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Abstract—For the parametric identification of plant
growth models, we generally face limited or uneven
experimental data, and complex nonlinear dynamics.
Both aspects make model parametrization and uncer-
tainty analysis a difficult task. The Generalized Least
Squares (GLS) estimator is often used since it can
provide estimations rather rapidly with an appropri-
ate goodness-of-fit. However, the confidence intervals
are generally calculated based on linear approxima-
tions which make the uncertainty evaluation unreli-
able in the case of strong nonlinearity. A Bayesian ap-
proach, the Convolution Particle Filtering (CPF), can
thus be applied to estimate the unknown parameters
along with the hidden states. In this case, the pos-
terior distribution obtained can be used to evaluate
the uncertainty of the estimates. In order to improve
its performance especially with stochastic models and
in the case of rare or irregular experimental data,
a conditional iterative version of the Convolution
Particle Filtering (ICPF) is proposed. When applied
to the Log Normal Allocation and Senescence model
(LNAS) with sugar beet data, the two CPF related
approaches showed better performance compared to
the GLS method. The ICPF approach provided the
most reliable estimations. Meanwhile, two sources
of the estimation uncertainty were identified: the
variance generated by the stochastic nature of the
algorithm (relatively small for the ICPF approach)
and the residual variance partly due to the noise
models.

Keywords-Uncertainty analysis; Parameter estima-
tion; Particle filtering; Plant growth model; LNAS.

I. Introduction

Accurate parametrization of plant growth models is
known to be a critical issue particularly when these
models are used as predictive tools [1]. Likewise, the
use of genotype specific parameters in models can only
be of interest if we are able to determine significantly
different parameter values for different genotypes [2].
However, most parameters cannot be measured directly
or experimental protocols are heavy to implement [3]
which indicate delicate parametrization. Consequently,
some parameters have to be estimated from experimen-
tal data by model inversion. Such parameter estimation
for plant growth models is a complex process owing to

a number of their characteristics: nonlinear dynamics,
potentially with a large number of parameters, limited
and irregular experimental observations and uncertain
inputs (such as environmental data) [4]. Moreover, the
difficulty lies not only in the point estimation of multiple
unknown parameters of a complex dynamic model, but
also in the evaluation of the accuracy of the estimated
parameters. A confidence interval is commonly sought
with the estimation value to provide some additional
information concerning the reliability of the estimates.
However, because of the nonlinearity and the irregular
or rare measurements, although efforts have been made,
there exist no general theory and methods that are
capable of overcoming these difficulties properly.

In this context, the objective of this paper is to
compare the properties and performance of three param-
eter estimation methods along with their evaluation of
estimation accuracy, when applied to a typical nonlinear
plant model of which the parametric identification is
achieved from rare experimental data. The features of
these three methods were compared with the aim of
giving some new directions on the uncertainty estimation
of unknown parameters for plant growth model. The
three methods investigated in this paper are:

1) the classical Generalized Least Squares estimator
(GLS) broadly used in plant growth modelling
[5], with the 2-stage Aitken estimator [6], which
provides point estimation and an approximation
of the covariance matrix of parameter estimates;

2) a Bayesian approach, the Convolution Particle
Filtering (CPF) [7], which appears to outperform
many other classical particle filtering methods [8].
The interest of Bayesian approaches is that instead
of point estimation, they provide posterior distri-
bution for each unknown parameter, which can be
simplified to credibility interval characterizing the
accuracy of estimation;

3) the Iterative Convolution Particle Filtering (ICPF)
[9], which is a new method deriving from a
Bayesian framework, giving not only a point es-
timation of both parameters and hidden states,



but also an estimation of modelling noises. Con-
sequently, the bootstrap method [10] can be used
to evaluate the standard errors and confidence
intervals of the estimates.

In Section 2, we present in detail the three parameter
estimation methods. Then in section 3, the description
of a plant growth model of sugar beet is given, and
the results of model parameters estimated by the three
methods based on real measurements are presented. The
evaluation of the uncertainty of estimated parameters
is conducted. The results are finally discussed, and
perspectives are given towards a unifying framework for
parameter estimation of plant growth models.

