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Charlotte Baey∗, Anne Didier†, Li Song∗, Sébastien Lemaire†, Fabienne Maupas† and Paul-Henry Cournède∗
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Abstract—A lot of plant growth models coexist, with different
modelling approaches and levels of complexity. In the case of
sugar beet, many of them are used as predictive tools, even when
they were not originally designed for this purpose.

We propose the evaluation and comparison of five plant growth
models that rely on the same energetic production of biomass, but
with different levels of description (per plant or per square meter)
and different biomass repartition (empirical or via allocation):
Greenlab, LNAS, CERES, PILOTE and STICS. The models were
calibrated on a first set of data, and their predictive capacities
were compared on an independent data set from the same
variety and similar environmental conditions, using the root mean
squared error of prediction (RMSEP) and modelling efficiency
(EF) for the total dry matter production and the dry matter of
root.

All the models tended to overestimate both the total dry matter
and the dry matter of root. Greenlab gave the best predictions for
the root biomass, and CERES the best total biomass predictions.
The overestimation was partly explained by a hail episode that
caused a lot of damages to the leaves in the validation year. The
five models also provided similar yield prediction errors.

Keywords-sugar beet; prediction; model evaluation; model
comparison; RMSEP; modelling efficiency

I. INTRODUCTION

Plant growth models can have many different applications.
They can be used to enhance our understanding of the complex
interactions between genotypes, cultural practices and envi-
ronment, and to help management decisions. They can also
be used to simulate plant architecture at organ level, or to
predict yield at field level. Depending on the scale of interest,
the level of description and the integration of environmental
stresses, model complexity can increase dramatically, as well
as the number of parameters.

However, depending on the objective of the study, some
models can be more relevant than others. For example, com-
plex models can be more suitable for descriptive purposes
as they integrate in details the underlying eco-physiological
processes. On the other hand, they can prove to be less
robust than simpler models when used as prediction tools,
due for example to a higher number of parameters leading
to an increase in variability. It is therefore essential to define
precisely the context in which a model is used, and to evaluate
its performance according to the objective of the study.

In this paper, we address the question of root and biomass
prediction in sugar beet crops. The predictive capacity and
robustness of five models with different levels of description
was evaluated: Greenlab [1], [2], CERES [3], [4], PILOTE
[5], STICS [6], [7] and a fifth model named LNAS, based on

TABLE I
CLASSIFICATION OF THE FIVE MODELS ACCORDING TO THE MODELLING

SCALE AND BIOMASS REPARTITION.

Modelling scale
(per m2)

Modelling scale
(per plant)

Harvest Index PILOTE CERES

Allocation LNAS
STICS Greenlab

a global allocation of biomass to the leaves compartment or
root. First elements of comparison for Greenlab, CERES and
PILOTE are available in [8].

The five models rely on an energetic production of biomass,
based on Monteith’s equation [9]. In such models, the total
dry matter production is related to the fraction of radiation
intercepted by the leaves, which can generally be expressed ac-
cording to the leaf area index (LAI). The differences between
the models lie in the way the evolution of this key variable
is modelled, and in the handling of biomass repartition to the
different organs of the plant. Indeed, two modelling scales
were compared for the intercepted radiation: on one hand, we
considered individual based models taking into account the
development of each leaf individually (CERES, Greenlab),
and on the other hand we considered classical crop models
at the field scale, where foliage biomass is given per square
meter (PILOTE, STICS, LNAS). Two approaches were also
compared for the biomass repartition, either with empirical
coefficients like the harvest index for the dry matter of root
(PILOTE, CERES), or as a result of the allocation process
(Greenlab, STICS, LNAS). In fact, STICS is an intermediate
between the two approaches, since the LAI is computed from
an empirical function, but modulated by a source-sink ratio.
The differences between the five models are summarized in
Table I.

