

all Mach Godunov type scheme through a simple study of the first order modified equation associated with

the Godunov scheme applied to the linear wave equation (20).

Let us define the 2D system 

∂tq +
Lν
M

q = 0,

q(t = 0, x) = q0(x)

(47)

with x := (x, y), q := (r,u)T , u := (ux, uy)T and



Lν = L − MBν,

Bνq =



νr∆r

νux

∂2ux

∂x2

νuy

∂2uy

∂y2



(48)

where

ν := (νr, νu) ∈ (R+)3 and νu := (νux
, νuy

) ∈ (R+)2.

Thus, (47) is a perturbed wave equation whose the perturbation is given by δLν = −MBν. In the 2D case

(the 3D case is similar) [7], the first order modified equation of the Godunov scheme applied to the linear

wave equation (20) is given by (47)(48) with ν = νG where

νG := (νG
r , ν

G
u ) and νG

r := a∗
∆x

2M
, νG

u := a∗
∆x

2M
(1, 1)

(∆x is the mesh size supposed to be identical in the directions x and y for the sake of simplicity). We prove

that (see Lemma 4.3 in [7]):

Lemma 3.2.

1) In 1D with νr ≥ 0, νx ≥ 0 and νy ≥ 0:

KerLν = E.

2) In 2D with νr ≥ 0, νux
= νuy

= 0:

KerLν = E.

3) In 2D with νr ≥ 0, νux
> 0 and νuy

> 0:

KerLν =
{

q :=

(
r

u

)
∈ (L2(T))3 such that ∃c ∈ R : r = c and ∂xux = ∂yuy = 0

}
( E. (49)

14



The extension of Lemma 3.2 to the 3D case is straightforward.

We deduce from Point 2 of Theorem 2.2 and from Point 3 of Lemma 3.2 that the solution q(t, x) of (47)(48)

may not be accurate at low Mach number in the incompressible regime as soon as the spatial dimension is

2D (or 3D) and νu is not equal to zero. Indeed, in that case, we do not have E ⊆ KerLν. Nevertheless,

the situation is more complicate since E ⊆ KerLν is only a sufficient condition: as a consequence, the

knowledge of KerLν is not sufficient to have a good understanding of the behaviour at low Mach number of

the Godunov scheme and of any modified Godunov scheme obtained by modifying the numerical viscosity

νG. Moreover, for a particular choice of νu, we may expect that the short time estimate (44) is satisfied even

if the long time estimate (27) is not satisfied. In that case, the solution q(t, x) would be accurate at low Mach

number in the sense of Definition 3. This point justifies the replacement of Definition 1 by Definition 3.

This is illustrated by the following result:

Theorem 3.1. Let q(t, x) be the solution of the 2D equation (47)(48). Then, for any νr ≥ 0:

1) When νu = ν
G
u , for almost all function q0 ∈ (L2(T))3, q(t, x) verifies

∀C1 ∈ R+∗ : ||q0 − Pq0|| = C1M =⇒ ∀t ≥ C2M, ||q − Pq0||(t) ≥ C3∆x, (50)

for any M ≤ C3

C1

∆x, C2 and C3 being strictly positive parameters that do not depend on M and ∆x.

2) When νu = ν
G
u and ∆x = C0M, for any q0 ∈ H2(Td), q(t, x) verifies

∀(C0,C1,C2) ∈ (
R+∗

)3
: ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0,C2M], ||q − Pq0||(t) ≤ C3M, (51)

C3 being a strictly positive parameter that does not depend on M.

3) When νu = MνG
u , for any q0 ∈ H2(Td), q(t, x) verifies

∀(C1,C2) ∈ (
R+∗

)2
: ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0,C2M], ||q − Pq0||(t) ≤ C3M, (52)

C3 being a strictly positive parameter that does not depend on M.

Again, we easily extend this result to the 3D case. This result shows that the short time behaviours of

(47)(48) with ν = (νr, ν
G
u ) and with ν = (νr,MνG

u ) are different although the kernels of L(νr ,ν
G
u ) and of

L(νr ,MνG
u ) are identical (see Point 3 of Lemma 3.2). This is a consequence of the fact that Condition (24) is

only a sufficient condition to be accurate at low Mach number.

More precisely:

• Point 1 of Theorem 3.1 and its 3D version show that when the mesh is cartesian, for almost all

q0 ∈ (L2(T))1+d, the Godunov scheme in 2D/3D is not accurate at low Mach number in the sense of

Definition 3 when M ≪ ∆x.

Let us note that we do not prove that the solution q(t, x) of (47)(48) is not accurate at low Mach

number by producing in short time spurious acoustic waves (see Definition 4 for the notion of spurious
15



acoustic wave). In other words, we prove that the short time behaviour of q(t, x) is characterized by

Figure 3 but we do not prove that it is characterized by Figure 4. Nevertheless, the numerical results

proposed in §3.4 show that spurious acoustic waves are created in short time (at least at the discrete

level), which corresponds to Figure 4.

• Point 2 of Theorem 3.1 and its 3D version show that when the mesh is cartesian, for any q0 ∈
(L2(T))1+d, the Godunov scheme in 2D/3D is accurate at low Mach number in the sense of Defi-

nition 3 when ∆x = O(M), which is too expensive from a computational point of view.

• Point 3 of Theorem 3.1 and its 3D version show that when the mesh is cartesian, for any q0 ∈
(L2(T))1+d, the modified Godunov scheme obtained by replacing νG

u with MνG
u is accurate at low

Mach number in the sense of Definition 3 even when M ≪ ∆x. Thus, this scheme is also free of any

spurious acoustic waves in the sense of Definition 4. This result is central in our way to construct

an all Mach Godunov scheme. At last, we underline that all the results proposed in Theorem 3.1 are

valid as soon as νr ≥ 0 that is to say not only when νr = ν
G
r .

Proof of Theorem 3.1: Let q1(t) be the solution of



∂tq1 +
Lν
M

q1 = 0,

q1(t = 0, x) = (q0 − Pq0)(x)

(53)

and q2(t) be the solution of 

∂tq2 +
Lν
M

q2 = 0,

q2(t = 0, x) = Pq0(x)

(54)

where Lν is defined as in (48). By linearity, the solution q(t, x) of (47)(48) satisfies

q(t, x) = q1(t, x) + q2(t, x).

Since ||q − Pq0||(t) = ||q1 + q2 − Pq0||(t), we have

∀t ≥ 0 : ||q − Pq0||(t) ≥
∣∣∣||q2 − Pq0||(t) − ||q1||(t)

∣∣∣ (55)

and

∀t ≥ 0 : ||q − Pq0||(t) ≤ ||q1||(t) + ||q2 − Pq0||(t). (56)

Moreover, since (53) is a dissipative equation when νr ≥ 0, νux
≥ 0 and νuy

≥ 0 (see Lemma 4.1 in [7]), we

obtain ||q1||(t) ≤ ||q0 − Pq0|| which implies that

∀t ≥ 0 : ||q1||(t) ≤ C1M (57)

since ||q0 − Pq0|| = C1M. We will use below (55), (56) and (57) to prove (50), (51) and (52).
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Proof of Point 1:

Let us define the orthogonal projection Pν on KerLν (Pν = P if and only if νr ≥ 0 and νux
= νuy

= 0; in

particular, Pν , P when ν = νG). In [8], we prove that

∀t ≥ MLT

a∗
: ||q2 − Pq0||(t) ≥ ∆x

3LT

||Pq0 − PνPq0||

where LT is a constant which only depends on T (see Estimate (50) of Corollary 4.1 in [8]). Hence

∀t ≥ C2M : ||q2 − Pq0||(t) ≥ C∆x (58)

with C2 =
LT

a∗
and C =

||Pq0 − PνPq0||
3LT

. In the sequel, we suppose that C is strictly positive, which is the

case for almost all function q0 ∈ (L2(T))3. Let us now suppose that

C1M ≤ C∆x. (59)

By using (57), (58) and (59), we obtain

∀t ≥ C2M : ||q2 − Pq0||(t) ≥ C∆x ≥ C1M ≥ ||q1||(t). (60)

And, by using (55) and (60), we obtain

∀t ≥ C2M : ||q − Pq0||(t) ≥ C∆x −C1M. (61)

Let us now suppose that

C1M ≤ C3∆x with C3 =
C

2
. (62)

We deduce from (61) and (62) that

∀t ≥ C2M : ||q − Pq0||(t) ≥ C3∆x

which allows to obtain (50).

Proof of Points 2 and 3:

Since LP = 0, we deduce from (54) that

∂t(q2 − Pq0) +
L

M
(q2 − Pq0) = Bν(q2 − Pq0) + BνPq0. (63)

Then, by multypling (63) with q2 − Pq0 and by integrating, we obtain

1

2
· d

dt
||q2 − Pq0||2(t) = 〈q2 − Pq0, Bν(q2 − Pq0)〉 + 〈q2 − Pq0, BνPq0〉

since 〈q2 − Pq0, L(q2 − Pq0)〉 = 0. And since



〈q2 − Pq0, Bν(q2 − Pq0)〉 ≤ 0,

〈q2 − Pq0, BνPq0〉 ≤ ||q2 − Pq0|| · ||BνPq0||,
17



we can write that
d

dt
||q2 − Pq0||(t) ≤ ||BνPq0|| ≤ max(|νux

|, |νuy
|) · ||Pq0||H2

(since ||BνPq0|| ≤ max(|νux
|, |νuy
|) · ||Pq0||H2) which gives

∀t ∈ [0,C2M] : ||q2 − Pq0||(t) ≤ C2M ·max(|νux
|, |νuy
|) · ||Pq0||H2

(since ||q2 − Pq0||(0) = 0) that is to say

∀t ∈ [0,C2M] : ||q − Pq0||(t) ≤
(
C1 +C2 max(|νux

|, |νuy
|) · ||Pq0||H2

)
M (64)

by using (56) and (57). Let us now suppose that νu = νG
u . In that case, we have max(|νux

|, |νuy
|) = a∗∆x

2M
which implies that (64) is given by

∀t ∈ [0,C2M] : ||q − Pq0||(t) ≤
(
C1 +

C2a∗∆x

2M
||Pq0||H2

)
M

which allows to obtain (51) with C3 = C1 +
C0C2a∗

2
||Pq0||H2 when ∆x = C0M. We now suppose that

νu = MνG
u . In that case, (64) is given by

∀t ∈ [0,C2M] : ||q − Pq0||(t) ≤
(
C1 +

C2a∗∆x

2
||Pq0||H2

)
M

which allows to obtain (52) with C3 = C1 +
C2a∗∆x

2
||Pq0||H2 .�

3.3. The case of the linear wave equation on any mesh type

To be accurate at low Mach number, Point 2 of Theorem 3.1 leads us to modify the Godunov scheme

applied to the linear wave equation 

∂tq + Hq +
L

M
q = 0,

q(t = 0, x) = q0(x)

(65)

by replacing κ = 1 (which is equivalent to νu = ν
G
u ) with κ = M (which is equivalent to νu = MνG

u ) in (32).

