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Synopsis

We investigate the flowing behavior of dense suspensions of non-colloidal particles, by
coupling macroscopic rheometric experiments and local velocity and concentration measure-
ments through MRI techniques. We find that the flow is localized at low velocities, and that
the material is inhomogeneous; the local laws inferred from macroscopic rheometric observa-
tions must then be reinterpreted in the light of these local observations. We show that the
short time response to a velocity step allows dense suspensions to be characterized locally:
they have a purely viscous behavior, without any observable influence of granular friction.
In the “jammed” zone, there may be a contact network, whereas in the sheared zone there
are only hydrodynamic interactions: localization consists in a change in configuration at the
grain scale. From the concentration and velocity profiles, we provide for the first time local
measurements of the concentration dependence of viscosity, and find a Krieger-Dougherty
law η(φ) = η0(1 − φ/0.605)−2 to apply. Shear-induced migration is almost instantaneous,
in contrast to most other observations, and implies that the diffusion coefficients depend
strongly on the concentration. We finally propose a simple constitutive law for dense sus-
pensions, based on a purely viscous behavior, that accounts for all the macroscopic and local
observations.

I Introduction

The flows of concentrated suspensions are involved in many industrial processes (coal slurries
transport, sewage sludge application, foodstuff transport...), natural phenomena (mud flows,
lava flows, landslides...) and in daily use (cosmetic pastes spreading, painting...). It is of
high importance to predict and optimize the flow behavior of these materials: drilling muds,
e.g., have to carry debris back out of drill holes; in fresh concrete, a challenge is to pack as
many solid particles as possible together in a given volume, so that the solid concrete will be
resistant, while having a sufficiently fluid behavior in order to facilitate its transport and its
placing. In the case of natural flows, one wants to predict the extent of the flows. However,
the flows of concentrated suspensions reveal many complex features which are far from being
understood (for a recent review, see Stickel and Powell (2005)). This complexity originates
from the great variety of interactions between the particles (colloidal, hydrodynamic, frictional,
collisional) and of physical properties of the particles (packing fraction, deformability, sensitivity
to thermal agitation, shape, buoyancy...) involved in the material behavior. The link between
the relative importance of the different kinds of interactions and the different flow regimes have
been discussed by Coussot and Ancey (1999).
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In this paper, we will focus on the behavior of suspensions of non-colloidal rigid particles sus-
pended in a Newtonian fluid. Therefore, the macroscopic behaviors originating from Brownian
motion, colloidal interactions, and deformability of the particles will not be considered.

The viscous flows of non-colloidal suspensions have been extensively studied. Of great impor-
tance is the knowledge of the concentration dependence of viscosity, as one may want to transport
suspensions as concentrated as possible. For a dilute suspension, it was shown by Einstein (1956)
that the viscosity η(φ) may be written as: η(φ) = η0(1 + 2.5φ), where φ is the concentration
and η0 is the viscosity of the interstitial fluid. This relationship was extended to second order
by Batchelor and Green (1972) who found, in pure straining flow: η(φ) = η0(1 + 2.5φ+ 7.6φ2).
These two theoretical expressions are well verified experimentally for φ < 10%. For higher
concentrations, analytical derivations are much more difficult; one may however compute the
viscosity with the help of simulations (see e.g Phillips et al. (1988); Sierou and Brady (2002)).
For very dense suspensions (near jamming), there is actually no theoretical nor experimental
consensus on the concentration dependence of the viscosity. The only universal feature which
is observed is that the viscosity diverges at the approach of a maximum packing fraction φm,
which is highly dependent on the particle characteristics. Many phenomenological models have
been proposed, the most famous being those by Eilers (1941), Mooney (1951), and Krieger and
Dougherty (1959). Basically, all these models intend to recover the Einstein limit at low con-
centration, and to account for the divergence at φ = φm. The now classical Krieger-Dougherty
law reads

η(φ) = η0(1− φ/φm)−n . (1)

In order to recover the Einstein limit at low concentration, one should set n = 2.5φm. However,
it appears that setting n as a free parameter allows to fit many experimental data; nevertheless,
the values of the maximum packing fraction φm and exponent n are still subject to debate, since
experimental results may differ, particularly at the approach of the maximum packing fraction.
These parameters actually depend on the particle shape (see e.g. Barnes et al. (1989)), and
the polydispersity [Chong et al. (1971)], but other factors, mainly measurement problems such
as shear-induced migration and shear-induced resuspension, which will be detailed hereafter,
may cause the high scattering of data for similar systems. Much theoretical work attempted to
understand the concentration dependence of viscosity for very dense suspensions. Frankel and
Acrivos (1967) showed that the energy dissipation in suspensions originates mainly from the
fluid sheared in the small zones between close particles: one has to consider the lubricated flow
between particles; this causes the divergence of viscosity as the particles come closer to each other
(i.e. as φ tends to φm). Marrucci and Denn (1985) then showed that the functional form of this
divergence depends strongly on the particle configuration; dissipation is much more important
when large scales structures, where the gaps between particles are much thinner than the average
gap, develop, than when the particles are on a regular lattice. For a detailed discussion on
measurements of suspension viscosity, on theoretical models and numerical simulations, see e.g.
Barnes et al. (1989) and the review by Stickel and Powell (2005).

However, defining a viscosity in these systems may be problematic as dense suspensions
exhibit non-newtonian behaviors [Stickel and Powell (2005)]: basically, one may observe the
existence of a yield stress, and a shear thickening behavior at high shear rates, i.e. η(γ̇) is an
increasing function of γ̇; as a consequence, the material is macroscopically viscous – meaning
that the viscosity is independent of shear rate – in a limited range of shear rates. For the sake
of consistency, many authors choose to study the concentration dependence of viscosity in the
zero shear rate limit (provided there is no yield stress so that there is a viscosity plateau at very
low shear rates) or in the high shear rate limit (before the onset of shear thickening).

At high shear rates, above a critical shear rate which depends on the particle and fluid
parameters, the viscosity of concentrated suspensions is found to increase strongly with the shear
rate: this is a reversible shear thickening behavior (for a review, see Barnes (1989)). In the case

2



of colloidal suspensions, this phenomenon is now well understood: the shear thickening behavior
may be attributed to the shear-induced formation of hydrodynamic clusters [Maranzano and
Wagner (2002); Foss and Brady (2000)]: in this case, the viscosity increases as a consequence of
the high dependence of viscosity on configuration evidenced e.g. by Marrucci and Denn (1985).
In the case of non-colloidal suspensions, Bagnold (1954) suggested that there is a transition from
a viscous flow to a collisional flow: viscous dissipation in the interstitial fluid may be replaced
by dissipation in grain-grain collisions, which leads to a shear stress proportional to the square
of the shear rate (although laminar-turbulent transition may occur in the viscous suspension
before this regime can be reached [Hunt et al. (2002)]). Note however that a scaling of normal
and shear stresses with the square of the shear rate does not necessarily originate from collisions:
it was shown by Lemâıtre (2002) and Lois et al. (2005) that the flows of hard spheres follow this
scaling even with dominant frictional dissipation; furthermore, they showed that even in rapid
flows of dense granular materials the contribution of friction to the shear stress dominates over
the contribution of collisions.

At low shear rates, the shear stress in dense suspensions is found to be roughly independent
of the shear rate [Prasad and Kytömaa (1995); Ancey and Coussot (1999)]. Actually, very dense
suspensions exhibit a static yield stress: it was evidenced by Husband et al. (1993) in creep tests
for concentrations φ > 0.47, and by Huang et al. (2005) in viscosity bifurcation experiments.
Huang et al. (2005) also showed that this yield stress is associated with a viscosity bifurcation:
above the critical shear stress τc, the shear rate is higher than a critical shear rate γ̇c; below γ̇c,
no steady flow exists. The main characteristics of the transition between the plastic behavior
and the viscous behavior have been pointed out by various authors [Bagnold (1954); Prasad
and Kytömaa (1995); Ancey and Coussot (1999); Ancey (2001); Huang et al. (2005)]: it has
been found (i) that at low shear rates, the shear stress is almost constant as in sheared dry
granular materials, (ii) that, as in dry granular materials, the shear stress is proportional to the
normal stress (measured on the internal cylinder in a Couette experiment [Bagnold (1954)], on
the top plate in a plane shearing experiment [Prasad and Kytömaa (1995)], or postulated to
be proportional to the height of the sheared material [Ancey and Coussot (1999)]), (iii) that at
high shear rates, the shear stress is proportional to the shear rate and to the viscosity of the
interstitial fluid. An interpretation of the microscopic origin of the two flow regimes, based on
the results from macroscopic rheometric experiments has been proposed by these authors: the
generally accepted picture for the flows of these dense suspensions is that, depending on the
shear rate and on the viscosity of the interstitial fluid, the material may either behave similarly
to dry granular systems with dominant frictional contacts between the grains (low shear rate, low
viscosity), or to viscously dominated systems, when the contacts are lubricated (high shear rate,
high viscosity); at very high shear rates, the flow may then become collisional [Bagnold (1954);
Savage and McKeown (1983)], although laminar-turbulent transition may occur in the viscous
suspension before this regime can be reached [Hunt et al. (2002)]. In this picture, the origin of the
apparent yield stress is friction: one may thus characterize the onset of flow by a static coefficient
of friction rather than by a yield stress (i.e. by a Coulomb criterion rather than by a Von Mises
criterion). The flow behavior of dry granular matter has been the subject of considerable work
recently, and a rather good, though not simple, understanding of the constitutive law in these
systems has been reached (see GDRMidi (2004) for a recent review): it would then be possible to
compare accurately the low shear rate flow regime of dense suspensions to dry granular material
flows. Actually, in a recent study of dense suspension flows, Huang et al. (2005) have observed
shear localization at low shear rates, and showed that the velocity profiles in the flows of dense
suspensions are very similar to those observed in dry granular material flows.

The normal stresses that develop under shear were extensively studied by Zarraga et al.

(2000). It appears that, unlike what happens in polymers, the normal stresses are proportional
to the shear rate, even for concentrations as low as 30%; this is in agreement with the observations
of [Bagnold (1954); Prasad and Kytömaa (1995); Ancey and Coussot (1999); Huang et al. (2005)].
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The γ̇ dependence of normal stresses originates from the hydrodynamic interactions, whereas the
emergence of normal stresses difference may be related to an anisotropy in the microstructure
that is generated by hard spheres repulsion [Brady and Morris (1997)]. An important implication
is that a constant ratio between normal and shear stresses is not specific to granular flows: such
a proportionality arises when shear and a normal stresses are both proportional to the shear
rate. Therefore, one may have to be cautious before considering the observation of a constant
ratio between normal and shear stresses as a proof of the existence of frictional dissipation.

