
HAL Id: hal-00776508
https://hal.science/hal-00776508

Submitted on 18 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Small time global null controllability for a viscous
Burgers’ equation despite the presence of a boundary

layer
Frédéric Marbach

To cite this version:
Frédéric Marbach. Small time global null controllability for a viscous Burgers’ equation despite the
presence of a boundary layer. Journal de Mathématiques Pures et Appliquées, 2014, 102 (2), pp.364-
384. �10.1016/j.matpur.2013.11.013�. �hal-00776508�

https://hal.science/hal-00776508
https://hal.archives-ouvertes.fr


Small time global null 
ontrollability for a vis
ous Burgers'

equation despite the presen
e of a boundary layer

Frédéri
 Marba
h

∗

September 17, 2013

Abstra
t

In this work, we are interested in the small time global null 
ontrollability for the vis
ous

Burgers' equation yt − yxx + yyx = u(t) on the line segment [0, 1]. The right-hand side is a s
alar


ontrol playing a role similar to that of a pressure. We set y(t, 1) = 0 and restri
t ourselves

to using only two 
ontrols (namely the interior one u(t) and the boundary one y(t, 0)). In this

setting, we show that small time global null 
ontrollability still holds by taking advantage of both

hyperboli
 and paraboli
 behaviors of our system. We use the Cole-Hopf transform and Fourier

series to derive pre
ise estimates for the 
reation and the dissipation of a boundary layer.

1 Introdu
tion

1.1 Des
ription of the system and our main result

Let T > 0 be a positive time, possibly small. We 
onsider the line segment x ∈ [0, 1] and the following

one-dimensional vis
ous Burgers' 
ontrolled system:















yt + yyx − yxx = u(t) in (0, T )× (0, 1),
y(t, 0) = v(t) in (0, T ),
y(t, 1) = 0 in (0, T ),
y(0, x) = y0(x) in (0, 1).

(1)

The s
alar 
ontrols are u ∈ L2(0, T ) and v ∈ H1/4(0, T ). The right-hand side 
ontrol term u(·) plays
a role somewhat similar to that of a pressure for multi-dimensional �uid systems. Unlike some other

studies, our 
ontrol term u(·) depends only on time and not on the spa
e variable.

For any initial data y0 ∈ L2(0, 1) and any �xed 
ontrols in the appropriate spa
es, it 
an be shown

that system (1) has a unique solution in the spa
e X = L2((0, T );H1(0, 1))∩C0([0, T ];L2(0, 1)). This
type of existen
e result relies on standard a priori estimates and the use of a �xed point theorem.

Su
h te
hniques are des
ribed in [35℄. One 
an also use a semi-group method as in [37℄. Our main

result is the following small time global null 
ontrollability theorem for system (1):

Theorem 1. Let T > 0 be any positive time and y0 by any initial data in L2(0, 1). Then there exists

a 
ontrol pair u ∈ L∞(0, T ) and v ∈ H1/4(0, T ) su
h that the solution y ∈ X to system (1) is null at

time T : y(T, ·) ≡ 0.

1.2 An open-problem for Navier-Stokes as a motivation

As a motivation for our study, let us introdu
e the following 
hallenging open problem. Take some

smooth 
onne
ted bounded domain Ω in R
2
or R

3
. Consider some open part Γ of its boundary ∂Ω.

This is the part of the boundary on whi
h our 
ontrol will a
t. We 
onsider the following Navier-Stokes

system:















yt −∆y + (y · ∇)y = −∇p in (0, T )× Ω,
div y = 0 in (0, T )× Ω,

y = 0 on (0, T )× (∂Ω \ Γ),
y(0, ·) = y0(·) in Ω.

(2)
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We 
onsider this system as an underdetermined system. Our 
ontrol will be some appropriate tra
e

of a solution on the 
ontrolled boundary Γ.

Ω

∂Ω \ Γ

Γ

y = 0

Figure 1: Setting of the Navier-Stokes 
ontrol problem (2).

Open problem 1. Is system (2) small time globally null 
ontrollable? That is to say, for any T > 0
and y0 in some appropriate spa
e, does there exist a traje
tory of system (2) su
h that y(T, ·) ≡ 0?

Many works have be done in this dire
tion. Generally speaking, one 
an distinguish two approa
hes.

First, one 
an think of the nonlinear term as a perturbation term and obtain the 
ontrollability by

means of the Lapla
ian term. For instan
e, Fabre uses in [20℄ a trun
ation method for the Navier-

Stokes equation. In [36℄, Lions and Zuazua use Galerkin approximations for various �uid systems.

Of 
ourse, this approa
h is very e�
ient for lo
al results. The most re
ent result 
on
erning lo
al


ontrollability for system (2) is the one 
ontained in [23℄ by Fernández-Cara, Guerrero, Imanuvilov

and Puel. Their proof uses Carleman estimates.

The other approa
h goes the other way around. Indeed, in �nite dimension, it is known that if

ẏ = F (y) + Bu where F is quadrati
 is 
ontrollable, then ẏ = F (y) + Ay + Bu is 
ontrollable too

(see [15, Theorem 3.8℄). Likewise, for �uid systems, trying to get a small time 
ontrollability result

implies to work at high Reynolds number (ie. with big �uid velo
ities, or low vis
osity) inside the

domain. Therefore, inertial for
es prevail and the �uid system behaves like its null vis
osity hyperboli


limit system. In our 
ase, we expe
t to dedu
e results for Navier-Stokes from the Euler sytem. For

Euler, global 
ontrollability has been shown in [10℄ by Coron for the 2D 
ase (see also [12℄) and by

Glass for the 3D 
ase in [27℄. Their proofs rely on the return method introdu
ed by Coron in [9℄

(see also [13, Chapter 6℄). For Navier-Stokes, things get harder. In [16℄, Coron and Fursikov show

a global 
ontrollability result in the 
ase of a 2D manifold without boundary. In [24℄, Fursikov and

Imanuvilov show a global exa
t 
ontrollability result for 3D Navier-Stokes with a 
ontrol a
ting on

the whole boundary (ie. Γ = ∂Ω).
Other approa
hes exist. Let us mention for instan
e the work [2℄, where Agra
hev and Sary
hev


ontrol Navier-Stokes equations by means of low modes. They use methods of di�erential geomet-

ri
 / Lie algebrai
 
ontrol theory for �nite dimensional 
ontrol systems.

The main di�
ulty of Open problem 1 is the behavior of the system near ∂Ω\Γ. Indeed, although
inertial for
es prevail inside the domain, vis
ous for
es play a 
ru
ial role near the un
ontrolled bound-

ary, and give rise to a boundary layer. An example of su
h a phenomenon 
an be found in [11℄ where

Coron derives an approximate 
ontrollability result and highlights the 
reation of a boundary residue.

Hen
e, the key question is whether one 
an handle su
h a boundary layer by means of the 
ontrol.

Some authors have tried to study simpli�ed geometries for Open problem 1. In [7℄, Chapouly stud-

ies a Navier-Stokes equation on a re
tangle with Navier-slip boundary 
onditions on the un
ontrolled

part of the boundary. She obtains small time global null 
ontrollability. In [29℄ and [30℄, Guerrero,

Imanuvilov and Puel prove approximate 
ontrollability for a Navier-Stokes system in a square (resp.

in a 
ube) where one side (resp. one fa
e) is not 
ontrolled and has zero Diri
hlet boundary 
ondition.

