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Small time global null ontrollability for a visous Burgers'

equation despite the presene of a boundary layer

Frédéri Marbah

∗

September 17, 2013

Abstrat

In this work, we are interested in the small time global null ontrollability for the visous

Burgers' equation yt − yxx + yyx = u(t) on the line segment [0, 1]. The right-hand side is a salar

ontrol playing a role similar to that of a pressure. We set y(t, 1) = 0 and restrit ourselves

to using only two ontrols (namely the interior one u(t) and the boundary one y(t, 0)). In this

setting, we show that small time global null ontrollability still holds by taking advantage of both

hyperboli and paraboli behaviors of our system. We use the Cole-Hopf transform and Fourier

series to derive preise estimates for the reation and the dissipation of a boundary layer.

1 Introdution

1.1 Desription of the system and our main result

Let T > 0 be a positive time, possibly small. We onsider the line segment x ∈ [0, 1] and the following

one-dimensional visous Burgers' ontrolled system:















yt + yyx − yxx = u(t) in (0, T )× (0, 1),
y(t, 0) = v(t) in (0, T ),
y(t, 1) = 0 in (0, T ),
y(0, x) = y0(x) in (0, 1).

(1)

The salar ontrols are u ∈ L2(0, T ) and v ∈ H1/4(0, T ). The right-hand side ontrol term u(·) plays
a role somewhat similar to that of a pressure for multi-dimensional �uid systems. Unlike some other

studies, our ontrol term u(·) depends only on time and not on the spae variable.

For any initial data y0 ∈ L2(0, 1) and any �xed ontrols in the appropriate spaes, it an be shown

that system (1) has a unique solution in the spae X = L2((0, T );H1(0, 1))∩C0([0, T ];L2(0, 1)). This
type of existene result relies on standard a priori estimates and the use of a �xed point theorem.

Suh tehniques are desribed in [35℄. One an also use a semi-group method as in [37℄. Our main

result is the following small time global null ontrollability theorem for system (1):

Theorem 1. Let T > 0 be any positive time and y0 by any initial data in L2(0, 1). Then there exists

a ontrol pair u ∈ L∞(0, T ) and v ∈ H1/4(0, T ) suh that the solution y ∈ X to system (1) is null at

time T : y(T, ·) ≡ 0.

1.2 An open-problem for Navier-Stokes as a motivation

As a motivation for our study, let us introdue the following hallenging open problem. Take some

smooth onneted bounded domain Ω in R
2
or R

3
. Consider some open part Γ of its boundary ∂Ω.

This is the part of the boundary on whih our ontrol will at. We onsider the following Navier-Stokes

system:















yt −∆y + (y · ∇)y = −∇p in (0, T )× Ω,
div y = 0 in (0, T )× Ω,

y = 0 on (0, T )× (∂Ω \ Γ),
y(0, ·) = y0(·) in Ω.

(2)

∗
Email: frederi.marbah�upm.fr. Address: Laboratoire Jaques-Louis Lions, Université Pierre et Marie Curie,

Institut Universitaire de Frane, 4, Plae Jussieu, 75252 Paris Cedex, Frane. The author is partially supported by the

ERC advaned grant 266907 (CPDENL) of the 7th Researh Framework Programme (FP7)

1



We onsider this system as an underdetermined system. Our ontrol will be some appropriate trae

of a solution on the ontrolled boundary Γ.

Ω

∂Ω \ Γ

Γ

y = 0

Figure 1: Setting of the Navier-Stokes ontrol problem (2).

Open problem 1. Is system (2) small time globally null ontrollable? That is to say, for any T > 0
and y0 in some appropriate spae, does there exist a trajetory of system (2) suh that y(T, ·) ≡ 0?

Many works have be done in this diretion. Generally speaking, one an distinguish two approahes.

First, one an think of the nonlinear term as a perturbation term and obtain the ontrollability by

means of the Laplaian term. For instane, Fabre uses in [20℄ a trunation method for the Navier-

Stokes equation. In [36℄, Lions and Zuazua use Galerkin approximations for various �uid systems.

Of ourse, this approah is very e�ient for loal results. The most reent result onerning loal

ontrollability for system (2) is the one ontained in [23℄ by Fernández-Cara, Guerrero, Imanuvilov

and Puel. Their proof uses Carleman estimates.

The other approah goes the other way around. Indeed, in �nite dimension, it is known that if

ẏ = F (y) + Bu where F is quadrati is ontrollable, then ẏ = F (y) + Ay + Bu is ontrollable too

(see [15, Theorem 3.8℄). Likewise, for �uid systems, trying to get a small time ontrollability result

implies to work at high Reynolds number (ie. with big �uid veloities, or low visosity) inside the

domain. Therefore, inertial fores prevail and the �uid system behaves like its null visosity hyperboli

limit system. In our ase, we expet to dedue results for Navier-Stokes from the Euler sytem. For

Euler, global ontrollability has been shown in [10℄ by Coron for the 2D ase (see also [12℄) and by

Glass for the 3D ase in [27℄. Their proofs rely on the return method introdued by Coron in [9℄

(see also [13, Chapter 6℄). For Navier-Stokes, things get harder. In [16℄, Coron and Fursikov show

a global ontrollability result in the ase of a 2D manifold without boundary. In [24℄, Fursikov and

Imanuvilov show a global exat ontrollability result for 3D Navier-Stokes with a ontrol ating on

the whole boundary (ie. Γ = ∂Ω).
Other approahes exist. Let us mention for instane the work [2℄, where Agrahev and Saryhev

ontrol Navier-Stokes equations by means of low modes. They use methods of di�erential geomet-

ri / Lie algebrai ontrol theory for �nite dimensional ontrol systems.

The main di�ulty of Open problem 1 is the behavior of the system near ∂Ω\Γ. Indeed, although
inertial fores prevail inside the domain, visous fores play a ruial role near the unontrolled bound-

ary, and give rise to a boundary layer. An example of suh a phenomenon an be found in [11℄ where

Coron derives an approximate ontrollability result and highlights the reation of a boundary residue.

Hene, the key question is whether one an handle suh a boundary layer by means of the ontrol.

Some authors have tried to study simpli�ed geometries for Open problem 1. In [7℄, Chapouly stud-

ies a Navier-Stokes equation on a retangle with Navier-slip boundary onditions on the unontrolled

part of the boundary. She obtains small time global null ontrollability. In [29℄ and [30℄, Guerrero,

Imanuvilov and Puel prove approximate ontrollability for a Navier-Stokes system in a square (resp.

in a ube) where one side (resp. one fae) is not ontrolled and has zero Dirihlet boundary ondition.

Burgers' equation has been extensively used as a toy model to investigate properties of more

omplex systems in a rather simple setting. This equation was introdued in the seminal paper [5℄

by Burgers. Both from a theoretial and a numerial point of view, it already exhibits some key

behaviors (suh as interation between the non-linearity and the smoothing e�et). Therefore, our

Theorem 1 an be seen as an example for small time global null ontrollability despite the presene of a
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Dirihlet boundary layer. Moreover, despite the simpliity of Burgers' equation, the analogy between

systems (1) and (2) is quite striking. We an interpret our salar ontrol u(t) as some one-dimensional

ounterpart of a pressure gradient for 2D or 3D.

