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We present a simplified model of the mechanical behavior of large arrays of cantilevers in the dynamic operating regime. The supporting base is assumed 
to be elastic thus cross-talk effect between the canti-levers is taken into account. Beforehand, the model has been mathematically justified starting from a 
thin plate model, using the two-scale approximation theory issued from homogenization theory and taking into account the strong heterogeneities of the 
system. The resulting model is not standard, so in this paper dedicated to its verification, we focus on some of its features in particular those related to the 
structure of its eigenmodes by both a qualitative and a quantitative analysis.

1. Introduction

Cantilever arrays are used in a variety of application [1–4]

including arrays of Atomic Force Microscope (AFM) as the

Millipede from IBM dedicated to data storage [5]. Their direct

numerical simulation, based on classical methods like Finite

Element Methods (FEM), is prohibitive for today’s computers, at

least in a time compatible with the time constraints of a designer.

The group of Bamieh has published a model of arrays of cantilevers

[6] which takes into account electrostatic coupling between canti-

levers and which derivation is based on purely phenomenological

arguments. Besides, one of the authors has published a model for

arrays AFMs in the elastostatic regime [7] and preliminary results

for modeling their elastodynamic regime [8]. Both models are built

by a rigorous mathematical approach based on an asymptotic

method related to one of those used in the homogenization theory,

see Refs. [9–11]. The derivation combines the concept of two-scale

convergence (also called the unfolding method) together with this

of strongly heterogeneous media to take into account the large dif-

ference between stiffness of the frame and this of the cantilevers

having relatively large local motions. This type of two-scale mod-

eling used for arrays of moving parts is not standard so that before

use, one must check its validity because its mathematical justifica-

tion alone cannot guarantee its relevance.

The main expected advantage of this two-scale model is that it

should require little computing resources compared to classical

simulations. In fact, we observe that using this model yields a very

significant speedup of the computation, which is even true for

large matrices. This point will not be much discussed along the

paper which is focused on the approximation problem and not

on the computation performance. Here, the presentation focuses

first on special qualitative properties of the model and of its solu-

tions from the point of view of the modal structure. In particular,

investigations have been conducted to understand how the eigen-

modes of the microstructures (the cantilevers) and those of the

macrostructure (the base) are similarly organized in the two-scale

model and in a finite element model of the three-dimensional elas-

ticity problem. In addition to quantitative observations we provide

an analysis based on quantitative comparisons that allows to point

out some strengths and weaknesses of the two-scale model. In the

same way that the mathematical method of derivation is quite

general, we believe that the conclusions we draw for cantilever

arrays are in fact more general and could apply to other arrays of

micro and nanosystems.

The rest of the paper starts with the two-scale model statement

in Section 2, followed by Section 3 that explains some features of

the modal structure of the two-scale model. Finally, the compari-

son with the finite element model are detailed in Section 4.

2. The two-scale model of cantilever arrays

2.1. Geometry of the problem

We consider a one-dimensional array of cantilevers, see Fig. 1a.

It is comprised of a rectangle parallelepiped base crossing the array

in the x1 direction which is clamped to its ends and in which rect-

angle parallelepiped cantilevers are fixed. Concerning the un-

clamped end of cantilevers, two cases are considered, one for

free ends and one for ends equipped with tips as in Atomic Force

Microscopes.
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The array is a mere periodic repetition of a same cell in the

direction x1. We assume that the number N of cells is sufficiently

large in a sense to be specified in the next Section. Note that along

the paper the superscripts B and C are referring to base and to

cantilevers.

2.2. Two-scale approximation

We introduce the parameter e⁄ = a/N inversely proportional to

N, proportional to a parameter adefined hereafter, and assumed

to be sufficiently small. Each point of the three-dimensional space,

with coordinates x = (x1,x2,x3), is decomposed as x = xc + �y, where

xc represents the coordinates of the center of the cell to which x

belongs, � ¼
e� 0 0
0 e� 0
0 0 1

0

@

1

A, and y = ��1(x � xc) is an expanded

relative position of x with respect to xc. Points with coordinates y

vary in the so-called reference cell, see the two-dimensional view

on Fig. 1b, that is obtained through a translation and the dilation

��1 of any current cell in the array.