Up to now, the main features of the different flow regimes have been identified and their
physical origin is now partly understood, but the construction of a constitutive law for dense
suspensions valid over a wide range of shear rates (i.e. accounting for all the observed phenom-
ena) is far from being achieved. All the experimental results on the viscosity of dense suspensions
and its microscopic origin have been inferred from macroscopic rheometric experiments. Per-
forming good measurements in dense suspensions is, however, very difficult as many perturbative
effects may develop during the experiments: the most severe, which may have caused the high
scattering of data observed over years, are wall slip effects [Barnes (1995); Jana et al. (1995)],
shear localization [Coussot (2005)] and particle migration.

The migration phenomenon, which leads to concentration inhomogeneities, and is at the
origin of size segregation in polydisperse systems, was observed in many situations: wide-gap
Couette flows [Leighton and Acrivos (1987b); Graham et al. (1991); Abbott et al. (1991); Phillips
et al. (1992); Chow et al. (1994); Corbett et al. (1995); Tetlow et al. (1998); Shapley et al. (2004)],
parallel-plate flows [Chow et al. (1994); Barentin et al (2004)], pipe flows [Sinton and Chow
(1991); Altobelli et al. (1991); Hampton et al. (1997); Lyon and Leal (1998); Butler et al. (1999);
Han et al. (1999)], and extrusion experiments [Altobelli et al. (1997); Götz et al. (2002)]. In the
wide-gap Couette flows, the consequence of migration is an excess of particles near the outer
cylinder. Migration seems to be related to the shear-induced diffusion phenomenon [Acrivos
(1995)], which was investigated experimentally [Leighton and Acrivos (1987a); Breedveld et

al. (1998, 2002)], theoretically [Morris and Brady (1996); Brady and Morris (1997)], and in
simulations [Drazer et al. (2002)]. Basically, the self-diffusion coefficient D may be written as
[Leighton and Acrivos (1987a); Acrivos (1995)]:

D = D̄(φ)γ̇a2 , (2)

where φ is the volume fraction, γ̇ the shear rate, a the particle size, and D̄(φ) is the dimensionless
self-diffusion coefficient, which in general is a tensor. In the diffusive model of Leighton and
Acrivos (1987b) and Phillips et al. (1992), the gradients in shear rate that exist in all but the
cone and plate geometry then generate a particle flux towards the low shear zones (i.e. the
outer cylinder in the case of the Couette geometry), which is counterbalanced by a particle flux
due to viscosity gradients. A steady state, which results from competition between both fluxes,
may then be reached, and it is characterized by an excess of particles in the low shear zones of
the flow geometry. There are other models, such as the Nott and Brady (1994) and Mills and
Snabre (1995) models in which particle fluxes counterbalance the gradients in normal stresses;
most of them were recently compared to experimental data by Shapley et al. (2004).

For slight differences in density between the particles and the suspending fluid, when one
would think that sedimentation effects were negligible, one also observes a small dependence of
the macroscopic viscosity on the shear rate: this may be attributed to a vertical inhomogeneity
of the suspension, which results from competition between shear-induced resuspension [Gadala-
Maria and Acrivos (1980); Leighton and Acrivos (1986); Acrivos et al. (1993, 1994); Acrivos
(1995); Tripathi and Acrivos (1999)], whose origin is again shear-induced diffusion, and sedi-
mentation; it results in a inhomogeneity dependent on the shear rate, that creates an apparent
shear-thinning behavior.

However most experiments [Graham et al. (1991); Phillips et al. (1992); Corbett et al. (1995)]
observe that the migration phenomenon in suspensions of volume fraction up to 55% is rather
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slow, in accordance with its diffusive origin: it lasts for a few thousands revolutions. Therefore,
it is believed that if one performs viscosity measurements on a dense suspension of mean volume
fraction φ at the beginning of shear, then these measurements are performed on a homogeneous
suspension and thus provide the value of the viscosity at a concentration φ. Moreover, it is a

priori possible to slow down this migration phenomenon by working in a narrow gap geometry:
in this case, the gradients in shear stress that generate the shear-induced migration phenomenon
are greatly reduced.

In this paper, we focus on the behavior of a model dense suspension of monodisperse spherical
particles at low and intermediate shear rates, i.e. on the plastic and viscous regimes; we do
not deal with the shear thickening regime that emerges at high shear rates. Our aim is to
determine the shear part of the dense suspensions constitutive law (we do not deal with normal
stresses which were extensively studied by Zarraga et al. (2000)), and to relate it to the physical
properties of the material. We perform rheometric experiments; inferring a constitutive law from
macroscopic data may, however, lead to serious misinterpretation if e.g. the shear flow and the
material are inhomogeneous (the shear rate and concentration would then be wrongly estimated).
Therefore, in order to interpret carefully the macroscopic data, we measure the local velocity
and concentration through MRI techniques: we are then be able to base our determination of
the constitutive law and its dependence on the volume fraction on the true local shear rate and
the true local concentration. In Sec. II, we present the experimental setup. We present the
experimental results (rheometric data, velocity and concentration profiles) obtained during the
steady flows in Sec. III A, and the transient response to a velocity step in Sec. III B. We analyze
the results in Sec. IV: we show how it is possible to determine locally the constitutive law of the
material and its local dependence on concentration; the concentration profiles are then compared
with previous experimental results and with the predictions of theoretical models. Finally, we
propose a simple constitutive law in Sec. V and show how it may account for the macroscopic
and local behaviors observed in our experiments.

II Materials and methods

We study the rheological behavior of a dense suspension composed of non-colloidal monodis-
perse spherical particles immersed in a Newtonian fluid at a volume fraction φ between 55 and
60%; most results presented here are obtained at φ = 58%, but the observations and conclu-
sions are general as all the suspensions studied exhibited the same features. The particles are
monodisperse spherical polystyrene beads (diameter 0.29mm ± 0.03mm, density 1.05g cm−3).
The suspensions are prepared with Rhodorsil silicone oil of viscosity 20mPa s, and of density
0.95g cm−3. This system allows to change easily the viscosity of the interstitial fluid (the influ-
ence of this parameter was studied by Huang et al. (2005)) and to match closely the densities
of the beads and the fluid in order to avoid sedimentation effects, and also allows to refer to the
results obtained by Huang et al. (2005) on the same system. We checked by MRI measurements
that sedimentation is indeed negligible during the experiments so that there is no dependence
of concentration on the height in the gap, except for edge effects.

The rheometric experiments are performed within a wide-gap Couette geometry (inner cylin-
der radius Ri = 4.15cm, outer cylinder radius Re = 6cm, height H =11cm) on a commercial
rheometer (Bohlin C-VOR 200) that imposes either the torque or the rotational velocity (with
a torque feedback). In order to avoid slip at the walls, sandpaper of roughness equivalent to the
size of the particles is glued on the walls; we could check on the velocity profiles that there is
no observable slip. Working within a wide-gap geometry allows to study easily large particles;
it may be seen a priori as an improper way to study suspensions as there are large stress inho-
mogeneities in this geometry; we will show, however, that this property is essential in order to
get local information on the suspension behavior.

In the rheometric experiments presented here, we control the rotational velocity of the inner
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cylinder for values ranging from 0.01 to 100rpm, and we record the torque exerted by the material
on the inner cylinder.

Throughout this report, we choose to present the rheometric data as torque measurement
vs. rotational speed, because shear rates and stresses would denote an incorrect interpretation
of data if the flow is inhomogeneous and if the shear stress on the cylinder depends on height
(as in [Ancey and Coussot (1999)]).

Proton MRI [Callaghan (1991)] was chosen as a non-intrusive technique in order to get
measurements of the local velocity and of the local bead concentration inside the sample. Ex-
periments are performed on a Bruker 24/80 DBX spectrometer equipped with a 0.5T vertical
superconductive magnet with 40cm bore diameter and operating at 21MHz (proton frequency).
Its birdcage radio frequency coil is 20cm in size (inner diameter), and its gradients coils are able
to deliver field gradients up to 5G/cm with a 500µs raising time.

We perform our experiments with a home made NMR-compliant rheometer, specially de-
signed to work inside the magnet, with the same Couette geometry as the rheometric experi-
ments. This device was already used in a number of previous rheo-nmr studies [Raynaud et al.

(2002); Coussot et al. (2002b); Huang et al. (2005); Rodts et al. (2005)], and is fully described
in Raynaud et al. (2002).

The volume imaged is a (virtual) rectangular portion of 40mm in the axial direction with
a width (in the tangential direction) of 10mm and a length of 70mm (in the radial direction,
starting from the central axis). This volume is situated at the magnet center (so as to damp
the effects of field heterogeneities) and sufficiently far from the bottom and the free surface of
the rheometer so that flow perturbations due to edge effects are negligible. We checked that the
velocity and concentration profiles are homogeneous along the axial direction in this slice.

Details on the sequence used to obtain velocity profiles can be found in [Raynaud et al.

(2002); Rodts et al. (2004)]. Note that measurements are performed on the oil phase. In all
experiments, we measure quasi-instantaneous velocity profiles (a single measurement lasts for
2.3 s). The inner cylinder is driven at angular velocity Ωi ranging from 0.01 to 100rpm. For
technical reasons, we can choose Ωi either between 0.01 and 9rpm, or between 1 and 100rpm.
Therefore preshear at high rotational speed cannot be applied in all experiments.

