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A Parametric Quartz Crystal Oscillator
Vadim Komine, Serge Galliou, and Arcadi Makarov, Member, IEEE

Abstract—Parametric oscillators have been well studied
but currently are not used often. Nevertheless, they could
be a low-phase noise solution, at least outside the frequency
bandwidth of the resonant circuit. The theoretical aspect
of parametric oscillations is briefly reviewed in this paper.
Indeed, the basic theory of a simple resistance-inductor-
capacitor (RLC) circuit working in parametric conditions
easily can be extended toward a resonant loop that includes
a quartz crystal resonator. Then, as an application, this
study is transposed to a quartz crystal oscillator that has
been modeled and tested as a first ptototype. Simulation
results are compared with those actually obtained.

I. Introduction

Parametric amplification in electronics has been well-
known for over 50 years. Its applications were espe-

cially useful for very low-noise pre-amplification in radar
systems. In contrast with conventional amplifiers, para-
metric amplifiers use a reactive element to convert the
power into the signal of interest. As a consequence, they
offer a potential for low noise as an ideal reactive element
cannot be a noise source [1].

In the field of optical generators, optical parametric os-
cillators (OPO) are now commonly used in order to pro-
vide output frequencies that cannot be obtained directly
from laser techniques. This is not the case in the field of
electronics in which parametric oscillators rarely are re-
ferred to as signal sources. Conventional oscillators—that
is to say, a loop made up of a conventional amplifier asso-
ciated with a band-pass filter/resonator—are preferred to
them.

In conventional oscillators dedicated to frequency ref-
erences, the filter-caused phase noise is dominant in the
overall phase noise. Nevertheless, amplifier-caused noise is
not negligible [2]–[6]. Thus, when looking for low-phase
noise solutions close to the carrier, parametric oscillators
should be an alternative [7]. Obviously, they are particu-
larly interesting when a low-phase noise floor (i.e., far from
the carrier) is required, e.g., in coding applications.

In this work, a quartz crystal oscillator based on the
parametric solution is investigated.
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II. Parametric Oscillations: A Brief Review

Usually, parametric amplifiers are described as fre-
quency converters [8], [9]. They can be seen as a parallel
connection of four types of devices: an input generator at
angular frequency ω1, a pump generator at ω2, multiple
loads in parallel, and a nonlinear inductor or a nonlinear
capacitor. The latter, which is commonly a varactor-diode,
is considered here. For the analysis, it is convenient to as-
sume that each branch, except the varactor, has an ideal
impedance tuned with the varactor capacitance at a spe-
cific eigen frequency and infinite at other frequencies. In
this way, the branches consist of a resonating loop at the
signal frequency ω1, a pump loop resonating at ω2, and
multiple load circuits each centered at a so-called idler fre-
quency ωi = m · ω1 + n · ω2.

In fact, the pump signal acts on the nonlinear capacitor
in order to perform a power transfer. Indeed, nonlinearities
act as mixers and generate combined frequencies from the
original ones. A power balance is settled between all these
components. In terms of power distribution, the following
relationships [10], [11] are verified:

∞∑
m=0

∞∑
n=−∞

m · Pmn

m · ω1 + n · ω2
= 0, (1a)

∞∑
n=0

∞∑
m=−∞

n · Pmn

m · ω1 + n · ω2
= 0, (1b)

where Pmn is the average power delivered to the ideal cir-
cuit corresponding to each spectral component, with:

∑
m,n

Pmn = 0. (2)

The simplest parametric amplifier is a three-frequencies
parametric converter in which only one idler component
is sustained. In the particular case in which the input
frequency is equal to the idler frequency (ωi = ω1) and
the pump frequency equating twice the input frequency
(ω2 = 2 · ω1), the parametric amplifier is said to be a de-
generate amplifier [12]. In such a case, the real part of the
total impedance tuned at ω1 can become negative, and
oscillations are likely to occur.

Thus, from this point of view, parametric oscillators
can be considered like degenerate amplifiers in which noise
is substituted for the input generator. They also can be
analyzed from the following point of view.