Burgers' equation has been extensively used as a toy model to investigate properties of more


omplex systems in a rather simple setting. This equation was introdu
ed in the seminal paper [5℄

by Burgers. Both from a theoreti
al and a numeri
al point of view, it already exhibits some key

behaviors (su
h as intera
tion between the non-linearity and the smoothing e�e
t). Therefore, our

Theorem 1 
an be seen as an example for small time global null 
ontrollability despite the presen
e of a
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Diri
hlet boundary layer. Moreover, despite the simpli
ity of Burgers' equation, the analogy between

systems (1) and (2) is quite striking. We 
an interpret our s
alar 
ontrol u(t) as some one-dimensional


ounterpart of a pressure gradient for 2D or 3D.

1.3 Previous works 
on
erning Burgers' 
ontrollability

Con
erning the 
ontrollability of the invis
id Burgers' equation, some works have be 
arried out. In [3℄,

An
ona and Marson des
ribe the set of attainable states in a pointwise way for the Burgers' equation

on the half-line x ≥ 0 with only one boundary 
ontrol at x = 0. In [32℄, Horsin des
ribes the set of

attainable states for a Burgers' equation on a line segment with two boundary 
ontrols. Thorough

studies are also 
arried out in [1℄ by Adimurthi et al. In [38℄, Perrollaz studies the 
ontrollability of

the invis
id Burgers' equation in the 
ontext of entropy solutions with the additional 
ontrol u(·).

Let us re
all known results 
on
erning the 
ontrollability of the vis
ous Burgers' equation. We

start with some positive results.

First, Fursikov and Imanuvilov have shown in [26℄ a small time lo
al 
ontrollability result. It


on
erns lo
al 
ontrollability in the vi
inity of traje
tories of system (1) and it only requires one

boundary 
ontrol (either y(t, 0) or y(t, 1)). Their proof relies on Carleman estimates for the paraboli


problem obtained by seeing the non-linear term yyx as a small for
ing term.

Global 
ontrollability towards steady states of system (1) is possible in large time both with one or

two boundary 
ontrols. Su
h studies have be 
arried out by Fursikov and Imanuvilov in [25℄ for large

time global 
ontrollability towards all steady states, and by Coron in [14℄ for global null-
ontrollability

in bounded time (ie. bounded with respe
t to the initial data).

When three s
alar 
ontrols (namely u(t), y(t, 0) and y(t, 1)) are used, Chapouly has shown in [6℄

that the system is small time exa
tly 
ontrollable to the traje
tories. Her proof relies on the re-

turn method and on the fa
t that the 
orresponding invis
id Burgers' system is small time exa
tly


ontrollable (see [13, Chapter 6℄ for other examples of this method applied to Euler or Navier-Stokes).

Some studies have also been 
arried out in a two-dimensional setting. In [33℄, Imanuvilov and Puel

study the global 
ontrollability of a 2D-Burgers system, where the 
ontrol only a
ts on a part Γ1 of

the boundary. They derive geometri
 
onditions on Γ1 for small time 
ontrollability to hold.

Some negative results have also been obtained.

In the 
ontext of only one boundary 
ontrol y(t, 1), �rst obstru
tions where obtained by Diaz

in [18℄. He gives a restri
tion for the set of attainable states. Indeed, they must lie under some limit

state 
orresponding to an in�nite boundary 
ontrol y(t, 1) = +∞.

Still with only one boundary 
ontrol, Fernández-Cara and Guerrero derived an asymptoti
 of the

minimal null-
ontrollability time T (r) for initial states of H1
norm lower than r (see [22℄). This shows

that the system is not small-time 
ontrollable.

Guerrero and Imanuvilov have shown negative results in [28℄ when two boundary 
ontrols y(t, 0)
and y(t, 1) are used. They prove that neither small time null 
ontrollability nor bounded time global


ontrollability hold. Hen
e, 
ontrolling the whole boundary does not provide better 
ontrollability.

1.4 Strategy for steering the system towards the null state

In view of these results, it seems that the pressure-like 
ontrol u(t) introdu
ed by Chapouly is the key

to obtaining small time global 
ontrollability results. In order to take advantage of both hyperboli


and paraboli
 behaviors of system (1), our strategy 
onsists in splitting the motion in three stages:

Hyperboli
 stage: Small time and approximate 
ontrol towards the null state. During this very

short stage t ∈ [0, εT ] where 0 < ε ≪ 1, the systems behaves like the 
orresponding hyperboli
 one,

as the vis
ous term does not have enough time to a
t. This hyperboli
 system is small time null


ontrollable. During this �rst stage, we will use both u(·) and v(·) to try to get 
lose to the null state,

ex
ept for a boundary layer at x = 1.
Passive stage: Waiting. At the end of the �rst stage, we rea
h a state whose size is hard to

estimate due to the presen
e of a boundary layer. During this stage, we use null 
ontrols v(t) =
u(t) = 0. Regularization properties of the vis
ous Burgers equation dissipate the boundary layer and

the size of y(t, ·) de
reases. We show that it tends to zero in L2(0, 1) when ε → 0. This is a 
ru
ial
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stage as is enables us to get rid of the boundary residue. It seems to be a new idea and 
ould also be

applied for other boundary layers 
reated when trying to get small time global 
ontrollability results.

Paraboli
 stage: Lo
al exa
t 
ontrollability in the vi
inity of zero. After the two �rst stages, we

su

eed in getting very 
lose to the null state. The non-linear term be
omes very small 
ompared to

the vis
ous one, and the system now behaves like a paraboli
 one. We use a small time lo
al exa
t


ontrollability result to steer the system exa
tly to zero. During this last stage, we only need the


ontrol v(·).

Most of the work to be done 
onsists in deriving pre
ise estimates for the 
reation and the dissipa-

tion of the boundary layer. We will use the Cole-Hopf transform and Fourier series to over
ome this

di�
ulty. The Cole-Hopf transform was introdu
ed in [8℄ and [31℄ and was used for the �rst time in


ontrol theory by El Badia and Ain Seba in [19℄.

First, we will investigate the hyperboli
 limit system (see Se
tion 2). Then we will derive estimates

for the 
reation of the boundary layer during our hyperboli
 stage (see Se
tion 3) and estimates for its

dissipation during the passive stage (see Se
tion 4). This will a
hieve the proof of a small time global

approximate null 
ontrollability result for our system (1). In Se
tion 5, we will explain the paraboli


stage and the lo
al exa
t 
ontrollability.

1.5 A 
omparison lemma for 
ontrolled Burgers' systems

Throughout our work, we will make an extensive use of the following 
omparison lemma for our

Burgers' system, in order to derive pre
ise estimates. When the vis
osity is null, this 
omparison

prin
iple still holds for entropy solutions (as they are obtained as a limit of low vis
osity solutions).

Lemma 1. Let T, ν > 0 and 
onsider y0, ŷ0 ∈ L2(0, 1), u, û ∈ L2(0, T ), v0, v̂0, v1, v̂1,∈ H1/4(0, T ).
Assume these data satisfy the following 
onditions:

y0 ≤ ŷ0 and u ≤ û and v0 ≤ v̂0 and v1 ≤ v̂1.

Consider the following system (whi
h is a generalized version of system (1):















yt + yyx − νyxx = u(t) in (0, T )× (0, 1),
y(t, 0) = v0(t) in (0, T ),
y(t, 1) = v1(t) in (0, T ),
y(0, x) = y0(x) in (0, 1).