The NMR sequence used in this work to measure the local bead concentration is a modified
version of the sequence aiming at measuring velocity profiles along one diameter in Couette
geometry [Hanlon et al. (1998); Raynaud et al. (2002)]. It consists of a spin-echo sequence, where
space selective pulses are used in order to virtually cut in the tangential and axial directions a
beam along one diameter of the rheometric cell. According to basic MRI spin-warp technique,
NMR data are recorded during a so-called read-out gradient, and then Fourier transformed, so
as to get 1D information about hydrogen density along the radial direction. Slight Gaussian
filtering is applied in order to remove spurious oscillation of the NMR profile close to the edge of
the sample. The sequence echo time is 6ms. This is orders of magnitude shorter than the typical
time for the inner cylinder to turn around the vertical axis of the cell, and any measurement
artefact due to the flowing of the sample during the sequence could thus be neglected; we actually
checked on the oil alone that the profiles obtained on the flowing material are independent of
the velocity and are the same as the profile obtained on the resting material, as long as the
rotational velocity is less than 25rpm. During measurements, due to both physical properties
of the sample components and of the Couette device, only NMR signal originating from those
hydrogen nuclei belonging to the liquid phase of the sample is recorded. Raw NMR profiles are
thus actually representative of the liquid content profile inside the selected beam along the radial
direction. Because of space inhomogeneity of the NMR coil response throughout the sample, a
calibration step is necessary in order to make such measurements quantitative (see for instance
Graham et al. (1991); Corbett et al. (1995) for the same kind of application). For this purpose,
reference data are taken with the rheometric cell only filled with pure oil. We then compare
the NMR signal intensity Soil(R) at radius R measured in the pure oil, with the NMR signal
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intensity Ssuspension(R) at radius R measured in the suspension in the same conditions. The
discrepancy between both signal intensities is attributed to the presence of beads, which give
no signal. During experiments, the bead volume fraction φ(R) inside the suspension is then
eventually estimated as:

φ(R) =
Soil(R)− Ssuspension(R)

Soil(R)
. (3)

The T1 and T2 relaxation times in the pure fluid were both measured at about 500 ms,
and remained unchanged with the presence of beads, so that no further relaxation correction of
the data is necessary. We verified on suspensions of known concentrations at rest that Eq. 3
provides a fair evaluation of concentration. A rather low absolute uncertainty of ±0.2% on the
concentration measurements values could be estimated from repeated experiments: this ensures
that the quantitative evolution of the concentration (with the radius or time) in an experiment
is measured accurately. However, there still is a systematic uncertainty in the concentration
measurements, mainly due to the fact that the reference measurement (on the oil phase) and
the profiles on the various suspensions are performed on different days, and we can never be
sure that the spectrometer tunings are exactly the same. We found NMR signal intensity
variations of about 1% from one day to another; therefore, there is a systematic uncertainty on
the concentration measurements of about ±0.5% (it would then affect in the same way a whole
profile as all the data of a given profile are obtained in the same conditions). When the same
suspension is studied on two different days, if necessary, we correct the intensity so as to ensure
consistency between the signals measured on the suspension at rest on both days. We plan to
study in more detail all the sources of systematic uncertainties and we will try to correct them
when possible.

Note finally that NMR did not allow at this stage for quantitative concentration measure-
ments near the edges: we could not access the volume faction in a 2-3mm zone near the inner
and outer cylinders; however, the velocity could be measured in these zones.

III Experimental results

A Steady state

In this section, we apply a constant rotational velocity, and we record the torque, the velocity
profile, and the concentration profile when a steady state is reached. We then study the evolution
of the stationary torque and profiles with the rotational velocity, for dense suspensions of volume
fraction ranging from 55 to 60%. We study velocities ranging from 0.01rpm to 100rpm. The
transient states will be studied in Sec. III B.

1 Torque measurements

In Fig. 1, we plot the torque vs. the rotational velocity for the steady flows of a 58% suspension.
As usually observed in dense suspensions (see introduction), we observe a plastic regime

followed by a viscous regime, i.e. we find a shear torque plateau at low velocities and a linear
increase of torque with the velocity above a critical velocity Ωc (Fig. 1). The data can be well
fitted to a Bingham law T = T0 +αΩ with T0 = 0.001Nm and α = 0.012Nm/s: these materials
seem to exhibit a yield stress and to behave macroscopically like yield stress fluids.

The rheograms obtained for the other volume fractions studied (55 to 60%) show the same
features. In the following, the regime for which the torque increases linearly with the rotational
velocity will be called the ‘macro-viscous’ regime (as in [Bagnold (1954)]), in order to make a
clear distinction between the macroscopic observation performed in a rheometric experiment
and its interpretation as the constitutive law of the material.

7



10-3 10-2 10-1 100 101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

100

 

 

To
rq

ue
 (N

 m
)

 (rpm)

Figure 1: Torque vs. the rotational velocity in the steady state of a 58% suspension. The line
is a fit to a Bingham model: T = T0 + αΩ with T0 = 0.001Nm and α = 0.012Nm/s; the dotted
line is a fit to a viscous model T = αΩ with α = 0.012Nm/s.

In a simple rheometric experiment, without any other information about what happens inside
the gap, one may measure a macroscopic viscosity η(φ) under the assumption that the flow is
Newtonian and homogeneous: it allows to infer the shear rate from the rotational velocity, and
to define η(φ) for the material of mean volume fraction φ. In the macro-viscous regime, we
infer the dependence of the macroscopic viscosity η(φ) of the suspension on concentration from
the rheograms obtained for various volume fractions φ ranging from 55 to 60%. In a torque T
vs. rotational velocity Ω plot, we simply fit the data for high velocities to an asymptotic law
T = α(φ)Ω, and obtain the dimensionless macroscopic viscosity η(φ)/η0 = α(φ)/α(0), where η0
is the suspending fluid viscosity.
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Figure 2: Dimensionless macroscopic viscosity inferred from the macro-viscous regimes of dense
suspensions vs. the mean volume fraction of the suspensions. The line is a fit to a Krieger-
Dougherty law: η(φ)/η0 = (1 − φ/φm)−n with φm = 0.603 and n = 1.5. These data were
obtained for suspensions of volume fraction ranging from 55 to 60%.

We observe in Fig. 2 that the macroscopic viscosity increases strongly as the volume fraction
increases: there is a factor of one hundred in macroscopic viscosity between the 55% suspension
and the 60% suspension. In this limited concentration range, the evolution of the dimensionless
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macroscopic viscosity with the concentration can be well fitted to a Krieger-Dougherty law
η(φ)/η0 = (1− φ/φm)−n with maximum packing fraction φm = 0.603 and divergence exponent
n = 1.5.

2 Velocity profiles measurements

In Fig. 3, we plot the dimensionless velocity profiles for the steady flows of a 58% suspension,
for various rotational velocities ranging from 0.07 to 100rpm, i.e. the experimental conditions
are the same as for the data of Fig. 1.

MRI measurements show that the velocity profiles are roughly exponential, as in dry granular
materials, and that they occupy only a small fraction of the gap at low rotation velocities (Fig.
3): we observe shear localization. In the plastic regime (Ω < Ωc), upon increasing the rotation
velocity, we find that the higher the rotation velocity, the larger the fraction of the paste that is
sheared. Beyond Ωc, in the case of the 58% suspension, the whole sample is sheared, and all the
reduced velocity V (R)/V (Ri) profiles plotted vs. the radius fall along the same curve (Fig. 3):

V (R) = ΩRif(R) . (4)

However, the velocity profiles in the macro-viscous regime are very different from those expected
for a Newtonian fluid; for a Newtonian fluid, we would expect:

V (R)

V (Ri)
=

Ri

R

R2
e −R2

R2
e −R2

i

(5)

i.e a quasi linear velocity profile (Fig. 3). As evidenced by Huang et al. (2005), the critical
velocity below which the shear flow is localized is the same as the one below which we observe a
torque plateau in Fig. 1 (i.e. Ωc ≈ 5rpm). Note that these first results (the velocity profiles in
the steady state of a 58% suspension) were already presented in [Huang et al. (2005)], and that
localization in dense suspensions was also evidenced by Barentin et al (2004).
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Figure 3: Dimensionless velocity profiles (from Huang et al. (2005)) in the steady state of a 58%
suspension, at various rotational velocities ranging from 0.07 to 100rpm; the dashed line is the
theoretical dimensionless velocity profile for a Newtonian fluid.

It was also shown by Huang et al. (2005) that in both regimes, all the dimensionless velocity
data V (R,Ω)/ΩRi can be collapsed onto the same universal curve provided they are plotted as
a function of the rescaled coordinate (R −Ri)/dc(Ω). The length dc(Ω), which is an increasing
function of Ω for Ω < Ωc, simply gives the thickness of the sheared layer, and is thus constant
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and equal to the gap size if Ω > Ωc. In Sec. III B, we will use this scaling to evaluate the extent
of the sheared layer (see e.g. Fig. 9).

As a summary, we observe at low velocities that the velocity profiles are similar to those
obtained in dry granular materials, with a roughly constant torque in both cases, as would be
expected for a frictional flow; however, in dense suspensions, the thickness of the sheared layer
depends on velocity whereas it is constant (5-10 grains) in the case of dry granular materials flows
[GDR Midi (2004)] in the same range of shear rates, which is a major difference. Moreover, when
all the material is sheared at high velocities, the torque is now proportional to the rotational
velocity, as would be expected for a viscous flow, but the velocity profile is non-Newtonian. We
will explain these paradoxical features in Sec. IV.

In Fig. 4, we plot the dimensionless velocity profiles in a 59% suspension, for velocities
ranging from 10 to 30rpm. These rotational velocities belong to the macro-viscous regime of
the 59% suspension: the torque is proportional to the rotational velocity (as in Fig. 1) and we
observe in Fig. 4 that the dimensionless velocity profiles V (R)/ΩiRi fall along the same curve
for all values of Ωi > Ωc. In the case of a suspension of mean volume fraction 58%, we have
seen that in the macro-viscous regime all the gap is sheared. In the case of the macro-viscous
regime of the 59% suspension, we now observe that the gap cannot be fully sheared (Fig. 4):
there still is a 3-4mm region near the outer cylinder where the material is not sheared. When
the rotational velocity increases, the thickness of the sheared layer does not increase anymore
for Ωi > Ωc, and it remains smaller than the gap size.
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Figure 4: Dimensionless velocity profiles at 30 (squares), 20 (open circles), and 10rpm (open
triangles) for a 59% suspension (lin and log scales).

In Fig. 5, we plot the dimensionless velocity profiles for 58, 59 and 60% suspensions sheared
at 20rpm. This 20 rpm velocity belongs to the macro-viscous regime of these 3 suspensions. We
now see in Fig. 5 that for the 60% suspension, the material is sheared up to around 5.1cm.

We have thus observed that the thickness of the sheared layer in the macro-viscous regime
(i.e. for Ωi > Ωc) of a dense suspension, in our Couette geometry, does not depend on the
velocity and cannot exceed a maximum value dm. This value dm decreases when the volume
fraction increases. A value of dm = 1.5cm was found for the 59% suspension, whereas dm = 1cm
for the 60% suspension. In the case of the 58% suspension we can only say that dm ≥ 1.85cm.
Note however, that this localization, which occurs when increasing the volume fraction in the
macro-viscous regime, should not be mistaken for the localization observed in Fig. 3, which
occurs when decreasing the velocity below Ωc for a given volume fraction. We will show in Sec.
IV that these two phenomena may have two different origins.
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Figure 5: Velocity profiles obtained at 20rpm for 58% (squares), 59% (open circles) and 60%
(triangles) suspensions.