The five models were programmed on a C++ modelling plat-
form called PYGMALION, developed in the MAS laboratory
of Ecole Centrale Paris, which provided all the necessary tools,
including parametric estimation, sensitivity analysis and model
selection. They were first calibrated on the same set of data,
and their predictive capacity was then evaluated and compared
on an independent data set using the root mean squared error
of prediction (RMSEP) and the modelling efficiency (EF).



II. MATERIAL AND METHODS

A. Description of the models

The five models rely on an energetic production of biomass,
based on an extension of the Beer-Lambert law. The biomass
production on day t, Q(t) is proportional to the incoming
photosynthetically active radiation PAR(t), to the fraction of
intercepted radiation I(t) (which depends on the leaf area
index or on the dry matter of leaves) and to the radiation
use efficiency RUE [10]:

Q(t) = 0.95 · RUE · PAR(t) · I(t). (1)

The leaf area index is defined as the one-sided green leaf
area per unit ground surface, some adjustments were thus
necessary for the two individual-based models Greenlab and
CERES. In Greenlab, as the biomass production is computed
at the individual plant level, a ‘local’ LAI [11] is defined,
corresponding to the leaf surface of the plant multiplied by
a coefficient related to the two-dimensional projection of the
space occupied by the plant on the ground (see II-A1). In
CERES, as the biomass production is computed at the square
meter level, a ‘global’ LAI is constructed from the individual
leaf surfaces of the plant, by multiplying by the crop density
(see II-A3).

1) GreenLab: GreenLab is a generic functional-structural
plant model (FSPM), combining the description of the plant
architecture and its physiological functioning [12], [13]. The
model in its discrete version was introduced by [1], and has
already been studied in the case of sugar beet by [14].

In its first version, the time step chosen to compute the
organogenesis and the ecophysiological processes was the
growth cycle (i.e. the thermal time elapsing between the
appearance of two successive metamers). However, the choice
of a discrete time step may involve several difficulties: for
example, environmental data like temperature or global radi-
ation vary continuously with time, whereas the growth cycle
is supposed to be constant for a given plant, and could vary
from several days to one year for trees. In this case, changes
in the environment occurring during the growth cycle are not
taken into account in the model. Moreover, environmental data
are traditionally collected on a daily basis, and the other plant
growth models studied in this paper provide daily outputs [5],
[15], [16].

To overcome these difficulties and make the comparison
easier, a continuous version of the model with a daily time-
step was built, in which the functioning of the plant (biomass
production and biomass allocation) was considered as a con-
tinuous process and was driven by a system of differential
equations, solved with first-order Euler’s method. This contin-
uous version of Greenlab was used throughout the article. A
continuous version of the GreenLab model has already been
studied by [17] in the case of sugar beet, but with a continuous
mechanism of senescence.

In Greenlab, the biomass production is computed at the
individual plant level, thus some adjustments were made from

equation (1):

Q(t) = 0.95 · RUE · PAR(t)

d
·
(

1− exp

(
−kB

Qb(t)

eb · Sp

))
,

with d the plant density, kB the Beer-Lambert law extinction
coefficient, Qb(t) the accumulated blade mass at day t, eb the
specific blade mass, and Sp an empirical coefficient related to
the two-dimensional projection of the space occupied by the
plant. The biomass is then allocated to the different organs of
the plant according to source-sinks relationships (we refer the
reader to [1], [2] for more details).

Several assumptions are made in the Greenlab model. First,
we assumed that the produced biomass is gathered in a
common pool before being allocated to the different organs of
the plant. Then, even if we adopted a continuous formulation
of the model for the functioning part, the structural part of the
model (i.e. organogenesis) still occurred at integer multiples
of the phyllochron. The sink strengths of organs are also
modelled as empirical functions (density of beta functions).

2) LNAS: A simplified model called LNAS (Log-Normal
Allocation and Senescence) was elaborated, with a global
biomass allocation for the foliage compartment, instead of leaf
by leaf as in the Greenlab model. It is a generic daily time-
step model, presented here in the case of sugar-beet, but that
can be easily extended to other plants.