1.3 Previous works onerning Burgers' ontrollability

Conerning the ontrollability of the invisid Burgers' equation, some works have be arried out. In [3℄,

Anona and Marson desribe the set of attainable states in a pointwise way for the Burgers' equation

on the half-line x ≥ 0 with only one boundary ontrol at x = 0. In [32℄, Horsin desribes the set of

attainable states for a Burgers' equation on a line segment with two boundary ontrols. Thorough

studies are also arried out in [1℄ by Adimurthi et al. In [38℄, Perrollaz studies the ontrollability of

the invisid Burgers' equation in the ontext of entropy solutions with the additional ontrol u(·).

Let us reall known results onerning the ontrollability of the visous Burgers' equation. We

start with some positive results.

First, Fursikov and Imanuvilov have shown in [26℄ a small time loal ontrollability result. It

onerns loal ontrollability in the viinity of trajetories of system (1) and it only requires one

boundary ontrol (either y(t, 0) or y(t, 1)). Their proof relies on Carleman estimates for the paraboli

problem obtained by seeing the non-linear term yyx as a small foring term.

Global ontrollability towards steady states of system (1) is possible in large time both with one or

two boundary ontrols. Suh studies have be arried out by Fursikov and Imanuvilov in [25℄ for large

time global ontrollability towards all steady states, and by Coron in [14℄ for global null-ontrollability

in bounded time (ie. bounded with respet to the initial data).

When three salar ontrols (namely u(t), y(t, 0) and y(t, 1)) are used, Chapouly has shown in [6℄

that the system is small time exatly ontrollable to the trajetories. Her proof relies on the re-

turn method and on the fat that the orresponding invisid Burgers' system is small time exatly

ontrollable (see [13, Chapter 6℄ for other examples of this method applied to Euler or Navier-Stokes).

Some studies have also been arried out in a two-dimensional setting. In [33℄, Imanuvilov and Puel

study the global ontrollability of a 2D-Burgers system, where the ontrol only ats on a part Γ1 of

the boundary. They derive geometri onditions on Γ1 for small time ontrollability to hold.

Some negative results have also been obtained.

In the ontext of only one boundary ontrol y(t, 1), �rst obstrutions where obtained by Diaz

in [18℄. He gives a restrition for the set of attainable states. Indeed, they must lie under some limit

state orresponding to an in�nite boundary ontrol y(t, 1) = +∞.

Still with only one boundary ontrol, Fernández-Cara and Guerrero derived an asymptoti of the

minimal null-ontrollability time T (r) for initial states of H1
norm lower than r (see [22℄). This shows

that the system is not small-time ontrollable.

Guerrero and Imanuvilov have shown negative results in [28℄ when two boundary ontrols y(t, 0)
and y(t, 1) are used. They prove that neither small time null ontrollability nor bounded time global

ontrollability hold. Hene, ontrolling the whole boundary does not provide better ontrollability.

1.4 Strategy for steering the system towards the null state

In view of these results, it seems that the pressure-like ontrol u(t) introdued by Chapouly is the key

to obtaining small time global ontrollability results. In order to take advantage of both hyperboli

and paraboli behaviors of system (1), our strategy onsists in splitting the motion in three stages:

Hyperboli stage: Small time and approximate ontrol towards the null state. During this very

short stage t ∈ [0, εT ] where 0 < ε ≪ 1, the systems behaves like the orresponding hyperboli one,

as the visous term does not have enough time to at. This hyperboli system is small time null

ontrollable. During this �rst stage, we will use both u(·) and v(·) to try to get lose to the null state,

exept for a boundary layer at x = 1.
Passive stage: Waiting. At the end of the �rst stage, we reah a state whose size is hard to

estimate due to the presene of a boundary layer. During this stage, we use null ontrols v(t) =
u(t) = 0. Regularization properties of the visous Burgers equation dissipate the boundary layer and

the size of y(t, ·) dereases. We show that it tends to zero in L2(0, 1) when ε → 0. This is a ruial
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stage as is enables us to get rid of the boundary residue. It seems to be a new idea and ould also be

applied for other boundary layers reated when trying to get small time global ontrollability results.

Paraboli stage: Loal exat ontrollability in the viinity of zero. After the two �rst stages, we

sueed in getting very lose to the null state. The non-linear term beomes very small ompared to

the visous one, and the system now behaves like a paraboli one. We use a small time loal exat

ontrollability result to steer the system exatly to zero. During this last stage, we only need the

ontrol v(·).

Most of the work to be done onsists in deriving preise estimates for the reation and the dissipa-

tion of the boundary layer. We will use the Cole-Hopf transform and Fourier series to overome this

di�ulty. The Cole-Hopf transform was introdued in [8℄ and [31℄ and was used for the �rst time in

ontrol theory by El Badia and Ain Seba in [19℄.

First, we will investigate the hyperboli limit system (see Setion 2). Then we will derive estimates

for the reation of the boundary layer during our hyperboli stage (see Setion 3) and estimates for its

dissipation during the passive stage (see Setion 4). This will ahieve the proof of a small time global

approximate null ontrollability result for our system (1). In Setion 5, we will explain the paraboli

stage and the loal exat ontrollability.

1.5 A omparison lemma for ontrolled Burgers' systems

Throughout our work, we will make an extensive use of the following omparison lemma for our

Burgers' system, in order to derive preise estimates. When the visosity is null, this omparison

priniple still holds for entropy solutions (as they are obtained as a limit of low visosity solutions).

Lemma 1. Let T, ν > 0 and onsider y0, ŷ0 ∈ L2(0, 1), u, û ∈ L2(0, T ), v0, v̂0, v1, v̂1,∈ H1/4(0, T ).
Assume these data satisfy the following onditions:

y0 ≤ ŷ0 and u ≤ û and v0 ≤ v̂0 and v1 ≤ v̂1.

Consider the following system (whih is a generalized version of system (1):















yt + yyx − νyxx = u(t) in (0, T )× (0, 1),
y(t, 0) = v0(t) in (0, T ),
y(t, 1) = v1(t) in (0, T ),
y(0, x) = y0(x) in (0, 1).

(3)

Then the assoiated solutions y, ŷ ∈ X to system (3) are suh that:

y ≤ ŷ on (0, T )× (0, 1).

One an �nd many omparison results in the literature (see for instane the book [39℄ and the

referenes therein). However we give the proof of Lemma 1 both for the sake of ompleteness and

beause with have not found this preise version anywhere.