3 Concentration profiles measurements

In Fig. 6, we plot the concentration profiles measured in the steady flows of a 58% suspension,
for various rotational velocities ranging from 0.06 to 25rpm.
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Figure 6: Concentration profiles measured in the gap of the Couette geometry for a suspension
of mean volume fraction 58% sheared at various rotational velocities ranging from 0.06 to 25rpm.

We observe in Fig. 6 that the material is inhomogeneous under flow: the concentration is
lower near the inner cylinder where the shear rate is higher. The concentration profile does
not depend on the inner cylinder velocity Ω: it is the same when all the material is sheared as
when the flow is localized; it implies that the shear localization that occurs when decreasing
the rotational velocity is not due to changes in the volume fraction. The profile was irreversibly
established by the preshear. It is established within a few revolutions (less than 50), and
remains stationary over hours (except for very low velocity, where sedimentation is observed).
Note however that we did not study systematically the effect of the preshear rotation velocity,
and particularly the effect of a preshear by a localized flow: we intend to perform this study
later; at this stage, we only observe the same concentration profile for a 9rpm preshear as for a
100rpm preshear. Note also that we checked in a preliminary set of experiments that migration
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is not induced by loading, although we did not check it systematically.
This is a shear-induced particle migration phenomenon [Acrivos (1995)]: the particles irre-

versibly migrate towards the low shear zones. This was expected as we work with a wide-gap
geometry; however it is much faster than the phenomena usually observed in suspensions of
volume fraction up to 55% [Graham et al. (1991); Phillips et al. (1992); Corbett et al. (1995)]:
in all these experiments, for comparable experimental parameters, the authors observe that the
migration phenomenon lasts for 800 to 2500 revolutions whereas the phenomenon lasts for less
than 50 revolutions in our experiments. This point will be discussed in Sec. IV D, which is
devoted to comparison with migration models.

Note, however, that the material is stationarily inhomogeneous, i.e. all the experiments
were performed on the same inhomogeneous structure, for a suspension of a given mean volume
fraction.
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Figure 7: Concentration profiles measured in the gap of the Couette geometry for 3 differ-
ent sheared suspensions, of mean volume fraction 58% (squares), 59% (open circles), and 60%
(triangles).

In Fig. 7, we plot the concentration profiles obtained for several suspensions of mean volume
fraction 58%, 59%, and 60%. We observe the same shear-induced migration phenomenon in the
three suspensions with the same order of magnitude; in the case of the 60% suspension, the
concentration seems to saturate at a local 61.5% value near the outer cylinder.

We checked consistency of profiles with mean concentration: for the 58% suspension, a linear
fit φ = 0.433 + 2.85R gives φ̄ = 0.58, for the 59% suspension, a linear fit φ = 0.44 + 2.84R gives
φ̄ = 0.587, for the 60% suspension, a linear fit φ = 0.48 + 2.4R up to 5.6cm and a 61% plateau
from 5.6cm to 6cm gives φ̄ = 0.6.

B Onset of localization

In this section, we study the transient response to a sudden change in rotational velocity. The
procedure we apply is the following: (i) we preshear the material at a high rotational velocity
Ω0 > Ωc such that the whole material (in the case of the 58% suspension) is sheared, i.e.
in the macro-viscous regime, and then (ii) we instantaneously (duration< 0.1 s) decrease the
rotational velocity to a velocity Ω1 < Ωc in the localized flow regime (i.e. the plastic regime).
We then measure the temporal evolution of torque and velocity profiles just after the velocity
step. Note however that we cannot directly correlate accurately a MRI measurement and a
torque measurement as they are performed on different rheometers (the MRI rheometer does
not allow for accurate torque measurements).
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Figure 8: a) Torque vs. deformation angle Ωt for various velocities Ω1 just after preshearing the
material at Ω0 = 100rpm (Ω1 = 0.1rpm (circles), 0.05rpm (down triangles), 0.025rpm (open up
triangles), 0.01rpm (open squares)); the inset shows the same data in a torque vs. time plot. b)
Reduced velocity V (R)/V (Ri) during a preshear at Ω0 = 9rpm (open squares) and for various
times after the sudden change to velocity Ω1 = 0.2rpm (for MRI measurements at low velocities,
a 100rpm preshear could not be applied); the dotted line indicates the inner cylinder position;
the arrow indicates the evolution of the profiles with time. These data were obtained for a 58%
suspension.
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Figure 9: Fraction of material sheared vs. time after the velocity step from a velocity Ω0 = 9rpm
to a velocity Ω1 = 0.2rpm (open circles) and Ω1 = 0.07rpm (squares). These data are inferred
from MRI velocity profile measurements, for a 58% suspension.
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Figure 10: Reduced velocity V (R)/V (Ri) during the preshear at Ω0 = 9rpm and for various
velocities Ω1 (0.8rpm, 0.2rpm, 0.07rpm), 2 seconds after the sudden change in velocity. These
data were obtained for a 58% suspension.

We see in Fig. 8a that just after the velocity step the shear torque increases for a deformation
roughly independent of velocity, and then reaches an almost stationary value (the slight evolution
may be attributed to slight sedimentation at these very low velocities).

This evolution can be correlated with MRI measurements. We see in Fig. 8b and Fig. 9
that during the rapid increase of torque the flow gradually localizes. At short times just after
the velocity step, the thickness of the sheared layer is the same as for the preshear velocity,
and, when plotted versus the radius R, the dimensionless velocity profile V (R,Ω1)/Ω1Ri falls
along the same curve as the dimensionless velocity profile V (R,Ω0)/Ω0Ri during the preshear
(Fig. 8b). The thickness of the sheared layer then decreases, as the deformation increases, to
its stationary value (Fig. 9), and results in a stationary torque; the stationary thickness of the
sheared layer is lower for lower velocity. The torque increase is thus a macroscopic signature of
shear localization.

We also find that for all the velocities Ω1 studied, at short times just after the velocity step
all the dimensionless velocity profiles V (R,Ω1)/Ω1Ri fall along the same curve (Fig. 10).

Finally, we see in Fig. 8a and its inset that the relevant parameter that controls localization
may be deformation rather than time, as all the torque data roughly follow the same evolution
when plotted versus the deformation. The stationary torque is reached for a displacement of the
internal cylinder Ω1t ≈ 0.2rad. In our geometry, this is interpreted as a macroscopic deformation
(strain) γmacro ≈ 0.4. From local velocity measurements (Fig. 3, 8b) we know that the shear
rate at the walls is about 4 times the macroscopic shear rate. Therefore, the local deformation,
γlocal, at the walls is of order unity.

IV Analysis

A Local determination of the constitutive law

Usually, the constitutive law of a material, i.e. a law between the shear stress τ and the shear
rate γ̇, may be inferred from a rheometric experiment, which provides stationary torque values
T as a function of the rotational velocity Ω. Three important assumptions may then be made:
(i) the shear stress is assumed to be constant along the cylinder’s height; this allows to infer the
shear stress value from the torque measurement
(ii) the flow is homogeneous in the gap; this allows to infer the shear rate value from the
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rotational velocity measurement
(iii) the material is homogeneous; in the case of a suspension of mean volume fraction φ̄, it
ensures that the constitutive law found is that of the material at concentration φ = φ̄.

Therefore, if we want to build a constitutive law from rheological measurements in a dense
suspension, we face two major problems which contradict the points (ii) and (iii): there is
shear localization, and the thickness of the sheared layer depends on the rotational velocity for
Ω < Ωc; the material is inhomogeneous. Note that migration seems to be a quasi instantaneous
phenomenon so that it would not be possible to avoid it by performing measurements at short
times; even in the case of a narrow gap geometry, we would expect migration to occur within
a rather short time. As a consequence, it seems a priori very difficult to infer any information
on the behavior of a suspension of a given volume fraction from macroscopic measurements. It
casts doubt on the conclusions drawn from previous measurements in the plastic regime of these
systems: all the interpretations, as regards the nature of dissipation, were based on macroscopic
measurements alone.

Nevertheless, two important features will help us to get round these difficulties and infer a
constitutive law from the rheometric measurements:
(i) the material is stationarily inhomogeneous, and the concentration profile does not depend
on velocity whatever the flow regime, i.e. all the experiments were performed on the same in-
homogeneous structure, for a suspension of a given mean volume fraction
(ii) in the velocity step experiments of Sec. III B, the thickness of the sheared layer just after
the abrupt change in velocity is the same for all velocities (Fig. 10).

In Fig. 11, we plot all of the torque values obtained after the velocity step experiments of
Sec. III B (see Fig. 8), including the transient values, versus the rotational velocity Ω, for all the
velocities Ω1 studied. We recall that these experiments consisted in decreasing instantaneously
the rotational velocity from Ω0 > Ωc to Ω1. We observe that the short time torque measurements
for all the velocities Ω1 studied all fall on the same curve (T = αΩ) which is that of a purely
viscous material and is the same as in the macro-viscous regime, where all the material is sheared.
When Ω1 < Ωc, the torque values then increase with the deformation while shear localization
takes place, and the stationary torque values may be fitted to a Bingham law.

The explanation is that at short times, all the material is sheared (Fig. 9): in this case,
the conditions are fulfilled for a correct rheometric characterization of a given structure (the
stationarily inhomogeneous material) i.e. for a constant sheared layer thickness, and we can
conclude from the macroscopic measurements that the inhomogeneous material macroscopic
behavior is that of a purely viscous structure, even for very low velocities; there is no observable
influence of granular friction nor yield stress. This purely viscous behavior is observed over 4
decades of velocity (2 decades in the apparent plastic regime, 2 decades in the macro-viscous
regime).

We now focus on the local behavior, and show with the help of the velocity profiles that it
is a purely viscous behavior. The torque measurements T just after the velocity step provide
a macroscopic law T = αΩ1 for all Ω1 values. From the reasonable hypothesis of homogeneous
stress τi along the internal cylinder, and as τ(R) = τiR

2
i /R

2 in a Couette geometry whatever
the constitutive law may be, we get a shear stress distribution

τ(R,Ω1) =
αΩ1

2πR2h
(6)

and thus the local stress at radius R just after the velocity step is simply proportional to the
rotational velocity: τ(R,Ω1) ∝ Ω1.