We consider the distributed field u(x) of elastic deflections in

the array and we introduce its two-scale transform defined by

ûeðx1; yÞ ¼ uðxc þ �yÞ;

for any x = xc + �y which is constant, with respect to its first variable

x1 over each cell. Since it depends on the ratio e⁄, then it may be

approximated by an asymptotic field, denoted by u0, obtained for

a large number N of cells or equivalently when e⁄ approaches

(mathematically) 0

ûe ¼ u0 þ Oðe�Þ;

where O(e⁄) is a function tending to zero when e⁄ vanishes. The

approximation u0 is called the two-scale approximation of u. In gen-

eral the partial function x1´ u0(x1,.) is continuous unlike x1#ûe

which is piecewise constant.

Now, we consider that the field of elastic deflections u is a solu-

tion of the Love–Kirchhoff thin elastic plate equation in the whole

mechanical structure, including the base and the cantilevers. We

assume that the ratio of cantilever thickness hC to base thickness

hB is sufficiently small, namely

hC

hB
¼ ðe�Þ4=3: ð1Þ

This assumption implies that the ratio e⁄4 of cantilever stiffness to

base stiffness is sufficiently small. It is under this special choice that

the asymptotic model constitutes an approximated model for thin

cantilevers with relatively large displacements (but still in the

framework of linear elasticity) acting on the base in a nonnegligible

manner. Formula (1) defines also a ¼ N hC
hB

� �3=4

: The asymptotic anal-

ysis shows that u0 does not depend on the cell variable y in the base

and so depends only on the spatial variable x1.

Next, we remark that u0(x1,y) is a two-scale field, and therefore

cannot be directly used as an approximation of the field u(x) in the

actual array of cantilevers. So, an inverse two-scale transform is to

be applied to u0. However, we remark that x1´ u0(x1,y) is contin-

uous, and so u0 does not belong to the range of the two-scale trans-

form operator and it has no pre-image. Hence we introduce an

approximated inverse of the two-scale transform, vðx1; yÞ#�vðxÞ;

in the sense that for any sufficiently regular one-scale function

u(x) and two-scale function v(x1,y),

�̂u ¼ uþ Oðe�Þ and �̂v ¼ v þ Oðe�Þ:

Several choices are possible for �vðxÞ, we define it only for functions

v which restriction v
B to the base is independent of the variable y.

Introducing the relative function v
C(x1,y) = v(x1,y) � v

B(x1), the

function �v is defined by

�vðxÞ ¼ v
Bðx1Þ in the base and �vðxÞ

¼ v
Bðx1Þ þ v

Cð:; ��1ðx� xcÞÞ
� �

x1
in each cantilever

where h:ix1 represents the average in x1over the width of a cantile-

ver. In total, we retain �u0 as an approximation of u in the actual

physical system. Note that for the model in dynamics, the deflection

u(t,x) is a time–space function. In our analysis we do not introduce a

two-scale transform in time, so the time variable t acts as a simple

parameter.

2.3. Model description

Now, we describe the model satisfied by the two-scale approx-

imation u0(t,x1,y) of u(t,x). Remark that as the deflection u in the

Kirchhoff–Love model is independent of x3, thus u
0 is independent

of y3. For further simplicity, we neglect cantilever torsion effect i.e.

the variations of y1´ u0(t,x1,y).We denote by LB and LC⁄ the length

of the base and the length of the cantilevers scaled by e⁄ so the

approximated model is posed in the rectangle X = {(x1,y2) 2 (0,LB)

� (0,LC⁄)}, filled by an infinite number of cantilevers, see Fig. 2.

Fig. 1. Top view of (a) the cantilever array (b) a unit cell.

