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Abstract— In this paper we address the class of anti-uniform Huffman (AUH) codes, named also 

unary codes, for sources with finite and infinite alphabet, respectively. Geometric, quasi-geometric, 

Fibonacci, exponential, Poisson, and negative binomial distributions lead to anti – uniform sources 

for some ranges of their parameters. Huffman coding of these sources results in AUH codes. We 

prove that as result of this encoding, in general, sources with memory are obtained. For these 

sources we attach the graph and determine the transition matrix between states, the state 

probabilities and the entropy. If c0 and c1 denote the costs for storing or transmission of symbols “0” 

and “1”, respectively, we compute the average cost for these AUH codes.  

 

Keywords: Huffman coding, average codeword length, average cost, entropy. 

 

1. Introduction 

Let 1 2( , , , )np p p  be the probability distribution of a n messages source 

1 2{ , , , }n ns s s   . It is well known that the Huffman encoding algorithm [1] produces an optimal 

binary prefix-free code for n . A binary Huffman code is usually represented by a binary tree, 

whose leaves correspond to the source messages. The two edges emanating from each intermediate 

tree node (father) are labeled either 0 or 1. For related literature on Huffman coding and Huffman 
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trees, we refer the reader to [2]–[6]. The length between the root and a leaf is the length of the 

binary codeword associated with the corresponding message.  

Assuming that , 1,2,...,iv i n , is the codeword representing the message is , we denote the 

length of iv  by il . The optimality of Huffman coding implies that i jl l , if i jp p .  

Anti uniform Huffman (AUH) codes were firstly introduced in [7]. A Huffman code 

representing a finite source n  satisfying 1 2 ... 0np p p     is an anti-uniform code, if 

, 1,2,..., 1il i i n    and 1n nl l  . A source n  having an anti-uniform Huffman code is called an 

anti-uniform source. These sources were extensively analysed, concerning bounds on average 

codeword length, entropy and redundancy for different types of probability distribution [7]-[9]. The 

AUH sources appear in a wide variety of situations in the real world, because this class of sources 

have the property of achieving minimum redundancy in different situations and minimal average 

cost in highly unbalanced cost regime [10]-[12]. These properties determine a wide range of 

applications and motivate us to study these sources from an information theoretic perspective. One 

example is the telegraph channel with the alphabet {. -} in which dashes are twice as long as dots 

[13]. Another is the {a, b} run – length – limited codes used in magnetic and optical storage, in 

which the binary codewords are constrained so that each 1 must be preceded by at least a, and at 

most b, 0’s [14]. The binary Huffman codes, constrained so all codewords must end in a 1, are used 

for group testing and self-synchronizing codes [15, 16]. As another example, binary codes whose 

codewords contain at most a specified number of 1’s are used for energy minimization of 

transmissions in mobile environments [17]. AUH sources can be generated by several probability 

distributions. It has been shown that geometric, quasi-geometric, Fibonacci, exponential, Poisson 

and negative binomial distributions lie in the class of AUH sources for some regimes of their 

parameters [7], [18], [19], [20]. Related topic was addressed in [21], where the authors studied 

weakly super increasing (WSI) and partial WSI sources in connection with Fibonacci numbers and 

golden mean, which appeared extensively in modern science and, in particular, have  applications in 

coding and information theory.   
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The rest of the paper is organized as follows. In Section 2 we present the Huffman encoding 

of an anti–uniform source and the graph of the source with memory resulting by binary Huffman 

encoding of AUH sources. We show that, in general, employing Huffman coding, a source with 

memory results. The entropy and the average cost of the code are also derived. In Sections 3 we 

compute the code entropy, as well as the average cost for AUH codes corresponding to sources with 

geometric, quasi-geometric, Fibonacci, exponential, Poisson and negative binomial distributions, 

respectively. Finally, we conclude the paper in Section 4.   

 

2. Entropy and average cost of AUH codes 

Let us consider a discrete and memoryless source, characterized by the distribution: 

1 2

1 2

: n
n

n

s s s

p p p


 
 
 




,                                                     (1) 

1 2 ... np p p                                                             (2) 

1

1
n

i
i

p


                                                                      (3) 

If [7] 

2

, 1 3
n

k i
k i

p p i n
 

    ,                                                       (4) 

the source becomes anti-uniform. 

After a binary Huffman encoding of the source with the distribution in (1) that fulfils (4), the 

graph in Fig. 1 is obtained.  
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Fig. 1. The graph of binary Huffman encoding for the source n  with distribution in (1) 

The structure of codewords resulting from binary Huffman encoding is: 
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The length il of the codeword associated with the message is  is the number of edges on the 

path between the root and the node is  in the Huffman tree. 