Thus, we propose the all Mach Godunov scheme



d

dt
ri +

a∗
M
· 1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|[(ui + u j) · ni j + ri − r j] = 0,

d

dt
ui +

a∗
M
· 1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|[ri + r j + θ(M)(ui − u j) · ni j]ni j = 0

(66)

with

θ(M) = min(M, 1) (67)

which also allows to recover the Godunov scheme (32) when the Mach number is greater than one. In

Section 8, we will modify (67) by introducing a cut-off (see (143) and Figures 27-28) to avoid the creation

of non-entropic shock waves in the non-linear case when the Mach number is of order one.
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Scheme (66) defines an all Mach Godunov scheme and may be rewritten with

d

dt

(
r

u

)

i

+
1

|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|ΦAM,Godunov
i j

= 0 (68)

with the two following expressions for the numerical flux Φ
AM,Godunov
i j

which are equivalent in this linear

case3:

• First expression:

Φ
AM,Godunov
i j

= ΦGodunov
i j + [θ(M) − 1]

a∗
2M

(
0

[(ui − u j) · ni j]ni j

)
(69)

where ΦGodunov
i j

is the unmodified Godunov flux (ΦGodunov
i j

is easily deduced from (32)) and where θ(M) is

defined by (67). Thus, the simple corrective flux

[θ(M) − 1]
a∗

2M

(
0

[(ui − u j) · ni j]ni j

)
(70)

defines an all Mach correction which is equal to zero when the Mach number is greater than one. This all

Mach correction introduces numerical anti-diffusion since θ(M)− 1 ≤ 0. At last, we can note that the linear

all Mach Godunov scheme (68)(69) may be seen as the Godunov scheme plus a pressure correction since

the correction [θ(M) − 1]
a∗

2M
[(ui − u j) · ni j]ni j in (70) is homogeneous to a pressure.

• Second expression: The flux (69) is equivalent to

Φ
AM,Godunov
i j

=
a∗
M


(u · n)∗

r∗∗n


i j

with r∗∗i j = θ(M)r∗i j + [1 − θ(M)]
ri + r j

2
(71)

where (r∗, (u · n)∗) is solution of the 1D linear Riemann problem in the ni j direction


∂tqζ +
Lζ

M
qζ = 0,

ζ < 0 : qζ(t = 0, ζ) =

(
ri

ui · ni j

)
,

ζ ≥ 0 : qζ(t = 0, ζ) =

(
r j

u j · ni j

)

(72)

with qζ :=

(
r

uζ

)
and Lζqζ := a∗∂ζ

(
uζ
r

)
, ζ being the coordinate in the ni j direction. This gives



r∗i j =
ri + r j

2
+

(ui − u j) · ni j

2
,

(u · n)∗i j =
(ui + u j) · ni j

2
+

ri − r j

2
.

3The notation AM in Φ
AM,Godunov
i j

means that this flux defines an All Mach scheme.
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The linear all Mach Godunov scheme (68)(71) – which is equivalent to (68)(69) – may be seen as a Godunov

type scheme whose Riemann solver is corrected to be accurate at low Mach number.

3.4. Numerical results on a 2D cartesian mesh

We justify Theorem 3.1 and the linear all Mach Godunov scheme (68)(69) with numerical results ob-

tained on a 2D cartesian mesh. The initial conditions q0 := (r0,u0)T is given by



r(t = 0, x, y) = 1,

u(t = 0, x, y) = 2 sin2(πx) sin(4πy),

v(t = 0, x, y) = − sin(2πx) sin2(2πy).

(73)

Thus, we have q0 ∈ E (that is to say q0 = Pq0) which implies that

q = q0 (74)

is solution of the linear wave equation (20). We now study if (74) is or is not satisfied at the discret level

when we solve the linear wave equation (20) with the linear Godunov scheme (32) or with the all Mach

Godunov scheme (68)(69).

We project q0 on E
�

h
which gives q0

h
: thus, by construction, we have q0

h
= Phq0

h
where Ph is the discret

Hodge projection on E
�

h
.

We study on Figures 5-10 the linear Godunov scheme (32) and the all Mach Godunov scheme (68)(69).

Figures 5 and 7 represent ||qh − q0
h
||(t) for 0 ≤ t ≤ 0.5M (which is equal to ||qh − Phq0

h
||(t) since q0

h
= Phq0

h
in

the studied case). Figures 6 and 8 represent ||u⊥
h
||(t) for 0 ≤ t ≤ 0.5M (where u⊥

h
is the velocity component

of the projection of qh in (E�

h
)⊥). Figures 9 and 10 represent ||qh−q0

h
||(t) until an asymptotic state is reached.

Thus, Figures 5-8 and Figures 9-10 describe the time behaviour of the schemes respectively in short time

and in long time.

Figures 5-6 show that the linear Godunov scheme (32) is not accurate in the sense of Definition 3 and that

it produces spurious acoustic waves in (E�

h
)⊥. At the opposite, Figures 7-8 show that the linear all Mach

Godunov scheme (68)(69) is accurate in the sense of Definition 3 and, thus, is free of spurious acoustic

waves in the sense of Definition 4. Figures 9-10 show that the linear Godunov scheme (32) and the linear all

Mach Godunov scheme (68)(69) have the same behaviour in long time: the asymptotic numerical solution

is not accurate which means that both schemes are not accurate in the sense of Definition 1. This last point

justifies Definition 3 in the case of the linear all Mach Godunov scheme (we recall that the linear all Mach

Godunov scheme (68)(69) is accurate in the sense of Definition 1: see Figures 7-8).

4. Construction of all Mach Godunov type schemes in the barotropic case

We now extend the linear all Mach Godunov schemes (68)(69) and (68)(71) to the non-linear case when

the linear wave equation (65) is replaced by the barotropic Euler system (2). This leads us to propose the

non-linear all Mach Godunov type scheme

d

dt

(
ρ

ρu

)

i

+
1

|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|ΦAM,X
i j

= 0 (75)
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Fig. 5: ||qh − q0
h
||(t) when 0 ≤ t/M ≤ 0.5 Fig. 6: ||u⊥

h
||(t) when 0 ≤ t/M ≤ 0.5

Godunov scheme Godunov scheme

Fig. 7: ||qh − q0
h
||(t) when 0 ≤ t/M ≤ 0.5 Fig. 8: ||u⊥

h
||(t) when 0 ≤ t/M ≤ 0.5

All Mach Godunov scheme All Mach Godunov scheme

Fig. 9: ||qh − q0
h
||(t) when 0 ≤ t/M ≤ 10 Fig. 10: ||qh − q0

h
||(t) when 0 ≤ t/M ≤ 105

Godunov scheme All Mach Godunov scheme
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with again two possible expressions for the numerical flux Φ
AM,X
i j

. In (75), X is a Godunov type scheme:

e.g. X = Roe [2], X = VFRoe [3] or X = Lagrange + Projection type scheme (see §5.4).

The two possible expressions for Φ
AM,X
i j

are the following:

• First expression: The non-linear version of (69) is given by

Φ
AM,X
i j

= ΦX
i j + (θi j − 1)

ρi jai j

2


0[

(ui − u j) · ni j

]
ni j

 (76)

where ΦX
i j

is the unmodified flux given by the X scheme and where

θi j = θ(Mi j) with θ(M) = min(M, 1), (77)

Mi j, ρi j and ai j being estimates at the edge Γi j respectively of the Mach number, the density and the sound

velocity. Thus, the all Mach correction is now given by

(θi j − 1)
ρi jai j

2


0[

(ui − u j) · ni j

]
ni j

 (78)

and introduces anti-diffusion since θi j − 1 ≤ 0. The flux Φ
AM,Roe
i j

obtained with (76) and when X is the Roe

scheme [2] is explicited in Annex B in the subsonic case (see (168)).

• Second expression: The non-linear version of (71) is given by

Φ
AM,X
i j

=


ρ∗(u · n)∗

ρ∗(u∗ · n)u∗ + p∗∗n


i j

with p∗∗i j = θi j p
∗
i j + (1 − θi j)

pi + p j

2
(79)

where (ρ∗,u∗) is solution of a 1D (linearized or non-linearized) Riemann problem. Let us note that p∗∗ in

(79) replaces p∗ := p(ρ∗). As in the linear case (see (68)(71)), the non-linear all Mach X scheme (75)(79)

may be seen as a Godunov type scheme whose Riemann solver is corrected to be accurate at low Mach

number.

We underline that the non-linear all Mach X schemes (75)(76) (which is the non-linear version of (68)(69))

and (75)(79) (which is the non-linear version of (68)(71)) are not equivalent although the linear schemes

(68)(69) and (68)(71) are equivalent.

We propose the following conjecture whose a better formulation will be proposed in §8.3:

Conjecture 4.1. Let us suppose that the Godunov type scheme X applied to the barotropic Euler system (2)

is stable for any Mach number lower than β (with β ≥ 1)4, and is accurate when the Mach number belongs

4The Mach number β depends on the X scheme, on the mesh and on the type of test-case. For example, the 1D Roe scheme is

not always stable when the Mach number is too high; in that case, β is greater than one but of order one. On the other hand, we can

choose β = +∞ for the 1D exact Godunov scheme since it is stable (and entropic) by construction for any 1D test-case.
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to [α, β] (with α ∈]0, 1[)5. Then, in the periodic case and when the solution does not have any schock wave,

the non-linear schemes (75)(76) and (75)(79) are stable and accurate on any mesh type and for any Mach

number which belongs to [0, β].

In the two following sections, we (partly) justify Conjecture 4.1 when the X scheme is the Roe scheme [2].

More precisely:

• In Section 5, we (partly) justify the stability question by proposing a linear stability result in the

subsonic case.

• In Section 6, we (partly) justify the accuracy question with a formal asymptotic expansion applied to

(75)(76) when the X scheme is the Roe scheme [2].

We will see in Section 8 that the problem of accuracy is more complicate when the Mach number is of order

one and when there are schock waves. Indeed, the all Mach Roe scheme (75)(76) has to be modified to

avoid the creation of non-entropic shock waves when the Mach number is of order one. This modification

will consist in introducing a cut-off in the definition (77) of θi j used in the all Mach correction (78). This

underlines that the formulation of Conjecture 4.1 has to be improved, which will be done in Conjecture 8.1.

Numerical results proposed in Section 8 justify this cut-off in the case of the compressible Euler system (1)

for the Sod tube problem.