Proof. We introdue w = ŷ − y. Thus, w ∈ X is a solution to the system:















wt − νwxx = (û− u)− 1
2 (wŷ + wy)x in (0, T )× (0, 1),

w(t, 0) = v̂0(t)− v0(t) in (0, T ),
w(t, 1) = v̂1(t)− v1(t) in (0, T ),
w(0, x) = ŷ0(x)− y0(x) in (0, 1).

We want to study the negative part of w: δ = min(w, 0). Hene, δ(t, 0) = δ(t, 1) = 0. Now we multiply

the evolution equation by δ ≤ 0 and integrate by parts for x ∈ [0, 1] to get a L2
-energy estimate for δ:

1

2

d

dt

∫ 1

0

δ2 + ν

∫ 1

0

δ2x = (û− u)

∫ 1

0

δ +
1

2

∫ 1

0

δ(ŷ + y)δx

≤ ν

4

∫ 1

0

δ2x +
1

4ν

∫ 1

0

δ2(ŷ + y)2

≤ ν

4

∫ 1

0

δ2x +
1

4ν
‖ŷ(t, ·) + y(t, ·)‖2∞ ·

∫ 1

0

δ2.
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Thus, we an inorporate the �rst term of the right-hand side in the left-hand side:

1

2

d

dt

∫ 1

0

δ2 ≤ 1

4ν
‖ŷ(t, ·) + y(t, ·)‖2∞ ·

∫ 1

0

δ2.

Sine y, ŷ ∈ L2
(

(0, T );H1(0, 1)
)

, we have that:

t 7→ ‖ŷ(t, ·) + y(t, ·)‖2∞ belongs to L1(0, T ).

Hene we an use Grönwall's lemma. Sine δ(0, ·) ≡ 0, we dedue that δ ≡ 0 and y ≤ ŷ.

2 Analysis of the hyperboli limit system

2.1 Small time versus small visosity saling

Let us hoose some ε > 0. We want to study what happens during the time interval [0, εT ]. To study

this very short �rst stage, we perform the following hange of sale. For t ∈ [0, T ] and x ∈ [0, 1], let:

ȳ(t, x) = εy(εt, x). (4)

Hene, ȳ ∈ X is now the solution to the small visosity system:















ȳt + ȳȳx − εȳxx = ū(t) in (0, T )× (0, 1),
ȳ(t, 0) = v̄(t) in (0, T ),
ȳ(t, 1) = 0 in (0, T ),
ȳ(0, x) = ȳ0(x) in (0, 1),

(5)

where we performed the following salings: ū(t) = ε2u(εt), v̄(t) = εv(εt) and ȳ0(x) = εy0(x). This

saling is fruitful beause it highlights the fat that, when small time sales are onsidered, the non-

linear term is the key term. We want to understand the behavior of the limit system when ε = 0.
Therefore, let us onsider that ū(·), v̄(·) and ȳ0(·) are �xed data, and let ε go to zero.

2.2 Obtaining the entropy limit

When one onsiders the entropy limit ε → 0 for system (5), it is not possible to keep on enforing strong

Dirihlet boundary onditions. A boundary layer appears and it is neessary to weaken the boundary

onditions. Otherwise, the system would beome over-onstrained. The pioneer work onerning the

derivation of suh weak boundary onditions is the one by Bardos, Le Roux and Nédéle in [4℄. In

our partiular setting, one gets the following system:















ȳt +
1
2 (ȳ

2)x = ū(t) in (0, T )× (0, 1),
ȳ(t, 0) ∈ E(v̄(t)) in (0, T ),
ȳ(t, 1) ≥ 0 in (0, T ),
ȳ(0, x) = ȳ0(x) in (0, 1),

(6)

where

E(α) =

{

]−∞; 0] if α ≤ 0,
]−∞;−α] ∪ {α} if α > 0.

Let us explain the physial meaning of the set E(·). On the one hand, when one tries to enfore

a negative boundary data on the left side, harateristis instantly �ow out of the domain, and our

ations are useless. On the other hand, if we set a positive boundary data, then: either it is satis�ed,

or a greater negative wave overwhelms it.

Without getting into the details of entropy solutions (for that subjet, refer to the de�nition given

in [4℄ or to the book [40℄), we will use the following theorem that guarantees that system (6) is

well-posed.

Theorem 2 (Bardos, Le Roux and Nédéle in [4℄). For any initial data y0 ∈ BV (0, 1) and any pair

of ontrols u ∈ L1(0, T ), v ∈ BV (0, T ), system (6) has a unique entropy solution ȳ in the spae

BV ((0, 1)× (0, T )).
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2.3 Small time null ontrollability

We are going to show a small time null ontrollability result for the hyperboli limit system. However,

this will not imply small time global ontrollability sine the system is not time reversible. Indeed,

even though the PDE seems time-reversible, the de�nition of an entropy solution is not.

Theorem 3. System (6) is small time globally exatly null ontrollable.

Let us start by giving the intuition of the proof. In a �rst step, we enfore a onstant left boundary

data H > 0. It moves towards the right and overrides the initial data ȳ0(·) provided that the shoks'

propagation speed is su�ient. Therefore, H is hosen by using the Rankine-Hugoniot formula.

Figure 2 shows a simulation of this �rst step for some smooth initial data ȳ0. At the end of this step,

we have ȳ(·) ≡ H . During the seond step, we use some onstant negative ū to get bak down to the

null state.

ȳ0(x)

x = 1

Rankine-Hugoniot jump condition

x = 0

v̄(t) ≡ H

Figure 2: Overriding of an initial data ȳ0(x) by some onstant state ȳ(x) ≡ H for system (6).

Now let us give a rigorous proof using the omparison priniple.

Proof. Let ȳ0(x) ∈ BV (0, 1) and T > 0. Let us hoose H suh that:

1

2
(H − ‖ȳ0‖L∞) ≥ 2

T
. (7)

We enfore the following ontrols:

v̄(t) =

{

H for t ∈ [0, T/2],
2H

(

1− t
T

)

for t ∈ [T/2, T ],

ū(t) =

{

0 for t ∈ [0, T/2],
− 2H

T for t ∈ [T/2, T ].

From Theorem 2, we know that there exists a unique entropy solution ȳ ∈ BV ((0, 1) × (0, T )) for
these data. Let us show that ȳ(T/2, ·) ≡ H . Therefore, we will easily dedue ȳ(T, ·) ≡ 0.

Let us extend our initial data from [0, 1] to R. Sine Theorem 2 guarantees the uniqueness of the

solution, the restrition to x ∈ [0, 1] of our global solution will be the unique solution to (6). Therefore

we onsider ŷ0 ∈ BV (R):

ŷ0(x) =







H for x < 0,
ȳ0(x) for 0 < x < 1,
0 for 1 < x.

(8)
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Let us introdue ŷ the weak entropy solution de�ned on R × [0, T ] assoiated to this initial data.

Thanks to Rankine-Hugoniot formula and (7), we know that:

y(t, x) = H for x < t · (H − ‖y0‖∞)

2
.