Moreover, for all the velocities in the macro-viscous regime, and for all velocities Ω1 studied,
at short times t = 0+ just after the velocity step, we find that all the dimensionless velocity
profiles V (R,Ω1)/V (Ri) plotted vs. the radius fall along the same non-Newtonian curve (Fig.
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Figure 11: Torque vs. internal cylinder rotational speed for a 58% suspension. The circles
were obtained at various rotational velocities Ω1, ranging from 0.01rpm to 50rpm, just after
preshearing the material at Ω0 = 100rpm before each new velocity during 30s; all the temporal
evolution of torque (cf. Fig. 8a) for each velocity Ω1 is represented, the direction of evolution
being indicated by the arrows. The dotted line is a fit of the steady state data (cf. Fig 1) to
a Bingham model T = T0 + αΩ with T0 = 0.001Nm and α = 0.012Nm/s; the line is a fit to a
viscous model T = αΩ with α = 0.012Nm/s. The arrows indicate the evolution of torque with
the deformation as localization occurs.

3, 10):

V (R,Ω1, t = 0+) = Ω1Rif(R) . (7)

This may be read “the local shear rate γ̇(R,Ω1, t = 0+) just after the preshear is proportional
to the rotational velocity” i.e.

γ̇(R,Ω1, t = 0+) =
γ̇(R,Ω0)

Ω0
Ω1 . (8)

We finally conclude that the local constitutive law reads

τ(R,Ω) = η
(

S(R)
)

γ̇(R,Ω) , (9)

where the local viscosity η
(

S(R)
)

is everywhere independent of the local shear rate but depends
on the position R in the gap as the local material state S may depend on R. Therefore, the
local constitutive law of the flowing material is that of a purely viscous material (we say viscous
and not Newtonian as these materials develop normal stresses); there is no observable plastic
behavior for low shear rate, i.e. the flowing material, in the state prepared by the preshear, does
not behave like a dry granular material at low shear rates.

The apparent plastic behavior observed in macroscopic experiments may therefore be seen as
an artefact induced by shear localization. Actually, we observe that viscous flows at low velocities
(Ω < Ωc) are not stable, and that the flow localizes. The mechanical origin of localization was
evidenced by Huang et al. (2005) in a viscosity bifurcation experiment: there is no steady flow
for a shear rate below a given critical shear rate γ̇c that depends on the material’s properties.
When the rotational velocity is lower than Ωc, the apparent shear rate in the gap is lower than
γ̇c. Therefore, the flow has to localize so as to ensure that in the flowing material γ̇ = γ̇c. During
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localization, the shear stress increases while γ̇ tends to γ̇c: if the flowing material constitutive law
is that of a purely viscous material, the stationary shear stress at the walls is then approximately
τ ≈ η(φ)γ̇c = τc. Shear localization thus leads to a shear stress plateau τc at low velocities, i.e.
to the apparent Bingham behavior (Fig. 11). This behavior is consistent with what is found in
many yield stress fluids [Coussot (2005)], where shear localization [Coussot et al. (2002b)] and
viscosity bifurcation [Coussot et al. (2002a); da Cruz et al. (2002)] are observed.

From rheometric experiments performed on a given structure for a constant thickness sheared,
and with the help of the velocity profile measurements, we have thus shown that the local ma-
terial behavior is a purely viscous behavior. This result was found in the 58% suspension, when
all the gap is sheared, i.e. when the material was presheared in the macro-viscous regime. The
same has to be shown for the flowing material in the sheared layer, when localization emerges
(i.e. when increasing the volume fraction or decreasing the velocity). In the case of the 59
and 60% suspensions, when the material is presheared in the macro-viscous regime, we observe
the same features as in Fig. 11; this shows that the flowing behavior of the material in the
sheared layer is again a purely viscous behavior, even if a fraction of the material is not sheared
in these materials (see Fig. 5). In the case of the apparent plastic behavior, for Ω < Ωc, the
idea is to perform such velocity step experiments, but now after a preshear at low velocity, in
the localized flow regime, so that we start from a localized state and we can characterize the
material sheared in a given thickness (smaller than the gap). However, these experiments are
hard to perform as there remains only a small layer of the material to be stopped by a decrease
in the velocity. In order to study accurately the behavior of the flowing material when shear
is localized, we performed another kind of experiment, which shows that the flowing material
behavior is also purely viscous when shear is localized; the new method and its results will be
presented elsewhere. We also checked consistency of Eq. (9) for all velocities with the help of
MRI measurements (see Sec. IV B), i.e. the local viscosity is everywhere independent of the
rotational velocity Ωi even when the flow is localized (Ωi < Ωc); this shows that the flowing
material behavior is not changed when the flow is localized.

Finally, we conclude that the flowing behavior of the material is always a purely viscous
behavior, even when the flow is localized, in the range of velocities studied. Note however that
we could not study very low velocities, for which we expect the flow to be strongly localized as
for dry granular materials. In the next section, we investigate the dependence of the behavior
on the volume fraction.

B Local viscosity measurements

From rheometric and velocity profiles measurements, we have shown that the local constitutive
law of the flowing material is that of a purely viscous material. From concentration profile
measurements, we observe that the material is inhomogeneous. However, we have shown that the
material inhomogeneity is stationary and independent of velocity; therefore, it allows us to make
a change of variables from radius R to concentration φ: all data extracted from measurements
at the same radius R in the gap deal with the same material of same volume fraction φ.

Therefore, the shear rate measurements in the gap γ̇(R) = V/R − ∂V/∂R, inferred from
the velocity profiles V (R), allow, from a unique MRI experiment, to obtain the concentration
dependence of viscosity

η(φ) =
τ
(

R(φ)
)

γ̇
(

R(φ)
) . (10)

A single torque measurement performed on the suspension is also necessary as we need the value
of the shear stress τ(Ri) on the internal cylinder in order to compute the local stress τ(R) with
Eq. (6).

It is important here to recall that the viscosity obtained with Eq. (10) is not just the ratio
of shear stress to shear rate that can be computed for any material: it is a constant viscosity
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Figure 12: Local viscosity measurements in a 59% suspension (triangles), and macroscopic viscos-
ity measurements for 55 to 60% suspensions (open circles). The viscosity values are normalized
by the interstitial fluid viscosity η0.

(independent of the shear rate) characterizing the purely viscous flow of the material, as was
shown in the previous section.

In Fig. 12, we plot the local viscosity data, normalized by the interstitial fluid viscosity,
obtained from a single experiment performed on a 59% suspension and compare these data
to data obtained from macroscopic torque measurements at various mean volume fractions φ.
These macroscopic measurements are obtained under the assumption - false in our experiment,
but necessary when a classic macroscopic experiment with no local measurements is performed -
that there is a homogeneous Newtonian flow in the gap. We observe that the local measurements
may give a viscosity 5 times higher than what would be inferred from a macroscopic experiment;
the reason is that the real local shear rate γ̇(R) at radius R where the suspension is really 59%
is 5 times lower than the mean shear rate γ̇0: the hypothesis of a homogeneous Newtonian flow
leads to overestimating the shear rate γ̇ of the 59% suspension by a factor 5.

Actually, as we observe almost instantaneously migration, it seems impossible to perform a
good macroscopic characterization of the concentration dependence of viscosity; this was shown
here in the case of a wide-gap Couette geometry, but even in the case of a narrow-gap geometry
we would expect migration to occur within a rather short time. We may then think that all
previous measurements performed in a Couette geometry on dense suspensions (55-60%) of
non-colloidal particles may be in error and may underestimate the concentration dependence of
viscosity; this underestimation could be avoided for less dense suspensions as migration may be
much slower in this case (see Sec. IV D).

Note, however, that when plotting viscosity versus concentration, there is an important
assumption that the viscosity depends only on the concentration. We know that this is not true
as the microstructure of the material at a given volume fraction may evolve under shear, e.g.
to a more ordered state [Gondret and Petit (1996); Völtz et al. (2002)], of smaller viscosity. In
our experiments, we did not observe this evolution over the time scale of the experiments (the
velocity profiles do not vary with time), but there still is a possibility that the microstructure
of the locally 56% suspension in a suspension of mean volume fraction 59% is different from
the microstructure of the locally 56% suspension in a suspension of mean volume fraction 56%.
However, at this stage we cannot observe such effects and our only control parameter is the
volume fraction.

Here, with this new method, from a single experiment on a given suspension, we are able
to obtain the concentration dependence of the viscosity in a given range of concentrations (in
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the case of the 59% suspension, from 57% to 60%), which is obtained from the real local shear
rate and the real local concentration. With regard to curvilinear flows, it is only possible in a
Couette geometry as only in this geometry do we know the local value of stress, independently of
the constitutive law; it would also be possible in pipe flows, where we also know the local value
of stress (this property was used by Powell et al. (1994) to measure the viscosity of a polymeric
fluid). Our experiments may thus provide a fair experimental basis for flow predictions and for
comparison with theoretical models.

It is important to evaluate how these local measurements may be affected by measurement
problems, i.e. wall slip and a slight sedimentation. We can never be sure that there is no slip
at the walls in our experiments since we cannot make accurate measurements of the material’s
velocity near the inner cylinder; we tried to avoid this phenomenon through the use of sandpaper,
and the velocity profiles we measure show that if there is wall slip, it is small. However, wall
slip would not affect our local determination of the constitutive law nor our measurements
of viscosity: the validity of the measurements of the local values of stress, shear rate, and
concentration does not depend on what happens at the walls, i.e. we are able to measure locally
the viscosity whether there is wall slip or not. Another problem is that the inner cylinder is
about 4cm from the bottom, and that there still is a competition between resuspension and
sedimentation. This leads to two problems: the resting suspension at the bottom may act as a
particle reservoir (as in Gadala-Maria and Acrivos (1980) experiments), i.e. the mean volume
fraction in the gap is likely to be different from the mean volume fraction of the suspension;
there is a slight vertical inhomogeneity (in the upper part of the gap, the suspension is slightly
less dense). Once again, this does not affect the validity of the measurements of the local values
of shear rate and concentration. However, stress measurements are affected: the contribution
of the bottom of the material to the torque may be different for different suspensions, and we
cannot know exactly the stress value at the inner cylinder for our slice measurement if there is
a vertical inhomogeneity. Nevertheless, the stress distribution in the gap is not affected: it is
still given by τ(R) = τ(Ri)R

2
i /R

2; as a consequence, the ratio of local viscosities measured at
different radii R1 and R2, η(R1)/η(R2), is independent of what is measured at the walls. To sum
up, our experiments provide a perfect measurement of the evolution of the local viscosity with
concentration, whatever the rheometric measurements problems may be; the absolute value
of viscosity depends on the torque measurement and may thus be affected by measurement
problems. We plan to improve the measurement geometry and to build a torque probe for our
home-made NMR-compliant rheometer.