5. A linear stability result in the barotropic case

We now prove a linear stability result for the all Mach Godunov type schemes (75)(76) and (75)(79).

This result (partly) justifies Conjecture 4.1 concerning the stability question.

We study this stability question by extending the linear Godunov scheme (68)(69) to the linear system



∂tq + Hq +
L

M
q = 0,

q(t = 0, x) = q0(x)

(80)

where u∗ ∈ Rd (d ∈ {1, 2, 3}) is a constant velocity field. It is important to take into account the linear

transport operator Hq := (u∗ · ∇)q because the discretization of this operator has an impact on the stability

of the all Mach Godunov scheme as we will see below. This is due to the fact that the Godunov approach

does not split the material and acoustic waves (respectively described with ∂tq+Hq = 0 and ∂tq+
L

M
q = 0).

This leads us to conclude this section with a remark on the Lagrange + Projection approach which splits the

material and acoustic waves.

5The Mach number α is lower than one but of order one (e.g. α = 1/2) since the Godunov type schemes are not accurate at

low Mach number (when the dimension of the space is greater than one). Nevertheless, it is impossible to clearly define the Mach

number α since it is impossible to define a clear boundary between the incompressible regime and the compressible regime. We

can only say that α depends on the expected accuracy.

23



5.1. The linear all Mach Godunov scheme

When the Godunov scheme is applied to System (80) and when the flow is subsonic i.e.

|u∗| <
a∗
M

(subsonic condition), (81)

the Godunov flux ΦGodunov
i j

is given by (see (153) in Annex A)

ΦGodunov
i j = Φ

Godunov,convection
i j

+ Φ
Godunov,acoustic
i j

(82)

where

Φ
Godunov,convection
i j

=
1

2



(u∗ · ni j)
[
ri + r j + (ui − u j) · ni j

]

(u∗ · ni j)
[
(ui + u j) + (ri − r j)ni j

]
− |u∗ · ni j|

[
(ui − u j) × ni j

]
× ni j


(83)

and

Φ
Godunov,acoustic
i j

=
a∗

2M



(ui + u j) · ni j + ri − r j

[
ri + r j + (ui − u j) · ni j

]
ni j

 . (84)

Fluxes (83) and (84) discretize respectively the linear convection operator Hq and the linear acoustic oper-

ator L
M

q. Flux (84) is of course identical to the Godunov flux in (32).

To obtain the all Mach version Φ
AM,Godunov
i j

of ΦGodunov
i j

defined by (82), we just add the all Mach correction

(70) to ΦGodunov
i j

as in (69). Thus, this consists in replacing the acoustic flux Φ
Godunov,acoustic
i j

defined by (84)

by the all Mach acoustic flux

Φ
AM,Godunov,acoustic
i j

= Φ
Godunov,acoustic
i j

+ [θ(M) − 1]
a∗

2M


0[

(ui − u j) · ni j

]
ni j

 .

In other words, we do not correct the convective flux Φ
Godunov,convection
i j

defined by (83), which is coherent

with the fact that the low Mach number problem is only linked to a bad discretization of the acoustic operator

at low Mach number.

To summarize, under the subsonic condition (81), the linear all Mach Godunov scheme applied to (80)

is given by



d

dt
ri +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
(u∗ · ni j)

[
ri + r j + (ui − u j) · ni j

]
+

a∗
M

[
(ui + u j) · ni j + ri − r j

]}
= 0, (a)

d

dt
ui +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
(u∗ · ni j)

[
(ui + u j) + (ri − r j)ni j

]
− |u∗ · ni j|

[
(ui − u j) × ni j

]
× ni j (b)

+
a∗
M

[
ri + r j + θ(M)(ui − u j) · ni j

]
ni j

}
= 0.

(85)
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5.2. L2-stability in the semi-discrete case

Let us define the energy

Eh =
∑

i

|Ωi|(r2
i + |ui|2).

We have the following L2-stability result:

Theorem 5.1. Let (r,u) be solution of (85). Under the subsonic condition (81):

1) For the Godunov scheme i.e. when θ(M) := 1, we have:

d

dt
Eh ≤ 0. (86)

2) For the all Mach Godunov scheme i.e. when θ(M) :=
|u∗|
a∗

M, we have:

d

dt
Eh ≤ 0. (87)

3) For the low Mach Godunov scheme i.e. when θ(M) := 0, we have:

d

dt
Eh ≤

∑

Γi j

|Γi j| |u∗ · ni j| |(ui − u j) · ni j|2. (88)

Inequality (86) confirms that the Godunov scheme is stable. Inequality (87) shows that the all Mach Go-

dunov scheme is stable and, thus, justifies from the stability point of view the all Mach correction (78). It also

underlines that the numerical dissipation of the linear (non-linear) Godunov scheme is (may be) too high

when the flow is subsonic. Let us note that θ(M) :=
|u∗|
a∗

M is equal to the Mach number since a∗/M defined

the sound velocity in (80). Inequality (88) avoids to obtain
d

dt
Eh ≤ 0 when u∗ , 0. As a consequence, we

may observe numerical instabilities except when u∗ := 0 i.e. when we restrict the stability analysis to the

low Mach Godunov scheme applied to the linear wave equation (i.e. to the scheme (32) with κ = 0).

Proof of Theorem 5.1: Before proving Points 1, 2 and 3, we perform some preliminary calculations.

Preliminary calculations: By multiplying (85)(a) with 2|Ωi|ri and by summing with respect to i, we obtain

d

dt

∑

i

|Ωi|r2
i = −

∑

i

∑

Γi j⊂∂Ωi

|Γi j|
{
(u∗ · ni j)[ri + r j + (ui − u j) · ni j]ri +

a∗
M

[(ui + u j) · ni j + ri − r j]ri

}
. (89)

On the other hand, by using (39), we obtain

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)r
2
i =

∑

i

r
2
i u∗ ·

∑

Γi j⊂∂Ωi

|Γi j|ni j

 = 0.

Moreover ∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)rir j =
∑

Γi j

|Γi j|[u∗ · (ni j + n ji)]rir j = 0
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since ni j + n ji = 0. We deduce from the last two equalities that
∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)(ri + r j)ri = 0. (90)

We have also
∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ ·ni j)[(ui −u j) ·ni j]ri =
∑

Γi j

|Γi j|(u∗ ·ni j)[(ui −u j) ·ni j]ri +
∑

Γi j

|Γi j|(u∗ ·n ji)[(u j −ui) ·n ji]r j

which gives
∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)[(ui − u j) · ni j]ri =
∑

Γi j

|Γi j|(u∗ · ni j)[(ui − u j) · ni j](ri − r j). (91)

Moreover
a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|[(ui + u j) · ni j]ri =
a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u j · ni j)ri

by using again (39). We have also

a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u j · ni j)ri =
a∗
M

∑

Γi j

|Γi j|(riu j · ni j + r jui · n ji),

which allows to write

a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|[(ui + u j) · ni j]ri =
a∗
M

∑

Γi j

|Γi j|(riu j − r jui) · ni j. (92)

At last, we have

a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(ri − r j)ri =
a∗
M

∑

Γi j

|Γi j|(ri − r j)ri +
a∗
M

∑

Γi j

|Γi j|(r j − ri)r j.

Hence
a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(ri − r j)ri =
a∗
M

∑

Γi j

|Γi j| · |ri − r j|2. (93)

Thus, by using (89), (90), (91), (92) and (93), we find

d

dt

∑

i

|Ωi|r2
i = −

∑

i

∑

Γi j⊂∂Ωi

|Γi j|
{
(u∗ · ni j)[(ui − u j) · ni j](ri − r j) +

a∗
M

[
(riu j − r jui) · ni j + |ri − r j|2

]}
.

(94)

Let us now multiply (85)(b) with 2|Ωi|ui. By summing with respect to i and by defining ti j in such a way

[
(ui − u j) · ti j

]
ti j = −

[
(ui − u j) × ni j

]
× ni j (|ti j| = 1 and ti j ⊥ ni j) (95)

(see (154) in Annex A), we obtain

d

dt

∑

i

|Ωi| |ui|2 = −
∑

i

∑

Γi j⊂∂Ωi

|Γi j|
{
(u∗ · ni j)[(ui + u j) + (ri − r j)ni j] · ui + |u∗ · ni j|[(ui − u j) · ti j](ti j · ui)

+
a∗
M

[ri + r j + θ(M)(ui − u j) · ni j](ni j · ui)

}
.

(96)
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Let us note that in 3D, ti j depends on ni j, ui and u j. On the other hand, by using the arguments used to

obtain (90) and (92), we respectively find

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)(ui + u j) · ui = 0 (97)

and
a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(ri + r j)(ni j · ui) =
a∗
M

∑

Γi j

|Γi j|(r jui − riu j) · ni j. (98)

We have also

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)(ri − r j)(ni j · ui) =
∑

Γi j

|Γi j|(u∗ · ni j)(ri − r j)(ni j · ui)+
∑

Γi j

|Γi j|(u∗ · n ji)(r j − ri)(n ji · u j)

which allows to write

∑

i

∑

Γi j⊂∂Ωi

|Γi j|(u∗ · ni j)(ri − r j)(ni j · ui) =
∑

Γi j

|Γi j|(u∗ · ni j)[(ui − u j) · ni j](ri − r j). (99)

Moerover

a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j| [(ui−u j)·ni j](ni j ·ui) =
a∗
M

∑

Γi j

|Γi j| [(ui−u j)·ni j](ni j ·ui)+
a∗
M

∑

Γi j

|Γi j| [(u j−ui)·n ji](n ji ·u j)

and therefore

θ(M)
a∗
M

∑

i

∑

Γi j⊂∂Ωi

|Γi j|[(ui − u j) · ni j](ni j · ui) = θ(M)
a∗
M

∑

Γi j

|Γi j| |(ui − u j) · ni j|2. (100)

At last, we obtain

∑

i

∑

Γi j⊂∂Ωi

|Γi j| |u∗ · ni j| [(ui − u j) · ti j](ti j · ui) =
∑

Γi j

|Γi j| |u∗ · ni j| [(ui − u j) · ti j](ti j · ui)

+
∑

Γi j

|Γi j| |u∗ · n ji| [(u j − ui) · t ji](t ji · u j)

which gives

∑

i

∑

Γi j⊂∂Ωi

|Γi j| |u∗ · ni j| [(ui − u j) · ti j](ti j · ui) =
∑

Γi j

|Γi j| |u∗ · ni j| |(ui − u j) · ti j|2 (101)

(let us note that ti j = −t ji). Thus, by using (96), (97), (98), (99), (100) and (101), we find

d

dt

∑

i

|Ωi| |ui|2 = −
∑

Γi j

|Γi j|
{
(u∗ · ni j)[(ui − u j) · ni j](ri − r j) + |u∗ · ni j| |(ui − u j) · ti j|2

+
a∗
M

[
(r jui − riu j) · ni j + θ(M)|(ui − u j) · ni j|2

]}
.