, 1,2,..., 1il i i n                                                              (5) 

1n nl l                                                                   (6) 

The average codeword length is determined with  

1

1 1

( 1)
n n

n i i i n
i i

l p l ip n p


 

     .                                                (7) 
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In Fig. 1 , 1,2,..., 2n is i n    denote the intermediate nodes in the graph, also called parents. 

The probability of a parent is obtained as the sum of the two sibling probabilities. Denoting by n ip   

the probabilities of intermediate nodes, we have 

; 1,2,..., 2
n

n i k
k n i

p p i n
 

                                                        (8) 

For a sequence of messages si the source delivers a string of binary symbols from the code alphabet 

0 1{ 0, 1}X x x   . As the probabilities of symbols in the binary string depend on the node from 

which they are generated, the set X, which is the output bitstream obtained as result of binary 

Huffman coding is a source with memory.  

 When a terminal node , 1,2,...,is i n  is reached, the source n will deliver another message 

and the source with memory X will generate another string of binary symbols.  

 The graph attached to the source with memory X can be obtained from the Huffman 

encoding graph in Fig. 1, as follows: 

a) We link the terminal nodes with the graph root; 

b) The branches between succesive nodes have the probabilities equal to the ratio between the 

probability of the node in which the branch ends and the probability of the node from which it 

starts, excepting the branches linking the terminal nodes with graph root, whose probabilities are 

equal to unity; 

c) Each terminal node , 1,2,...,is i n , or intermediate ones , 1,2,..., 2n is i n   , (excepting the 

root of the encoding graph) will represent the states , 1,2,...,2 2iS i n  , of the souce with memory 

X. The set of these states is denoted by 1 2 2 2{ , ,..., }nS S S S   The graph of the source X is shown in  

Fig. 2. 
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Fig. 2 The graph of the source with memory X 

The transition probabilities from the state Si, in the state Sj, that is, ( | )j ip S S , is equal to the 

probability of the branch between the node Si and the node Sj. When the source enters the state Sj 

from the state Si, it generates either the symbol 0 0x  , or 1 1x  . Therefore, the probability of 

delivering the symbol , 0,1jx j  , from the state Si is the same as the probability to reach the state Sj, 

starting from the state Si, that is: 

1 1 1( | ) ( | ) , 1,2,...,i ip x S p S S p i n                                                      (9) 

0 2 2
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i n i k
k
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                                             (10) 
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p


  

 

   


                                   (11) 

1
0 1( | ) ( | ) , 1,2,..., 2

n

k
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k
k n i

p
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  
   

 

   



                              (12) 

Considering (9), (10), (11) and (12) as well as the graph in Fig. 2, the transition matrix between 

states is: 
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where the entries of the matrix T are tij=p(Sj|Si). 

Let , 1,2,..., 2 2  i i n , denote the stationary state probabilities of the source with memory. They 

can be determined by means of [22] 

1 2 2 2 1 2 2 2[ , ,..., ] [ , ,..., ]Tn n                                                     (14) 

2 2

1

1
n

i
i






                                                            (15) 

Considering (7) and (13), from (14) and (15) we obtain the state probabilities as: 

, 1,2,...,i
i

n

p
i n

l
                                                        (16) 

1
, 1,2,..., 2

n

n i k
k n in

p i n
l

 
 

                                                   (17) 

Generally, the entropy of the source with memory is computed by [23] 

   
2 2 2

1 1

( ) log
n

i j i j i
i j

H X p x S p x S


 

                                             (18) 

where i  are given in (16) and (17) and  j ip x S  are given in (9), (10), (11) and (12).  
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Let 0c  and 1c  be the costs of storing or transmission of symbols “0” and “1”, respectively, 

resulted after the binary Huffman encoding of source n . The average cost is determined by [9] 

 0 0 1 1
1

( ) ( )
n

i
i

C p n i c n i c


  ,                                                   (19) 

where 0 ( )n i and 1( )n i  denote the number of 0’s and 1’s in the codeword ic . 

Considering the structure of codewords for AUH sources, (5) and (6), the average cost is 

 0 1 0
1

( 1) ( 1)
n

i n
i

C p i c c n c p


                                                  (20) 

 

3. Case studies for distributions leading to AUH sources 

For all distributions we considered, we are interested to found out the condition imposed to 

the source parameter so that it is AUH, to derive the code entropy and the average cost.  

 

3.1. AUH sources with geometric distribution 

Let there be a discrete source characterized by the geometric distribution: 

1 2 3
2 1

1 2 3

:
1 (1 ) (1 ) (1 )

n
n n

n

s s s s

p p p p p p p p p p p
 

 
         




,               (21) 

In this case the source is not complete, because  

1

1
n

n
i

i

p p


  .                                                     (22) 

To form a complete source, we normalize the probabilities pi in (21), resulting the complete 

source with distribution:  

1 2 3

2 1

1 2 3

: 1 (1 ) (1 ) (1 )

1 1 1 1

n
norm n
n

nn n n n

s s s s

p p p p p p p
p p p p

p p p p

 

 
 

            




                      (23) 

For this source to become AUH, relation (4) is required to be fulfilled. Replacing the 

probabilities from (23) in (4), we have [18]: 
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5 1
0

2
p


                                                            (24) 

The average codeword length results by replacing the probabilities pi from (23) into (7).  