In the following, we trust the absolute value of the local viscosities inferred from MRI and
torque measurements on the 59 and 60% suspensions, for which no vertical inhomogeneity is
observed. In the case of the 56.5 and 58% suspensions, we infer the evolution of local viscos-
ity with the concentration from the MRI measurements, and the absolute value of viscosity is
obtained by ensuring consistency between two local measurements at the same local concentra-
tion in two different suspensions. We can now combine the local viscosity values obtained in
a 59% suspension with values obtained in the other suspensions, in order to obtain the local
concentration dependence of viscosity for a wider range of concentrations.

We see in Fig. 13 that these first local viscosity measurements are well fitted to a Krieger-
Dougherty law with a maximum packing fraction φm = 0.605 and an exponent n = 2

η(φ) = η0
1

(

1− φ
0.605

)2 . (11)

C Consequences of the existence of a maximum packing fraction

We found that the flowing material constitutive law is that of a purely viscous material and that
the viscosity diverges at a value of the packing fraction φm = 0.605: this implies that there may
be no flow for φ > φm. This explains why in the macro-viscous regime of a 59% suspension,
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Figure 13: Local and macroscopic viscosity measurements on suspensions of various mean
concentration ranging from 55% to 60%. The line is a fit to a Krieger-Dougherty law
η(φ) = η0(1− φ/0.605)−2.

we observed that the gap cannot be fully sheared (Fig. 4): there still is a 3-4mm region near
the outer cylinder where the material is not sheared; when the rotational velocity increases, the
thickness of the sheared layer does not increase anymore for Ωi > Ωc. This is consistent with
the concentration profile we observe in Fig. 7: even if we have no measurement in this zone,
from extrapolation of the concentration profile, we expect φ > φm for R > 5.7cm. We also
observed in Fig. 5 that in the macro-viscous regime of a 60% suspension, the material is sheared
up to around 5.1cm: this is also in agreement with our interpretation since we observe in the
concentration profile (Fig. 7) that for a radius R >5.2cm, we have φ > φm = 0.605. In the case
of a suspension of mean volume fraction 58%, we have seen that in the macro-viscous regime
all the gap is sheared: this is again consistent with the concentration profile as we observe that
φ < φm everywhere in the gap.

We conclude that for a highly concentrated suspension, shear-induced migration prevents
the material from being fully sheared in the macro-viscous regime: the particles migrate out
of the high shear zone and cause the formation of a zone of packing fraction higher than the
maximum packing fraction, which cannot be sheared in the macro-viscous regime (for a very
high velocity, a turbulence or a collisional regime may emerge, for which the situation may be
different). Note, however, that if we could observe the onset of migration, we would expect all
the gap to be sheared at the beginning of shear for the homogeneous material. This feature may
be used for the measurement of the maximum packing fraction: φm is the concentration where
the material stops flowing in the macro-viscous regime; this value may be more accurate than
the one inferred from a fit of the viscosity data to a given viscosity law, which may moreover
depend on the viscosity law that is chosen.

The macro-viscous regime of dense suspensions, which is characterized by a linear increase
of torque with the rotational velocity, then starts when the sheared region has reached a region
where φ = φm (in the case of the 59 and 60% suspensions) or the outer cylinder if φ < φm

everywhere in the gap (in the case of the 58% suspension): the thickness of the sheared layer
cannot increase anymore, and now the torque has to increase linearly with the rotational velocity
since the local shear rate now increases linearly with the velocity and since the flowing material
constitutive law is that of a purely viscous material. A consequence of this phenomenon is that it
would be possible to perform rheometric experiments in a suspension of mean concentration φ̄ >
φm, and to observe a macro-viscous regime resulting from the shear of a layer of packing fraction
lower than φm near the inner cylinder; the wrong conclusion drawn from such macroscopic
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experiments, if there is no local observation, would then be that the maximum packing fraction
is higher than the real φm of the material

Note that this localization, which is simply due to the existence a maximum packing fraction
above which there can be no viscous flow, should not be mistaken for the localization which
occurs when decreasing the velocity (see Sec. III A); in the latter case, localization occurs on
the same structure, without any change in the volume fraction profile, for a volume fraction
lower than the maximum packing fraction, and may be attributed to the existence of a critical
shear rate γ̇c below which no steady flow exists.

D Comparison with migration models

From our experimental results, two results can be compared to migration models: the duration
of the migration phenomenon and the stationary concentration profiles.

1 Migration dynamics

In the diffusive model of Leighton and Acrivos (1987b) and Phillips et al. (1992), the particles
undergo a shear-induced diffusion. The self-diffusion coefficient D may be written as [Leighton
and Acrivos (1987a); Acrivos (1995)]:

D = D̄(φ)γ̇a2 , (12)

where φ is the volume fraction, γ̇ the shear rate, a the particle size, and D̄ is the dimensionless
self-diffusion coefficient, whose dependence on φ for small φ may theoretically be D̄(φ) ∝ φ2;
D̄(φ) is actually a tensor [Breedveld et al. (2002)]. The gradients in shear rate in a Couette
geometry then generate a particle flux towards the outer cylinder, which is counterbalanced by
a particle flux due to viscosity gradients; the pertinent diffusion coefficient may then be the
collective diffusivity D∇ (for a discussion on the link between D and D∇, see Leshansky and
Brady (2005)). As qualitatively confirmed experimentally by Abbott et al. (1991) and Corbett et
al. (1995), one would then expect the migration phenomenon to last for a number of revolutions

Nmigr ∝
(Re −Ri)

3

R̄a2φ2
(13)

until the stationary profile is established, where Re and Ri are respectively the external and
internal radius, and R̄ = (Re +Ri)/2.

We evaluate the expected Nmigr in our experiment from experimental results from literature:
Phillips et al. (1992) find a steady state at Nmigr = 800 revs for 675µm particles at mean volume
fraction φ̄ = 0.55 in a wide-gap Couette geometry of radii Re = 2.38cm and Ri = 0.64cm;
Corbett et al. (1995) find Nmigr = 2000 revs for 140µm particles, at φ̄ = 0.4, with Re = 1.9cm
and Ri = 0.95cm; Graham et al. (1991) find Nmigr = 2500 revs for 600µm particles at φ̄ = 0.5,
with Re = 2.38cm and Ri = 0.48cm. These values are roughly consistent with Eq. (13), and
imply an expected value of Nmigr ≈ 1000 revs in our experiment.

This is much more than we could observe. We never observed transient concentration pro-
files. As a measurement lasts for 3 minutes, from the preshear velocities imposed and from the
velocities studied, we deduce that migration occurs during the first 50 revs, which is much lower
than the expected 1000 revs. An indirect indication is also given by the velocity profiles: the
velocity profiles we measure are stationary in less than 10 turns, i.e. migration may occur during
these 10 turns. We thus conclude that if a diffusive process is involved, it is much faster (at
least 20 times) than the one observed in previous studies.

One could then put forward a strong dependence of the dimensionless collective diffusion
coefficient D̄∇(φ) on concentration (i.e. much stronger than the φ2 dependence). Tetlow et al.

(1998) found that in order to fit migration experimental data to the shear-induced migration
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model, D̄∇(φ)/φ2 must depend, e.g. linearly, on the volume fraction; however, the experiments
of Phillips et al. (1992), Graham et al. (1991), and Corbett et al. (1995) are consistent with each
other, for concentrations ranging from 40% to 55%, evidencing a rather smooth dependence of
D̄∇(φ)/φ2 on the packing fraction in this range. Leighton and Acrivos (1987a) found that the
self diffusion coefficient D̄(φ) grows slightly more rapidly than φ2 for concentrations ranging
from 30% to 40%, and Leighton and Acrivos (1987b) could fit their rheometric data to the
shear-induced migration model, for concentrations ranging from 40% to 50%, with a very weak
dependence of D̄∇(φ)/φ2 on concentration. The dimensionless collective diffusion coefficients
would thus have to increase a lot above a 55% concentration, so as to explain the discrepancy
between these experiments and ours. This is consistent with recent simulations by Leshansky
and Brady (2005), who found that the self diffusion coefficients increase strongly above a 55%
concentration.

However, as far as we know, there are no accurate measurements of the collective diffusion
coefficients for 55 to 60% suspensions. Moreover, as we will see below, the concentration profile
measurements only provide the relative importance of the dimensionless diffusion coefficients
associated with particle collisions and gradients in the relative viscosity. Consequently, no
conclusion can be drawn from them. We intend to study the onset of migration in a next study;
this will require to work at very low velocities.

2 Stationary concentration profiles predictions

The next thing we can do is compare the stationary concentration profiles we observed to the
predictions of migration models. Here, we study the predictions of two models: the diffusive
model of Phillips et al. (1992) and Tetlow et al. (1998) with and without any dependence of
the dimensionless diffusion coefficients on concentration, and the Nott and Brady (1994) and
Mills and Snabre (1995) model, adapted by Morris and Boulay (1999) in the case of a wide-gap
Couette flow, where particle fluxes are generated by gradients in normal stresses.

In previous studies the authors assumed a divergence of viscosity at a maximum packing
fraction φm = 0.68, and, in the case of Phillips et al. (1992) and Tetlow et al. (1998), a Krieger-
Dougherty dependence with a divergence exponent n = 1.82. Here we do not need to make any
assumption as we measured the local concentration dependence of viscosity (Sec. IV B). How-
ever, we find a concentration dependence which is different from that assumed in the previous
studies. That is why in the following, we will plot and compare the prediction of the mod-
els based on the locally measured viscosity with the predictions based on the prior (incorrect)
assumption, in order to check consistency of our results with the results by other authors.

In the Phillips et al. (1992) model, based on Leighton and Acrivos (1987b) model, there are
two particle fluxes: one due to gradients in collision frequency

Nc = −Kcφa
2
∇
(

γ̇φ
)

, (14)

and a second one due to viscosity gradients

Nµ = −Kµa
2 γ̇φ

2

η(φ)
∇
(

η(φ)
)

. (15)

A stationary profile then results from competition between both fluxes. The dimensionless
diffusion coefficients Kc and Kµ are first considered as constant in the following (the φ2 term is
explicitly written in Eqs. (14,15)), their dependence on φ will then be considered.

The Phillips et al. model, for a Krieger-Dougherty viscosity η(φ) = η0(1−φ/φm)−n predicts
a steady state profile:

φ(R)

φ(Ri)
=

( R

Ri

)2(1− φ(Ri)/φm

1− φ(R)/φm

)n∗(1−Kµ/Kc)
, (16)
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so that there is only one fit parameter if the viscosity is known, which is the ratio of the
dimensionless diffusion constants Kµ/Kc.