(3)

Then the asso
iated solutions y, ŷ ∈ X to system (3) are su
h that:

y ≤ ŷ on (0, T )× (0, 1).

One 
an �nd many 
omparison results in the literature (see for instan
e the book [39℄ and the

referen
es therein). However we give the proof of Lemma 1 both for the sake of 
ompleteness and

be
ause with have not found this pre
ise version anywhere.

Proof. We introdu
e w = ŷ − y. Thus, w ∈ X is a solution to the system:















wt − νwxx = (û− u)− 1
2 (wŷ + wy)x in (0, T )× (0, 1),

w(t, 0) = v̂0(t)− v0(t) in (0, T ),
w(t, 1) = v̂1(t)− v1(t) in (0, T ),
w(0, x) = ŷ0(x)− y0(x) in (0, 1).

We want to study the negative part of w: δ = min(w, 0). Hen
e, δ(t, 0) = δ(t, 1) = 0. Now we multiply

the evolution equation by δ ≤ 0 and integrate by parts for x ∈ [0, 1] to get a L2
-energy estimate for δ:

1

2

d

dt

∫ 1

0

δ2 + ν

∫ 1

0

δ2x = (û− u)

∫ 1

0

δ +
1

2

∫ 1

0

δ(ŷ + y)δx

≤ ν

4

∫ 1

0

δ2x +
1

4ν

∫ 1

0

δ2(ŷ + y)2

≤ ν

4

∫ 1

0

δ2x +
1

4ν
‖ŷ(t, ·) + y(t, ·)‖2∞ ·

∫ 1

0

δ2.
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Thus, we 
an in
orporate the �rst term of the right-hand side in the left-hand side:

1

2

d

dt

∫ 1

0

δ2 ≤ 1

4ν
‖ŷ(t, ·) + y(t, ·)‖2∞ ·

∫ 1

0

δ2.

Sin
e y, ŷ ∈ L2
(

(0, T );H1(0, 1)
)

, we have that:

t 7→ ‖ŷ(t, ·) + y(t, ·)‖2∞ belongs to L1(0, T ).

Hen
e we 
an use Grönwall's lemma. Sin
e δ(0, ·) ≡ 0, we dedu
e that δ ≡ 0 and y ≤ ŷ.

2 Analysis of the hyperboli
 limit system

2.1 Small time versus small vis
osity s
aling

Let us 
hoose some ε > 0. We want to study what happens during the time interval [0, εT ]. To study

this very short �rst stage, we perform the following 
hange of s
ale. For t ∈ [0, T ] and x ∈ [0, 1], let:

ȳ(t, x) = εy(εt, x). (4)

Hen
e, ȳ ∈ X is now the solution to the small vis
osity system:















ȳt + ȳȳx − εȳxx = ū(t) in (0, T )× (0, 1),
ȳ(t, 0) = v̄(t) in (0, T ),
ȳ(t, 1) = 0 in (0, T ),
ȳ(0, x) = ȳ0(x) in (0, 1),

(5)

where we performed the following s
alings: ū(t) = ε2u(εt), v̄(t) = εv(εt) and ȳ0(x) = εy0(x). This

s
aling is fruitful be
ause it highlights the fa
t that, when small time s
ales are 
onsidered, the non-

linear term is the key term. We want to understand the behavior of the limit system when ε = 0.
Therefore, let us 
onsider that ū(·), v̄(·) and ȳ0(·) are �xed data, and let ε go to zero.

2.2 Obtaining the entropy limit

When one 
onsiders the entropy limit ε → 0 for system (5), it is not possible to keep on enfor
ing strong

Diri
hlet boundary 
onditions. A boundary layer appears and it is ne
essary to weaken the boundary


onditions. Otherwise, the system would be
ome over-
onstrained. The pioneer work 
on
erning the

derivation of su
h weak boundary 
onditions is the one by Bardos, Le Roux and Nédéle
 in [4℄. In

our parti
ular setting, one gets the following system:















ȳt +
1
2 (ȳ

2)x = ū(t) in (0, T )× (0, 1),
ȳ(t, 0) ∈ E(v̄(t)) in (0, T ),
ȳ(t, 1) ≥ 0 in (0, T ),
ȳ(0, x) = ȳ0(x) in (0, 1),

(6)

where

E(α) =

{

]−∞; 0] if α ≤ 0,
]−∞;−α] ∪ {α} if α > 0.

Let us explain the physi
al meaning of the set E(·). On the one hand, when one tries to enfor
e

a negative boundary data on the left side, 
hara
teristi
s instantly �ow out of the domain, and our

a
tions are useless. On the other hand, if we set a positive boundary data, then: either it is satis�ed,

or a greater negative wave overwhelms it.

Without getting into the details of entropy solutions (for that subje
t, refer to the de�nition given

in [4℄ or to the book [40℄), we will use the following theorem that guarantees that system (6) is

well-posed.

Theorem 2 (Bardos, Le Roux and Nédéle
 in [4℄). For any initial data y0 ∈ BV (0, 1) and any pair

of 
ontrols u ∈ L1(0, T ), v ∈ BV (0, T ), system (6) has a unique entropy solution ȳ in the spa
e

BV ((0, 1)× (0, T )).
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2.3 Small time null 
ontrollability

We are going to show a small time null 
ontrollability result for the hyperboli
 limit system. However,

this will not imply small time global 
ontrollability sin
e the system is not time reversible. Indeed,

even though the PDE seems time-reversible, the de�nition of an entropy solution is not.

Theorem 3. System (6) is small time globally exa
tly null 
ontrollable.

Let us start by giving the intuition of the proof. In a �rst step, we enfor
e a 
onstant left boundary

data H > 0. It moves towards the right and overrides the initial data ȳ0(·) provided that the sho
ks'

propagation speed is su�
ient. Therefore, H is 
hosen by using the Rankine-Hugoniot formula.

Figure 2 shows a simulation of this �rst step for some smooth initial data ȳ0. At the end of this step,

we have ȳ(·) ≡ H . During the se
ond step, we use some 
onstant negative ū to get ba
k down to the

null state.

ȳ0(x)

x = 1

Rankine-Hugoniot jump condition

x = 0

v̄(t) ≡ H

Figure 2: Overriding of an initial data ȳ0(x) by some 
onstant state ȳ(x) ≡ H for system (6).

Now let us give a rigorous proof using the 
omparison prin
iple.

Proof. Let ȳ0(x) ∈ BV (0, 1) and T > 0. Let us 
hoose H su
h that:

1

2
(H − ‖ȳ0‖L∞) ≥ 2

T
. (7)

We enfor
e the following 
ontrols:

v̄(t) =

{

H for t ∈ [0, T/2],
2H

(

1− t
T

)

for t ∈ [T/2, T ],

ū(t) =

{

0 for t ∈ [0, T/2],
− 2H

T for t ∈ [T/2, T ].

From Theorem 2, we know that there exists a unique entropy solution ȳ ∈ BV ((0, 1) × (0, T )) for
these data. Let us show that ȳ(T/2, ·) ≡ H . Therefore, we will easily dedu
e ȳ(T, ·) ≡ 0.

