Cell polarisation model : the 1D case - Archive ouverte HAL
Journal Articles Journal de Mathématiques Pures et Appliquées Year : 2014

Cell polarisation model : the 1D case

Abstract

We study the dynamics of a one-dimensional non-linear and non-local drift-diffusion equation set in the half-line, with the coupling involving the trace value on the boundary. The initial mass M of the density determines the behaviour of the equation: attraction to self similar profile, to a steady state of finite time blow up for supercritical mass. Using the logarithmic Sobolev and the HWI inequalities we obtain a rate of convergence for the cases subcritical and critical mass. Moreover, we prove a comparison principle on the equation obtained after space integration. This concentration-comparison principle allows proving blow-up of solutions for large initial data without any monotonicity assumption on the initial data.
Fichier principal
Vignette du fichier
hal_LMM.pdf (206.96 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00776613 , version 1 (16-01-2013)

Identifiers

Cite

Thomas Lepoutre, Nicolas Meunier, Nicolas Muller. Cell polarisation model : the 1D case. Journal de Mathématiques Pures et Appliquées, 2014, 101 (2), pp.152--171. ⟨10.1016/j.matpur.2013.05.006⟩. ⟨hal-00776613⟩
540 View
309 Download

Altmetric

Share

More