(102)
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Finally, by summing (94) and (102), we obtain

d

dt
Eh = −

∑

Γi j

|Γi j|
{
2(u∗ · ni j)[(ui − u j) · ni j](ri − r j) + |u∗ · ni j| |(ui − u j) · ti j|2

+
a∗
M

[
|ri − r j|2 + θ(M)|(ui − u j) · ni j|2

]}
.

(103)

Moreover, we have

−2(u∗ · ni j)[(ui − u j) · ni j](ri − r j) ≤ |u∗ · ni j|
[
|ui − u j|2 + |ri − r j|2

]
.

Thus, by using the subsonic condition (81) and since |u∗ · ni j| ≤ |u∗|, we obtain

−2(u∗ · ni j)[(ui − u j) · ni j](ri − r j) ≤ |u∗ · ni j| |ui − u j|2 +
a∗
M
|ri − r j|2.

By using (103), this allows to write

d

dt
Eh ≤ −

∑

Γi j

|Γi j|
{
|u∗ · ni j|

(
|(ui − u j) · ti j|2 − |ui − u j|2

)
+

a∗
M
θ(M)|(ui − u j) · ni j|2

}
.

And by using (95), we obtain

d

dt
Eh ≤ −

∑

Γi j

|Γi j|
{
−|u∗ · ni j| |(ui − u j) · ni j|2 +

a∗
M
θ(M)|(ui − u j) · ni j|2

}

which gives
d

dt
Eh ≤ −

∑

Γi j

|Γi j|
{[

a∗
M
θ(M) − |u∗ · ni j|

]
|(ui − u j) · ni j|2

}
. (104)

Proof of Points 1 and 2: Let us suppose that θ(M) := 1 (cf. Point 1). Since |u∗ · ni j| ≤ |u∗|, we obtain
d

dt
Eh ≤ 0 by using the subsonic condition (81) and the inequality (104). When θ(M) :=

|u∗|
a∗

M (cf. Point 2),

we deduce from (104) that

d

dt
Eh ≤ −

∑

Γi j

|Γi j|
{[
|u∗| − |u∗ · ni j|

]
|(ui − u j) · ni j|2

}

which also gives
d

dt
Eh ≤ 0.

Proof of Point 3: When θ(M) := 0, we can only deduce from (104) that

d

dt
Eh ≤

∑

Γi j

|Γi j| |u∗ · ni j| |(ui − u j) · ni j|2.

�
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5.3. L2-stability in the continuous case

To have a better understanding of the importance of the convection operator in Theorem 5.1, it is inter-

esting to study the L2-stability of the 1st order modified equation associated with (85). When the mesh is

cartesian (we suppose for the sake of simplicity that the dimension is 2D), this equation is given by



∂tq +Hq +
LM

M
q = 0,

q(t = 0, x) = q0(x)

(105)

where, in the 2D case,H is the perturbed convection operator defined by

Hq = Hq − 1

2



u∗,x∆x∂2
xxux + u∗,y∆y∂2

yyuy

u∗,x∆x∂2
xxr + |u∗,y|∆y∂2

yyux

|u∗,x|∆x∂2
xxuy + u∗,y∆y∂2

yyr



(106)

and where LM is the perturbed linear acoustic operator defined by

LMq = Lq − a∗
2



∆x∂2
xxr + ∆y∂2

yyr

θ(M)∆x∂2
xxux

θ(M)∆y∂2
yyuy.



(107)

By defining the energy with

E := 〈q, q〉 =
∫

Td

(r2 + |u|2)dx,

we obtain the following result which is the continuous version of Theorem 5.1:

Theorem 5.2. Let q(t, x) be solution of (105). Under the subsonic condition (81), we have:

1) When θ(M) := 1:
d

dt
E ≤ 0. (108)

2) When θ(M) :=
|u∗|
a∗

M:

d

dt
E ≤ 0. (109)

3) When θ(M) := 0:

d

dt
E ≤ ∆x|u∗,x|

(
||∂xux||2 − ||∂xuy||2

)
+ ∆y|u∗,y|

(
||∂yuy||2 − ||∂yux||2

)
. (110)

Proof of Theorem 5.2: The proof is similar to the proof of Theorem 5.1. Nevertheless, it is more simple

since the operators are continuous.
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Preliminary calculations: By multiplying (105) with q and by integrating over Ω, we obtain that

d

dt
E = −2∆x u∗,x〈∂xr, ∂xux〉 − 2∆y u∗,y〈∂yr, ∂yuy〉 − ∆y|u∗,y| · ||∂yux||2 − ∆x|u∗,x| · ||∂xuy||2

−a∗
M

(
∆x||∂xr||2 + ∆y||∂yr||2

)
− a∗

M
θ(M)

(
∆x||∂xux||2 + ∆y||∂yuy||2

)
.

(111)

Moreover, we have

−2∆x u∗,x〈∂xr, ∂xux〉 ≤ ∆x|u∗,x|(||∂xr||2 + ||∂xux||2).

Thus, under the subsonic condition (81), we can write that

−2∆x u∗,x〈∂xr, ∂xux〉 ≤ ∆x
a∗
M
||∂xr||2 + ∆x|u∗,x| ||∂xux||2.

In the same way, we have

−2∆y u∗,y〈∂yr, ∂yuy〉 ≤ ∆y
a∗
M
||∂yr||2 + ∆y|u∗,y| ||∂yuy||2,

Then, we deduce from (111) that

d

dt
E ≤ −∆x

[
a∗
M
θ(M) − |u∗,x|

]
||∂xux||2 −∆y

[
a∗
M
θ(M) − |u∗,y|

]
||∂yuy||2 −∆y|u∗,y| · ||∂yux||2 −∆x|u∗,x| · ||∂xuy||2.

Proof of Points 1, 2 and 3: We conclude the proof as in the semi-discrete case (see the proof of Theorem

5.1).�

5.4. A remark on the Lagrange + Projection approach

The potential loss of stability when θ(M) := 0 (see Point 3 of Theorems 5.1 and 5.2) is directly linked

to

E(q) := −1

2



u∗,x∆x∂2
xxux + u∗,y∆y∂2

yyuy

u∗,x∆x∂2
xxr

u∗,y∆y∂2
yyr



in (106) which is the non-disspipative part of the truncation error of the Godunov scheme applied to the

linear equation (80). The existence of this non-dissipative truncation error is a consequence of the fact that

the Godunov scheme is built by taking into account at the same time the convective and acoustic waves (see

Annex A). This suggests that a Lagrange + Projection approach – which consists in splitting the acoustic

and convective waves – may not have any stability problem when θ(M) := 0.

Indeed, a Lagrange + Projection approach applied to the linear equation (80) consists in computing an

estimate of the solution by solving



∂tq +
L

M
q = 0,

q(t = 0, x) = q0(x)

(Lagrange step) (112)
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and, then, to correct this estimate by solving



∂tq + Hq = 0,

q(t = 0, x) = q0(x).

(Projection step) (113)

Let us now suppose that we solve (112) with the all Mach Godunov scheme (68)(69) and that we solve

(113) with the Godunov scheme (i.e. with the classical upwind scheme). For this particular Lagrange +

Projection scheme, the 1st order modified equation is given by



∂tq +Hq +
LM

M
q = 0,

q(t = 0, x) = q0(x)

(114)

where, in the 2D case,H is the perturbed convective operator

Hq = Hq − 1

2



|u∗,x|∆x∂2
xxrx + |u∗,y|∆y∂2

yyr

|u∗,x|∆x∂2
xxux + |u∗,y|∆y∂2

yyux

|u∗,x|∆x∂2
xxuy + |u∗,y|∆y∂2

yyuy



(115)

and where LM is the perturbed linear acoustic operator defined by (107). In that case, we easily obtain:

Theorem 5.3. Let q(t, x) be solution of (114). For any θ(M) ≥ 0, we have:

d

dt
E ≤ 0.

It would be also easy to obtain the semi-discrete version of Theorem 5.3.

6. Formal asymptotic analysis in the barotropic case

We now (partly) justify Conjecture 4.1 for the accuracy question with a formal asymptotic analysis

applied to the all Mach Godunov type scheme (75)(76) when X is the Roe scheme [2]. This analysis is

classical [4, 10, 12]. The original point in the following calculus is that we clearly link this asymptotic

analysis to the point of view proposed in §2.4.

When the X scheme is the Roe scheme [2], the dimensionless all Mach Roe scheme deduced from
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(75)(76) and restricted to the subsonic case is given by (see (169) in Annex B)



d

dt
ρi +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{

(ρiui + ρ ju j) · ni j + M
ρi j

ai j

(ui j · ni j)(ui − u j) · ni j +
ai j

M
(ρi − ρ j)

}
= 0, (a)

d

dt
(ρiui) +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
ρi(ui · ni j)ui + ρ j(u j · ni j)u j +

ai j

M
(ρi − ρ j)

[
ui j + (ui j · ni j)ni j

]
(b)

−ρi j|ui j · ni j|
[
(ui − u j) × ni j

]
× ni j + M

ρi j(ui j · ni j)

ai j

[(ui − u j) · ni j]ui j

+

[
1

M2
(pi + p j) +

θi j

M
ρi jai j(ui − u j) · ni j

]
ni j

}
= 0

(116)

with pk = p(ρk), ai j =
pi − p j

ρi − ρ j

and

θi j = θ(Mi j) with θ(Mi j) = min(Mi j, 1). (117)

In (117), the local Mach number Mi j is given by Mi j = M
|ui j|
ai j

. Thus, we can write that Mi j = O(M) which

means that
θi j

M
≤ C (118)

where C is a constant of order one (since Mi j ≪ 1). Moreover, we impose periodic boundary conditions.

Let us now assume the asymptotic expansion for φ = (ρ,u)

φ = φ(0) + Mφ(1) + Mφ(2) + . . . . (119)

By plugging (119) in (116) and by separating the orders M−1 and M0, we obtain:

• Order M−1: We deduce from (116)(a) that

∑

Γi j⊂∂Ωi

|Γi j|a(0)

i j

(
ρ

(0)

i
− ρ(0)

j

)
= 0.