Let us extend our initial data from [0, 1] to R. Sin
e Theorem 2 guarantees the uniqueness of the

solution, the restri
tion to x ∈ [0, 1] of our global solution will be the unique solution to (6). Therefore

we 
onsider ŷ0 ∈ BV (R):

ŷ0(x) =







H for x < 0,
ȳ0(x) for 0 < x < 1,
0 for 1 < x.

(8)

6



Let us introdu
e ŷ the weak entropy solution de�ned on R × [0, T ] asso
iated to this initial data.

Thanks to Rankine-Hugoniot formula and (7), we know that:

y(t, x) = H for x < t · (H − ‖y0‖∞)

2
.

Hen
e, ŷ(T/2, x) = H for x ∈ [0, 1], and y(t, 0+) ≡ H . If we want the restri
tion of ŷ to be a solution

to (6), we need to 
he
k that y(t, 1−) ≥ 0. Let us use the 
omparison prin
iple for solutions to invis
id

Burgers' equation. It 
an be obtained by taking the null vis
osity limit in our Lemma 1. Hen
e

ŷ(t, x) ≥ w(t, x) where w is the solution asso
iated to the initial data:

w0(x) =







H for x < 0,
−‖ȳ0‖∞ for 0 < x < 1,
0 for 1 < x.

(9)

We have two Riemann problems. Near x = 1, we have a rarefa
tion wave. Hen
e x 7→ w(t, x) is


ontinuous near x = 1 as long as the H sho
k wave has not rea
hed x = 1. Hen
e w(t, 1−) = 0 before

T ∗ = 1/(2H − 2‖ȳ0‖∞), then w(t, 1−) = H . This is why w(t, 1−) ≥ 0. Thus ŷ(t, 1−) ≥ w(t, 1−) ≥ 0.
The restri
tion ŷ[0,1] is the unique solution to (6) and it is equal to H at time t = T/2.

This proof uses the 
omparison prin
iple for Burgers' equation. Sin
e we 
onsider a 1-D system,

this is not a problem. However, if we wanted to be able to handle multi-dimensional systems, we


ould use the generalized 
hara
teristi
s method from Dafermos (see [17℄). This te
hnique has been

su

essfully used by Perrollaz in [38℄.

3 Hyperboli
 stage and settling of the boundary layer

Thanks to the analysis of the hyperboli
 limit system, we were able to exhibit 
ontrols steering the

system towards the null state from any initial data. Now we want to apply the same strategy to

the slightly vis
ous system (5) by using very similar 
ontrols. However, a boundary layer is going to

appear. Our goal in this se
tion is to derive bounds for the boundary layer at the end of this stage.

3.1 Steady states of system (5)

From now on, the vis
osity is positive. Hen
e, sin
e we have a zero Diri
hlet boundary 
ondition

ȳ(1) = 0, we 
annot hope to rea
h a 
onstant state ȳ(x) ≡ H > 0 . However, we expe
t that we


an get very 
lose to the 
orresponding steady state. Let us introdu
e the following steady state of

system (5):

hε(x) = H tanh

(

H

2ε
(1− x)

)

. (10)

Lemma 2. For any H > 0 and any ε > 0, hε
de�ned by (10) is a stationary solution to system (5)

with 
ontrols: ū(t) = 0 and v̄(t) = H tanh
(

H
2ε

)

.

Proof. The proof is an easy 
omputation. In fa
t, it is possible to 
ompute expli
itly all the steady

states for system (5), at least when ū = 0. This is done in [25℄ with vis
osity ε = 1.

We have 
hosen a boundary data v̄(t) = H tanh
(

H
2ε

)

for the de�nition of our steady state hε
, but

we will use a 
ontrol v̄(t) = H for the motion. This te
hni
al tri
k will lighten some 
omputations and

is relevant sin
e both terms are exponentially 
lose as ε goes to zero. However, some proofs require the

use of the exa
t steady state 
orresponding to a boundary data v̄(t) = H . Therefore, we introdu
e:

kε(x) = K tanh

(

K

2ε
(1 − x)

)

, (11)

where K > 0 is given by the impli
it relation K tanh (K/(2ε)) = H .

Lemma 3. For any H > 0 and any ε > 0, kε de�ned by (11) is a stationary solution to system (5)

with 
ontrols: ū(t) = 0 and v̄(t) = H. Moreover, we have the estimate:

‖kε − hε‖L∞(0,1) ≤ 2He−H/ε. (12)

7



Proof. Lemma 2 gives us that kε is a steady state. For the estimate, we write:

‖kε − hε‖L∞(0,1) ≤
∣

∣

∣

∣

K tanh

(

K

2ε

)

−H tanh

(

H

2ε

)∣

∣

∣

∣

≤ H

∣

∣

∣

∣

1− tanh

(

H

2ε

)∣

∣

∣

∣

≤ 2He−H/ε.

3.2 First step: overriding the initial data

In order to get 
lose to the steady state hε
, it is ne
essary to 
hoose H in su
h a way that a Rankine-

Hugoniot type 
ondition is satis�ed. On
e we get 
lose enough to the steady state, the solution will

very qui
kly 
onverge to the steady state. Indeed, the eigenvalues of the linearized system around this

steady state are real, negative, and of size at least 1/ε. This guarantees very qui
k 
onvergen
e to the

steady state. Su
h a study of the linearized problem around a steady state for the Burgers' equation


an be found in [34℄. We give the following lemma des
ribing the settling of the limit layer.

Lemma 4. Let T > 0, H > 0 and y0 ∈ H1
0 (0, 1) be given data. Then for ε > 0 small enough, there

exists a boundary 
ontrol v̄ ∈ H3/4(0, T ) su
h that v̄(·) ≤ H and su
h that the solution ȳ ∈ X to

system (5) with initial data ȳ0 = εy0 and 
ontrols ū = 0 and v̄ satis�es:

‖ȳ(T, ·)− hε(·)‖L2(0,1) = Oε→0

(

ε−1/2e−
H
4ε

(HT−2)
)

. (13)

hε(x)

x = 1

ȳ(t, x)

ȳ0(x)

H

Figure 3: Example of evolution from an initial data towards a steady state.

Let us postpone the proof of Lemma 4 for the moment. We start by giving a few remarks 
on
erning

this statement and its proof. The intuition is to 
hoose a boundary 
ontrol v̄(t) ≡ H , just like we have

done for the hyperboli
 
ase. Moreover, we want to use the Cole-Hopf transform and Fourier series to


ompute expli
itly ȳ(T, ·). Let us introdu
e the Cole-Hopf transform:

Z(t, x) = exp

(

− 1

2ε

∫ x

0

ȳ(t, s)ds

)

.

This leads to the following heat system for the new unknown Z:














Zt − εZxx = −
(

1
4ε ȳ

2(t, 0)− 1
2 ȳx(t, 0)

)

Z on (0, T )× (0, 1),
Z(t, 0) = 1 on (0, T ),
Zx(t, 1) = 0 on (0, T ),
Z(0, x) = Z0(x) on (0, 1),

(14)

where the initial data Z0
is 
omputed from the initial data ȳ0 = εy0:

Z0(x) = exp

(

−1

2

∫ x

0

y0(s)ds

)

. (15)
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Hen
e we see that it will not be possible to 
arry on expli
it 
omputations if we do 
hoose ȳ(t, 0) ≡ H .