Basically, a RLC tank circuit tuned at ω1 can oscillate
provided the losses are compensated by a power source.
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Fig. 1. The varactor-diode capacitor is periodically modulated by the
pump generator at the angular frequency ωµ.

When working in such a way, the amplifier of a conven-
tional oscillator would convert a portion of the direct cur-
rent (DC) bias power into power of the signal of interest
at ω1; but in a parametric oscillator, there is conversion of
a portion of an alternating current (AC) pump power.

An elementary network is shown in Fig. 1, in which the
RLC tank circuit is tuned at ω1. The varactor-diode is elec-
trically modulated by the pump voltage Uµ (ωµ). An intu-
itive explanation of the parametric action is easier when
considering that the gap between both capacitor electrodes
is mechanically reduced and increased. Let us quickly re-
duce the capacitor C by ∆C precisely when its voltage
u = U ·sin(ω·t) is maximum, i.e., when u = U . Its electrical
charge cannot change instantaneously. As a consequence, u
increases by ∆U because (C−∆C)·(U +∆U) always must
be equal to C · U . Neglecting the second order term, this
means that an energy quantity equal to ∆E = ∆C · U2/2
has been given to the capacitor from the mechanical ac-
tion. After that, the capacitor value must return to its ini-
tial value. This is efficient when its electrical charge is zero,
i.e., when u = 0. Then the inverse operation can start: the
capacitor value is suddenly increased by ∆C when u is
minimum (u = −U) and after that this effect is cancelled
again when u = 0. This operation can be performed peri-
odically. It just requires a synchronized “pumping” of the
capacitor value at a frequency twice the voltage frequency.

A child on his swing is also a parametric oscillator.
He modifies one parameter of the oscillating system—the
swing length—giving energy to the swing, when he peri-
odically moves his body on the swing seat.

In Fig. 1 the varactor-diode is periodically pumped
in such a way that its capacitance takes the following
form [13]:

C(t) =
CV D

1 + µ · cos (ωµ · t + ϕµ)
, (3)

where ωµ and ϕµ are the pump angular frequency and the
initial phase of the pump actuator, respectively; µ is the
modulation depth and CV D is the capacitance value for
the diode bias voltage.

Fig. 2. Areas of parametric resonance.

It is easy to show that the capacitor charge q is related
to the pump parameters as follow [14]:

d2q

dt2
+ 2 · α · dq

dt
+ ω2

1 · [1 + µ · cos (ωµ · t + ϕµ)] · q = 0,
(4)

where α = R
2·L stands for the losses in the circuit. Both

solutions of (2) can by written as:

q1,2 = A1,2 · eβ1,2·t cos
(ωµ

k
· t ± ϕµ

k
+ n · π

)
, (5)

β1,2 = −α ± α ·
√

χ2 − ξ2
µ, (6)

where ξµ =
ωµ
k −ω1

α is the generalized detuning of pump
frequency with regard to the resonant frequency, ω1; χ
is the generalized modulation depth, which depends on
k = ωµ

ω1
and Q, the quality factor of the tuned-circuit.

Solutions of (4) are illustrated in Fig. 2. Our interest is
for nonvanishing solutions, which are located in the grey
and shaded areas in Fig. 2. Grey areas symbolize para-
metric resonance areas of an oscillating system without
any loss. These grey areas are reduced to shaded areas
when losses exist. Boundary values correspond to periodic
solutions of (4).

In the following we will essentially discuss the case
ωµ = 2 · ω1, in which the parametric resonance is par-
ticularly favored. This is also a particular case close to the
previously mentioned degenerative conditions of a para-
metric amplifier.