Thus, we have
∑

i

ρ
(0)

i

∑

Γi j⊂∂Ωi

|Γi j|a(0)

i j

(
ρ

(0)

i
− ρ(0)

j

)
= 0 which gives

∑

Γi j

|Γi j|a(0)

i j

(
ρ

(0)

i
− ρ(0)

j

)
ρ

(0)

i
= 0. (120)

By permuting i and j, we obtain

∑

Γi j

|Γi j|a(0)

i j

(
ρ

(0)

j
− ρ(0)

i

)
ρ

(0)

j
= 0. (121)
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By adding (120) and (121), we obtain

∑

Γi j

|Γi j|a(0)

i j

(
ρ

(0)

j
− ρ(0)

i

)2

which implies that

∀i : ρ
(0)

i
= ρ(0)(t)

and, thus, p
(0)

i
= p(0)(t) and a

(0)

i j
= a(0)(t). Moreover, we deduce from (116)(b) and (118) that

∑

Γi j⊂∂Ωi

|Γi j|
(
p

(1)

i
+ p

(1)

j

)
= 0. (122)

Let us note that Equation (122) is equivalent to

∑

Γi j⊂∂Ωi

|Γi j|
[
p

(1)

i
+ p

(1)

j
+ κρ(0)a(0)(u

(0)

i
− u

(0)

j
) · ni j

]
ni j = 0 (123)

with κ = 0. In the case of the Roe scheme – which is defined by (116) and θi j = 1 instead of (117) –,

we obtain (123) with κ = 1.

• Order 0: We deduce from (116)(a) that

d

dt
ρ(0)(t) +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
ρ(0)

(
u

(0)

i
+ u

(0)

j

)
· ni j + a(0)

(
ρ

(1)

i
− ρ(1)

j

)}
= 0. (124)

On the other side, we have

∑

i

∑

Γi j⊂∂Ωi

|Γi j|ρ(0)
(
u

(0)

i
+ u

(0)

j

)
· ni j = ρ

(0)
∑

Γi j

[(
u

(0)

i
+ u

(0)

j

)
· ni j +

(
u

(0)

j
+ u

(0)

i

)
· n ji

]
= 0

and ∑

i

∑

Γi j⊂∂Ωi

|Γi j|a(0)

i j

(
ρ

(1)

i
− ρ(1)

j

)
=

∑

Γi j

|Γi j|
[
a(0)

(
ρ

(1)

i
− ρ(1)

j

)
+ a(0)

(
ρ

(1)

j
− ρ(1)

i

)]
= 0.

Thus, by using (124), we obtain
∑

i

(
2|Ωi|

d

dt
ρ(0)(t)

)
= 0 and therefore

d

dt
ρ(0)(t) = 0. In other words,

we have

∀i : ρ
(0)

i
= Cst (125)

and, thus, p
(0)

i
= Cst and a

(0)

i j
= Cst. By plugging (125) in (124), we obtain that

∑

Γi j⊂∂Ωi

|Γi j|
{
ρ(0)

(
u

(0)

i
+ u

(0)

j

)
· ni j + a(0)

(
ρ

(1)

i
− ρ(1)

j

)}
= 0

which gives ∑

Γi j⊂∂Ωi

|Γi j|
{
ρ(0)a(0)

(
u

(0)

i
+ u

(0)

j

)
· ni j +

(
p

(1)

i
− p

(1)

j

)}
= 0 (126)

by using the fact that (a(0))2 = p
(1)

i
/ρ

(1)

i
.
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To summarize, we have proved that a necessary condition of validity of the expansion (119) is that (p
(1)

i
,u

(0)

i
) ∈

R3N satisfies 

∑

Γi j⊂∂Ωi

|Γi j|
{
ρ(0)a(0)

(
u

(0)

i
+ u

(0)

j

)
· ni j +

(
p

(1)

i
− p

(1)

j

)}
= 0,

∑

Γi j⊂∂Ωi

|Γi j|
[
p

(1)

i
+ p

(1)

j
+ κρ(0)a(0)(u

(0)

i
− u

(0)

j
) · ni j

]
ni j = 0

(127)

with κ = 0 in the case of the non-linear all Mach Roe scheme (116)(117). In the case of the Roe scheme,

we obtain (127) with κ = 1. Thus, by defining ri := p
(1)

i
/(ρ(0)a(0)), we obtain that when (ri,u

(0)

i
) ∈ R3N

satisfies (127), (ri,u
(0)

i
) belongs to the kernel (34) of the discrete acoustic operator Lκ,h. By using Theorem

2.2 and Lemma 2.2, we obtain that the non-linear all Mach Roe scheme (i.e. (116) with θi j = θ(Mi j)) may

be accurate at low Mach number and that the non-linear Roe scheme (i.e. (116) with θi j = 1) may not be

accurate at low Mach number.

7. Construction of all Mach Godunov type schemes for the compressible Euler system

We extend in this section the all Mach Godunov type schemes (75)(76) and (75)(79) obtained for the

barotropic Euler system (2) to the compressible Euler system (1).

The previous sections show that the low Mach number inaccuracy can be studied and cured in the

barotropic case, which underlines that the energy equation may not have any influence on this question.

This leads us to test the all Mach correction obtained and justified without energy equation to the case with

energy equation. In other words, we propose the all Mach Godunov type scheme

d

dt


ρ

ρu

ρE


i

+
1

|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|ΦAM,X
i j

= 0 (128)

with the two possible expressions for the numerical fluxΦ
AM,X
i j

(we recall that X is a Godunov type scheme):

• First expression:

Φ
AM,X
i j

= ΦX
i j + (θi j − 1)

ρi jai j

2



0[
(ui − u j) · ni j

]
ni j

0

 (129)

where ΦX
i j

is the unmodified flux given by the X scheme and where

θi j = θ(Mi j) with θ(M) = min(M, 1). (130)

Thus, the all Mach correction is now given by

(θi j − 1)
ρi jai j

2



0[
(ui − u j) · ni j

]
ni j

0

 . (131)

Let us note that we could replace (131) by

(θi j − 1)
ai j

2



0[
(ρiui − ρ ju j) · ni j

]
ni j

0

 (132)
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or by

(θi j − 1)
1

2



0[
(ρiaiui − ρ ja ju j) · ni j

]
ni j

0

 . (133)

• Second expression:

ΦAM X
i j =



ρ∗(u · n)∗

ρ∗(u∗ · n)u∗ + p∗∗n

(ρ∗E∗ + p∗)(u · n)∗


i j

with p∗∗i j = θi j p
∗
i j + (1 − θi j)

pi + p j

2
(134)

where (ρ∗,u∗, E∗) is solution of a 1D (linearized or non-linearized) Riemann problem.

Concerning the stability of the all Mach schemes (128)(129) and (128)(134):

These all Mach schemes – directly deduced from the barotropic case – are justified to cure the accuracy

problem at low Mach number. But, it is not obvious that the linear stability result obtained in Section 5 in

the barotropic case when the X scheme is the Roe scheme remains valid. Indeed, the energy equation is as

important as the two other equations in any stability analysis. This point will have to be studied carefully in

a future work although the numerical results proposed in Section 10 justify (128)(129) when the X scheme

is the Roe scheme.

8. Introduction of a cut-off in the all Mach correction

We show in this section that the linear all Mach Godunov scheme (66)(67) is responsible for the creation

of spurious oscillations. A direct consequence of these spurious oscillations may be the creation of non-

entropic shock waves in the non-linear case by the all Mach Godunov type schemes (128)(129). This leads

us to modify the all Mach correction (131) by introducing a cut-off in (130). We will justify this cut-off with

numerical results in Section 10.

8.1. Loss of a TVD property induced by the all Mach correction

We justify the possible creation of spurious oscillations by the linear all Mach Godunov scheme (66)(67)

with the following simple property:

Property 8.1. Let us suppose that Ω = R and that TV(r0 ± u0) < +∞ with TV( f ) :=
∑

i

| fi − fi−1|. Then,

the explicit scheme



rn+1
i
− rn

i

∆t
+

a∗
2M∆x

(un
i+1 − un

i−1) =
a∗

2M∆x
(rn

i+1 − 2rn
i + rn

i−1),

un+1
i
− un

i

∆t
+

a∗
2M∆x

(rn
i+1 − rn

i−1) = θ
a∗

2M∆x
(un

i+1 − 2un
i + un

i−1)

(135)

verifies:
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1) When θ = 1 and under the CFL condition ∆t ≤ M∆x

a∗
:

∀n ≥ 0 : TV(rn ± un) ≤ TV(r0 ± u0). (136)

Moreover, when r0 ± u0 is a monotone discrete function, we have

∀n ≥ 0 : TV(rn ± un) = TV(r0 ± u0). (137)

2) When θ ∈ [0, 1[ and under the CFL condition ∆t ≤ M∆x

2a∗
, we can just write that

∀n ≥ 0 : TV(rn+1 ± un+1) ≤ TV(rn ± un) + TV(un). (138)

The first point is classical. It comes from the fact that the characteristic variables r ± u are advected with

an upwind scheme when (rn
i
, un

i
) is given by (135) with θ = 1, and that the upwind scheme is TVD under a

CFL-like condition. The second point comes from the fact that when θ , 1, r ± u are not advected with an

upwind scheme.

A consequence of the first point of Property 8.1 is that when θ = 1, the variables rn
i
± un

i
do not present

any spurious oscillations since a TVD scheme is monotonicity preserving [14]. By cons, the second point

means that when θ ∈ [0, 1[, it can appears spurious oscillations on r ± u, which are then transmitted to r and

u.

To illustrate Property 8.1, we study the numerical solution obtained with (135) on Ω = [0, 1] when the

initial conditions are given by



r0(x ≤ 0.5) = 1,

u0(x ≤ 0.5) = 0

and



r0(x > 0.5) = 0.1,

u0(x > 0.5) = 0.

(139)

Moreover, we choose a∗ = M = 1. We study the numerical solution before the waves reach the boundary

∂Ω. Thus, we impose the boundary conditions

(r, u)(t ≥ 0, x ∈ ∂Ω) = (r0, u0)(x ∈ ∂Ω).

In the sequel, we choose a number of cells equal to 100.

Figures 11-16 show the numerical results when t = 0, 25 obtained with (135) when θ = 1, which corresponds

to the Godunov scheme. Figures 17-22 show the numerical results obtained with (135) when θ = 0, which

corresponds to the low Mach Godunov scheme. These numerical results confirm that (135) creates spurious

oscillations when θ , 1.

Proof of Property 8.1: By using (135), we easily obtain

(J±)n+1
i+1
− (J±)n+1

i
=

(
1 − a∗∆t

M∆x

)
[(J±)n

i+1 − (J±)n
i ] +

a∗∆t

M∆x
[(J±)i+1∓1 − (J±)n

i∓1]

±(θ − 1)
a∗∆t

2M∆x
[(un

i+2 − un
i+1) − 2(un

i+1 − un
i ) + (un

i − un
i−1)]

(140)

36



where (J±)n
i

:= rn
i
± un

i
. This relation allows us to easily obtain (136) when θ = 1 and ∆t ≤ M∆x

a∗
. Let us

now suppose that

∀i : (J±)n
i+1 ≤ (J±)n

i or ∀i : (J±)n
i+1 ≥ (J±)n

i . (141)

Thus, we deduce from (140) that

∀i : (J±)n+1
i+1 ≤ (J±)n+1

i or ∀i : (J±)n+1
i+1 ≥ (J±)n+1

i

when θ = 1 and ∆t ≤ M∆x

a∗
. And, by using again (140), we finally obtain

TV
(
(J±)n+1

)
=

(
1 − a∗∆t

M∆x

)
TV

(
(J±)n) + a∗∆t

M∆x
TV

(
(J±)n)

= TV
(
(J±)n) .