The biomass production per square meter at day t is given
by (1), with:

I(t) = 1− exp

(
−kB ·

Qg(t)

el

)
,

where Qg(t) is the dry matter of green leaves at day t, kB the
extinction coefficient and el the specific green leaf mass.

The biomass produced at day t is then allocated to each
organ compartment (foliage and root system in the case of
sugar beet) at the beginning of day t + 1, according to the
following equations:

Ql(t+ 1) = Ql(t) + γ(t) ·Q(t)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t),

with Ql(t) the total mass of leaves and Qr(t) the total mass
of root at the beginning of day t.

Function γ is defined as:

γ(t) = γ0 + (γf − γ0) ·Ga(τ(t)),

with Ga the cumulative distribution function of a log-normal
law, parametrized by its median µa and its standard deviation
σa, τ(t) the thermal time on day t, and γ0 and γf respectively
the initial and final proportion of biomass allocated to the
leaves.

The proportion of non-senescent leaves is given according
to the following equation:

Qg(t) = (1−Gs(τ(t)))Ql(t),

where Gs is the cumulative distribution function of a log-
normal law, parametrized by its median µs and its standard
deviation σs.



The main assumption of this model concerns the functional
form of allocation and senescence, which are modelled by
log-normal laws.

3) CERES: CERES (Crop Environment REsource Synthe-
sis) was originally built on maize by [3], but a sugar beet
version was developed by [4]. Effects of irrigation or nitrogen
uptake can be integrated in the model. In CERES, the biomass
production is done at the square meter level from equation (1),
from the individual foliar surfaces of the plant:

I(t) = 1− exp

(
−kB · d ·

∑
k

Sk(t)

)
,

with kB the Beer-Lambert law extinction coefficient, d the
plant density, and Sk the foliar surface of leaf k at time t.

The foliar surface of leaf k, Sk is supposed to grow linearly
at rate GR from the thermal time of appearance of leaf k to
the end of its expansion, then stay at its maximum surface
Sk,max until the end of its lifetime:

Sk(t) =


0 ifτ(t) ∈ [0, τ ik[

GR (τ(t)− τ ik) if τ(t) ∈ [τ ik, τ
e
k [

Sk,max if τ(t) ∈ [τek , τ
i
k + τsk [

0 otherwise

with τ(t) the thermal time at time t, and τ ik, τek and τsk
respectively the thermal time of initiation, the thermal time
of end of expansion and the lifespan in thermal time of leaf
k. The maximum foliar surfaces Sk,max, as well as the thermal
times of initiation, expansion and senescence, are inputs of the
CERES model.

The biomass is then distributed to root and leaves thanks to
an empirical harvest index, corresponding to the ratio between
dry matter of root and total dry matter at harvest.

In CERES, the main assumptions concern the linear growth
of individual leaf surfaces, before reaching a plateau, and the
computation of the dry matter of root at harvest thanks to a
harvest index.

4) PILOTE: PILOTE is a crop-soil interaction model,
which was first built for sorghum and sunflower [5], [18],
but that can be applied to a large variety of crops. It has been
developped for sugar beet by [19]. It is designed to predict the
actual evapotranspiration and the yield of crops, through the
modelling of the leaf area index. In this paper, we studied a
simplified version of PILOTE, with no consideration of hydric
stress. In such case, the biomass production per square meter
at day t is given by (1), with:

I(t) = 1− exp(−kB · LAI(t))

LAI(t) = LAImax

[(
τ(t)−τe
τmax

)β
exp

[
β
α

(
1−

(
τ(t)−τe
τmax

)α)]]
with kB the Beer-Lambert law extinction coefficient, LAImax
the maximum reachable value of LAI in non-limiting condi-
tions, τmax the thermal time necessary to reach this maximal
LAI, τe the thermal time of emergence, and α and β two

parameters. Then, the biomass repartition to root and leaves
is done with an empirical harvest index.

The main assumptions of PILOTE come from the functional
form of the LAI curve, and from the use of a harvest index
to evaluate the dry matter of root at harvest.