Hene, ŷ(T/2, x) = H for x ∈ [0, 1], and y(t, 0+) ≡ H . If we want the restrition of ŷ to be a solution

to (6), we need to hek that y(t, 1−) ≥ 0. Let us use the omparison priniple for solutions to invisid

Burgers' equation. It an be obtained by taking the null visosity limit in our Lemma 1. Hene

ŷ(t, x) ≥ w(t, x) where w is the solution assoiated to the initial data:

w0(x) =







H for x < 0,
−‖ȳ0‖∞ for 0 < x < 1,
0 for 1 < x.

(9)

We have two Riemann problems. Near x = 1, we have a rarefation wave. Hene x 7→ w(t, x) is

ontinuous near x = 1 as long as the H shok wave has not reahed x = 1. Hene w(t, 1−) = 0 before

T ∗ = 1/(2H − 2‖ȳ0‖∞), then w(t, 1−) = H . This is why w(t, 1−) ≥ 0. Thus ŷ(t, 1−) ≥ w(t, 1−) ≥ 0.
The restrition ŷ[0,1] is the unique solution to (6) and it is equal to H at time t = T/2.

This proof uses the omparison priniple for Burgers' equation. Sine we onsider a 1-D system,

this is not a problem. However, if we wanted to be able to handle multi-dimensional systems, we

ould use the generalized harateristis method from Dafermos (see [17℄). This tehnique has been

suessfully used by Perrollaz in [38℄.

3 Hyperboli stage and settling of the boundary layer

Thanks to the analysis of the hyperboli limit system, we were able to exhibit ontrols steering the

system towards the null state from any initial data. Now we want to apply the same strategy to

the slightly visous system (5) by using very similar ontrols. However, a boundary layer is going to

appear. Our goal in this setion is to derive bounds for the boundary layer at the end of this stage.

3.1 Steady states of system (5)

From now on, the visosity is positive. Hene, sine we have a zero Dirihlet boundary ondition

ȳ(1) = 0, we annot hope to reah a onstant state ȳ(x) ≡ H > 0 . However, we expet that we

an get very lose to the orresponding steady state. Let us introdue the following steady state of

system (5):

hε(x) = H tanh

(

H

2ε
(1− x)

)

. (10)

Lemma 2. For any H > 0 and any ε > 0, hε
de�ned by (10) is a stationary solution to system (5)

with ontrols: ū(t) = 0 and v̄(t) = H tanh
(

H
2ε

)

.

Proof. The proof is an easy omputation. In fat, it is possible to ompute expliitly all the steady

states for system (5), at least when ū = 0. This is done in [25℄ with visosity ε = 1.

We have hosen a boundary data v̄(t) = H tanh
(

H
2ε

)

for the de�nition of our steady state hε
, but

we will use a ontrol v̄(t) = H for the motion. This tehnial trik will lighten some omputations and

is relevant sine both terms are exponentially lose as ε goes to zero. However, some proofs require the

use of the exat steady state orresponding to a boundary data v̄(t) = H . Therefore, we introdue:

kε(x) = K tanh

(

K

2ε
(1 − x)

)

, (11)

where K > 0 is given by the impliit relation K tanh (K/(2ε)) = H .

Lemma 3. For any H > 0 and any ε > 0, kε de�ned by (11) is a stationary solution to system (5)

with ontrols: ū(t) = 0 and v̄(t) = H. Moreover, we have the estimate:

‖kε − hε‖L∞(0,1) ≤ 2He−H/ε. (12)
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Proof. Lemma 2 gives us that kε is a steady state. For the estimate, we write:

‖kε − hε‖L∞(0,1) ≤
∣

∣

∣

∣

K tanh

(

K

2ε

)

−H tanh

(

H

2ε

)∣

∣

∣

∣

≤ H

∣

∣

∣

∣

1− tanh

(

H

2ε

)∣

∣

∣

∣

≤ 2He−H/ε.

3.2 First step: overriding the initial data

In order to get lose to the steady state hε
, it is neessary to hoose H in suh a way that a Rankine-

Hugoniot type ondition is satis�ed. One we get lose enough to the steady state, the solution will

very quikly onverge to the steady state. Indeed, the eigenvalues of the linearized system around this

steady state are real, negative, and of size at least 1/ε. This guarantees very quik onvergene to the

steady state. Suh a study of the linearized problem around a steady state for the Burgers' equation

an be found in [34℄. We give the following lemma desribing the settling of the limit layer.

Lemma 4. Let T > 0, H > 0 and y0 ∈ H1
0 (0, 1) be given data. Then for ε > 0 small enough, there

exists a boundary ontrol v̄ ∈ H3/4(0, T ) suh that v̄(·) ≤ H and suh that the solution ȳ ∈ X to

system (5) with initial data ȳ0 = εy0 and ontrols ū = 0 and v̄ satis�es:

‖ȳ(T, ·)− hε(·)‖L2(0,1) = Oε→0

(

ε−1/2e−
H
4ε

(HT−2)
)

. (13)

hε(x)

x = 1

ȳ(t, x)

ȳ0(x)

H

Figure 3: Example of evolution from an initial data towards a steady state.

Let us postpone the proof of Lemma 4 for the moment. We start by giving a few remarks onerning

this statement and its proof. The intuition is to hoose a boundary ontrol v̄(t) ≡ H , just like we have

done for the hyperboli ase. Moreover, we want to use the Cole-Hopf transform and Fourier series to

ompute expliitly ȳ(T, ·). Let us introdue the Cole-Hopf transform:

Z(t, x) = exp

(

− 1

2ε

∫ x

0

ȳ(t, s)ds

)

.

This leads to the following heat system for the new unknown Z:














Zt − εZxx = −
(

1
4ε ȳ

2(t, 0)− 1
2 ȳx(t, 0)

)

Z on (0, T )× (0, 1),
Z(t, 0) = 1 on (0, T ),
Zx(t, 1) = 0 on (0, T ),
Z(0, x) = Z0(x) on (0, 1),

(14)

where the initial data Z0
is omputed from the initial data ȳ0 = εy0:

Z0(x) = exp

(

−1

2

∫ x

0

y0(s)ds

)

. (15)
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Hene we see that it will not be possible to arry on expliit omputations if we do hoose ȳ(t, 0) ≡ H .

Indeed, in that ase, we would not know expliitly ȳx(t, 0) (whih is needed to ompute the solution

to system (14)). However, we are on�dent that this term is very small. Hene, we are going to go

the other way around: we will hoose our ontrol expliitly in the Cole-Hopf domain and use it to

ompute our ontrol v̄(·). Therefore, we are interested in the following heat system:















Zt − εZxx = −H2

4ε Z on (0, T )× (0, 1),
Z(t, 0) = 1 on (0, T ),
Zx(t, 1) = 0 on (0, T ),
Z(0, x) = Z0(x) on (0, 1).