Let us now suppose that θ , 1. In that case, (140) implies that

TV
(
(J±)n+1

)
≤

(∣∣∣∣∣1 −
a∗∆t

M∆x

∣∣∣∣∣ +
a∗∆t

M∆x

)
TV

(
(J±)n) + |θ − 1|2a∗∆t

M∆x
TV(un),

which allows to obtain (138) when θ ∈ [0, 1[ and ∆t ≤ M∆x

2a∗
. �

8.2. Introduction of a cut-off in the all Mach correction

The spurious oscillations created in the linear case when θ , 1 will be also present in the non-linear

case (1) (or (2)). For example, when the initial conditions of the compressible Euler system (1) are defined

by the Riemann problem



ρ0(x ≤ 0) = ρL,

p0(x ≤ 0) = pL,

u0(x ≤ 0) = 0

and



ρ0(x ≤ 0) = ρR,

p0(x > 0) = pR,

u0(x > 0) = 0,

(142)

the behaviour of the pressure and of the velocity in the vicinity of (t = 0, x = 0) is conditionned by the linear

wave equation. Thus, the numerical results in the vicinity of (t = 0, x = 0) obtained with a non-linear all

Mach Godunov type schemes (128)(129) will be similar to those obtained on Figures 11-16 with the linear

all Mach Godunov schemes (66)(67), that is to say will include similar spurious oscillations.

When the Mach number remains close to zero (that is to say when |pR − pL|/pL ≪ 1 in the case of the

Riemann problem (142)), these spurious oscillations are not a difficulty. But, when the Mach number

increases, these spurious oscillations may become non-entropic shock waves. This leads us to replace

θ(M) = min(M, 1) in (130) by θα(M) with



θα(M) = M if M < α,

θα(M) = 1 if M ≥ α
where α ∈]0, 1[ (143)
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Fig. 11: r(t = 0.25, x) Fig. 12: (r − u)(t = 0.25, x) Fig. 13: TV(r − u)(t)

θ = 1 θ = 1 θ = 1

Fig. 14: u(t = 0.25, x) Fig. 15: (r + u)(t = 0.25, x) Fig. 16: TV(r + u)(t)

θ = 1 θ = 1 θ = 1

Fig. 17: r(t = 0.25, x) Fig. 18: (r − u)(t = 0.25, x)) Fig. 19: TV(r − u)(t)

θ = 0 θ = 0 θ = 0

Fig. 20: u(t = 0.25, x) Fig. 21: (r + u)(t = 0.25, x) Fig. 22: TV(r + u)(t)

θ = 0 θ = 0 θ = 0
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(see Figures 23-24) in order to dump the spurious oscillations when the Mach number become larger than

α. This means that we introduce a cut-off in the all Mach correction (131).

Let us note that α in (143) has to be of order one to keep the accuracy of the all Mach Godunov type schemes

(128)(129) at low Mach number and, at the same time, has to be less than one to keep enough numerical

viscosity to dump the spurious oscillations. The numerical results proposed in Section 10 justify this cut-off

and show that α = 1/2 is a good choice in the case of the Sod tube problem. Nevertheless, the choice of α

remains heuristic at the present time.

Fig. 23: θ(M) (i.e. without cut-off) Fig. 24: θα(M) (i.e. with cut-off)

8.3. Conjecture about the stability and accuracy of the all Mach Godunov type schemes

The previous numerical results incite us to improve Conjecture 4.1 in the following way:

Conjecture 8.1. Let us suppose that the Godunov type scheme X applied to the barotropic Euler system (2)

is stable for any Mach number lower than β (with β ≥ 1), and is accurate when the Mach number belongs

to [α, β] (with α ∈]0, 1[). Then, in the periodic case and with or without shock wave, the non-linear schemes

(75)(76) and (75)(79) are stable and accurate on any mesh type and for any Mach number which belongs

to [0, β] when θ(M) is replaced by θα(M) in (76) or (79).

Let us note that we restrict this conjecture to the barotropic case. Indeed, the stability and the accuracy (at

low Mach number) have been justified only in the barotropic case (2) (and when X is the Roe scheme [2]:

see Sections 5 and 6). Thus, it remains to obtain similar results in the case of the compressible Euler system

(1). Nevertheless, the numerical results proposed in Section 10 (and those already obtained in [7] when the

Mach number is low) allow us to expect that Conjecture 8.1 is also valid in the case of the compressible

Euler system (1) when we replace (75)(76) and (75)(79) with respectively (128)(129) and (128)(134).

9. Other all Mach schemes

The analysis used to justify the all Mach correction (131) is not limited to Godunov type schemes

applied to the compressible Euler system (1). For example, the previous analysis applied to the Rusanov

scheme [15] would lead us to use the all Mach correction (132) with ai j replaced by |λi j| := max(|ui j · ni j −
ai j|, |ui j · ni j + ai j|) in order to define the all Mach Rusanov scheme

d

dt


ρ

ρu

ρE


i

+
1

|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|ΦAM,Rusanov
i j

= 0 (144)
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with

Φ
AM,Rusanov
i j

= ΦRusanov
i j + (θi j − 1)

|λi j|
2



0[
(ρiui − ρ ju j) · ni j

]
ni j

0

 (145)

where ΦRusanov
i j

is the unmodified Rusanov flux and where θi j = θ(Mi j) or θi j = θα(Mi j) (θ(M) and θα(M)

are defined by (130) and (143)). We could also formally justify the non-linear all Mach Rusanov scheme

(144)(145) with a formal asymptotic analysis similar to the one used to justify the all Mach Roe scheme

(116).

In the same way, when the mesh is 2D cartesian with ∆x = ∆y, the all Mach Lax-Friedrichs scheme is

given by

d

dt


ρ

ρu

ρE


i

+
1

|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|ΦAM,LF
i j

= 0 (146)

with

Φ
AM,LF
i j

= ΦLF
i j + (θi j − 1)

∆x

2∆t



0[
(ρiui − ρ ju j) · ni j

]
ni j

0

 (147)

whereΦLF
i j

is the unmodified Lax-Friedrichs flux [16]. In (147),
∆x

∆t
is equal to max

i
(|ux,i±ai|, |uy,i±ai|)/CFL

with CFL ≤ 1.

Concerning the stability of the all Mach schemes (144)(145) and (146)(147):

As in the case of the Godunov type schemes applied to the compressible Euler system (1) (see Section 7),

the stability of these all Mach schemes will have to be carefully studied.

Let us also note that a Lagrange + Projection type scheme can also be corrected with a similar low Mach

correction, and that the stability of this type of scheme should not be affected by the all Mach correction:

see §5.4.

10. Numerical results

We study the behaviour of the all Mach Roe scheme (128)(129) (i.e. X is the Roe scheme [2]) when the

initial conditions are those of the Sod tube problem that is to say



ρ0(x ≤ 0.5) = 1,

p0(x ≤ 0.5) = 1,

u0(x ≤ 0.5) = 0

and



ρ0(x ≥ 0.5) = 0.125,

p0(x ≥ 0.5) = 0.1,

u0(x ≥ 0.5) = 0.

(148)
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Moreover, we suppose that the fluid is a perfect gas whose adiabatic constant γ is equal to 1,4. The domain

Ω is equal to [0, 1] and we study the numerical solution before the waves reach the boundary ∂Ω. Thus, we

impose the boundary conditions

(ρ, p, u)(t ≥ 0, x ∈ ∂Ω) = (ρ0, p0, u0)(x ∈ ∂Ω).

We discretize the time operators in (128) with a first order Euler scheme, and the global scheme is explicit.

Thus, the time step ∆t is linked to the mesh size ∆x through a classical CFL condition. The reference

solution is obtained by using the Roe scheme with a number of cells equal to 104.

10.1. Numerical results without cut-off

We test the all Mach Roe scheme (128)(129) without cut-off i.e. with θ(M) given by (130).

Figures 25-28 show the results when t = 0, 2 and when the number of cells is equal to 104. These results

show that the all Mach Roe scheme is stable and is accurate in a large part of the domain Ω. Nevertheless,

the all Mach Roe scheme produces non-entropic shock waves in the vicinity of the foot of the rarefaction

wave, where the Mach number is of order one (we recall that the Mach number is equal to |u|/
√
γp/ρ for a

perfect gas). These non-entropic shock waves do not disappear when the mesh is refined.

These results show that we have to improve the all Mach Roe scheme (128)(129) to avoid the creation of

non-entropic shock waves.

10.2. Numerical results with cut-off

The spurious oscillations obtained on Figures 17-22 – and justified by Property 8.1 – are responsible for

the non-entropic shock waves obtained on Figures 25-28.

This leads us to replace in the all Mach Roe scheme (128)(129) the function θ(M) = min(M, 1) by θα(M)

defined by (143) (see Figures 23-24) in order to avoid the non-entropic shock waves. This means that we

introduce a cut-off in the all Mach correction (131).

Figures 29-32 show the numerical results for the Sod tube problem (when t = 0, 2 and with 104 cells)

obtained when the all Mach Roe scheme (128)(129) uses θα(M) with α = 1/2. We see that the non-entropic

shock waves have disappeared (compare with Figures 25-28).

Figures 33-36 compare the results obtained with the Roe scheme and with the all Mach Roe scheme with

cut-off (α = 1/2) when the number of cells is equal to 100. We see that the accuracy of the all Mach Roe

scheme is better than the one of the Roe scheme in the rarefaction wave, which underlines that the numerical

dissipation of the Roe scheme is too high in the rarefaction areas.