1 11
1 ( 1) ( 1)

(1 )(1 )
norm n n n
n n

l p n p n p
p p

         
                                 (25) 

Theorem 

The entropy and the average cost of the source with memory resulted by binary encoding of the 

AUH source with Poisson distribution are determined by: 

11 1 ( 1)
( ) log(1 ) log(1 ) log

(1 )(1 )

n n
n

n nnorm
n

np n p
H X p p p p

p pl

   
        

                        (26) 

1
1

0 1

1 1 ( 1)
(1 )

1 1

n n
n

n n

np n p
C p c pc

p p


   

     
                                    (27) 

Proof 

The stationary state probabilities are obtained by replacing the probabilities pi from (23) into (16) 

and (17), and considering (25): 

1

1 1

(1 )
, 1,2,...,

(1 )

(1 )
, 1,2,..., 2

(1 )

i

i n norm
n

n i i

n i n norm
n

p p
i n

p l

p p
i n

p l







  




  

 


     

                                               (28) 

The probabilities to deliver the symbol 0 0x   and 1 1x  , from the states , 1,2,...,2 2iS i n  , result 

by replacing the probabilities pi from (23) into (9) – (12): 

  

1

1

0

1 1

0 1

1
( | ) , 1,2,...,

1

(1 )
( | ) , 1,2,...,

1

1
( | ) , 1,2,..., 2

1

(1 )
( | ) , 1,2,..., 2

1

i n

n

i n

n i i

i

n i i

p
p x S i n

p

p p
p x S i n

p

p
p x S i n

p

p p
p x S i n

p



 

 

    


   
   



     

                                        (29) 

Substituting (28) and (29) into (18), the relation (26) results.  
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Substituting (23) into (20), the relation (27) results.  

When the number of messages, n, of the source n increases, at limit, when n  ,we have 

1

1
l

p
 


                                                                 (30) 

( ) log (1 ) log(1 )     H X p p p p                                            (31) 

0 11

p
C c c

p
  


                                                           (32) 

 

3.2. AUH sources with quasi-geometric distribution 

Let there be a discrete source characterized by the quasi-geometric distribution: 

1 2 3 1

1 2 3 12 2 2

:
1

2 2 2 2

n n

n

n nn n

s s s s s

p p p p
p p p p p p




  

 
 
       
 




,                        (33) 

Following similar procedures as in the previous case, we get: 

- The range for the source parameter for the source to be AUH  

2
0

3
p  .                                                                   (34)  

- The average codeword length  

2

3

2 1
1

2

n

n n
l p






                                                                (35) 

- The entropy of the source with memory X 

1 1

1 1

(1 ) log(1 ) [1 ( 1) ] log
( )

1 ( 1) ( 1)

n n n

n n n n

p p np n p p p
H X

p n p n p

 

 

     
 

    
                            (36) 

- The average cost of the source with memory X 

1 2
1 0

2

(2 1) (2 )

2

n n

n n

pc p c
C

 



  
                                              (37) 

When n , we have 

1
( ) [(1 )log(1 ) log 2 ]

1 2
H X p p p p p

p      


                                  (38) 
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1 02C pc c                                                                  (39) 

In the special case, when 
1

2
p , the source n  becomes dyadic one. In this case X becomes 

memoryless and then: 

1
( | ) , 0,1; 1,2,...,2 2

2j ip x S j i n    ,                                      (40) 

2

1
2

2
dn n

l                                                                 (41) 

( ) 1dnH X                                                                (42) 

1
1 0

1

(2 1)( )

2

n

dn n

C C
C





 
                                                       (43) 

Imposing n  in (41) and (43), we have 

2dl                                                                 (44) 

0 1dC c c                                                           (45) 

 

3.3. AUH sources with Fibonacci distribution 

 Let there be a discrete and finite AUH source characterized by the Fibonacci distribution 

1 2 2 1

1 2 2 1 1
1 2 2 1

1 1 1 1 1

:
n n n

n n n
n n n

n n n n n

s s s s s

f f f f f
p p p p p

f f f f f


 

 
 

    

 
 
      
 




                 (46) 

where nf  is the nth Fibonacci number defined as 

1 2

1 2

1

, 3 

  
   n n n

f f

f f f n
                                                  (47) 

The source n  is also AUH, because relation (4) is fulfilled. 