II. Methods

Plant growth models or crop models are generally
written in a state-space form with deterministic dynam-
ics. In more rare cases, modelling and measurement
noises are introduced to build a stochastic model. In
both situations, several estimation approaches can be
used. In this paper, three suitable ones are applied.

A. State-space models

With the objective of parametric identification, it is
convenient to describe plant growth models as general-
ized discrete state-space models, with a state function
and an observation function:{

X(t+ 1) = ft+1 (X(t),Θ)
Y (t) = gt (X(t),Θ)

(1)

X(t) represents the state variables at time t, Θ is a
vector of parameters (of dimension p) and Y (t) is the
outcome vector that can be observed experimentally
and usually differs from X(t) (for example plant organ
masses can be observed experimentally while the daily
biomass production cannot).

As presented in the following paper, some estimation
methods can take advantage of a stochastic framework
describing model imperfections as noises (corresponding
to different sources of uncertainty). Modelling noises
are represented by the series of random variables (η(t))t
and measurement noises by (ξ(t))t. Generally the
variables are considered as independent and identically
distributed.{

X(t+ 1) = ft+1 (X(t),Θ, η(t))
Y (t) = gt (X(t),Θ, ξ(t))

(2)

For biological systems, experimental observations are
usually difficult to obtain, hence the system is only
observed at irregular times. Let (t1, t2, ...tN ) be the
N recording times. In the following paper, we denote:
Xn = X(tn) and Yn = Y (tn) for all n ∈ [1;N ]. We
also denote Z = (Y (t1) , Y (t2) , . . . , Y (tN )) the full
observation vector of full dimension m, given by all the
experimental data.

B. Generalized Least Squares Estimator

Generalized Least Squares estimation (GLS) is a clas-
sical method traditionally used when the measurement
errors have unequal variance or are correlated. Tradi-
tionally, the dynamics of the model is not taken into
account in the error model and only measurement errors
are considered. If we denote Z̃(Θ) the full outcome
vector of a deterministic model with parameter vector
Θ (as in the form (1)), and ε the measurement error
with additive assumption, we assume:

Z = Z̃(Θ) + ε

If Var(Z|Θ) = Σ is known, the GLS estimator is given
by:

Θ̂GLS = argminθ

(
Z − Z̃(Θ)

)T
Σ−1

(
Z − Z̃(Θ)

)
.

If the model is linear, Z̃(Θ) = AΘ with A a m×p matrix,
we can deduce (see for example [11]) that Θ̂GLS is a
Gaussian vector with variance:

Var
(

Θ̂GLS

)
=
(
ATΣ−1A

)−1
.

If the model is moderately nonlinear (see for example [12]
which gives some ways to characterize the nonlinearity
of plant growth models), an approximation is given by:

Var
(

Θ̂GLS

)
=

(
∂Z̃

∂Θ

(
Θ̂GLS

)t
Σ−1 ∂Z̃

∂Θ

(
Θ̂GLS

))−1

.

(3)
When Σ is unknown, the 2-stage Aitken estimator

[13] proposes a way to solve the problem. If Z can be
gathered into q groups, each of the error terms of in
group Zi (1 ≤ i ≤ q) has common unknown variance Θi,
Σ is thus assumed to be given by a diagonal matrix:

Σ =


α1IZ1

0 0 · · · 0
0 α2IZ2

0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 αq−1IZq−1
0

0 · · · 0 0 αqIZq


with Ik, the identity matrix of rank k. This method may
induce the rearrangement of the data in the Z̃ vector by
grouping the data of the same type.

From an algorithmic point of view, there are two
stages in the estimation process:
(1) αi is estimated in the first place as the variance of all
experimental data in group i to provide the first estimate
Σ̂(1) of Σ. We obtain:

Θ̂
(1)
2SA = argminΘ

(
Z − Z̃(Θ)

)T (
Σ̂(1)

)−1 (
Z − Z̃(Θ)

)
.