Indeed, in that 
ase, we would not know expli
itly ȳx(t, 0) (whi
h is needed to 
ompute the solution

to system (14)). However, we are 
on�dent that this term is very small. Hen
e, we are going to go

the other way around: we will 
hoose our 
ontrol expli
itly in the Cole-Hopf domain and use it to


ompute our 
ontrol v̄(·). Therefore, we are interested in the following heat system:















Zt − εZxx = −H2

4ε Z on (0, T )× (0, 1),
Z(t, 0) = 1 on (0, T ),
Zx(t, 1) = 0 on (0, T ),
Z(0, x) = Z0(x) on (0, 1).

(16)

If we go ba
k to the Burgers' domain, this means that we somehow use the following boundary


ondition at x = 0:

ȳx(t, 0) =
1

2ε

(

ȳ2(t, 0)−H2
)

. (17)

We expe
t that the solution Z will 
onverge towards Hε(·), where Hε(·) is the Cole-Hopf transform
of the steady state hε

:

Hε(x) =
cosh

(

H
2ε (1− x)

)

cosh H
2ε

. (18)

Indeed, we have the following lemma.

Lemma 5. Let T > 0 and Z0 ∈ H2(0, 1) su
h that Z0(0) = 1 and Z0
x(1) = 0. Then system (16) has

a unique solution Z in the spa
e L2((0, T );H3(0, 1)) ∩H1((0, T );H1(0, 1)). Moreover, there exists a


onstant C(Z0) > 0 depending only on ‖Z0‖H1
su
h that:

‖Z(T, ·)−Hε(·)‖H1(0,1) ≤ ε−1/2C(Z0)e−
H2T
4ε . (19)

Proof. It is 
lassi
al to show that system (16) has a unique solution in the spa
e L2((0, T );H3(0, 1))∩
H1((0, T );H1(0, 1)). One 
an even get more smoothness if needed. An e�
ient method is the semi-

group method that one 
an �nd for instan
e in [37℄. To 
ompute the dynami
s of system (16), we

introdu
e the adequate Fourier basis of L2
:

fn(x) =
√
2 sin

((

n+
1

2

)

πx

)

for n ≥ 0.

Hen
e fn(0) = f ′
n(1) = 0. We will use the notation λn = (n + 1

2 )π. Thus, f
′′
n = −λ2

nfn. Let us give
the following s
alar produ
ts, whi
h 
an easily be 
omputed using integration by parts:

〈1|fn〉 =

√
2

λn
,

〈Hε|fn〉 =

√
2λn

H2

4ε2 + λ2
n

, (20)

∣

∣〈Z0|fn〉
∣

∣ ≤
√
2

λn

(

1 +
1

2

∥

∥Z0
∥

∥

H1

)

. (21)

In these equations 〈·|·〉 denotes the standard s
alar produ
t in L2(0, 1). Let us write Z = 1+w. Hen
e
w will satisfy w(t, 0) = wx(t, 1) = 0. Easy 
omputations lead to the following ordinary di�erential

equations for the 
omponents of w on our Fourier basis:

ẇn(t) = −ε

(

λ2
n +

H2

4ε2

)

wn(t)−
H2

4ε
〈1|fn〉.

It is easy to see that the �xed points for these ODEs are the expe
ted 
oe�
ients 〈Hε − 1|fn〉. We


an solve these ODEs with our initial 
ondition:

wn(t) = αne
−ε

(

λ2

n+
H2

4ε2

)

t
+ 〈Hε − 1|fn〉,

where:

αn = 〈Z0|fn〉 − 〈Hε|fn〉.
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Now we 
an estimate Z(T, ·)−Hε(·):

‖Z(T, ·)−Hε(·)‖2H1(0,1) =
∑

n≥0

λ2
nα

2
ne

−2ε
(

λ2

n+
H2

4ε2

)

T
.

From the expression of αn, (20) and (21) we get the easy bound:

λ2
nα

2
n ≤ 16 + ‖Z0‖2H1(0,1), ∀n ∈ N.

Thus, we get

‖Z(T, ·)−Hε(·)‖2H1(0,1) ≤
(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε

∑

n≥0

e−2ελ2

n .

Now we split the sum in two parts: n ≤ N = ⌊1/ε⌋ and n ≥ N . We get:

‖Z(T, ·)−Hε(·)‖2H1(0,1) ≤
(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε



N +
∑

k≥0

e−2ε(N+k+ 1

2
)2π2





≤
(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε

(

N +
1

1− e−4εNπ2
e−2εN2π2

)

.

Hen
e, for ε small enough, we have:

‖Z(T, ·)−Hε(·)‖2H1(0,1) ≤
(

1

ε
+ 1

)

(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε .

This 
on
ludes the proof of Lemma 5.

Now we 
an prove Lemma 4.

Proof of Lemma 4. De�nition of the 
ontrol: Using Lemma 5, we start by 
onsidering the

solution Z ∈ L2((0, T );H3(0, 1))∩H1((0, T );H1(0, 1)) to system (16) with the initial data (15). Sin
e

Z0(·) > 0, the usual strong maximum prin
iple (see [40℄) guarantees that Z(t, x) > 0. Thus, we 
an
de�ne:

ȳ(t, x) = −2ε
Zx(t, x)

Z(t, x)
. (22)

Hen
e ȳ ∈ X is a solution to (5) with initial data εy0 and boundary 
ontrol v̄(t) = −2εZx(t, 0). Sin
e
Z ∈ L2((0, T );H3(0, 1)) ∩H1((0, T );H1(0, 1)), we 
an show that its boundary tra
e Zx(t, 0) belongs
to H3/4(0, T ). Hen
e v̄ ∈ H3/4(0, T ).

Proof of an L∞
bound on the solution: If ε is small enough, then ε‖y0‖∞ ≤ H . Moreover,

we know that v̄ ∈ H3/4(0, T ). Hen
e, v̄ ∈ C0[0, T ]. Assume that sup[0,T ] v̄ > H . Let T0 be a time

su
h that v̄(T0) = sup[0,T ] v̄ > H . On the one hand, by the 
omparison prin
iple from Lemma 1, we

know that:

ȳ ≤ v̄(T0) on (0, T )× (0, 1). (23)

On the other hand, we re
all relation (17):

ȳx(t, 0) =
1

2ε

(

ȳ2(t, 0)−H2
)

.

Hen
e, sin
e v̄(T0) > 0, we get ȳx(T0, 0) > 0. Thus,there exists x > 0 su
h that ȳ(T0, x) > v̄(T0) =
sup[0,T ] v̄. This is in 
ontradi
tion with assertion (23). Hen
e, if ε is small enough, v̄(·) ≤ H and

ȳ(T, ·) ≤ H .

Derivation of the L2
estimate at time T : Now we want to prove estimate (13) from

Lemma 4. We want to use estimate (19) from Lemma 5. We perform the following 
omputation at

time T and for any x ∈ [0, 1]:

|ȳ − hε| = 2ε

∣

∣

∣

∣

Zx

Z
− Hε

x

Hε

∣

∣

∣

∣

= 2ε

∣

∣

∣

∣

Z (Zx −Hε
x) + Zx (H

ε − Z)

ZHε

∣

∣

∣

∣

≤ 2ε

∣

∣

∣

∣

Zx −Hε
x

Hε

∣

∣

∣

∣

+ 2ε

∣

∣

∣

∣

Zx

Z

∣

∣

∣

∣

·
∣

∣

∣

∣

Z −Hε

Hε

∣

∣

∣

∣

.
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Thus, we get:

‖ȳ(T, ·)− hε(·)‖L2(0,1) ≤ (2ε+ ‖ȳ(T, ·)‖∞)× sup
[0,1]

1

Hε
× ‖Z(T, ·)−Hε(·)‖H1(0,1) .