(16)

If we go bak to the Burgers' domain, this means that we somehow use the following boundary

ondition at x = 0:

ȳx(t, 0) =
1

2ε

(

ȳ2(t, 0)−H2
)

. (17)

We expet that the solution Z will onverge towards Hε(·), where Hε(·) is the Cole-Hopf transform
of the steady state hε

:

Hε(x) =
cosh

(

H
2ε (1− x)

)

cosh H
2ε

. (18)

Indeed, we have the following lemma.

Lemma 5. Let T > 0 and Z0 ∈ H2(0, 1) suh that Z0(0) = 1 and Z0
x(1) = 0. Then system (16) has

a unique solution Z in the spae L2((0, T );H3(0, 1)) ∩H1((0, T );H1(0, 1)). Moreover, there exists a

onstant C(Z0) > 0 depending only on ‖Z0‖H1
suh that:

‖Z(T, ·)−Hε(·)‖H1(0,1) ≤ ε−1/2C(Z0)e−
H2T
4ε . (19)

Proof. It is lassial to show that system (16) has a unique solution in the spae L2((0, T );H3(0, 1))∩
H1((0, T );H1(0, 1)). One an even get more smoothness if needed. An e�ient method is the semi-

group method that one an �nd for instane in [37℄. To ompute the dynamis of system (16), we

introdue the adequate Fourier basis of L2
:

fn(x) =
√
2 sin

((

n+
1

2

)

πx

)

for n ≥ 0.

Hene fn(0) = f ′
n(1) = 0. We will use the notation λn = (n + 1

2 )π. Thus, f
′′
n = −λ2

nfn. Let us give
the following salar produts, whih an easily be omputed using integration by parts:

〈1|fn〉 =

√
2

λn
,

〈Hε|fn〉 =

√
2λn

H2

4ε2 + λ2
n

, (20)

∣

∣〈Z0|fn〉
∣

∣ ≤
√
2

λn

(

1 +
1

2

∥

∥Z0
∥

∥

H1

)

. (21)

In these equations 〈·|·〉 denotes the standard salar produt in L2(0, 1). Let us write Z = 1+w. Hene
w will satisfy w(t, 0) = wx(t, 1) = 0. Easy omputations lead to the following ordinary di�erential

equations for the omponents of w on our Fourier basis:

ẇn(t) = −ε

(

λ2
n +

H2

4ε2

)

wn(t)−
H2

4ε
〈1|fn〉.

It is easy to see that the �xed points for these ODEs are the expeted oe�ients 〈Hε − 1|fn〉. We

an solve these ODEs with our initial ondition:

wn(t) = αne
−ε

(

λ2

n+
H2

4ε2

)

t
+ 〈Hε − 1|fn〉,

where:

αn = 〈Z0|fn〉 − 〈Hε|fn〉.
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Now we an estimate Z(T, ·)−Hε(·):

‖Z(T, ·)−Hε(·)‖2H1(0,1) =
∑

n≥0

λ2
nα

2
ne

−2ε
(

λ2

n+
H2

4ε2

)

T
.

From the expression of αn, (20) and (21) we get the easy bound:

λ2
nα

2
n ≤ 16 + ‖Z0‖2H1(0,1), ∀n ∈ N.

Thus, we get

‖Z(T, ·)−Hε(·)‖2H1(0,1) ≤
(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε

∑

n≥0

e−2ελ2

n .

Now we split the sum in two parts: n ≤ N = ⌊1/ε⌋ and n ≥ N . We get:

‖Z(T, ·)−Hε(·)‖2H1(0,1) ≤
(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε



N +
∑

k≥0

e−2ε(N+k+ 1

2
)2π2





≤
(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε

(

N +
1

1− e−4εNπ2
e−2εN2π2

)

.

Hene, for ε small enough, we have:

‖Z(T, ·)−Hε(·)‖2H1(0,1) ≤
(

1

ε
+ 1

)

(

16 + ‖Z0‖2H1(0,1)

)

e−
H2T
2ε .

This onludes the proof of Lemma 5.

Now we an prove Lemma 4.

Proof of Lemma 4. De�nition of the ontrol: Using Lemma 5, we start by onsidering the

solution Z ∈ L2((0, T );H3(0, 1))∩H1((0, T );H1(0, 1)) to system (16) with the initial data (15). Sine

Z0(·) > 0, the usual strong maximum priniple (see [40℄) guarantees that Z(t, x) > 0. Thus, we an
de�ne:

ȳ(t, x) = −2ε
Zx(t, x)

Z(t, x)
. (22)

Hene ȳ ∈ X is a solution to (5) with initial data εy0 and boundary ontrol v̄(t) = −2εZx(t, 0). Sine
Z ∈ L2((0, T );H3(0, 1)) ∩H1((0, T );H1(0, 1)), we an show that its boundary trae Zx(t, 0) belongs
to H3/4(0, T ). Hene v̄ ∈ H3/4(0, T ).

Proof of an L∞
bound on the solution: If ε is small enough, then ε‖y0‖∞ ≤ H . Moreover,

we know that v̄ ∈ H3/4(0, T ). Hene, v̄ ∈ C0[0, T ]. Assume that sup[0,T ] v̄ > H . Let T0 be a time

suh that v̄(T0) = sup[0,T ] v̄ > H . On the one hand, by the omparison priniple from Lemma 1, we

know that:

ȳ ≤ v̄(T0) on (0, T )× (0, 1). (23)

On the other hand, we reall relation (17):

ȳx(t, 0) =
1

2ε

(

ȳ2(t, 0)−H2
)

.

Hene, sine v̄(T0) > 0, we get ȳx(T0, 0) > 0. Thus,there exists x > 0 suh that ȳ(T0, x) > v̄(T0) =
sup[0,T ] v̄. This is in ontradition with assertion (23). Hene, if ε is small enough, v̄(·) ≤ H and

ȳ(T, ·) ≤ H .

Derivation of the L2
estimate at time T : Now we want to prove estimate (13) from

Lemma 4. We want to use estimate (19) from Lemma 5. We perform the following omputation at

time T and for any x ∈ [0, 1]:

|ȳ − hε| = 2ε

∣

∣

∣

∣

Zx

Z
− Hε

x

Hε

∣

∣

∣

∣

= 2ε

∣

∣

∣

∣

Z (Zx −Hε
x) + Zx (H

ε − Z)

ZHε

∣

∣

∣

∣

≤ 2ε

∣

∣

∣

∣

Zx −Hε
x

Hε

∣

∣

∣

∣

+ 2ε

∣

∣

∣

∣

Zx

Z

∣

∣

∣

∣

·
∣

∣

∣

∣

Z −Hε

Hε

∣

∣

∣

∣

.
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Thus, we get:

‖ȳ(T, ·)− hε(·)‖L2(0,1) ≤ (2ε+ ‖ȳ(T, ·)‖∞)× sup
[0,1]

1

Hε
× ‖Z(T, ·)−Hε(·)‖H1(0,1) .