5) STICS: STICS (Simulateur mulTIdisciplinaire pour les
Cultures Standard [6], [7]) is a generic daily time-step model,
which has already been applied to a large variety of crops
(maize, tomato, wheat, . . . ). It is organized into seven modules
corresponding to the different mechanisms involved in the
plant growth.

In the original formulation of STICS, the relation between
biomass production and intercepted radiation is not linear as
in (1), but quadratic, with the introduction of a saturating
coefficient, and the efficiency can vary according to the de-
velopment stage. However, to ensure that the comparison will
only concern the biomass repartition and the modelling scale,
a linear relationship with a constant radiation use efficiency
was modelled. The two versions of the model gave similar
results in terms of RMSEP and EF. We have :

I(t) = (1− exp(−kB · LAI(t))) ,

The leaf area index is modelled through an empirical
function as the net balance between growth and senescence,
and is supposed to evolve in three phases: a first phase of
logistic growth (from emergence to the maximal LAI point),
a stability phase, and a senescent phase in which the LAI
decreases linearly [7]. We have:

LAI(t) =

t∑
j=te

(∆LAI(j)−∆LAIsen(j))

where te is the day of emergence, ∆LAI(j) is the net leaf area
growth on day j and ∆LAIsen(j) is the leaf area senescence
on day j.

The net leaf area growth on day j depends on the leaf
development unit on day j, u(j), which varies from 1 at
emergence to 3 when the leaf area index is maximal. From
emergence to the maximal LAI point, the LAI growth follows
a logistic curve:

∆LAI(j) =
α

1 + exp(β(umat − u(j)))
·d·fd(j)·fT (j)·s(j),

for 1 ≤ u(j) ≤ 3

where umat is the leaf development unit at the end of the
juvenile stage, d is the plant density and fd a density factor
related to the competition between plants, fT is the effective
crop temperature, and s is a trophic stress index. This trophic
stress is determined by a source-sink ratio, and thus induce a
retroaction of allocation on the LAI curve. With this formula-
tion, the leaf area index stops growing all at once after having
reached its maximal point, but it is possible to introduce a
progressive decline of the LAI. We refer the reader to [7] for
more detailed equations.

A lot of parameters are required for the model (such as the
soil pH, the organic nitrogen content, the albedo, . . . ), but a



list of recommended values for different crops are available in
[7].

The main assumptions of STICS include the quadratic
relationship between biomass production and intercepted ra-
diation, the modelling of the first phase of LAI growth by
a logistic curve, and the fact that the ratio between blades
and petioles is supposed to be constant. Petioles are also
considered as stems in the STICS version for sugar beet, which
means that they are not involved in the senescent process.
Finally, the leaf mass variable is not directly related to the
biomass production since it is determined by the LAI curve.

B. Calibration of the models

1) Data: We used a first dataset from 2010 experiments
to calibrate the models. Field experiments took place at La
Selve, France, N49◦34’22”, E3◦59’24”, on a sandy loam soil.
A commercial variety, Python, was sown on April 15, with 45
cm between rows and 18 cm between seed-plots, and fertilized
with 136 kg N ha−1. The final plant density was estimated at
11.82 plants per squared meter (pl/m2).

Dry matter of root and leaves (blades and petioles separately
or altogether) were collected on 50 plants at fifteen different
dates, and dry matter of individual blades and petioles were
collected on 10 plants at five different dates. Mean values were
then used for the calibration process. Leaf area index was not
measured directly on the field, but could be computed from
the blade mass Qb, the specific blade mass eb and the plant

density d: LAIexp =
Qb
eb

d. This relation was used to compute

the maximum LAI and the corresponding thermal time. The
specific blade mass was obtained from a linear regression
between leaf surfaces and blade masses on the five dates of
individual measurements.

Daily mean values of air temperature (◦C) and solar ra-
diation (MJ.m−2) were obtained from French meteorological
advisory services (Météo France) near the experimental site.
Thermal time was computed using a base temperature of 0◦C
[14].