III. Parametric Crystal Oscillator

According to the previous review, a 10 MHz paramet-
ric quartz crystal oscillator (PXO) can look like Fig. 3. It
includes addition of a natural self-production of the pump
signal to the basic tuned circuit. Indeed, when the electron-
ics is turned on, one can imagine that a vanishing 10 MHz
voltage appears across the closed loop tuned at this fre-
quency. Anyway, noise also stimulates this loop. Thus, as-
suming that a 10 MHz signal potentially exists, at least for
a while, nonlinearities (of the varactor-diode for example)
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Fig. 3. Sketch of a PXO. The main loop is tuned at 10 MHz in our
case. Thus the pump loop should work at 20 MHz.

generate a second-order harmonic signal at 20 MHz. With
a proper amplification, this signal acts like a pump for the
10 MHz signal, which then will be sustained.

Usually, the voltage-capacitance relationship of a
varactor-diode is written as:

CV D = CV D0 ·
(

1 +
Ubias

φ0

)γ

, (7)

where CV D0 is the diode capacitance at Ubias = 0 (typi-
cally a few tens of pico-farads), φ0 is the contact potential
(−1 V, for example), and γ is the fractional change in ca-
pacitance due to the pump voltage (γ = − 1

2 for abrupt
junction and γ = − 1

3 for graded-junction varactors) [12].
When considering a quasilinear approximation in

which both signals U1 · sin (2 · π · f1 + ϕ1) and Uµ ·
sin (2 · π · fµ + ϕµ) are superimposed to the biased voltage
across the varactor-diode, the latter exhibits an impedance
with a negative real part at the signal frequency f1
(10 MHz in our case). Thus it becomes a power genera-
tor at this frequency.

In steady state at frequency f1, the expression of the
negative real part R− of the varactor impedance versus
main parameters can be written as [15]:

R− = − φ0 · K1 · cos (2 · ϕ1 − ϕµ)
K2

1 + K2
0 · K2

1 · sin2 (2 · ϕ1 − ϕµ) + K2
0 · φ2

0
,
(8)

with K0 = 2 · π · f1 · CV D0 and K1 = CV D0 · π · f1 · Uµ · γ ·(
1 + Ubias

φ0

)γ−1
.

Under these conditions, the main oscillating loop of
Fig. 3 can be reduced to the circuit shown in Fig. 4.

In practice, preliminary adjustments of the pump loop
have to be made to ensure that 10 MHz oscillations can
occur. So, the question of the influence of the pump fre-
quency offset from twice the oscillating frequency is impor-
tant. The quasilinear method still can be developed with
fµ �= 2 · f1. Such a calculation leads to the relationship
given in (9), which expresses the overall resistive part of
the main loop shown in Fig. 4 (f1 = 10 MHz) versus the

Fig. 4. Equivalent circuit of the main loop of Fig. 3 at 10 MHz.
RQ, CQ, and LQ are the motional parameters of the quartz crystal
resonator and C0 is its parasitic parallel capacitor. CV D , R and R−

are the equivalent elements of the varactor-diode.

pump angular frequency ωµ = 2 · π · fµ and various com-
ponents of the loop. The influence of the pump circuit is
neglected here.

RΣ (ωµ) = R−R ·

(
µ ·Q

2

)2

1+




ωµ

2
−ω1

α




2

+
RQ(

−RQ ·C0 · ωµ

2

)2
+

(
1− ωµ

2
·C0 ·

(
ωµ

2
·LQ − 2

ωµ ·CQ

))2 .

(9)

As shown in (9), three terms can be identified in
RΣ (ωµ):

RΣ (ωµ) = R + R− (ωµ) + R+ (ωµ) . (10)

The last term R+ (ωµ) is a resistive term depending on
crystal resonator features, and the second term R− (ωµ)
depends on other elements (which exhibit a quality factor
Q) and may be negative.

Obviously, oscillations occur at ω1 = 2 · π · f1 provided
that the overall residual resistor RΣ is negative or zero (see
Fig. 5). Losses in the oscillating loop must be compensated
by power injection. The DC supply transmits power to the
pump signal at ωµ through its loop amplifier. One part of
this power corresponding to R− (ωµ) is then passed to the
oscillating loop at ω1 through the varactor-diode.
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Fig. 5. Plot of the overall resistor RΣ versus the modulating fre-
quency fµ. RΣ must be negative or zero to induce parametric oscil-
lations.