Now we use that ‖ȳ(T, ·)‖∞ ≤ H and sup[0,1] 1/H
ε ≤ e+H/2ε

. Hen
e , using also (19),

‖ȳ(T, ·)− hε(·)‖L2(0,1) ≤
1√
ε
(2ε+H)C(Z0)e−

H
4ε

(HT−2).

This estimate 
on
ludes the proof of Lemma 4.

Remark 1. In Lemma 4, we take an initial data y0 ∈ H1
0 (0, 1). This is a te
hni
al assumption that

enables us to use stronger solutions. We will get rid of it later on, by letting the Burgers' equation

smooth our real initial data whi
h is only in L2(0, 1).

3.3 Se
ond step: going ba
k to the null state

On
e we have rea
hed the steady state hε
, we wish to go ba
k to the null state. This is done by applying

a suitable negative interior 
ontrol ū. The 
ontrol v̄ will only be following the global movement. The

intuitive idea is to apply some negative 
ontrol ū on [0, T ] su
h that

∫ T

0
u(t)dt = −H . Thus, we hope

to rea
h some state that is below 0 and above a boundary residue hε−H . However, this last statement

is only true up to some small L2
fun
tion (small as T → 0). The key will be to 
hoose the duration

T of this step small enough (with respe
t to ε).

0

x = 0.97 x = 1

kε(x)−H

ȳ(T, x)

kε(x)

ȳ(t, x)

H

0

x = 0.9 x = 1

Focus

δ(T, x)

Figure 4: Numeri
al simulation of the push-down towards the null state and the 
reation of a boundary

residue. The �nal state ȳ(T, ·) is almost above the residue kε(·)−H .

Lemma 6. Let ε > 0 and H > 0 be given data. Assume that 2ε ≤ H. We 
onsider the evolution of

an initial data ȳ1 ∈ L2(0, 1). For any T > 0, we 
onsider the following 
ontrols for t ∈ [0, T ]:

ū(t) = −H

T
, (24)

v̄(t) = H +

∫ t

0

u(s)ds. (25)

Then the asso
iated solution ȳ ∈ X to system (5) satis�es:

ȳ(T, ·)− kε(·) +H ≥ δ(T, ·), (26)

where δ ∈ X is the solution to some Burgers-like system given below and is su
h that:

‖δ(T, ·)‖L2 ≤ eH
2T/4ε ‖ȳ1 − kε‖L2 + 2H

(

eH
2T/2ε − 1

)

. (27)
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Proof. Let T > 0 and 
onsider the 
ontrols de�ned by (24) and (25). Let us 
onsider the asso
iated

solution ȳ ∈ X to (5). We 
ompare ȳ to the solution z ∈ X to the following system:















zt + zzx − εzxx = ū(t) in (0, T )× (0, 1),
z(t, 0) = v̄(t) in (0, T ),
z(t, 1) = v̄(t)−H in (0, T ),
z(0, x) = ȳ0(x) in (0, 1).

(28)

The 
omparison prin
iple from Lemma 1 tells us that y(T, ·) ≥ z(T, ·). Now we want to derive pre
ise

estimates for the solution z ∈ X . We write:

z(t, x) = kε(x) +

∫ t

0

ū(s)ds+ δ(t, x), (29)

where δ ∈ X is thus the solution to the following system:



















δt − εδxx + kεδx +
(

δ +
∫ t

0 ū(s)ds
)

(kε + δ)x = 0 in (0, T )× (0, 1),

δ(t, 0) = 0 in (0, T ),
δ(t, 1) = 0 in (0, T ),
δ(0, x) = ȳ1(x)− kε(x) in (0, 1).

(30)

Note that it is 
onvenient in this proof to use kε in order to get exa
t zero boundary 
onditions

δ(t, 0) = δ(t, 1) = 0. We multiply the evolution equation of (30) by δ and integrate by parts for

x ∈ [0, 1] to get a L2
-energy estimate on δ:

1

2

d

dt

∫ 1

0

δ2 + ε

∫ 1

0

δ2x = −
∫ 1

0

kεδδx −
∫ 1

0

(

δ +

∫ t

0

ū(s)ds

)

(kε + δ)xδ

=
1

2

∫ 1

0

δ2(kε)x −
∫ 1

0

(

δ +

∫ t

0

ū(s)ds

)

δ(kε)x

= −1

2

∫ 1

0

δ2(kε)x −
∫ t

0

ū(s)ds

∫ 1

0

δ(kε)x.

Now we use de�nition (11) and the assumption 2ε ≤ H :

‖kεx‖∞ ≤ K2

2ε
≤ H2

2ε tanh(1)2
≤ H2

ε
.

Moreover,

∫ t

0
ū(s)ds ≤ H . Hen
e,

1

2

d

dt

∫ 1

0

δ2 ≤ H2

2ε

∫ 1

0

δ2 +
H3

ε

(∫ 1

0

δ2
)1/2

. (31)

Let us denote E(t) = ‖δ(t, ·)‖L2
. Hen
e, one has:

Ė(t) ≤ H2

2ε
E +

H3

ε
. (32)

From Grönwall's lemma, we get:

E(T ) ≤ (E(0) + 2H) eH
2T/2ε − 2H. (33)

This 
on
ludes the proof of Lemma 6.

This is the end of the hyperboli
 stage. We need to perform the reverse s
aling of (4) to go ba
k

to y (and not ȳ). We have shown that we are above some boundary residue hε −H . Hen
e, we have

to study the evolution of the following initial data:

Φε(x) =
1

ε
(hε(x) −H) =

H

ε

(

tanh

(

H

2ε
(1− x)

)

− 1

)

. (34)

One should be s
ared by the size of this boundary residue that we are left with. Indeed, its L2

size grows like 1/
√
ε. However it has the important feature that its typi
al wavelength is ε. Hen
e, its

spe
tral de
omposition will mostly involve high frequen
ies that will de
ay rapidly during the passive

stage thanks to smoothing e�e
ts of Burgers' equation.
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4 Passive stage and dissipation of the boundary layer

The goal of this se
tion is to prove the following estimate 
on
erning the dissipation of the boundary

residue Φε

reated in the previous se
tion. Indeed, although its L2

-norm in
reases as ε goes to zero,

regularization e�e
ts of the Burgers equation will dissipate it in any positive time T .

Lemma 7. Let T > 0 be a �xed positive time. For any ε > 0, let us 
onsider φ ∈ X the solution to

the following system:















φt + φφx − φxx = 0 in (0, T )× (0, 1),
φ(t, 0) = 0 in (0, T ),
φ(t, 1) = 0 in (0, T ),
φ(0, x) = Φε(x) in (0, 1),

where Φε(x) is the boundary residue de�ned by (34). Then for any δ > 0, we have the estimate:

‖φ(T, ·)‖L2(0,1) = Oε→0

(

ε1−δ
)

. (35)

0

y(t, x)

Φε(x)−3

x = 0.5 x = 1

Figure 5: Numeri
al simulation of the dissipation of the boundary residue Φε(·). At time t = 0, the
boundary residue was of size ‖Φε(·)‖∞ = 100.