Let us note that the discontinuity of the derivatives where the Mach number is equal to 1/2 with the all

Mach Roe scheme (see Figures 33-36) is due to the non-regularity of the cut-off θα(M) defined by (143) (we

recall that α = 1/2 in the present case). But, this does not affect the accuracy of the numerical results (this

discontinuity disappears when the number of cells increases: see Figures 29-32). Nevertheless, we could

make disappear this artefact when the number of cells is low by regularizing the cut-off.
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Fig. 25: ρ(t = 0.2, x) Fig. 26: p(t = 0.2, x)

Fig. 27: u(t = 0.2, x) Fig. 28: Mach(t = 0.2, x)
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Fig. 29: ρ(t = 0.2, x) Fig. 30: p(t = 0.2, x)

Fig. 31: u(t = 0.2, x) Fig. 32: Mach(t = 0.2, x)

Fig. 33: ρ(t = 0.2, x) Fig. 34: p(t = 0.2, x)

Fig. 35: u(t = 0.2, x) Fig. 36: Mach(t = 0.2, x)
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11. Conclusion

Through the study of the linear wave equation discretized with a Godunov scheme, we have proposed

a simple all Mach correction to apply to any Godunov type scheme solving the compressible Euler system

to make this scheme accurate in the incompressible regime as well as in the compressible regime. We have

named this modified scheme all Mach Godunov type scheme.

The short time behaviour of the solution of the first order equivalent equation associated with the all Mach

Godunov scheme applied to the linear wave equation justifies this correction when the mesh is cartesian. In

the non-linear barotropic case and when the Godunov type scheme is a Roe scheme, we justify this approach

with a formal asymptotic expansion. At last, a linear stability result shows that this all Mach Roe scheme

should be stable in the non-linear barotropic case.

We have proposed numerical results which justify this approach in the case of the compressible Euler system

when the Godunov type scheme is a Roe scheme. Nevertheless, these numerical results underline also that

when the Mach number is of order one, the all Mach Roe scheme may produce non-entropic shock waves

when the proposed correction is not limited by a cut-off. On the other hand, the all Mach Roe scheme with

or without cut-off remains accurate when the solution is smooth.

We justify this cut-off in the 1D linear case by showing that the all Mach correction has an impact on TVD

properties. Nevertheless, it remains to justify it in the non-linear case by studying the entropic properties of

the all Mach Godunov type schemes with or without cut-off.

At last, the proposed theoretical results have been obtained in the periodic case. Since the aim of this study

is to obtain all Mach Godunov type schemes that can be applied to the modelling of a nuclear core and

since a nuclear core is not a periodic domain, we will have to study the influence of non-periodic boundary

conditions on the accuracy and stability of these all Mach Godunov type schemes.

A. The linear Godunov scheme in the subsonic case

The linear equation

∂tq + u∗ · ∇q +
a∗
M

Lq = 0 (149)

may be written with

∂tq + Ax∂xq + Ay∂yq + Az∂zq = 0

where

Ax =



u∗,x
a∗
M

0 0
a∗
M

u∗,x 0 0

0 0 u∗,x 0

0 0 0 u∗,x


, Ay =



u∗,y 0 a∗
M

0

0 u∗,y 0 0
a∗
M

0 u∗,y 0

0 0 0 u∗,y


and Az =



u∗,z 0 0 a∗
M

0 u∗,z 0 0

0 0 u∗,z 0
a∗
M

0 0 u∗,z


.

The one-dimensional Riemann problem associated with this equation in the direction n := (nx, ny, nz)
T is

defined by 

∂tq + A(n)∂ζq = 0,

q(t = 0, ζ) =

{
qL if ζ < 0,

qR if ζ ≥ 0

(150)
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where A(n) = Axnx + Ayny + Aznz that is to say

A(n) = (u∗ · n)1 +

(
0 a∗

M
nT

a∗
M

n 0

)
,

1 being the identity matrix in R4×4. The eigenvalues of A(n) are given by

λ1 = u∗ · n, λ2 = u∗ · n, λ3 = u∗ · n −
a∗
M

and λ4 = u∗ · n +
a∗
M
.

The associated unit eigenvectors are given by

qλ1
=

(
0

ta

)
, qλ2

=

(
0

tb

)
, qλ3

= γ

(
1

−n

)
and qλ4

= γ

(
1

n

)

where γ2 = 1/2 and (ta, tb,n) defines an orthonormal basis of R3. Thus, the eigenvector matrix P is given

by

P =

(
0 0 γ γ

ta tb −γn γn

)

and we find that

P−1 =



0 tT
a

0 tT
b

1

2γ
−nT

2γ

1

2γ

nT

2γ



.

Thus, we have

Λ(n) := P−1A(n)P =



u∗ · n 0 0 0

0 u∗ · n 0 0

0 0 u∗ · n −
a∗
M

0

0 0 0 u∗ · n +
a∗
M


.

Then, by defining w := P−1q which gives

w :=



w1

w2

w3

w4


=



ta · u

tb · u

1

2γ
(r − u · n)

1

2γ
(r + u · n)



,
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System (150) is equivalent to 

∂tw + Λ(n)∂ζq = 0,

w(t = 0, ζ) =

{
wL if ζ < 0,

wR if ζ ≥ 0.

(151)

By supposing that

u∗ · n −
a∗
M

< 0 and u∗ · n +
a∗
M

> 0

which is in particular satisfied when

|u∗| <
a∗
M

(subsonic condition),

the solution wRP := w(t > 0, ζ = 0) of (151) is given by

wRP =



w1,L if u∗ · n > 0 or w1,R if u∗ · n ≤ 0

w2,L if u∗ · n > 0 or w2,R if u∗ · n ≤ 0

w3,R

w4,L


.

Thus, since A(n)qRP = PΛwRP, we obtain that

A(n)qRP =



γ

(
u∗ · n −

a∗
M

)
w3,R + γ

(
u∗ · n +

a∗
M

)
w4,L

ta[w1,L(u∗ · n)+ + w1,R(u∗ · n)−] + tb[w2,L(u∗ · n)+ + w2,R(u∗ · n)−]



+



0

−γ
(
u∗ · n −

a∗
M

)
w3,Rn + γ

(
u∗ · n +

a∗
M

)
w4,Ln


.

By noting that 

(uL · ta)ta + (uL · tb)tb = uL − (uL · n)n,

(uR · ta)ta + (uR · tb)tb = uR − (uR · n)n,

we finally obtain that

A(n)qRP =



1

2
(u∗ · n)[rL + rR + (uL − uR) · n]

1

2
(u∗ · n) [(uL + uR) · n + rL − rR] n + (u∗ · n)+ [uL − (uL · n)n] + (u∗ · n)− [uR − (uR · n)n]



+
a∗

2M


(uL + uR) · n + rL − rR

[rL + rR + (uL − uR) · n] n
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which is equivalent to

A(n)qRP =
1

2


(u∗ · n) [rL + rR + (uL − uR) · n]

(u∗ · n) [(uL + uR) + (rL − rR)n] − |u∗ · n|[(uL − uR) × n] × n



+
a∗

2M


(uL + uR) · n + rL − rR

[rL + rR + (uL − uR) · n] n



by noting that

(u∗ · n)[(uL + uR) · n]n + 2
{
(u∗ · n)+[uL − (uL · n)n] + (u∗ · n)−[uR − (uR · n)n]

}

= (u∗ · n)(uL + uR) + |u∗ · n| {(uL − uR) − [(uL − uR) · n]n}

= (u∗ · n)(uL + uR) − |u∗ · n|[(uL − uR) × n] × n

since

v = (v · n)n − (v × n) × n for any v ∈ R3. (152)

Moreover, by integrating (149) on Ωi and by applying the Gauss law, we obtain

d

dt

∫

Ωi

q(t, x)dx +
∑

Γi j⊂∂Ωi

∫

Γi j

A(ni j)qds = 0.

By supposing that q(t, x) is constant and equal to qi(t) in Ωi and by approximating the flux A(n)q with

A(ni j)qRP,i j on each edge Γi j, we obtain the (semi-discrete) Godunov finite volume scheme

|Ωi|
d

dt
qi +

∑

Γi j⊂∂Ωi

|Γi j|ΦGod
i j = 0

where

ΦGod
i j :=

1

2



(u∗ · ni j)
[
ri + r j + (ui − u j) · ni j

]

(u∗ · ni j)
[
(ui + u j) + (ri − r j)ni j

]
− |u∗ · ni j|

[
(ui − u j) × ni j

]
× ni j



+
a∗

2M



(ui + u j) · ni j + ri − r j

[
ri + r j + (ui − u j) · ni j

]
ni j

 .

(153)

Let us remark that by using (152), we can define ti j in such a way

[
(ui − u j) · ti j

]
ti j = (ui − u j) −

[
(ui − u j) · ni j

]
ni j = −

[
(ui − u j) × ni j

]
× ni j (|ti j| = 1 and ti j ⊥ ni j).

(154)
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Thus, (153) is equivalent to

ΦGod
i j :=

1

2



(u∗ · ni j)
[
ri + r j + (ui − u j) · ni j

]

(u∗ · ni j)
[
(ui + u j) + (ri − r j)ni j

]
+ |u∗ · ni j|

[
(ui − u j) · ti j

]
ti j



+
a∗

2M



(ui + u j) · ni j + ri − r j

[
ri + r j + (ui − u j) · ni j

]
ni j

 .

(155)

The problem with (155) is that in 3D, ti j depends on ui − u j which leads to think that (155) is non-linear.

As a consequence, we prefer to use (153) in 3D. Nevertheless, ti j only depends on ni j in 2D. Thus, we can

use (153) as well as (155) in 2D. At last, in 1D, the transverse diffusion does not exist, and we can use (155)

with ti j := 0. In this paper, we use (153) except in the proof of Theorem 5.1 where (155) is used.

B. The all Mach Roe scheme in the barotropic and subsonic case

We firstly construct the Roe scheme applied to the barotropic Euler system (2) when the flow is subsonic.

Then, we explicite the all Mach version of this scheme deduced from (128) and (129). Finally, we write the

dimensionless version of this all Mach Roe scheme used in the asymptotic expansion proposed in Section

6.

B.1. The Roe scheme in the barotropic and subsonic case

Let us apply the finite volume scheme

d

dt

∫

Ωi

U(t, x)dx +
∑

Γi j⊂∂Ωi

∫

Γi j

f(U) · nds = 0 (156)

to the barotropic Euler system (2) written in 3D. In (156), U := (ρ, ρu)T and the flux f(U) is the 4 × 3

matrix

f(U) =

(
ρuT

ρu ⊗ u + p1

)
=: (fx, fy, fz)

(1 is the identity matrix in R3×3). Thus, the flux in the direction n is defined by

f(U) · n = (nxfx + nyfy + nzfz)(U) =



ρu · n
ρuxu · n + pnx

ρuyu · n + pny

ρuzu · n + pnz


=



ρu · n

ρ (u · n) u + pn


.