We compare the predictions of the steady state of the Phillips migration model with the
experimental data in Fig. 14. We see that the predictions of the model may agree with our
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Figure 14: Comparison of concentration profile obtained experimentally for a 59% suspension
with the predictions of the Phillips et al. model with two expressions of viscosity: a) with the
local dependence we measured (φm = 0.605, n = 2); b) with the dependence postulated by
Phillips et al., obtained from macroscopic experiments (φm = 0.68, n = 1.82).

experimental data if we presuppose, as Phillips et al., a Krieger-Dougherty dependence of vis-
cosity with maximum packing fraction φm = 0.68, and a divergence exponent n = 1.82 (Fig.
14b). However, we see that this is not consistent with our local viscosity measurements inferred
from concentration and velocity profiles. If we try to fit the concentration profiles to the model
with the local concentration dependence of viscosity (i.e. with φm = 0.605), we find a rather
significant discrepancy between the experimental data and this model (Fig. 14a). The qualita-
tive origin of this discrepancy, as observed in Fig. 14a, is that the model predicts that φ tends
asymptotically to φm as R increases, whereas experimentally we observe that φ seems to tend to
φm for a finite value of R (as is the case for the 59 and 60% suspensions); this new experimental
feature may be a test for any migration model.

It was pointed out by Tetlow et al. (1998) that the ratio of the dimensionless diffusion coeffi-
cientsKµ/Kc may depend on the packing fraction φ. Assuming a linear dependenceKµ/Kc(φ) =
cφ+ b, the Phillips et al. model, for a Krieger-Dougherty viscosity η(φ) = η0(1−φ/φm)−n, then
gives a steady state profile:

φ(R)

φ(Ri)
=

( R

Ri

)2[cφ(Ri) + b

cφ+ b

]n/(cφm+b)(1− φ(Ri)/φm

1− φ(R)/φm

)n∗(1−1/(cφm+b))
. (17)

Note that this is now a 2 parameter model. We compare the predictions of this model with
our data in Fig. 15. We now observe that the data are well fitted to the model with Kµ/Kc =
7.3φ−3.4, if we impose φm = 0.605 as we observed experimentally (Fig.15a). This gives a higher
dependence of Kµ/Kc on the concentration φ than that observed by Tetlow et al. (1998) who
found c ≈ 1.5. However, Tetlow et al. (1998) had postulated a value of φm = 0.68; therefore,
in order to compare our data to theirs, we also fit the concentration profiles to the model with
φm = 0.68 and we impose c = 1.5 (see Fig. 15b): the data can also be fitted, so that our data
are consistent with those of Tetlow et al. However, as we measured the local viscosity and found
φm = 0.605, if this model is valid, the value c = 7.3 may be trusted rather than c = 1.5, which
was based on a faulty postulation of the concentration dependence of viscosity, and may be a
fair basis for comparison with direct measurements of shear-induced particle diffusion.
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Figure 15: Comparison of the concentration profile obtained experimentally for a 59% suspension
with the predictions of the Tetlow et al. model with two expressions of viscosity: a) with the
local dependence we measured (φm = 0.605, n = 2); b) with the dependence postulated by
Tetlow et al., obtained from macroscopic experiments (φm = 0.68, n = 1.82).

As an alternative to the diffusive models, one may consider the role of normal stresses [Nott
and Brady (1994), Mills and Snabre (1995)], as in Morris and Boulay (1999). In these models, the
particle fluxes counterbalance the gradients in normal stresses. In order to predict the stationary
concentration profile, one must thus know the values of shear-induced normal stresses which may
be written, in tensorial form, as:

Σn = −ηn(φ)γ̇





1 0 0
0 λ1 0
0 0 λ2



 . (18)

As we did not measure these normal stresses, we assume the same dependence on concen-
tration as Morris and Boulay (1999):

ηn(φ) = η0Kn
(φ/φm)2

(1− φ/φm)2
(19)

with Kn = 0.75. Again, we write a Krieger-Dougherty shear viscosity ηs(φ) = η0(1− φ/φm)−n.
The steady state profile is then given by [Morris and Boulay (1999)]:

Kn
(φ/φm)2

(1− φ/φm)2
(1− φ/φm)n = A2R

(1+λ2)/λ2 , (20)

and λ2 is the only fit parameter (A2 is determined by requiring that the mean volume fraction
found with this expression is that of the suspension).

Eq. (20) is very sensitive to the value of n: a value of n = 2 is particular since in this case
R does not diverge as φ tends to φm; n > 2 would require −1 < λ2 < 0 in order to ensure that
R increases when φ tends to φm; that is why we fit our data to eq. (20) with n = 2 and a close
value n = 1.9 (for φm = 0.605 as experimentally measured). We find that the model with n = 2
does not fit to our data (and the best fit is for λ2 → ∞), and that the agreement is not perfect
if we set n = 1.9 (Fig. 16a). This imperfection may be attributed to the same qualitative trend
as in the Phillips et al. diffusive model: the model predicts that φ tends asymptotically to φm

as R increases (for n < 2), whereas experimentally we observe that φ seems to tend to φm for
a finite value of R. Finally, as for the Phillips et al. model, a rough agreement could be found
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Figure 16: Comparison of the concentration profile obtained experimentally for a 59% suspension
with the predictions of the Morris and Boulay model with two expressions of viscosity: a) with
the local dependence we measured (φm = 0.605, n = 2 and n = 1.9); b) with φm = 0.68 as
postulated by Morris and Boulay, and n = 1.82.

if we postulated φm = 0.68 as was done by Morris and Boulay (1999) in order to compare their
model to the Phillips et al. model (Fig. 16b), but with a rather high value of λ2 (we find λ2 ≈ 10
whereas Morris and Boulay (1999) found λ2 ≈ 1). Note however that: (i) Morris and Boulay
considered a different expression of viscosity; (ii) Eq. (19) for the normal viscosity ηn(φ) is not
supported by any experimental data: it would be important to provide a local measurement of
ηn(φ) in order to make a fair comparison of our experimental data with this model; (iii) if there is
any theoretical reason that ηn(φ)/ηs(φ) tends to a constant as φ → φm, then this model ensures
that φ tends to φm for a finite value of R (see Eq. 20 with n = 2) as observed experimentally.

In summary, we observed a very fast migration dynamics which contradicts diffusive models
if we try to check consistency with the dynamics at lower concentrations (40-55%); the diffusion
coefficient has to be strongly dependent on concentration for concentrations above 55%. More-
over, we find a discrepancy between our data and the Phillips et al. and the Morris and Boulay
models, if we consider the local viscosity we measured: an agreement with other data in litera-
ture may be partly attributed to the (erroneous) postulate that φm = 0.68. An agreement may
be found with the Tetlow et al. model, but in this model the dimensionless diffusion coefficients
dependence on packing fraction is added ad hoc, and it has a supplementary fit parameter.

V Synthesis: constitutive law and open problems

In this section, we propose a constitutive law for dense non-colloidal suspensions, try to relate
it to the physical properties of the material, and show how it accounts for the macroscopic
observations.

The main observations we have to understand are: (i) the macroscopic rheological mea-
surements exhibit an apparent yield stress, (ii) at controlled velocity, for low velocities below a
critical velocity Ωc, the shear flow is localized and the shear stress value is roughly constant (this
is the apparent yield stress); above Ωc all the gap is sheared and the shear stress is proportional
to the rotational velocity, (iii) at controlled stress, this system exhibits a viscosity bifurcation
[Huang et al. (2005)] i.e. below a critical stress τc (the apparent yield stress) there is no flow,
and above τc the rotational velocity is higher than a critical value Ωc (this value is the same as
that below which shear localization is observed at controlled velocity), (iv) this system exhibits
normal stresses [Zarraga et al. (2000)] and normal stresses are proportional to the shear stress
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in both regimes [Prasad and Kytömaa (1995); Huang et al. (2005)].

The very simple law we propose, which is reminiscent of what happens in pastes [Coussot
(2005)], is the following: if the local shear rate γ̇ is higher than a critical shear rate γ̇c(φ) which
may a priori depend on the volume fraction φ, then the material flows and its shear stress is
purely viscous

γ̇ > γ̇c(φ) : τ = η(φ)γ̇ (21)

with

η(φ) = η0(1− φ/φm)−n (22)

where the maximum packing fraction is φm = 0.605 and the divergence exponent is n = 2; above
the maximum packing fraction φm, no flow is allowed (see Sec. IV C).
The normal stress follows a law

σN = β(φ)γ̇ . (23)

An experimental determination of β(φ) may be found in [Zarraga et al. (2000)]; however, we
think that the knowledge of the concentration dependence of these measurements can probably
be improved by local measurements as those we performed for viscosity in Sec. IV B.
If γ̇ < γ̇c(φ) then the material stops flowing after a deformation of order unity (see Sec. III B).

We showed in Sections IV A and IV B that the flowing material behavior is purely viscous,
and that the viscosity follows Eq. (22); we shall not discuss these points again. In the following,
we discuss the criterion that controls the jamming transition.

In the unsheared zone, the material is jammed. There may then be a contact network in
this part of the material in order to sustain a yield stress without flowing, since there may
be no other interactions as hydrodynamic interactions and direct contacts. As a consequence,
we would expect the criterion for starting and stopping (as localization is perfectly reversible)
the flow to be a frictional Coulomb criterion: τ/σN ≤ µs(φ) in the jammed material (for a
discussion on the φ dependence of the friction coefficient µs near the jamming transition, see da
Cruz et al. (2005)). At the interface between the jammed material and the flowing material, at
radius Rc(Ω), the Coulomb criterion would then be met. On the flowing material side, the shear
and normal stresses values are known: τ(Rc) = η

(

φ(Rc)
)

γ̇(Rc) and σN (Rc) = β
(

φ(Rc)
)

γ̇(Rc);
the Coulomb criterion would then read: η

(

φ(Rc)
)

γ̇(Rc) = µs

(

φ(Rc)
)

β
(

φ(Rc)
)

γ̇(Rc), and this
value should be the apparent yield stress measured in the rheometric experiments. Finally, the
Coulomb criterion would read

η
(

φ(Rc)
)

= µs

(

φ(Rc)
)

β
(

φ(Rc)
)

(24)

which is a criterion independent of the shear rate, i.e. Eq. (24) would define a static interface
between the jammed material and the flowing material. As a consequence, we cannot explain
the evolution with the shear rate of the position of the interface between the sheared and the
unsheared material with a Coulomb criterion. Let us recall here that the concentration profile
is independent of the rotational velocity (see Sec. III A 3) so that localization is not due to
changes in the volume fraction when the velocity decreases.