Fig. 2. The macroscale domain in x1 and the microscale domain in y2 reshaped in a

single domain.
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Thus, the cantilever motion is governed by a classical

Euler–Bernoulli beam equation, in the microscopic variable y2,

mC@2
ttu

0 þ rC@4
y2 ...y2

u0 ¼ f C ;

with rC = e⁄�4‘C⁄ECIC, where ‘C⁄ is the scaled width of the cantilevers,

mC is a linear mass, EC the cantilever elastic modulus, IC the second

moment of cantilever section, and fC a load per unit length in the

cantilevers. This model represents the motion of an infinite number

of cantilevers parameterized by x1. The base deflection are solution

to the Euler–Bernoulli equation in the macroscopic variable x1
posed on the lower boundary y2 = 0 of X,

mB@2
ttu

0 þ rB@4
x1 ...x1

u0 ¼ �d
B
@3
y2 ...y2

u0
jjunction þ f B;

with rB = EBIB, where mB, EB, IB, dB and fB are a linear mass, the base

elastic modulus, the second moment of section of the base, a

cantilever-base coupling coefficient and the load per unit length

in the base. The term �d
B
@3
y2 ...y2

u0
jjunction is a distributed load

originating from shear forces exerted by cantilevers on the base at

base-cantilever junctions. In the model, the cantilevers appear as

clamped in the base. So at the base-cantilever junctions,

u0
jcantilever ¼ u0

jbase andð@y2u
0Þjcantilever ¼ 0; ð2Þ

because @y2u
0 ¼ 0 in the base. The equations of the free ends are

@2
y2y2

u0 ¼ @3
y2y2y2

u0 ¼ 0; ð3Þ

and those of the ends equipped with a rigid part (usually a tip in

Atomic Force Microscopes) are

JR@2
tt

u0

@y2u
0

 !

þ rC
�@3

y2y2y2
u0

@2
y2y2

u0

 !

¼
f R3

FR
3 þ FR

2

 !

at junctions between elastic parts and rigid parts. Here, JR is a ma-

trix of moments of the rigid part about the junction-plane, f R3 is a

load in the y3 direction, F
R
3 is a first moment of loads about the junc-

tion-plane, and FR
2 the first moment of loads in the y2 direction

about the beam neutral plane. Finally, the base clamping conditions

are

u0 ¼ @x1u
0 ¼ 0: ð4Þ

The loads fC, fB and fR in the model are some asymptotic loads which,

in general, cannot be built from the physical problem. In a practical

computation, they are simply replaced by the two-scale transforms
^f C ;^f B and ^f R.

3. Structure of eigenmodes

There is a countable infinite number of eigenvalues kA and

eigenvectors uA(x1,y2) associated to the model which equation

has been stated in [8]. For convenience, we parameterize them

by two independent indices i and j, both varying in the infinite

countable set N. The first index i refers to the countable infinite

set of eigenvalues kBi and eigenvectorsuB
i ðx1Þ of the Euler–Bernoulli

beam equation associated to the base. The eigenvalues kBi
� �

i2N
con-

stitutes a sequence of positive number increasing towards infinity.

At each such eigenvalue corresponds another eigenvalue problem

associated to cantilevers, which has also a countable infinity of

solutions denoted by kCij and uC
ijðy2Þ. The index i of kBi being fixed,

the sequence kCij

� �

j2N
is a positive sequence increasing towards

infinity. For any fixed j, the sequence kCij ;u
C
ij

� �

i2N
converges to an

eigenelement of the clamped-free cantilever model when kBi (or

equivalently i) increases. Finally, we have proved that the eigen-

values kAij of the model are proportional to kCij , and that each eigen-

vector uA
ijðx1; y2Þ is the product of a mode in the base by a mode in

the cantilevers uB
i ðx1Þu

C
ijðy2Þ.

4. Model verification

4.1. Qualitative properties of the modal structure of cantilever arrays

We consider a one-dimensional silicon array of N = 10 cantile-

vers, with base dimensions 500 lm � 16.7 lm � 10 lm, and canti-

lever dimensions 41.7 lm � 12.5 lm � 1.25 lm so a = 2.1, see

Fig. 3 for the two possible geometries, with or without tips. Then,

for arrays of 15 and 20 cantilevers, only the cantilever width is

changed so that to keep the same characteristic values of kAij; as it

is seen in Fig. 4.

We have carried out our numerical study on both cases, but we

limit the following comparisons to cantilevers without tips, be-

cause configuration including tips yields comparable results.