- The average codeword length  

3

1

3n
n

n

f
l

f





                                                               (48) 
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- The entropy of the source with memory X 

1
1

1
13 3

1
( ) log log

3 3





 

 
  

n
n

n n i i
in n

f
H X f f f

f f
                                     (49) 

- The average cost of the source with memory X 

1 1 2
0 1

1 1

n n
n

n n

f f f
C c c

f f
 

 


                                               (50) 

 

3.4. AUH sources with exponential distribution 

The density probability function of exponential distribution is 

, 0
( , )

0, 0




 
 



xe if x
f x

if x
                                                          (51) 

We define the cumulative density function  

( ) 1   iF i e ,                                                              (52) 

and the probabilities 

( 1)( ) ( 1) (1 )       i
ip F i F i e e .                                            (53) 

Let us consider the source n with exponential distribution 

1 2 1
( 2) ( 1)

1 2 1 1

:
1 (1 ) (1 ) (1 )

n n
n n n

n n

s s s s

p e p e e p e e p e e       
        

 

 
         




  (54) 

- The range for the source parameter for the source to be AUH [8] 

5 1
ln

2


 
   

 
                                                   (55) 

- The average codeword length  

( 1) ( 1)1
1 ( 1) ( 1)

(1 )(1 )
norm n n n
n n

l e n e n e
e e

  
 

    
 

        
                          (56) 

- The entropy of the source with memory X 

( 1)1 1 ( 1)
( ) log(1 ) log(1 ) log

(1 )(1 )

n n
n

n nnorm
n

ne n e
H X e e e e

e el

 
  

  
  

  
 

   
        

                  (57) 
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- The average cost of the source with memory X 

( 1)
( 1)

0 1

1 1 ( 1)
(1 )

1 1

n n
n

n n

ne n e
C e C e C

e e

 
 

 

  
  

 

   
     

                                    (58) 

When n , we have 

log
( ) (1 ) log(1 )

1

e e
H X e e

e

 
 



 
 

 

 
      

                                 (59) 

0 11

e
C c c

e







  


                                                      (60) 

0

1
( 1) (1 )

1
k

k

l k e e
e

 



 

 


   
 .                                                (61) 

 

3.5 AUH sources with Poisson distribution 

Let there be a discrete source with infinite alphabet, characterized by Poisson 

distribution: 

0 1 2

2

0 1 2

:

1! 2! !

n

n
n

n

s s s s

p e p e p e p e
n

   
      

 
 
     
 




,                        (62) 

- The range of the parameter for the source to be AUH [18] 

1                                                                           (63) 

- The average codeword length  

1l    .                                                                      (64) 

The entropy of the source with memory X 

1

1
( ) log log log( !)

1 !

n

n

H X e e n
n

   








 
     

                                 (65) 

The average cost of the source with memory X 

0 1C c c                                                                     (66) 
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3.6. AUH sources with negative binomial distribution 

Let there be a discrete source with infinite alphabet, characterized by the negative binomial 

distribution: 

0 1 2
1 1 1 2 1

0 1 1 2 1 1

: n
n r r r r r r r r n

r r r n r n

s s s s

p C p p C p q p C p q p C p q


   
   

 
 

    




,       (67) 

where q=1-p. 

- The average codeword length  

1
1

0

( 1) r r n
r n

n

rq p
l n C p q

p




  



   .                                            (68) 

The entropy of the source with memory X 

1 1
1 1

1

( ) log log logr r k r
r n r n

n

p qr
H X r p q p C q C

rq p p


 

    


 
      

                                   (69) 

The average cost of the source with memory X 

0 1

qr
C c c

p
                                                                    (70) 

7. Conclusions 

In this paper we have considered the class of AUH sources with finite and infinite alphabets. 

Performing a binary Huffman encoding of these sources, we show that sources with memory result. 

For these sources we build the encoding graph and the graph of the source with memory X. The 

graph of the source with memory is obtained from the encoding graph by linking the terminal nodes 

with the graph root. The states of the source with memory correspond to the terminal or 

intermediate nodes in the encoding graph, excepting the root. We determined in the general case the 

state probabilities of the source with memory, as well as the transition probabilities between states.  

The entropy of this source with memory is computed. We assumed the costs c0 and c1 for the 

symbols “0” and “1”, respectively, and compute the average cost for these Huffman codes. 

Obviously, the Huffman encoding procedure assures minimum average length, but the average cost 

is not minimum. It can be easily verified that if the costs of symbols “0” and “1” are equal to unity, 
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the average cost becomes equal to the average length. We applied the results for several AUH 

sources with geometric, quasi-geometric, Fibonacci, exponential, Poisson and negative binomial 

distributions. We have also analyzed the limit cases, when the source alphabet increases unlimited, 

that is, n  .  
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