2) Calibration: The parameters of the five models were
estimated using generalized least squares method on 2010 data,
as described in [20], but not necessarily on the same subset
of data, depending on the model formulation. For example,
the individual masses of blades and petioles were used for
the calibration of Greenlab, whereas only the total dry matter
was needed for CERES. The list of variables used for the
calibration of each model is given in table II.

For each model, the parameters were divided into two parts:
those that can be deduced from the literature or measured
directly, and those that have to be estimated by the models.
The following parameters were not estimated: the extinction
coefficient of the Beer-Lambert law (kB = 0.7 according
to [21]), the specific blade mass in Greenlab (deduced from
our field experiments, see II-B1), the maximal LAI value
and thermal time to reach this maximum value in PILOTE
(deduced from our field experiments, see II-B1), and the max-
imum leaf surfaces for CERES (deduced from the individual

TABLE II
DATA USED IN THE CALIBRATION STEP FOR THE FIVE MODELS

Model Data used for the calibration Nb of estimated
parameters

Greenlab

Dry matter of root, blades and petioles
Individual masses of blades and petioles
Thermal times of leaf expansion and
senescence

10

LNAS
Dry matter of root
Dry matter of green leaves
Dry matter of senescent leaves

6

PILOTE Total dry matter
Leaf area index 3

CERES

Total dry matter
Dry matter of root
Thermal times of leaf expansion
Maximum leaf surfaces

1

STICS
Dry matter of root
Dry matter of green blades
Dry matter of senescent blades

4

measurements). The harvest index HI was computed as the
ratio between dry matter of root (including crown) and total
dry matter at harvest, and was estimated at 70% on 2010
data. This value is lower than the one found by [4] for sugar
beet (root + crown: 85%). The thermal time of initiation, as
well as the two phyllochrons and the rupture thermal time
[14], [22] were estimated using the two datasets (calibration
and test). Indeed, the data available for the estimation of
these parameters in 2010 were not satisfying (small number
of plants, and few measures before the rupture point) and
thus the two datasets were used to ensure a more robust
estimation of these crucial parameters. Indeed, as noticed by
[14] and [8], the phyllochrons and the duration of the first
phase of development in sugar beet remain stable for a given
genotype, and only the thermal time of initiation is subject
to change, due for example to environmental conditions. We
shifted the thermal time of initiation of 2010 data to obtain
similar values of phyllochrons and rupture time for the two
years. The smallest AIC was obtained with a shift of 140◦Cd.

A preliminary study based on global sensitivity analysis
(SA) was carried out on STICS, to identify the parameters that
must be estimated, and those that could be fixed to reliable
recommended values available in the literature [7]. Indeed,
a large number of parameters drive the equations of STICS,
and, even if recommended values are provided for the large
majority of them [7], the use of estimated values can enhance
the quality of the model (e.g. if our experimental conditions
are too different from the ones on which the recommended
values were measured). Yet, estimating too many parameters
would increase the model’s variability and could lead to a
poor predictive capacity. As the objective of this study was to
build predictive models (or, at least, to evaluate the predictive
capacity of the models), the choice of a SA method seemed
appropriate, to rank the parameters according to their influence
on the model outputs. A review on the role of sensitivity
analysis can be found in [23].



The standardized regression coefficient (SRC) method was
used to rank the parameters according to their influence on
the model outputs. Sensitivity indices were computed for
each parameter, each output, and each time of observation.
Then, sensitivity indices (SI) for each parameter and each
output were obtained using a weighted sum over each time
of observation, and finally, a global SI for each parameter
was computed, taking into account all the model’s outputs.
Parameters were then ranked according to their SI. The use of
SRC indices was validated by computing the linearity index
of the model that was found to remain very high all along
the crop growth. A similar study has already been carried out
for STICS, on wheat and maize, based on response surface
method [24].