(2) We then estimate αi with:

α̂i =
1

Zi − p

(
Zi − Z̃i

(
Θ̂

(1)
2SA

))T (
Zi − Z̃i

(
Θ̂

(1)
2SA

))
,



to obtain Σ̂(2) and the final estimator is given by

Θ̂2SA = argminΘ

(
Z − Z̃(Θ)

)T (
Σ̂(2)

)−1 (
Z − Z̃(Θ)

)
.

Finally the variance of P̂2SA is approximated with Equa-
tion (3) using Σ̂(2).

C. Convolution Particle Filter for Bayesian Parameter
Estimation

Let us consider the parameter estimation problem in
a dynamic state-space form which can be described as
a hidden Markov model. We define an augmented state
vector Xa

n = (Xn,Θ), including Xn the hidden state at
time n and Θ the vector of unknown parameters. In the
following part, if X represents a random variable with
values in X , then for all x ∈ X , p(x) will denote the
probability density of X in x.

If Yn represents the observation vector at time tn,
the first-order hidden Markov model is characterized by
the transition density p(xan|xan−1) (corresponding to the
state equation integrated between tn−1 and tn, see [14]),
p(yn|xan) (corresponding to the measurement equation)
and the initial density p(xa0).

Inspired by the post-regularized particle filter [15], the
convolution particle filter allows the joint estimation of
the parameters and the hidden states of the dynamic
system, stochastic or not, from online data. The parti-
cles are initiated from an informative prior (drawn from
p(xa0)) or non-informative prior (distributed uniformly
in the considered space). The filtering is performed
recurrently, with two stages at each time step n [8]:

• Prediction: As an a priori form of the esti-
mation, the aim is to provide a kernel estimator of
p(xan+1, yn+1|y0:n) denoted p̂(xan+1, yn+1|y0:n). M par-
ticles {x̃an(i), i = 1, . . . ,M} are sampled from the con-
ditional law p̂(xan|y0:n). We propagate each of these
particles through the state equation to obtain {x̃an+1−

(i),
i = 1, . . . ,M} sampled from the conditional law
p(xan+1|x̃an(i)). Thanks to KX

hX
M

, the Parzen-Rosenblatt

kernel with bandwidth parameter hXM , we are able to
deduce the empirical kernel approximation of the prob-
ability density of (Xa

n+1, Yn+1) conditional to Y0:n:

p̂(xan+1, yn+1|y0:n) =
1

M

M∑
i=1

KX
hX
M

(
xan+1 − x̃an+1−

(i)
)

· p
(
yn+1|x̃an+1−

(i)
)
.

(4)

• Correction: This step provides an a posteriori
form of the estimation, the kernel approximation for

p(xan+1|y1:n+1) is given by:

p̂(xan+1|y1:n+1) =
1

M∑
i=1

p(yn+1|x̃an+1−
(i))

·
M∑
i=1

KX
hX
M

(xan+1 − x̃an+1−
(i))p(yn+1|x̃an+1−

(i)).

(5)

The part p(yn+1|x̃an+1−
(i))/

∑M
i=1p(yn+1|x̃an+1−

(i)) can

be regarded as the normalized weight w̃
(i)
n+1 associated

to the particle x̃an+1−
(i).

It is important to note that this method can be
adapted in the case of rare measurements without dif-
ficulties. However, in the case that the analytic form
of the observation density p(yn|xn) is unknown, an
observation kernel can be introduced [8].

D. Iterative Convolution Particle Filter

In the case of off-line estimation with a finite number
of observations, we propose a method based on the
iterative version of convolution particle filtering, which
can be interpreted as an alternative of the smoothing
methods [16]. It can provide the dynamic reconstruction
of the model including complete observations and hidden
states. After the filtering process, a set of selected
particles {x̃aN (i), i = 1, . . . ,M} is available with their

associated normalized weights {w̃(i)
N , i = 1, . . . ,M}.