We restrict our attention to a finite number nB of eigenvalues kBi
in the base. Computing the eigenvalues kA, we observe that they

are grouped in bunches of size nB accumulated around a

clamped-free cantilever eigenvalues. A number of other eigen-

values are isolated far from the bunches. It is remarkable that the

eigenelements in a same bunch share a same cantilever mode

shape even if they correspond to different indices j as discussed

in the special case of a 10-cantilever array. This is why, these

modes will be called ‘‘dominated by cantilever modes’’. Isolated

eigenelements share also a common cantilever shape, which looks

like a first clamped-free cantilever mode shape excepted that the

clamped side is shifted far from zero. The induced global mode

uA is then dominated by base deformations and therefore will be

called ‘‘dominated by base modes’’. Densities of square root of

eigenvalues are reported in the sub-Figs. 2, 4 and 61 of Fig. 4 for

nB = 10,15 and 20 respectively. These figures show three bunches

with size nB and isolated modes that remain unchanged.

We discuss the comparison with the modal structure of the

three-dimensional linear elasticity system for the cantilever array

discretized by a standard Finite Element Method. The eigenvalues

of the three-dimensional elasticity equations constitute also an

increasing positive sequence that accumulates at infinity. As for

the two-scale model, its density distribution exhibits a number

of concentration points and also some isolated values. Here bunch

sizes equal the number N of cantilevers, see sub-figs. 1, 3 and 5 in

Fig. 4 representing eigenmode distributions for N = 10, 15 and 20.

Extrapolating this observation shows that when the number of

cantilevers increases to infinity bunch size increases proportion-

ally. Since the two-scale model is an approximation in the sense

of an infinitely large number of cantilevers, this explains why the

two-scale model spectrum exhibit mode concentration with infi-

nite number of elements. This remark provides guidelines for oper-

ating mode selection in the two-scale model. In order to determine

an approximation of the spectrum for an N-cantilevers array, we

suggest to operate a truncation in the mode list so that to retain

a simple infinity of eigenvalues kAij

� �

i¼1;...;Nand j2N
: To conclude with

the qualitative observation, we have remarked that the missing

eigenmodes in the two-scale model correspond to physical effects

not taken into account in the two Euler–Bernoulli models for the

base and the cantilevers.

4.2. Quantitative verifications

The presentation is focused on the case of a 10-cantilever silicon

array, i.e. for N = 10. The results relate to the first 40 modes in the

FEM model and to the eigenelements kAij;u
A
ij

� �

for i 2 {1, . . . ,10}

1 Sub-figures are counted from top to down.
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and j 2 {1,2,3}, the latter being listed in Table 1. Note that the com-

putation time is 0.76s for the modes of the two-scale model imple-

mented in a nonoptimized MATLAB� code versus 88.14s for the

finite element modes using COMSOL� with 20,859 quadratic

elements with a regular laptop. We stress the fact that the

N-eigenvalue bunches are not corresponding to a single row in

Table 1 i.e. not corresponding to a single j. This is because themodes

dominated by the deformation of base are interposed between the

clusters of modes dominated by the deformations of cantilevers.

The counterpart in terms of base modes is that they follow each

other on consecutive columns but with possible line breaks.

To conduct a quantitative comparison of eigenvalues, it is re-

quired to match the modes of the two-scale model with those of

the finite element model. Because of the proximity of many eigen-

values, a tool like the conventional Modal Assurance Criterion

(MAC) is necessary to discriminate them, see [12]. For any couple

of an eigenvector uA from the two-scale model and the transverse

displacement component uref of an eigenvector from the FEM

model,

Table 1

List of log
ffiffiffiffiffi

k
A
ij

q
� �

of the two-scale model.

jni 1 2 3 4 5 6 7 8 9 10

1 14.44 15.38 15.51 15.51 15.51 15.51 15.51 15.51 15.51 15.51

2 15.54 15.61 16.16 16.65 17.05 17.31 17.34 17.35 17.35 17.35

3 17.36 17.36 17.36 17.36 17.37 17.43 17.69 17.93 18.15 18.33

Fig. 3. Cantilever array without tips (a) and with tips (b).