In the simplified version of STICS used in this paper,
environmental stresses were not taken into account, and not all
of the STICS modules were included. For these reasons, some
parameters were not included in the model, and we reached a
total of 18 parameters. Three threshold parameters could not
be estimated by the Gauss-Newton algorithm and were fixed
to their recommended values; all the other parameters were
included in the sensitivity analysis. The method was applied
to three outputs: the dry matter of green blades, the dry matter
of senescent blades, and the dry matter of root. Once the ranks
of the parameters were obtained, the AIC criterion was used
to determine the number of parameters to be estimated (the
others being set to their recommended values).

The final numbers of parameters estimated for each model
are given in table II. Greenlab is the model with the highest
number of parameters to estimate, and needs 5 input variables
for its calibration.

C. Evaluation of the models

1) Data: The predictive capacity of the models was eval-
uated on 2011 data. Fields experiments were conducted near
the 2010 site, at Bourgogne, France, N49◦21’18”, E4◦4’12” on
a calcareous loam soil. The same commercial variety Python
was sown on March 21, with 45 cm between rows and 18 cm
between seed-plots, and fertilized with 113 kg N ha−1. The
final plant density was estimated at 10.89 pl/m2.

Dry matter of root and leaves (blades and petioles separately
or altogether) were measured at fifteen different dates.

Daily mean temperatures (◦C) and solar radiation (MJ.m−2)
were obtained from French meteorological services. A hail
episode occurred on June 29, which caused a lot of damages on
leaves, with partial or total destruction of blades and petioles.
The hail effect is discussed in the Results section.

2) Comparison criteria: Two criteria were used for the
models comparison: the root mean squared error of predic-
tion (RMSEP) and the modelling efficiency (EF). The mean
squared error of prediction (MSEP) measures the distance
between observed and predicted values, and its square root
is used to obtain the same units as the observed and predicted

values [25]. It is given by [26], [27]:

RMSEP =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2
where n is the number of observations, Yi the observed values,
and Ŷi the predicted values.

The modelling efficiency (EF), as defined by [27], is a
dimensionless quantity which measures the overall goodness
of fit between predictions and observations. It is similar to the
coefficient of determination in linear regression.

EF = 1−
∑n
i=1(Yi − Ŷi)2∑n
i=1(Yi − Y i)2

where Y i is the mean of observed values. The modelling
efficiency ranges from −∞ to 1. In case of a perfect fit, i.e.
when predicted and observed values are equal, the modelling
efficiency is equal to 1. A value of 0 corresponds to the case
where the model’s predictions are not better than the mean of
the observed values, and a negative value is obtained when
the predictions perform worse than the mean.

The RMSEP gives an estimation of the mean error ampli-
tude, whereas EF has no dimension and can therefore be more
useful to compare variables with different units.

The models were compared on two variables: the dry matter
of root and the total dry matter. This allowed for a comparison
of the functions of biomass production, and a comparison
of the biomass allocation to the root. However, for the two
models that relied on a constant harvest index for the biomass
repartition (PILOTE and CERES), the computation of the
criteria for the whole time period for the dry matter of root
did not make sense, as the HI is not supposed to be valid
throughout the plant development, but only at harvest. Thus,
RMSEP and EF for the dry matter of root were not computed
for these models. Instead, we provided the yield prediction
error (i.e. the relative error of prediction of the dry matter of
root at the harvest date) for the five models.

The criteria were calculated using the vectors of parameters
found at the calibration stage for each model. Only the plant
density and the thermal time of initiation were adapted to 2011
data.

III. RESULTS

The root mean squared error and modelling efficiency
for the five models are given in Table III, and predicted
vs. observed plots can be seen on Figs. 1 and 2. By way
of illustration, we added the predictions from CERES and
PILOTE for the dry matter of root, considering a constant
proportion HI of allocation to root.