We repeat the filtering process by first reinitializing
the particles {x̃a0(i), i = 1, . . . ,M}. The state vectors
{x̃0

(i), i = 1, . . . ,M} are selected in the same way as for
the classical filtering process, which means that they are
drawn from the distribution p (x0). As for the vectors

of unknown parameters {Θ̃(i)
0 , i = 1, . . . ,M}, they are

initialized by taking into account the estimation results
of the former iteration: the posterior distribution built
by {Θ̃(i)

N , i = 1, . . . ,M} and the associated weight vector

{w̃(i)
N , i = 1, . . . ,M}.
Attentions should be paid when a large part of the

particles move away from the interesting region: in this
case, their weights will decrease which in turn will cause
degeneracy. For this reason, a threshold is selected
beforehand for the effective sample size (ESS). When
the ESS decreases below the threshold, a resampling
procedure will be launched in order to eliminate particles
with small weights and to make sure that most of the
particles are close to the real trajectory [17]. The new
set of particles is drawn from a multinomial distribution
according to the weight vector.

After the lth filtering iteration, the parameters’ and
the hidden states’ estimators are:

Θ̂(l) =

M∑
i=1

w̃
(i)
N Θ̃

(i)
N and x̂(l)

n =

M∑
i=1

w̃(i)
n x̃(i)

n . (6)



Since the estimation method is defined as stochastic,
after a burn-in period of K iterations, averaged estima-
tors are chosen to take into account the fluctuations due
to the stochastic algorithm [18]. Considering that the
number of particles is constant, for l > K:

¯̂
Θ(l) =

1

l −K

l∑
j=K+1

Θ̂(j) and ¯̂x(l)
n =

1

l −K

l∑
j=K+1

x̂(j)
n .

(7)
When the hidden Markov model is written in the form

of a stochastic system, the vector Θ consists of (Θ1,Θ2),
with Θ1 the parameters that appear in the deterministic
part of the model (state equation and measurement
equation) and Θ2 the parameters of the noise model
(parameters of the stochastic distributions of η and ξ in
(2)). In this paper, we propose a conditional version of
the ICPF algorithm: in the first place, the estimation of
the hidden states and of Θ1 is performed by considering
that Θ2 is known. In practice, small noise parameters,
although different from their real values, should ensure
the convergence of this algorithm towards satisfactory
estimation results (estimation of parameters and hidden
states from the deterministic part of the model). Under
this assumption, the initialization of the algorithm is
therefore carried out by choosing small values for Θ2

which stand for small noises (standard error 0.02 in our
tests). Once Θ1 is estimated as well as the hidden states,
we are able to estimate directly the modelling noises and
the measurement noises Θ2. Afterwards Θ1 is estimated
again taking into account the new computed value of
Θ2. In this way, the algorithm can be iterated until
convergence (generally 3 alternate estimations of Θ1 and
Θ2 are sufficient).

We highlight that the successive iterations of filtering
make the posterior distributions of the parameters no
longer representative of the parameters’ uncertainty for
the remaining uncertainty is linked to the stochastic
algorithm. Nevertheless, in order to obtain the related
confidence intervals, parametric bootstrap method can
be implemented [10]. Since the conditional version
of the algorithm appears to provide fair estimates of
the parameters Θ2 ([9]), new observation vectors are
randomly generated with Θ̂ and the ICPF estimation is
performed for each new data set. This method allows us
to evaluate the uncertainty related to the estimation Θ̂.
Likewise, since particle filtering methods are stochastic
algorithms, we also applied our approach to the same
experimental data set a large number of times in order
to evaluate the algorithmic uncertainty.

III. Model and Data

A. LNAS Model of Plant Growth

In this section, a Log Normal Allocation and Senes-
cence (LNAS) daily crop model is introduced in its

stochastic version (with modelling and measurement
errors). Inspired by the model presented in [19], the
equations are specifically derived for the sugar beet, per
unit surface area, with two kinds of organ compartments:
foliage and root system. Note that the equations can
be adapted to other type of plant without difficulty by
adding other types of compartments.