4.1 Cole-Hopf transform

On
e again, we are going to use the Cole-Hopf transform to derive pre
ise estimates. Therefore, let

us introdu
e the following 
hange of unknown for x ∈ [0, 1] and t ∈ [0, T ]:

z(t, x) = exp

(

−1

2

∫ x

0

φ(t, s)ds

)

.

This leads to the following heat system for the new unknown z:















zt − zxx = 0 on (0, T )× (0, 1),
zx(t, 0) = 0 on (0, T ),
zx(t, 1) = 0 on (0, T ),
z(0, x) = Zε(x) on (0, 1),

(36)
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where the initial data Zε
is 
omputed from the initial data Φε

:

Zε(x) = exp

(

−1

2

∫ x

0

Φε(s)ds

)

=
1 + e

H
ε
(x−1)

1 + e−
H
ε

. (37)

An important remark is that Φε ≤ 0. Thus, by the 
omparison prin
iple from Lemma 1, φ ≤ 0 on

[0, T ]× [0, 1] and z ≥ 1 on [0, T ]× [0, 1]. The ba
kwards Cole-Hopf transform will give us:

φ(T ) = −2
zx(T )

z(T )
.

Hen
e, using the fa
t that z ≥ 1, we will have the following estimate:

|φ(T, ·)| ≤ 2 |zx(T, ·)| . (38)

All we have to do is to study the L2
-norm of zx(T ). To ease 
omputations, let us introdu
e:

w = (1 + e−
H
ε )zx, (39)

su
h that w is the solution to:















wt − wxx = 0 on (0, T )× (0, 1),
w(t, 0) = 0 on (0, T ),
w(t, 1) = 0 on (0, T ),

w(0, x) = H
ε e

H
ε
(x−1)

on (0, 1).

4.2 Fourier series de
omposition

We use Fourier series to 
ompute w(T, ·). We will use the following Hilbert basis of L2
made of the

eigen-fun
tions for the Lapla
e operator with Diri
hlet boundary 
onditions on [0, 1]:

en(x) =
√
2 sin(nπx) for n ≥ 1.

Let us 
ompute the de
omposition of w(0, ·) on this basis. We integrate by parts twi
e:

〈w(0, ·)|en〉 =
√
2
H

ε
e−

H
ε

∫ 1

0

sin(nπx)e
H
ε
xdx

=
√
2e−

H
ε

[

sin(nπx)e
H
ε
x
]1

0
−
√
2nπe−

H
ε

∫ 1

0

cos(nπx)e
H
ε
x

= −ε
√
2

H
nπe−

H
ε

[

cos(nπx)e
H
ε
x
]1

0
−
(εnπ

H

)2

〈w(0, ·)|en〉

=

√
2

H

εnπ

1 + ε2n2π2

H2

(

(−1)n+1 + e−
H
ε

)

.

Now we 
an estimate the size of w(T, ·) in L2(0, 1):

‖w(T, ·)‖2L2 =
∑

n≥1

(

〈w(0, ·)|en〉 · e−n2π2T
)2

≤ 8
∑

n≥1

ε2n2π2H−2

(1 + ε2n2π2H−2)2
e−2n2π2T .

For α ∈ R, the following easy inequality holds:

α2

(1 + α2)2
≤ min

(

α2,
1

4

)

.
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Hen
e we split the sum and 
ut at a level N(ε):

‖w(T, ·)‖2L2 ≤ 8
N−1
∑

n=1

ε2n2π2

H2
+ 2

∑

k≥0

e−2(N+k)2π2T

≤ 8ε2N3π2

3H2
+ 2e−2N2π2T

∑

k≥0

e−4Nkπ2T

≤ 8ε2N3π2

3H2
+ 2

e−2N2π2T

1− e−4Nπ2T
.

We want to 
hoose N(ε) → +∞ su
h that ε2N3 → 0. For instan
e, we 
an take N = ⌊ε−η⌋, where
η > 0 is small enough. For ε small enough, we have:

‖w(T, ·)‖2L2 ≤ 8π2

3H2
ε2−3η + 4e−2ε−2ηπ2T = O

(

ε2−3η
)

. (40)

Combining estimates (40) and (38), and the de�nition (39) we 
an easily dedu
e the estimate (35).

This 
on
ludes the proof of Lemma 7.

4.3 Approximate 
ontrollability towards the null state

First, let us prove the following te
hni
al lemma. Indeed, we have proven that the parti
ular boundary

layer Φε
dissipates, but all we also want to know what would happen if we were very 
lose to it.

Lemma 8. Let us 
hange the initial data from Lemma 7 to Φε(x) + 1
εδ

ε
. We assume:

Φε(x) +
1

ε
δε ≤ 0, (41)

‖δε(·)‖L2(0,1) = Oε→0(ε
3). (42)

Then, the 
on
lusion of Lemma 7 still holds.

Proof. We follow the same s
heme than for the proof of Lemma 7. Hen
e, we start by taking the

Cole-Hopf transform of the new initial data Φε(x) + 1
εδ

ε
. Therefore, after the Cole-Hopf transform

we have the following initial data:

Zε(x) + Zε(x) ·
(

exp

(

− 1

2ε

∫ x

0

δε
)

− 1

)

.

From our previous 
omputation (37) of Zε
, we know that |(Zε)x| = O(1/ε). Hen
e, using 
ondition

(42), we have:

∥

∥

∥

∥

Zε(x) ·
(

exp

(

− 1

2ε

∫ x

0

δε
)

− 1

)∥

∥

∥

∥

H1(0,1)

= Oε→0(ε).

Let us use the fa
t that our heat system (36) is linear. Therefore, using the 
on
lusion of Lemma 7

we have:

‖z(T, ·)‖H1(0,1) = Oε→0(ε
1−δ) +Oε→0(ε).

On
e again we apply the ba
kwards Cole-Hopf transform. We use the fa
t that z ≥ 1 (this 
omes

from the 
omparison prin
iple and the hypothesis (41)). Hen
e,

‖φ(T, ·)‖L2(0,1) ≤ 2‖z(T, ·)‖H1(0,1).

Thus, the 
on
lusion (35) of Lemma 7 still holds with this new initial data.

Now everything is ready for us to show the following small time approximate 
ontrollability result

for system (1). We have to 
ombine the di�erent estimates.

Theorem 4. Let T, r > 0 and y0 ∈ L2(0, 1) be given data. Then there exists u, v ∈ L∞(0, T ) ×
H1/4(0, T ) su
h that the asso
iated solution y ∈ X to system (1) on [0, T ] satis�es:

‖y(T, ·)‖L2(0,1) ≤ r.
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Figure 6: Approximate null-
ontrollability strategy.

Proof. Take T, r > 0 and y0 ∈ L2(0, 1) given data. Let us take a small ε > 0 and break down our

time interval into four parts. We introdu
e T1 = T/3, T2 = T1 + ε and T3 = T2 + ε4. The �rst part
[0, T1] of length T/3 is designed to smooth the initial data. The se
ond part [T1, T2] of length ε is the
part where the settling of the boundary layer takes pla
e. The third part [T2, T3] of length ε4 is the

qui
k push down to zero. The fourth part [T3, T ] of length at least T/3 (when ε is small enough) is

the passive stage for the dissipation of the boundary layer. Let us give some details.