Now we use that ‖ȳ(T, ·)‖∞ ≤ H and sup[0,1] 1/H
ε ≤ e+H/2ε

. Hene , using also (19),

‖ȳ(T, ·)− hε(·)‖L2(0,1) ≤
1√
ε
(2ε+H)C(Z0)e−

H
4ε

(HT−2).

This estimate onludes the proof of Lemma 4.

Remark 1. In Lemma 4, we take an initial data y0 ∈ H1
0 (0, 1). This is a tehnial assumption that

enables us to use stronger solutions. We will get rid of it later on, by letting the Burgers' equation

smooth our real initial data whih is only in L2(0, 1).

3.3 Seond step: going bak to the null state

One we have reahed the steady state hε
, we wish to go bak to the null state. This is done by applying

a suitable negative interior ontrol ū. The ontrol v̄ will only be following the global movement. The

intuitive idea is to apply some negative ontrol ū on [0, T ] suh that

∫ T

0
u(t)dt = −H . Thus, we hope

to reah some state that is below 0 and above a boundary residue hε−H . However, this last statement

is only true up to some small L2
funtion (small as T → 0). The key will be to hoose the duration

T of this step small enough (with respet to ε).

0

x = 0.97 x = 1

kε(x)−H

ȳ(T, x)

kε(x)

ȳ(t, x)

H

0

x = 0.9 x = 1

Focus

δ(T, x)

Figure 4: Numerial simulation of the push-down towards the null state and the reation of a boundary

residue. The �nal state ȳ(T, ·) is almost above the residue kε(·)−H .

Lemma 6. Let ε > 0 and H > 0 be given data. Assume that 2ε ≤ H. We onsider the evolution of

an initial data ȳ1 ∈ L2(0, 1). For any T > 0, we onsider the following ontrols for t ∈ [0, T ]:

ū(t) = −H

T
, (24)

v̄(t) = H +

∫ t

0

u(s)ds. (25)

Then the assoiated solution ȳ ∈ X to system (5) satis�es:

ȳ(T, ·)− kε(·) +H ≥ δ(T, ·), (26)

where δ ∈ X is the solution to some Burgers-like system given below and is suh that:

‖δ(T, ·)‖L2 ≤ eH
2T/4ε ‖ȳ1 − kε‖L2 + 2H

(

eH
2T/2ε − 1

)

. (27)
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Proof. Let T > 0 and onsider the ontrols de�ned by (24) and (25). Let us onsider the assoiated

solution ȳ ∈ X to (5). We ompare ȳ to the solution z ∈ X to the following system:















zt + zzx − εzxx = ū(t) in (0, T )× (0, 1),
z(t, 0) = v̄(t) in (0, T ),
z(t, 1) = v̄(t)−H in (0, T ),
z(0, x) = ȳ0(x) in (0, 1).

(28)

The omparison priniple from Lemma 1 tells us that y(T, ·) ≥ z(T, ·). Now we want to derive preise

estimates for the solution z ∈ X . We write:

z(t, x) = kε(x) +

∫ t

0

ū(s)ds+ δ(t, x), (29)

where δ ∈ X is thus the solution to the following system:



















δt − εδxx + kεδx +
(

δ +
∫ t

0 ū(s)ds
)

(kε + δ)x = 0 in (0, T )× (0, 1),

δ(t, 0) = 0 in (0, T ),
δ(t, 1) = 0 in (0, T ),
δ(0, x) = ȳ1(x)− kε(x) in (0, 1).

(30)

Note that it is onvenient in this proof to use kε in order to get exat zero boundary onditions

δ(t, 0) = δ(t, 1) = 0. We multiply the evolution equation of (30) by δ and integrate by parts for

x ∈ [0, 1] to get a L2
-energy estimate on δ:

1

2

d

dt

∫ 1

0

δ2 + ε

∫ 1

0

δ2x = −
∫ 1

0

kεδδx −
∫ 1

0

(

δ +

∫ t

0

ū(s)ds

)

(kε + δ)xδ

=
1

2

∫ 1

0

δ2(kε)x −
∫ 1

0

(

δ +

∫ t

0

ū(s)ds

)

δ(kε)x

= −1

2

∫ 1

0

δ2(kε)x −
∫ t

0

ū(s)ds

∫ 1

0

δ(kε)x.

Now we use de�nition (11) and the assumption 2ε ≤ H :

‖kεx‖∞ ≤ K2

2ε
≤ H2

2ε tanh(1)2
≤ H2

ε
.

Moreover,

∫ t

0
ū(s)ds ≤ H . Hene,

1

2

d

dt

∫ 1

0

δ2 ≤ H2

2ε

∫ 1

0

δ2 +
H3

ε

(∫ 1

0

δ2
)1/2

. (31)

Let us denote E(t) = ‖δ(t, ·)‖L2
. Hene, one has:

Ė(t) ≤ H2

2ε
E +

H3

ε
. (32)

From Grönwall's lemma, we get:

E(T ) ≤ (E(0) + 2H) eH
2T/2ε − 2H. (33)

This onludes the proof of Lemma 6.

This is the end of the hyperboli stage. We need to perform the reverse saling of (4) to go bak

to y (and not ȳ). We have shown that we are above some boundary residue hε −H . Hene, we have

to study the evolution of the following initial data:

Φε(x) =
1

ε
(hε(x) −H) =

H

ε

(

tanh

(

H

2ε
(1− x)

)

− 1

)

. (34)

One should be sared by the size of this boundary residue that we are left with. Indeed, its L2

size grows like 1/
√
ε. However it has the important feature that its typial wavelength is ε. Hene, its

spetral deomposition will mostly involve high frequenies that will deay rapidly during the passive

stage thanks to smoothing e�ets of Burgers' equation.
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4 Passive stage and dissipation of the boundary layer

The goal of this setion is to prove the following estimate onerning the dissipation of the boundary

residue Φε
reated in the previous setion. Indeed, although its L2

-norm inreases as ε goes to zero,

regularization e�ets of the Burgers equation will dissipate it in any positive time T .

Lemma 7. Let T > 0 be a �xed positive time. For any ε > 0, let us onsider φ ∈ X the solution to

the following system:















φt + φφx − φxx = 0 in (0, T )× (0, 1),
φ(t, 0) = 0 in (0, T ),
φ(t, 1) = 0 in (0, T ),
φ(0, x) = Φε(x) in (0, 1),

where Φε(x) is the boundary residue de�ned by (34). Then for any δ > 0, we have the estimate:

‖φ(T, ·)‖L2(0,1) = Oε→0

(

ε1−δ
)

. (35)

0

y(t, x)

Φε(x)−3

x = 0.5 x = 1

Figure 5: Numerial simulation of the dissipation of the boundary residue Φε(·). At time t = 0, the
boundary residue was of size ‖Φε(·)‖∞ = 100.

4.1 Cole-Hopf transform

One again, we are going to use the Cole-Hopf transform to derive preise estimates. Therefore, let

us introdue the following hange of unknown for x ∈ [0, 1] and t ∈ [0, T ]:

z(t, x) = exp

(

−1

2

∫ x

0

φ(t, s)ds

)

.