Biomass production: Q(t) is the biomass produc-
tion on day t per unit surface area (g.m−2) obtained by
generalizing the Beer-Lambert law [20]: the fraction of
intercepted radiation is given by

(
1− e−λ·Qg(t)

)
, with λ

(g−1.m2) a known parameter and Qg(t) the total mass of
green leaves on day t (in g.m−2). The biomass produc-
tion of the whole plant is then deduced by multiplying
the total amount of absorbed photosynthetically active
radiation per unit surface area (PAR, in MJ.m−2) and
an energetic efficiency µ (in g ·MJ−1·):

Q(t) =
(
µ · PAR(t)

(
1− e−λQg(t)

))
· (1 + ηQ(t)) (8)

with the modelling noise ηQ ∼ N (0, σ2
Q).

Allocation between the foliage and root system com-
partments:

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t) (9)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t) (10)

The function γ is defined as:

γ(t) = (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)) (11)

with τ(t) the thermal time (according to the accumu-
lated daily temperature since emergence day), Ga the
cumulative distribution function of a log-normal law,
with an underlying normal distribution characterized
by µa, sa, and the modelling noise (process noise)
ηγ(t) ∼ N (0, σ2

γ).
Senescence: The senescent foliage mass Qs is a

proportion of the accumulated foliage mass determined
by another cumulative distribution of a log-normal law
characterized by µs, ss:

Qs(t) = Gs(τ(t)− τsen)Qf (t) (12)

with τsen the thermal time at which the senescence
process initiates. The green foliage massQg can be hence
obtained easily:

Qg(t) = Qf (t)−Qs(t) (13)

Observations: The observation variables are poten-
tially available from field measurements:

Y (t) =

 Qg(t) · (1 + εg(t))
Qs(t) · (1 + εs(t))
Qr(t) · (1 + εr(t))

 (14)

with measurement noises: εg(t)) ∼ N (0, σ2
g), εs(t) ∼

N (0, σ2
s) and εr(t) ∼ N (0, σ2

r).



B. Experimental Data

The data used in this analysis were obtained by the
French institute for Sugar Beet research in 2008 as
presented by [21]. They are based on the measurements
of 20 individual plants at days 23, 45, 52, 60, 73, 107 and
143 after plant emergence. For each plant, Qg the green
foliage mass, Qs the senescent foliage mass and Qr the
root compartment mass were measured. The observation
vector Y is obtained by averaging each data based on
the 20 samples and extrapolated at m2 level by being
multiplied by the observed density.

IV. Results

A. Fitting Results

For all the three approaches, the unknown parameter
vector for the deterministic part of the model was Θ1 =
(µ, µa, sa, µs, ss). For the CPF initialization, 10 values
were drawn from a non-informative prior distribution
uniformly for each parameter which formed a grid of 105

combinations of values for Θ1. Each combination was
assigned to 5 particles which therefore made the initial
number of particles 500000 (= 105 ? 5).

Regarding the conditional version of ICPF approach,
the unknown noise parameter vector was Θ2 =
(σQ, σγ , σg, σs, σr). 8 values were drawn from the uni-
form distribution for each parameter of Θ1 which made
the initial number of the particles 32768 (= 85). The
procedure began with the estimation of Θ1 given Θ2

considering known, then Θ2 was estimated based on the
estimates of hidden states. The process was then con-
ducted with the new value of Θ2 and iterated. Finally,
3 repetitions of the conditional version of ICPF were
implemented in our test, each of them contained 600
iterations.

Table I presents the first estimation results. In this
result, each parameter estimation method was applied
once to the LNAS model with the given 2008 observation
vector.

Estimation of the Parameters Θ1

Parameter GLS CPF ICPF
µ 2.97 3.06 2.97
µa 689 671 695
sa 225 342 320
µs 3450 2542 2469
ss 2570 1141 969

Table I
Estimates of the parameters from the deterministic part of the
LNAS model by the GLS, the CPF (500000 particles) and the

conditional ICPF (32768 particles, 600 iterations, 3 repetitions)
approaches.