Fig. 4. Distributions of logð
ffiffiffiffiffi

k
A

p

Þ of the finite element and of the two-scale models.
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MACu ¼
uref T ;uA
D E	

	

	

	

	

	

2

uref T ;uref
D E	

	

	

	

	

	 uAT
;uA

D E	

	

	

	

	

	

;

it is equal to one if the shapes are identical and to zero when they

are orthogonal in the sense of the inner product h�,�i. Each subspace

of eigenvectors uref corresponding to a quasi-multiple eigenvalue is

rotated so as to optimize the MAC matrix. The results are in Fig. 5

where the modes uA are arranged in the order such that the index

i varies faster than the index j. The inner product is based on a sum

over 300 points distributed along six parallel lines in the base and

over 6 � 10 � N points along six lines in each cantilever. In both

cases the six lines are along the four edges and along the central

axes of the upper and lower faces and the points are regularly

spaced. The FEM computation has been carried out with 20,859 ele-

ments. All modes uref from the finite element model which are not

sufficiently correlated with a mode uA i.e. with a MAC lower than

0.5 are not considered for comparison because they correspond to

physical effects not modeled by the Euler–Bernoulli models. Some

modes uA seem to correlate well with several modes uref, like the

eigenmodes 2, 11 and 12 so an additional criterion for selection

should be applied. The most general method would be to add more

points in the inner product, but here it was enough to eliminate the

Fig. 6. Eigenmode shapes of (a) uA
1;1; (b) u

ref
1 , (c) uA

2;2 , (d) u
ref
13 .
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unwanted modes by comparing the magnitudes of eigenvalues.

Figs. 6a and b and 6c and d are two examples of paired modes using

this strategy. In Fig. 7a paired eigenvalues are represented and rel-

ative errors are plotted on Fig. 7b. Note that errors are far from

being uniform among eigenvalues. In fact, the main error source re-

sides in a poor precision of the Euler–Bernoulli model for represent-

ing base deformations in few particular cases. A careful observation

of Finite Element modes shows that base torsion can be predomi-

nant for some modes, such as in the first mode of the first cantilever

mode bunch.

In Fig. 7a, the distinction between the base modes and the can-

tilever modes is also marked. Their distinction could be done from

the ratio of the amplitudes of deformation in the base and in the

cantilevers. An equivalent way is to use the sensitivities with re-

spect to characteristic parameters of the two modes of deforma-

tions. To find the influential parameters, the sensitivities of the

model through parameter variations is established using a first-or-

der finite difference method applied to the eigenvalues. The results

are presented in Fig. 8 where all parameters have been tested, i.e.

the Young’s modulus, the volume mass, the thicknesses, the

lengths and the widths.

Their values are denoted by E, q, hB, LB, lB, hC, LC, and lC where the

superscripts B and C stand for base and cantilevers. The eigen-

values are mainly sensitive to the thickness hB of the base, to the

length LC of the cantilevers, and for a lesser extent to the thickness

hC of the cantilevers. Most of the eigenvalues are sensitive to only

one of the two parameters hB or LCthen they can be identified as a

base mode or as a cantilever mode. The cantilever modes are

clearly organized in clusters of N = 10 modes separated by base

modes. At their interfaces somemodes are almost equally sensitive

to base and to cantilever parameters, they are referred as mixed

mode in Fig. 9. However, for simplicity they are considered as base

modes in Fig. 7. To illustrate the distinction between the three kind

of modes, the Fig. 9a and c present a base mode and a cantilever

mode when the Fig. 9b and d show two mixed modes.

5. Conclusion

A two-scale model of cantilever arrays in dynamic regime has

been presented. Its derivation, previously carried out, uses a theory

of strongly heterogeneous homogenization in which the cantile-

vers play the role of soft parts. In the resulting model, only the

transverse displacement was retained. We analyzed it and com-

pared it to ordinary finite element simulations from the viewpoint

of modal structure. A special emphasis was placed on the

distinction between modes dominated by base deformation and

those dominated by cantilever deformation. We observe that this

concept can be met in various kind of arrays of coupled systems,

so the analysis methodology could be re-used in other applications.

Globally, the two-scale model and the direct finite element model

provide comparable results but some modes are not absolutely

correct. A possible way to improve the current model would be

to take into account the three mechanical displacements rather

than the transverse displacement only.
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