This leads to the following heat system for the new unknown z:















zt − zxx = 0 on (0, T )× (0, 1),
zx(t, 0) = 0 on (0, T ),
zx(t, 1) = 0 on (0, T ),
z(0, x) = Zε(x) on (0, 1),

(36)
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where the initial data Zε
is omputed from the initial data Φε

:

Zε(x) = exp

(

−1

2

∫ x

0

Φε(s)ds

)

=
1 + e

H
ε
(x−1)

1 + e−
H
ε

. (37)

An important remark is that Φε ≤ 0. Thus, by the omparison priniple from Lemma 1, φ ≤ 0 on

[0, T ]× [0, 1] and z ≥ 1 on [0, T ]× [0, 1]. The bakwards Cole-Hopf transform will give us:

φ(T ) = −2
zx(T )

z(T )
.

Hene, using the fat that z ≥ 1, we will have the following estimate:

|φ(T, ·)| ≤ 2 |zx(T, ·)| . (38)

All we have to do is to study the L2
-norm of zx(T ). To ease omputations, let us introdue:

w = (1 + e−
H
ε )zx, (39)

suh that w is the solution to:















wt − wxx = 0 on (0, T )× (0, 1),
w(t, 0) = 0 on (0, T ),
w(t, 1) = 0 on (0, T ),

w(0, x) = H
ε e

H
ε
(x−1)

on (0, 1).

4.2 Fourier series deomposition

We use Fourier series to ompute w(T, ·). We will use the following Hilbert basis of L2
made of the

eigen-funtions for the Laplae operator with Dirihlet boundary onditions on [0, 1]:

en(x) =
√
2 sin(nπx) for n ≥ 1.

Let us ompute the deomposition of w(0, ·) on this basis. We integrate by parts twie:

〈w(0, ·)|en〉 =
√
2
H

ε
e−

H
ε

∫ 1

0

sin(nπx)e
H
ε
xdx

=
√
2e−

H
ε

[

sin(nπx)e
H
ε
x
]1

0
−
√
2nπe−

H
ε

∫ 1

0

cos(nπx)e
H
ε
x

= −ε
√
2

H
nπe−

H
ε

[

cos(nπx)e
H
ε
x
]1

0
−
(εnπ

H

)2

〈w(0, ·)|en〉

=

√
2

H

εnπ

1 + ε2n2π2

H2

(

(−1)n+1 + e−
H
ε

)

.

Now we an estimate the size of w(T, ·) in L2(0, 1):

‖w(T, ·)‖2L2 =
∑

n≥1

(

〈w(0, ·)|en〉 · e−n2π2T
)2

≤ 8
∑

n≥1

ε2n2π2H−2

(1 + ε2n2π2H−2)2
e−2n2π2T .

For α ∈ R, the following easy inequality holds:

α2

(1 + α2)2
≤ min

(

α2,
1

4

)

.
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Hene we split the sum and ut at a level N(ε):

‖w(T, ·)‖2L2 ≤ 8
N−1
∑

n=1

ε2n2π2

H2
+ 2

∑

k≥0

e−2(N+k)2π2T

≤ 8ε2N3π2

3H2
+ 2e−2N2π2T

∑

k≥0

e−4Nkπ2T

≤ 8ε2N3π2

3H2
+ 2

e−2N2π2T

1− e−4Nπ2T
.

We want to hoose N(ε) → +∞ suh that ε2N3 → 0. For instane, we an take N = ⌊ε−η⌋, where
η > 0 is small enough. For ε small enough, we have:

‖w(T, ·)‖2L2 ≤ 8π2

3H2
ε2−3η + 4e−2ε−2ηπ2T = O

(

ε2−3η
)

. (40)

Combining estimates (40) and (38), and the de�nition (39) we an easily dedue the estimate (35).

This onludes the proof of Lemma 7.

4.3 Approximate ontrollability towards the null state

First, let us prove the following tehnial lemma. Indeed, we have proven that the partiular boundary

layer Φε
dissipates, but all we also want to know what would happen if we were very lose to it.

Lemma 8. Let us hange the initial data from Lemma 7 to Φε(x) + 1
εδ

ε
. We assume:

Φε(x) +
1

ε
δε ≤ 0, (41)

‖δε(·)‖L2(0,1) = Oε→0(ε
3). (42)

Then, the onlusion of Lemma 7 still holds.

Proof. We follow the same sheme than for the proof of Lemma 7. Hene, we start by taking the

Cole-Hopf transform of the new initial data Φε(x) + 1
εδ

ε
. Therefore, after the Cole-Hopf transform

we have the following initial data:

Zε(x) + Zε(x) ·
(

exp

(

− 1

2ε

∫ x

0

δε
)

− 1

)

.

From our previous omputation (37) of Zε
, we know that |(Zε)x| = O(1/ε). Hene, using ondition

(42), we have:

∥

∥

∥

∥

Zε(x) ·
(

exp

(

− 1

2ε

∫ x

0

δε
)

− 1

)∥

∥

∥

∥

H1(0,1)

= Oε→0(ε).

Let us use the fat that our heat system (36) is linear. Therefore, using the onlusion of Lemma 7

we have:

‖z(T, ·)‖H1(0,1) = Oε→0(ε
1−δ) +Oε→0(ε).

One again we apply the bakwards Cole-Hopf transform. We use the fat that z ≥ 1 (this omes

from the omparison priniple and the hypothesis (41)). Hene,

‖φ(T, ·)‖L2(0,1) ≤ 2‖z(T, ·)‖H1(0,1).

Thus, the onlusion (35) of Lemma 7 still holds with this new initial data.

Now everything is ready for us to show the following small time approximate ontrollability result

for system (1). We have to ombine the di�erent estimates.

Theorem 4. Let T, r > 0 and y0 ∈ L2(0, 1) be given data. Then there exists u, v ∈ L∞(0, T ) ×
H1/4(0, T ) suh that the assoiated solution y ∈ X to system (1) on [0, T ] satis�es:

‖y(T, ·)‖L2(0,1) ≤ r.
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Figure 6: Approximate null-ontrollability strategy.

Proof. Take T, r > 0 and y0 ∈ L2(0, 1) given data. Let us take a small ε > 0 and break down our

time interval into four parts. We introdue T1 = T/3, T2 = T1 + ε and T3 = T2 + ε4. The �rst part
[0, T1] of length T/3 is designed to smooth the initial data. The seond part [T1, T2] of length ε is the
part where the settling of the boundary layer takes plae. The third part [T2, T3] of length ε4 is the

quik push down to zero. The fourth part [T3, T ] of length at least T/3 (when ε is small enough) is

the passive stage for the dissipation of the boundary layer. Let us give some details.