Before comparing the fitting results of the 3 meth-
ods, we note that the two CPF related methods have
also estimated the hidden states of the model while
GLS hasn’t been able to. Therefore, for the latter,
the estimated parameters were used to simulate the

observations. Thus, the comparison was conducted
by using estimated observations (for CPF and ICPF)
and simulated observations (for GLS) confronted to the
experimental data, which contains senescent foliage mass
Qs, green foliage mass Qg and root mass Qr (Fig. 1).

From a goodness-of-fit point of view, the three ap-
proaches provided satisfactory results and globally met
the demand of the parametrization for the LNAS model,
despite the different estimates given for several param-
eters. However, we remarked the resemblance of the
estimates given by ICPF and GLS for µ and µa. More-
over, the estimation given by the GLS method showed
an excellent performance regarding the fitting of Qg,
but not for Qs which probably resulted from a poor
estimation of µs and ss. The CPF and the ICPF gave
different estimates for all the parameters, nevertheless,
their estimation for the hidden states showed great
similarity. This result suggests that several combinations
of parameters might lead to comparable outcome.

Figure 1. Comparison of experimental data and estimated data
of green foliage mass Qg, root mass Qr and senescent foliage mass
Qs with the 3 methods: GLS, the CPF (500000 particles) and the
conditional ICPF (32768 particles, 600 iterations, 3 repetitions)
approaches.

B. Algorithmic Uncertainty for Particle Methods

For the purpose of evaluating the bias due to the
stochastic algorithm of the CPF approach, the estima-
tion algorithm were performed 100 times with the same



CPF Single test 100 Repetitions
M = 32768 (85) Mean 95%CI? Mean 95%CI

µ 3.04 [ 2.96 ; 3.11 [ 3.05 [ 3.03 ; 3.07 [
µa 667.12 [ 650.09 ; 685.07 [ 668.98 [ 665.98 ; 672.57 [
sa 342.03 [ 287.67 ; 393.06 [ 342.53 [ 340.54 ; 344.76 [
µs 2431.30 [ 2666.30 ; 2545.34 [ 2542.61 [ 2538.80 ; 2545.90 [
ss 1159.65 [ 994.82 ; 1311.80 [ 1150.67 [ 1142.20 ; 1158.00 [

M = 100000 (105) Mean 95%CI? Mean 95%CI

µ 3.04 [ 2.97 ; 3.11 [ 3.05 [ 3.03 ; 3.07 [
µa 667.12 [ 651.30 ; 683.61 [ 669.08 [ 666.15 ; 671.96 [
sa 342.95 [ 289.19 ; 392.57 [ 342.47 [ 340.95 ; 344.14 [
µs 2541.53 [ 2435.60 ; 2653.20 [ 2542.74 [ 2540.90 ; 2544.80 [
ss 1147.37 [ 993.38 ; 1306.20 [ 1148.27 [ 1144.10 ; 1152.50 [

M = 500000 (105 ? 5) Mean 95%CI? Mean 95%CI

µ 3.04 [ 2.99 ; 3.10 [ 3.05 [ 3.03 ; 3.06 [
µa 668.57 [ 655.17 ; 682.43 [ 669.11 [ 666.49 ; 672.40 [
sa 343.67 [ 289.22 ; 391.68 [ 342.52 [ 340.99 ; 344.12 [
µs 2543.36 [ 2445.10 ; 2647.50 [ 2542.87 [ 2541.10 ; 2544.60 [
ss 1142.14 [ 994.77 ; 1304.50 [ 1147.90 [ 1142.60 ; 1151.70[

ICPF (3 repetitions) Bootstrap (100 tests) 100 Repetitions
M = 32768 (85) Mean 95%CI Mean 95%CI