Extra adjustments need a better prediction of the PXO
behavior. In this case, the major difficulty is that a more
complete analysis must take into account nonlinearities in-
cluding, for example, the current-voltage relationship of
the varactor-diode [see (7)]. Nevertheless, in a first step,
it is convenient to model the PXO by its main loop (see
Fig. 3) just fed by a pump generator. The PXO behavior
then can be simulated with an electronic CAD software.
This also can be achieved by means of algebraic compu-
tation, by solving the system of differential equations that
describe the main loop. An efficient means to solve such a
system is to write it in Cauchy’s form. Results of numerical
computation are given in Fig. 6.

IV. Experimental Results

A prototype of the PXO has been developed (Fig. 7).
It has been verified that this parametric quartz crystal

oscillator is able to work regardless of the external tem-
peratures, over the range [5◦C, 85◦C]. Actually, first mea-
surements are not exactly in agreement with results of the
numerical computation performed with the simple model-
ing described above. When comparing theoretical results
of Fig. 6 to experimental ones as shown in Fig. 8, it is vis-
ible that theoretical improvements still have to be done.
We are currently working on such improvements.

This first prototype, without any temperature regula-
tor, exhibits quite good results in terms of fractional fre-
quency standard derivation σy(τ) at room temperature
(Table I).

V. Conclusions

It is now demonstrated that a parametric quartz crystal
oscillator is able to work efficiently.

Fig. 6. Results of numerical computation on the oscillating loop (the
main loop at 10 MHz in Fig. 3), in steady state, when the pump loop
is replaced with a simple generator. Plotted voltages UC0 and UCV D

are located in Fig. 4.

Fig. 7. PXO prototype.
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TABLE I
Measured Fractional Frequency Standard Deviation σy(τ) Versus Averaging Time τ , at Room Temperature (the

electronics is not temperature regulated).

τ(s) 0.1 1 10 25 50 75

σy 2.4 · 10−10 4.5 · 10−11 3.2 · 10−10 8.6 · 10−10 2 · 10−9 3.5 · 10−9

Fig. 8. Measured voltages UC0 and UCV D in steady state.

Results of this first prototype are very encouraging. In-
deed, values of σy(τ) are of the same order of magnitude
as those obtained with a “conventional” oscillator.

We are currently working on theoretical improvements
in order to get a more comprehensive view of the PXO
behavior. Essential improvements are made on the simula-
tion of nonlinear effects. Already, we have achieved steady
state behavior closer to experimental measurements than
above-presented ones. But these investigations constitute
another topic to be described in a separate paper.

The next experimental step consists of making up two
identical PXOs with their temperature controls in order to
perform phase-noise measurements. Phase noise would be
improved with this technique, at least on the noise floor,
which is a real need for some telecommunication applica-
tions.
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Jan. 1979. (in French)

[9] M. M. Driscoll, “Phase noise performance of analog frequency
dividers,” in Proc. 43rd Annu. Symp. Freq. Contr., 1989, pp.
342–348.

[10] J. M. Manley and H. E. Rowe, “Some general properties of non-
linear elements, I: General energy relations,” Proc. Inst. Radio.
Eng., vol. 44, pp. 904–913, July 1956.

[11] ——, “Some general properties of nonlinear elements, II. Small
signal theory,” Proc. Inst. Radio. Eng., vol. 46, pp. 850–860,
May 1958.

[12] L. A. Blackwell and K. L. Kotzebue, Semiconductor Diode Para-
metric Amplifiers. Englewood Cliffs, NJ: Prentice-Hall, 1961.

[13] E. Philippow, Nichtlineare Elektrotechnik. Leipzig: Akademische
Verlagsgesellschaft, Geest und Portig K.-G., 1963. (in German)

[14] V. F. Kushnir and B. A. Fersman, The Theory of Non-linear
Electric Circuits. Moscow: Sviaz, 1974.

[15] V. Komine, S. Galliou, and A. Makarov, “Wave Electronics and
Its Applications in the Information and Telecommunication Sys-
tems,” May 2001, unpublished.

5