Smoothing of the initial data: First, for t ∈ [0, T1], we hoose u(t) = v(t) = 0. The system
evolves freely. Regularization e�ets of the Burgers' equation smooth our initial data y0 ∈ L2(0, 1).
We have y(T1, ·) ∈ H1

0 (0, 1). There are many ways to prove suh a result. For instane, one an take

the Cole-Hopf transform and use well-known regularization properties of the heat equation.

Settling of the boundary layer: Next, for t ∈ [T1, T2], we perform the saling (4). We want

to apply Lemma 4 for a duration 1. Hene, let us hoose some H suh that H − 2 > 0. We take

v̄ ∈ H3/4(0, T ) the ontrol from Lemma 4. For t ∈ [T1, T2], we use:

u(t) = 0,

v(t) =
1

ε
v̄

(

t− T1

ε

)

.

From Lemma 4, we know that:

∥

∥

∥

∥

y(T2, ·)−
1

ε
hε(·)

∥

∥

∥

∥

L2(0,1)

= Oε→0

(

ε−3/2e−
H
4ε

(H−2)
)

. (43)

Push-down towards zero: Then, still in the ontext of saling (4), we want to apply Lemma 6

during a very short duration ε3. Hene, for t ∈ [T2, T3], we hoose the ontrols found in Lemma 6

(with a total time ε3), and we sale them appropriately. That is to say:

u(t) =
1

ε2
ū

(

t− T2

ε

)

,

v(t) =
1

ε
v̄

(

t− T2

ε

)

.

Combining (43) and Lemma 6, we get that, at the end of this hyperboli stage:

0 ≥ y(T3, ·) ≥ Φε +
1

ε
δ(ε3, ·)− 1

ε
‖hε − kε‖∞ ,

where (using estimate (12)):

∥

∥δ(ε3, ·)
∥

∥

L2
+ ‖hε − kε‖∞ = Oε→0(ε

3).

16



Dissipation of the boundary residue: Now we enter the passive stage. We hoose v(t) =
u(t) = 0 for t ∈ [T3, T ]. Sine ε goes to zero, T − T3 ≥ T/3. Hene we an apply Lemma 8 on a time

interval independent of ε. By using the omparison priniple from Lemma 1 we an onlude that:

‖y(T, ·)‖L2 = Oε→0(ε
1−η),

for any η > 0. For instane, one an hoose η = 1
2 . Then we hoose ε small enough to ensure that

‖y(T, ·)‖L2 ≤ r. This onludes the proof of Theorem 4.

Remark 2. In the proof of Theorem 4, we onatenate di�erent ontrols found in di�erent parts. This

ould be a problem for smoothness beause we did not hek ompatibility onditions at the jointures.

However, the proof provides a ontrol v ∈ H1/4(0, T ) and this doesn't require ompatibility onditions.

If one wants smooth ontrols, it is also possible. One an hoose a smooth ontrol lose to our ontrol

for the approximate ontrollability, then end with a smooth ontrol for the exat ontrollability.

5 Paraboli stage and exat loal ontrollability

Theorem 4 takes are of the small time global approximate ontrollability towards the null state. To

get Theorem 1, we need to ombine it with a small time loal exat ontrollability result in the viinity

of the null state. We give in this setion two di�erent approahes for this type of result.

5.1 Fursikov and Imanuvilov's theorem

The following theorem is due to Fursikov and Imanuvilov. Indeed, the tehniques they expose in their

book [26℄ an be applied to show the following result. However, the proof of this preise statement is

not written, and one has to work to show that the ontrol an be hosen to be smooth.

Theorem 5. Let T > 0. There exists r > 0 suh that, for any initial data y0 ∈ L2(0, 1) satisfying:

‖y0‖L2(0,1) ≤ r, (44)

there exists a ontrol v ∈ C1[0, T ] suh that the solution y ∈ X to the system:















yt + yyx − yxx = 0 in (0, T )× (0, 1),
y(t, 0) = v(t) in (0, T ),
y(t, 1) = 0 in (0, T ),
y(0, x) = y0(x) in (0, 1),

(45)

satis�es y(T, ·) ≡ 0.

The full theorem is in fat more general sine one obtains loal exat ontrollability to the tra-

jetories of system (45). The proof relies on Carleman estimates for paraboli equations. It is an

extension of a previous result with two boundary ontrols whose proof an be read in [25℄.

5.2 Using Cole-Hopf and a moments method

In this setion we give a proof of Theorem 5 (both for the sake of ompleteness and for avoiding

Carleman estimates). It relies on the Cole-Hopf transform and a moments method introdued in [21℄

by Fattorini and Russell.

Proof. Let T > 0. First, we onsider the following heat system:















zt − zxx = 0 in (0, T )× (0, 1),
z(t, 0) = α(t) in (0, T ),
zx(t, 1) = 0 in (0, T ),
z(0, x) = z0(x) in (0, 1).

(46)

This is typially a setting for whih we an apply the moments method of Fattorini and Russel exposed

in [21℄. They prove this system is null ontrollable for any positive time by means of very smooth

ontrols. Let us use some ontrol α ∈ C1[0, T ]. They also prove that there exists some onstant CT

suh that the size of the ontrol is bounded from above by CT × ‖z0‖L2
. Therefore, if z0 is small

enough in L2
, one an steer it to zero with a ontrol α(·) suh that ‖α(·)‖∞ < 1.
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Now we get bak to our Burgers' system. For y0 ∈ L2(0, 1), let us hoose:

z0(x) = exp

(

−1

2

∫ 1

0

y0(s)ds

)

− 1.

Thus, if y0(·) is small in L2(0, 1) then z0(·) too. If they are small enough, then we an steer z0 to 0
with a ontrol suh that ‖α(·)‖∞ < 1. In that setting, we have z(·) > −1 thanks to the maximum

priniple for the heat equation. Hene, if we let y = −2zx/(1 + z), we get a solution y ∈ X to (45)

suh that y(T, ·) ≡ 0 provided that ondition (44) is satis�ed for some r > 0 depending only on T .

6 Conlusion and perspetives

In our work, we want to underline two important ideas. The �rst one is the rigorous analysis of

the hyperboli limit system and of the adequate weak boundary onditions. These weak boundary

onditions somehow desribe the behavior of the boundary layer and what it will be able to do or not.

The seond idea is the dissipation of the boundary layer by the �uid system itself during the passive

stage. One a boundary layer is reated, will the system be able to dissipate it in short time or not?

These two ideas might be important for the analysis of more omplex problems suh as the Navier-

Stokes Open problem 1. For instane, one ould try to see if the boundary layer appearing in [11℄

when trying to ontrol the 2D Navier-Stokes system with Navier slip boundary onditions an be

dissipated in small time by the system itself. Another idea would be to investigate spei� geometries

(for example 2D retangle domains). Indeed, one an then hope that the loalization of the boundary

layers an be analyzed in the same spirit.

The author would like to thank his advisor Jean-Mihel Coron for having attrated his attention

on this ontrol problem, Claude Bardos, Sergio Guerrero, for fruitful disussions and Vinent Perrollaz

for his advie onerning the hyperboli system.
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