µ 2.94 [2.69 ; 3,17 [ 2.97 [ 2.96 ; 2.97 [
µa 710.01 [611.70 ; 822.08[ 694.58 [ 692.52 ; 696.51 [
sa 322.62 [165.62 ; 483.79 [ 319.73 [ 315.40 ; 324.06 [
µs 2499.09 [2319.30 ; 2713.90[ 2476.71 [ 2470.90 ; 2482.00 [
ss 1025.67 [763.95 ; 1349.60[ 985.64 [ 974.85 ; 996.20 [

Mean Std. Mean Std.
std(ηQ) 0.0204 0.0018 0.0198 0.0023
std(ηγ) 0.0207 0.0019 0.0207 0.0019
std(εg) 0.0821 0.0300 0.1071 0.0038
std(εs) 0.0374 0.0277 0.0649 0.0030
std(εr) 0.1797 0.0857 0.1632 0.0037

Table II
Estimates of the parameters from the deterministic part of the LNAS model provided by the CPF and the conditional ICPF approaches

running with different number of particles M . The 100 repetitions were performed with the same observation data. For the CPF method,
The 95% Credible Interval (CI) ? was obtained by the posterior distribution. For the ICPF, the bootstrap confidence interval was based
on 100 estimations from virtual observations generated with the stochastic model parametrized with the originally estimated parameters.

observation data. Thus, the 95% confidence intervals
provided for each average estimates may present the
uncertainty purely resulting from the stochasticity of the
method (such algorithmic uncertainty does not exist for
GLS).

Meanwhile, the effect of using different numbers of
particles was tested which may help us to understand
its influence over the estimation performance of CPF
(Table II). The credible intervals based on the posterior
distributions obtained by the list of particles are also
presented in Table II. According to the confidence
intervals based on the 100 repetitions, we highlight
that the variance related to the stochastic nature of
the method (algorithmic variance) remains quite small.
When the number of particles increased from 32768 to
500000, the credible intervals as well as the confidence
intervals shrank slightly for CPF. Nevertheless, it seems
to reach a limit when the number of particles increases
(eg. CI of µa and ss based on 100 repetitions). On the
other hand, not only the estimates given by the three
single tests were relatively close, but the mean estimates
based on 100 repetitions were almost the same in the
three different situations. This result may suggest that
the augmentation of the particle number can improve the

estimation performance to a certain level, but afterwards
it might only become a burden of calculation.

The estimates provided by the bootstrap test of the
conditional ICPF approach were distinguished from the
others (Table II), since it took into account both mod-
elling and measurement noises during the estimation
process. The 100 repetitions of the same conditional
ICPF test showed the part of variance due to the
method. The remaining part of the variance in the
bootstrap confidence interval could be explained by the
part of the information that the model failed to explain
or the lack of data.

C. Final Estimation Results

Table III illustrates the final estimation results of
the three methods. The point estimations were given
with their level of uncertainty characterized by 95%
credible interval (for CPF) or confidence interval (for
ICPF, GLS). For all the parameters, CPF gave the
narrowest CI. ICPF had the largest intervals for µ,
µa, sa, while for µs and ss, GLS provided very high
estimation uncertainty, which suggests a non-reliable
estimation of the parameters (as also illustrated by the
fitting results of Qs in Fig. 1 ).



Bootstrap test of ICPF single CPF (500000 particles) GLS
Mean 95%CI Mean 95%CI Mean 95%CI

µ 2.97 [2.69 ; 3,17 [ 3.05 [ 2.99 ; 3.10 [ 2.97 [ 2.86 ; 3.08 ]
µa 694.58 [611.70 ; 822.08[ 669.11 [ 655.17 ; 682.43 [ 689 [650 ;728]
sa 319.73 [165.62 ; 483.79 [ 342.52 [ 289.22 ; 391.68 [ 225 [81 ; 370]
µs 2476.71 [2319.30 ; 2713.90[ 2542.87 [ 2445.10 ; 2647.50 [ 3450 [1450;5450]
ss 985.64 [763.95 ; 1349.60[ 1147.90 [ 994.77 ; 1304.50 [ 2570 [0;9370] ?