Smoothing of the initial data: First, for t ∈ [0, T1], we 
hoose u(t) = v(t) = 0. The system
evolves freely. Regularization e�e
ts of the Burgers' equation smooth our initial data y0 ∈ L2(0, 1).
We have y(T1, ·) ∈ H1

0 (0, 1). There are many ways to prove su
h a result. For instan
e, one 
an take

the Cole-Hopf transform and use well-known regularization properties of the heat equation.

Settling of the boundary layer: Next, for t ∈ [T1, T2], we perform the s
aling (4). We want

to apply Lemma 4 for a duration 1. Hen
e, let us 
hoose some H su
h that H − 2 > 0. We take

v̄ ∈ H3/4(0, T ) the 
ontrol from Lemma 4. For t ∈ [T1, T2], we use:

u(t) = 0,

v(t) =
1

ε
v̄

(

t− T1

ε

)

.

From Lemma 4, we know that:

∥

∥

∥

∥

y(T2, ·)−
1

ε
hε(·)

∥

∥

∥

∥

L2(0,1)

= Oε→0

(

ε−3/2e−
H
4ε

(H−2)
)

. (43)

Push-down towards zero: Then, still in the 
ontext of s
aling (4), we want to apply Lemma 6

during a very short duration ε3. Hen
e, for t ∈ [T2, T3], we 
hoose the 
ontrols found in Lemma 6

(with a total time ε3), and we s
ale them appropriately. That is to say:

u(t) =
1

ε2
ū

(

t− T2

ε

)

,

v(t) =
1

ε
v̄

(

t− T2

ε

)

.

Combining (43) and Lemma 6, we get that, at the end of this hyperboli
 stage:

0 ≥ y(T3, ·) ≥ Φε +
1

ε
δ(ε3, ·)− 1

ε
‖hε − kε‖∞ ,

where (using estimate (12)):

∥

∥δ(ε3, ·)
∥

∥

L2
+ ‖hε − kε‖∞ = Oε→0(ε

3).
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Dissipation of the boundary residue: Now we enter the passive stage. We 
hoose v(t) =
u(t) = 0 for t ∈ [T3, T ]. Sin
e ε goes to zero, T − T3 ≥ T/3. Hen
e we 
an apply Lemma 8 on a time

interval independent of ε. By using the 
omparison prin
iple from Lemma 1 we 
an 
on
lude that:

‖y(T, ·)‖L2 = Oε→0(ε
1−η),

for any η > 0. For instan
e, one 
an 
hoose η = 1
2 . Then we 
hoose ε small enough to ensure that

‖y(T, ·)‖L2 ≤ r. This 
on
ludes the proof of Theorem 4.

Remark 2. In the proof of Theorem 4, we 
on
atenate di�erent 
ontrols found in di�erent parts. This


ould be a problem for smoothness be
ause we did not 
he
k 
ompatibility 
onditions at the jointures.

However, the proof provides a 
ontrol v ∈ H1/4(0, T ) and this doesn't require 
ompatibility 
onditions.

If one wants smooth 
ontrols, it is also possible. One 
an 
hoose a smooth 
ontrol 
lose to our 
ontrol

for the approximate 
ontrollability, then end with a smooth 
ontrol for the exa
t 
ontrollability.

5 Paraboli
 stage and exa
t lo
al 
ontrollability

Theorem 4 takes 
are of the small time global approximate 
ontrollability towards the null state. To

get Theorem 1, we need to 
ombine it with a small time lo
al exa
t 
ontrollability result in the vi
inity

of the null state. We give in this se
tion two di�erent approa
hes for this type of result.

5.1 Fursikov and Imanuvilov's theorem

The following theorem is due to Fursikov and Imanuvilov. Indeed, the te
hniques they expose in their

book [26℄ 
an be applied to show the following result. However, the proof of this pre
ise statement is

not written, and one has to work to show that the 
ontrol 
an be 
hosen to be smooth.

Theorem 5. Let T > 0. There exists r > 0 su
h that, for any initial data y0 ∈ L2(0, 1) satisfying:

‖y0‖L2(0,1) ≤ r, (44)

there exists a 
ontrol v ∈ C1[0, T ] su
h that the solution y ∈ X to the system:















yt + yyx − yxx = 0 in (0, T )× (0, 1),
y(t, 0) = v(t) in (0, T ),
y(t, 1) = 0 in (0, T ),
y(0, x) = y0(x) in (0, 1),

(45)

satis�es y(T, ·) ≡ 0.

The full theorem is in fa
t more general sin
e one obtains lo
al exa
t 
ontrollability to the tra-

je
tories of system (45). The proof relies on Carleman estimates for paraboli
 equations. It is an

extension of a previous result with two boundary 
ontrols whose proof 
an be read in [25℄.

5.2 Using Cole-Hopf and a moments method

In this se
tion we give a proof of Theorem 5 (both for the sake of 
ompleteness and for avoiding

Carleman estimates). It relies on the Cole-Hopf transform and a moments method introdu
ed in [21℄

by Fattorini and Russell.

Proof. Let T > 0. First, we 
onsider the following heat system:















zt − zxx = 0 in (0, T )× (0, 1),
z(t, 0) = α(t) in (0, T ),
zx(t, 1) = 0 in (0, T ),
z(0, x) = z0(x) in (0, 1).

(46)

This is typi
ally a setting for whi
h we 
an apply the moments method of Fattorini and Russel exposed

in [21℄. They prove this system is null 
ontrollable for any positive time by means of very smooth


ontrols. Let us use some 
ontrol α ∈ C1[0, T ]. They also prove that there exists some 
onstant CT

su
h that the size of the 
ontrol is bounded from above by CT × ‖z0‖L2
. Therefore, if z0 is small

enough in L2
, one 
an steer it to zero with a 
ontrol α(·) su
h that ‖α(·)‖∞ < 1.
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Now we get ba
k to our Burgers' system. For y0 ∈ L2(0, 1), let us 
hoose:

z0(x) = exp

(

−1

2

∫ 1

0

y0(s)ds

)

− 1.

Thus, if y0(·) is small in L2(0, 1) then z0(·) too. If they are small enough, then we 
an steer z0 to 0
with a 
ontrol su
h that ‖α(·)‖∞ < 1. In that setting, we have z(·) > −1 thanks to the maximum

prin
iple for the heat equation. Hen
e, if we let y = −2zx/(1 + z), we get a solution y ∈ X to (45)

su
h that y(T, ·) ≡ 0 provided that 
ondition (44) is satis�ed for some r > 0 depending only on T .

6 Con
lusion and perspe
tives

In our work, we want to underline two important ideas. The �rst one is the rigorous analysis of

the hyperboli
 limit system and of the adequate weak boundary 
onditions. These weak boundary


onditions somehow des
ribe the behavior of the boundary layer and what it will be able to do or not.

The se
ond idea is the dissipation of the boundary layer by the �uid system itself during the passive

stage. On
e a boundary layer is 
reated, will the system be able to dissipate it in short time or not?

These two ideas might be important for the analysis of more 
omplex problems su
h as the Navier-

Stokes Open problem 1. For instan
e, one 
ould try to see if the boundary layer appearing in [11℄

when trying to 
ontrol the 2D Navier-Stokes system with Navier slip boundary 
onditions 
an be

dissipated in small time by the system itself. Another idea would be to investigate spe
i�
 geometries

(for example 2D re
tangle domains). Indeed, one 
an then hope that the lo
alization of the boundary

layers 
an be analyzed in the same spirit.
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