Thus another jamming criterion than the Coulomb criterion must be proposed. The existence
of a critical shear rate γ̇c(φ) below which no steady flow exists seems to be a fair and necessary
criterion. It accounts for the existence of an apparent yield stress and for the viscosity bifurcation
experiments of Huang et al. (2005): when a shear stress τ(Ri) is imposed at the inner cylinder,
the shear rate at the inner cylinder in a steady state is: γ̇(Ri) = τ(Ri)/η

(

φ(Ri)
)

; when the
shear stress is decreased below the critical shear stress τc = η

(

φ(Ri)
)

γ̇c
(

φ(Ri)
)

, then no steady
flow is allowed (as it would imply γ̇(Ri) < γ̇c), and the macroscopic flow gradually stops. It
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also accounts for shear localization: when the rotational velocity decreases, and is such that the
mean shear rate is lower than γ̇c, the thickness of the sheared layer has to decrease so as to
ensure γ̇

(

R
)

> γ̇c
(

φ(R)
)

at each radius R in the sheared layer.
Note that the truncated viscous law we propose is fundamentally different from a classical

yield stress model such as the Bingham model. Here a critical shear rate γ̇c implies a yield
stress τc = ηγ̇c (and vice versa); both exist, and the only reason why we emphasize the critical
shear rate rather than the yield stress is that it is a much less usual concept. Actually, in all
known yield stress models, the shear rate tends to zero when the shear stress tends to the yield
stress. As a consequence, e.g., in our model, for low rotational velocities, it would imply shear
localization in a cone and plate geometry (as was observed in concentrated colloidal suspension
and emulsion by Coussot et al. (2002b)) whereas it is not the case for the Bingham model and
other yield stress models. Note that at this stage, our main evidence is that the local behavior
of the flowing material is purely viscous: if the local law was not a truncated viscous law but a
classical yield stress law, we would have seen the torque tend to a constant just after a velocity
step towards low velocities in the experiments of Sec. III B (see also Fig. 11). Another evi-
dence is provided by the viscosity bifurcation experiments of Huang et al. (2005). However, the
main evidence would be to measure a shear rate different from zero at the interface between the
sheared and the unsheared material as in Rodts et al. (2005); this was not possible here because
it was too low to be measurable. For a discussion on the evidences for truncated power-law
behavior in yield stress fluids and its implication on flows, see Coussot (2005).

We may now understand the macroscopic behavior observed in the rheometric experiments,
i.e. a torque plateau followed by a linear regime, and a torque proportional to normal forces in
both regimes. At low velocities, in the apparent plastic regime, there is a coexistence between a
sheared and an unsheared region so as to ensure γ̇ > γ̇c in the sheared region. The limit between
both regions is in R = Rc(Ω), such that γ̇(Rc) = γ̇c

(

φ(Rc)
)

; the stress at the inner cylinder, in
R = Ri, is then

τ(Ri) = τ(Rc)R
2
c/R

2
i = η

(

φ(Rc)
)

γ̇c
(

φ(Rc)
)

R2
c/R

2
i , (25)

i.e. the coexistence between a sheared and an unsheared region results in a roughly constant
torque and in an apparent yield stress

τc = η
(

φ(Ri)
)

γ̇c
(

φ(Ri)
)

. (26)

At low velocity, a small increase in the rotational velocity then implies a slight increase in the
torque for two reasons: (i) because Rc increases; (ii) because the material is inhomogeneous (i.e.
φ(Rc) increases). When the sheared region has reached a region where φ = φm (in the case of
the 59 and 60% suspensions) or the outer cylinder if φ < φm everywhere in the gap (in the case
of the 58% suspension), the thickness of the sheared layer cannot increase anymore, and now
the torque has to increase linearly with the rotational velocity since the local shear rate now
increases linearly with the velocity and since the flowing material constitutive law is that of a
purely viscous material. In both regimes, the shear stress is generated by viscous dissipation,
i.e. τ(Ri) = η

(

φ(Ri)
)

γ̇(Ri) whatever the apparent flow regime may be; the material then also
develops normal stresses σN (Ri) = β

(

φ(Ri)
)

γ̇(Ri). Therefore, at the walls, we always have a
proportionality between torque and normal forces as

τ(Ri)/σN (Ri) = η
(

φ(Ri)
)

/β
(

φ(Ri)
)

, (27)

with the same value in both regimes, as observed experimentally.

We finally comment on the physical origin of this behavior. In the unsheared zone, the
material is jammed. Therefore, there may be a contact network in this part of the material
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in order to sustain a yield stress without flowing, since there may be no other interactions as
hydrodynamic interactions and direct contacts. On the other hand, in the flowing material
zone, we have shown that the local behavior is a purely viscous behavior even at very low shear
rates: now there may be no direct frictional contacts, and the only dissipative interactions are
hydrodynamic. A natural interpretation of localization is that at the critical shear rate γ̇c there
is a structural change in grain configuration from a flowing state with no direct contacts to a
contact network in a jammed state (near the outer cylinder). We have observed in Sec. III B that
the relevant parameter that controls localization is deformation rather than time: localization
occurs for a deformation of order unity. The value γlocal ≈ 1 is consistent with a change in
configuration at the grain scale as it corresponds to a displacement of one grain with respect to
another.

The existence of a critical shear rate remains, however, to be understood. A possibility is that
there is competition between viscous normal forces and buoyant forces, as suggested by Ancey
and Coussot (1999). In this case, one has to compare the vertical scale of normal stresses in the
contact network, ∆ρφgh to the viscous normal force β(φ)γ̇; one thus gets γ̇c(φ) = ∆ρφgh/β(φ).
This proportionality with h is supported by the macroscopic data of Ancey and Coussot (1999)
for glass beads, while an inverse proportionality with the interstitial fluid viscosity was reported
by Huang et al. (2005). However, as our particles are close to be neutrally buoyant, it is likely
that another scale of normal forces in the contact network should be introduced.

Note that we do not deny the existence of frictional flows in dense suspensions, but rather
their identification to the shear plateau on the macroscopic rheometric measurements. Indeed,
frictional flows in dry granular materials are strongly localized: the sheared layer is of about 5
to 10 grains large [GDR Midi (2004)]. At very low velocities, the flow in dense suspensions will
be strongly localized, and a decrease in velocity will not produce any additional localization.
We then expect the material to change its structure and the flow to become frictional (if the
local concentration at the inner cylinder is large enough). As a consequence, there may be two
critical shear rates: a first one, γ̇c1, for a change from a frictional flow to a viscous flow, a second
one, γ̇c2, for the onset of localization of the shear flow of a viscous dense suspension. As far as
we understand it, γ̇c1 < γ̇c2. In our experiments, we would have to go below Ω = 0.01rpm in
order to observe such strongly localized flows, so we could not study this regime. A possibility is
to study less viscous interstitial fluids since they exhibit higher γ̇c2 [Huang et al. (2005)]. Ancey
and Coussot (1999) were aware of the existence of a transition zone between a frictional flow and
a viscous flow, although they could not identify nor characterize it; in their work, both regimes
(localized viscous flow and frictional flow) may be responsible for the shear plateau which is
observed for a large range of rotational velocities.

To complete the picture, we would also need to have a migration model as shearing a dense
suspension may always result in an inhomogeneous state. However, at this stage, we have seen
that migration in very dense suspensions is far from being understood.

VI Conclusion

We have studied the flowing behavior of dense suspensions of non-colloidal particles by cou-
pling local velocity and concentration measurements through MRI techniques and macroscopic
rheometric experiments in a Couette geometry.

We showed that the flow is localized at low velocities and also at high concentrations. We
also showed that the material is inhomogeneous, and that migration is almost instantaneous,
in contradiction with previous observations. This casts doubts on the prior studies on the
plastic behavior of these materials and on the concentration dependence of viscosity, and on the
interpretations drawn from these macroscopic experiments. However, we showed that pointing
out problems is not the only use of MRI measurements: combining rheometric measurements and
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velocity and concentration profiles measurements have allowed us to find the shear part of the
constitutive law of the material; we showed that the flowing material behavior is a purely viscous
behavior. It also allowed us to perform for the first time local measurements of the concentration
dependence of viscosity, based on the real local shear rate and the real local concentration. Our
experiments may thus provide a fair experimental basis for flow predictions and for comparison
with theoretical models; we find a Krieger-Dougherty dependence η(φ) = η0(1 − φ/φm)−n, of
maximum packing fraction φm = 0.605 and divergence exponent n = 2.

We have proposed a simple constitutive law. The flowing material constitutive law is that of a
purely viscous material, and the viscosity follows a Krieger-Dougherty law of maximum packing
fraction 0.605 and divergence exponent 2; no flow is allowed for a packing fraction higher than
0.605. The material also exhibits normal stresses proportional to the shear rate. Moreover, there
are no steady flows below a critical shear rate γ̇c. This behavior accounts for all the macroscopic
and local observations: yield stress, plastic and macro viscous behavior, proportionality between
shear stress and normal stresses, shear localization at low velocity and high packing fractions,
and viscosity bifurcation. In the jammed zone, there must now be a contact network, whereas in
the sheared zone there may be only hydrodynamic interactions: localization consists in a change
in configuration at the grain scale, which necessitates a deformation of order unity.

These results raise many questions. First, the physical origin of the critical shear rate at
the origin of shear localization remains to be investigated. The role of sedimentation should
particularly be examined; it seems negligible in our suspensions but gravity (or buoyancy) may
nevertheless drive the emergence of the contact network since the particles are very close to
each other. It would be interesting to study the influence of a change in the particle-to-fluid
density ratio on the localization dynamics. It would also certainly be important to determine
the critical shear rate dependence on concentration, which can be done only with accurate MRI
measurements (at this stage, we did not have accurate measurements of the shear rate at the
interface between the sheared and the unsheared material). We would also need to study the
suspension behavior at very low velocities, for which we expect the flow to be strongly localized
as for dry granular materials, in order to test the existence of frictional flows and the condition
for their emergence.

We also showed that there still lacks a good modelling of migration in dense suspensions. In
order to provide experimental results, we now intend to study the onset of migration. There is
a particular need for other experimental results so as to confirm the strong dependence of the
dimensionless collective diffusion constant on concentration we inferred from our experiments.
Finally, we plan to study experimentally the interplay between localization and migration at
low velocities; these experiments will provide a rich test of our understanding of the material
behavior.

G.O. thanks Daniel Bonn, Xavier Chateau, and Joe Goddard for fruitful discussions, and

is particularly grateful to Philippe Coussot for his very constructive remarks about the present

paper.
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