Table III
Estimates of the deterministic part parameters of LNAS model obtained by the conditional ICPF (32768 particles, 600 iterations, 3

repetitions), the CPF (5 ∗ 106 particles) and the GLS approaches. The mean values and the Confidence Intervals (CI) provided by the
conditional ICPF approach were based on 100 bootstrap tests. The estimates given by GLS method were obtained with the GLS

Estimator (2-stage Aitken estimator), which failed to provide a proper confidence bound of ss (?:).

It deserves to note that the confidence intervals given
by ICPF also contain the parameters estimated by the
two other methods (except the non-reliable senescence
parameters of GLS), while reversely, the mean estimates
of CPF are the only ones that are contained in all
the credible / confidence intervals given by the other
methods.

D. Robustness Test

In this paragraph, an interesting result is presented to
compare the robustness of the particle filtering methods.
The results of the parameter estimation from real exper-
imental data were used to generate virtual observation
data sets. Two particle filtering methods were tested
with these virtual data sets. For the sake of simplicity,
we do not consider the GLS method due to its former
poor performance. ICPF was performed with virtual
data generated with parameters previously estimated by
CPF, and conversely CPF was performed with virtual
data generated with ICPF parameter estimations. Each
of these two tests was repeated 100 times based on
the same original 2008 data set. The mean estimates
and confidence intervals are given in Table IV. It is
meaningful to note that from this perspective, ICPF
appears to be far more reliable than CPF. Although
provided narrower uncertainty intervals, for parameter
µ, µa and ss CPF failed to supply CIs which contain
their real values used in the generation of the data sets!
On the contrary, ICPF estimates were very close to their
real values, which were as well contained in the estimated
confidence intervals.

V. Discussion and Conclusion

All the three proposed methods were able to estimate
the parameters of the LNAS model from a limited num-
ber of measurements and with satisfactory goodness-of-
fit. Yet not all the estimation results were appropriate,
especially the GLS method that failed to provide reliable
estimate for the senescence process.

From the estimation results based on the 2008 exper-
imental data, it appears to be complicated to choose
the best method between CPF and ICPF. A quick look

would lead us to consider the CPF approach since it
has provided the narrowest uncertainty interval and with
estimates belonging to the confidence intervals computed
by all the other methods. However, the robustness
test from virtual data in section IV-D contradicts this
assumption as the robustness of the method seemed
to be quite poor and the credible intervals given were
proved to be not reliable. Evidently, such conclusion
could be reconsidered in a situation with richer data set.

Finally, the ICPF method appears quite reliable both
in terms of its point estimation and confidence intervals,
as well as its hidden states estimations. The relatively
considerable estimated measurement noises are probably
due to the residual part of the information that the
model failed to explain.

Meanwhile, it is meaningful to remark the importance
of the noise model for the ICPF method, particularly
when applied to LNAS model, the multiplicative as-
sumption of the noise models is worth discussing: when
the biomass increases, this assumption indicates large
noises which may twist the estimations.

Furthermore, regarding the computation time, the
conditional ICPF is clearly the most time-consuming ap-
proach (18 hours for performing a conditional ICPF test
with 32768 particles and 3 repetitions of 600 iterations
on a standard computer), which is the most important
shortcoming of this method. The CPF and the GLS
methods, on the other hand, are much more efficient. An
intriguing approach could be the combination of these
two methods: using GLS in the first place could help to
identify the zone of interest for the unknown parameters
in order to reduce the number of particles necessary.

Finally, uncertainty analysis and tests of the predictive
capacity of the parametrized model would be the next
step for a full evaluation of the estimation method.
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in Actes des 44èmes Journées de Statistique JDS2012,
Bruxelles 21-25 Mai 2012, 2012.

[10] B. Efron and R. Tibshirani, An Introduction to the Boot-
strap. Chapman & Hall/CRC Monographs on Statistics
and Applied Probability, 1994.

[11] C. Rao, Linear Statistical Inference and Its Applications.
Wiley, New York, 1973.
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