The Roe scheme is an approximation of (156) given by

|Ωi|
d

dt
Ui(t) +

∑

Γi j⊂∂Ωi

|Γi j|ΦRoe
i j = 0 (157)

where ΦRoe
i j

is an approximation on the interface Γi j of f(U) ·n. Since the Roe scheme is an upwind scheme

[17], ΦRoe
i j

is given by

ΦRoe
i j =

f(Ui) + f(U j)

2
· ni j −

|Ani j
(Ui,U j)|

2
· (Ui −U j). (158)
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In (158), Ani j
(Ui,U j) is an approximation on Γi j of the jacobian matrix Ani j

(U) :=
Df(U) · ni j

DU . More pre-

cisely, Ani j
(Ui,U j) = Ani j

(Ui j) whereUi j is an average state on Γi j which will be defined latter. Moreover,

for any (UL,UR,n), |An(UL,UR)| :=
4∑

k=1

|λk|rk ⊗ lk where λk are the eigenvalues of An(UL,UR), associated

with the left eigenvectors lk and to the right eigenvectors rk such that lm · rn = δmn (δmn is the Kronecker

symbol). The jacobian matrix An(U) is given by

An(U) =



0 nT

a2n − (u · n) u u ⊗ n + (u · n) 1


=: A.

In order to find the eigen elements of A, let λ be an eigenvalue and q := (q1, q2, q3, q4)T an associated

eigenvector, and let us define qu := (q2, q3, q4)T . Then Aq = λq is equivalent to

qu · n = λq1, (159)[
a2n − (u · n) u

]
q1 + (qu · n) u + (u · n) qu = λqu. (160)

Taking the dot product of (160) with n and replacing qu · n by its value from (159), we obtain

[
a2 − (u · n)2 − λ2

]
q1 + 2λq1u · n = 0,

which implies that either q1 = 0 or λ solves

λ2 − 2λu · n − a2 + (u · n)2 = 0,

the solutions of which are λ1 = u·n−a and λ4 = u·n+a. When q1 = 0, then (159) implies that qu ·n = 0 and

then, (160) implies that λ = u · n is an eigenvalue with multiplicity two. Let ta and tb be such that (n, ta, tb)

is an orthonormal basis of R3. Then, the condition qu · n = 0 implies that two eigenvectors associated with

λ2,3 = 0 are r2 = (0, ta)T and r3 = (0, tb)T . When λ = λ1, then replacing qu · n by (u · n − a) q1 in (160)

yields
(
a2n − au

)
q1 + aqu = 0, and thus an associated eigenvector is r1 = (1,u − an)T . In the same way,

we find that an eigenvector associated with λ4 is r4 = (1,u+ an)T . Let P be the matrix of right eigenvectors

P =

(
1 0 0 1

u − an ta tb u + an

)
.

We have

P−1 =



1

2
+

u · n
2a

−nT

2a

−ta · u tT
a

−tb · u tT
b

1

2
− u · n

2a

nT

2a



.
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Let us defineΛ = P−1AP, the diagonal matrix of the eigenvalues of A, and denote by |Λ| := diag(|λ1|, |λ2|, |λ3|, |λ4|).
Thus, we have |A| = P|Λ|P−1. In the subsonic case, it holds that |λ1| = a − u · n and |λ4| = a + u · n, so that

|Λ|P−1 =



a

2
− (u · n)2

2a
− (a − u · n)

2a
nT

−|u · n|ta · u |u · n|tT
a

−|u · n|tb · u |u · n|tT
b

a

2
− (u · n)2

2a

(a + u · n)

2a
nT



.

The first line of |A| is easy to compute and is equal to

(
a − (u · n)2

a
,

u · n
a

nT

)
. The lower left 3 × 1 block of

|A| is equal to

[
a

2
− (u · n)2

2a

]
(u − an) − |u · n| (ta · u ta + tb · u tb) +

[
a

2
− (u · n)2

2a

]
(u + an) =

[
a − (u · n)2

a

]
u + |u · n| (u × n) × n

since every vector v ∈ R3 may be written v = (v · n)n+ (v · ta)ta + (v · tb)tb = (v · n)n− (v × n)× n. Finally,

the lower right 3 × 3 block of |A| is equal to

− (a − u · n)

2a
(u − an) ⊗ n + |u · n| (ta ⊗ ta + tb ⊗ tb) +

(a + u · n)

2a
(u + an) ⊗ n =

u · n
a

u ⊗ n + an ⊗ n + |u · n|(1 − n ⊗ n)

since it holds that n ⊗ n + ta ⊗ ta + tb ⊗ tb = 1. The final expression of |An(U)| = |A| is thus

|An(U)| =



a − (u · n)2

a

u · n
a

nT

[
a − (u · n)2

a

]
u + |u · n| (u × n) × n

u · n
a

u ⊗ n + (a − |u · n|) n ⊗ n + |u · n|1



.

The matrix |An(UL,UR)| in (158) is defined by

|An(UL,UR)| = |An(ULR)|
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whereULR is computed with the Roe average state [17]


ρLR =
√
ρLρR,

ux,LR =

√
ρLux,L +

√
ρRux,R√

ρL +
√
ρR

,

uy,LR =

√
ρLuy,L +

√
ρRuy,R√

ρL +
√
ρR

,

uz,LR =

√
ρLuz,L +

√
ρRuz,R√

ρL +
√
ρR

,

a2
LR =

∆p

∆ρ

with the notation ∆(·) = (·)R − (·)L. Now, we have to compute |An(UL,UR)| · (∆ρ,∆(ρu))T . One of the

features of the Roe scheme is that the mean states (ρLR,uLR) satisfy the relation

∆(ρu) = ρLR∆u + (∆ρ)uLR.

Therefore, the first element of |An(UL,UR)| · (∆ρ,∆(ρu))T is equal to
(
aLR −

(uLR · n)2

aLR

)
∆ρ +

uLR · n
aLR

∆ (ρu) ·n = aLR∆ρ + ρLR

uLR · n
aLR

∆u · n (161)

while the last three elements of |An(UL,UR)| · (∆ρ,∆(ρu))T are equal to

∆ρ

{[
aLR −

(uLR · n)2

aLR

]
uLR + |uLR · n| (uLR × n) × n

}
+

∆ (ρu) · nuLR · n
aLR

uLR + ∆ (ρu) · n (aLR − |uLR · n|) n + |uLR · n|∆ (ρu) . (162)

Now, we use the following equalities

− (uLR · n)2

aLR

∆ρ uLR + ∆ (ρu) · nuLR · n
aLR

uLR = ρLR∆u · nuLR · n
aLR

uLR (163)

on the one hand, and

∆ρ|uLR · n| (uLR × n) × n + |uLR · n|∆ (ρu) = ∆ρ|uLR · n| [(uLR × n) × n + uLR] + ρLR|uLR · n|∆u

= ∆ρ|uLR · n| (uLR · n) n + ρLR|uLR · n|∆u

(164)

and

∆ (ρu) · n (aLR − |uLR · n|) n = (uLR · n∆ρ + ρLR∆u · n) (aLR − |uLR · n|) n (165)

on the other hand. From (163)–(165), we obtain that (162) is equal to

aLR∆ρ uLR + ρLR∆u · nuLR · n
aLR

uLR + ρLR|uLR · n|∆u + aLRuLR · n∆ρ n

−ρLR|uLR · n| (∆u · n) n + aLRρLR (∆u · n) n

=

(
aLR∆ρ + ρLR∆u · nuLR · n

aLR

)
uLR + aLR (uLR · n∆ρ + ρLR∆u · n) n

−ρLR|uLR · n| (∆u × n) × n.
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Gathering (161) and (166), we obtain that

|An(UL,UR)| · (UR −UL) = aLR∆ρ

(
1

uLR

)
+ aLR(uLR · n)∆ρ

(
0

n

)
+ ρLR

uLR · n
aLR

∆u · n
(

1

uLR

)

+ρLRaLR∆u · n
(

0

n

)
− ρLR|uLR · n|

(
0

(∆u × n) × n

)
.

(166)

Thus, by using (157), (158) and (166)) we obtain



d

dt
ρi +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{

(ρiui + ρ ju j) · ni j +
ρi j

ai j

(ui j · ni j)(ui − u j) · ni j + ai j(ρi − ρ j)

}
= 0, (a)

d

dt
(ρiui) +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
ρi(ui · ni j)ui + ρ j(u j · ni j)u j + ai j(ρi − ρ j)

[
ui j + (ui j · ni j)ni j

]

−ρi j|ui j · ni j|
[
(ui − u j) × ni j

]
× ni j +

ρi j(ui j · ni j)

ai j

[
(ui − u j) · ni j

]
ui j (b)

+
[
pi + p j + ρi jai j(ui − u j) · ni j

]
ni j

}
= 0

(167)

with pk = p(ρk) and ai j =
pi − p j

ρi − ρ j

.

B.2. The all Mach Roe scheme in the barotropic and subsonic case

We deduce from (128), (129) and (167) that the all Mach Roe scheme in the barotropic and subsonic

case is given by



d

dt
ρi +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{

(ρiui + ρ ju j) · ni j +
ρi j

ai j

(ui j · ni j)(ui − u j) · ni j + ai j(ρi − ρ j)

}
= 0, (a)

d

dt
(ρiui) +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
ρi(ui · ni j)ui + ρ j(u j · ni j)u j + ai j(ρi − ρ j)

[
ui j + (ui j · ni j)ni j

]

−ρi j|ui j · ni j|
[
(ui − u j) × ni j

]
× ni j +

ρi j(ui j · ni j)

ai j

[
(ui − u j) · ni j

]
ui j (b)

+
[
pi + p j + θi jρi jai j(ui − u j) · ni j

]
ni j

}
= 0

(168)

with θi j = θ(Mi j) := min(Mi j, 1) and Mi j =
|ui j|
ai j

. The difference between (167) and (168) is only in the last

term of the left hand side of (167)(b) and (168)(b).
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B.3. Dimensionless version of the all Mach Roe scheme in the barotropic and subsonic case

The dimensionless version of (168) is obtained by replacing in (168) pi, p j and ai j respectively by

pi/M
2, p j/M

2 and ai j/M where M is an order of the local Mach number Mi j. This gives



d

dt
ρi +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{

(ρiui + ρ ju j) · ni j + M
ρi j

ai j

(ui j · ni j)(ui − u j) · ni j +
ai j

M
(ρi − ρ j)

}
= 0,

d

dt
(ρiui) +

1

2|Ωi|
∑

Γi j⊂∂Ωi

|Γi j|
{
ρi(ui · ni j)ui + ρ j(u j · ni j)u j +

ai j

M
(ρi − ρ j)

[
ui j + (ui j · ni j)ni j

]

−ρi j|ui j · ni j|
[
(ui − u j) × ni j

]
× ni j + M

ρi j(ui j · ni j)

ai j

[(ui − u j) · ni j]ui j

+

[
1

M2
(pi + p j) +

θi j

M
ρi jai j(ui − u j) · ni j

]
ni j

}
= 0

(169)

with θi j = θ(Mi j) := min(Mi j, 1) and Mi j = M
|ui j|
ai j

.
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