The best predictions for the dry matter of root were given
by Greenlab with a RMSEP of 154.9g/m2, followed by STICS
(RMSEP = 175.6 g/m2) and LNAS (RMSEP = 229.6g/m2).
The modelling efficiency was high (above 90%) for these three
models, indicating a good overall fit between predictions and
observations. However, all the models provided over-estimated
predictions for this variable.
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FIGURE 1. Models’ predictions for the dry matter of root in 2011

TABLE III
EVALUATION CRITERIA FOR THE FIVE MODELS ON 2011 DATA

Model
Dry matter of root Total dry matter
RMSEP EF RMSEP EF

Greenlab 154.9 0.96 521.8 0.67
LNAS 229.6 0.90 632.6 0.51

CERES - - 483.5 0.71
PILOTE - - 564.2 0.61
STICS 175.6 0.94 670.0 0.45

STICS initial 168.1 0.95 664.8 0.46

Models based on allocation processes performed better at
the time of initiation than models relying on a constant HI
for biomass repartition (see Fig. 1). Indeed, the repartion of
biomass to root and leaves is not constant over time, and could
be influenced for example by environmental conditions, or
by treatments applied to the crops [28]. However, these two
models do not make the assumption of a constant repartition
throughout the plant development, but only at harvest. Thus,
we used a third criterion to compare the five models, by
computing the yield prediction error, i.e. the dry matter of root
at the harvest time: 2.6% for Greenlab, 6.1% for LNAS, 1.5%
for CERES, 3.9% for PILOTE and 0.1 % for STICS (1.8%
for the initial version of STICS). This results suggest that the
use of a HI might be appropriate if one is only interested in
the yield prediction, as all the models provided similar results.

The dry matter of root predicted by STICS increased slower
than in the other models, when the predictions from LNAS
increased at a higher rate. The three other models converged
towards a similar value at harvest.

For the total dry matter, the best predictions were given by
CERES with a RMSEP of 483.5g/m2, followed by Greenlab
(RMSEP = 521.8 g/m2) and PILOTE (RMSEP = 564.2 g/m2).
The modelling efficiency was lower than for the dry matter of
root, indicating that this variable was not well predicted by
the models. Indeed, as it has been said before, a hail episode
occurred at around 1500◦Cd, and caused a lot of damages to
leaves. The dry matter of leaves was reduced drastically due
to partial or total destruction of blades and petioles, which
resulted in a decrease of the total dry matter. The impact
of this climatic event can be clearly seen on Fig. 2, for a
period of approximately 1000◦Cd, but the loss of leaf biomass
and hence the induced deficit of photosynthesis was probably
compensated by the remobilization of assimilates from root
to leaves, as the observed total dry matter at harvest was
more consistent with the models’ predictions. However, all the
models tended to overestimate the dry matter production even
before this climatic episode, especially PILOTE and CERES,
in which the initiation of biomass prediction took place earlier
than in the other models (see Fig. 2).

Interestingly, the model with the fewest number of param-
eters (CERES) gave the best predictions and provided a good
yield prediction, where a model like Greenlab gave less good
results for biomass prediction, but with 9 parameters more to
estimate.

Greenlab provided good results, specially for the total dry
matter, but individual blades and petioles masses are needed
for the calibration, and 10 parameters need to be estimated.
LNAS, which is simpler than Greenlab in the formulation
and thus in the number of parameters, did not give very
good results for the dry matter of root, and a big yield
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FIGURE 2. Models’ predictions for the total dry matter in 2011

prediction error compared to the other 4 models. It is easier to
calibrate than Greenlab, and no individual measurements are
needed for the calibration. CERES performed very well on
the yield prediction, and also on the total biomass prediction.
Only one parameter needs to be estimated, but the individual
leaf surfaces are needed to build the model, and can be
difficult to obtain. PILOTE gave good results on the yield
prediction, and average results for the total biomass prediction.
It is easy to calibrate, and no individual measurements are
needed. Real LAI measurements based for example on Licor-
2000 measurements should provide a better experimental LAI
curve for calibration than the one constructed from mass
measurements and used here. For STICS, even if it depends
on a large number of parameters, recommended values are
available for all of them, and a sensitivity analysis can help
reduce the number of parameters to be estimated. The model
gave good results for the dry matter of root, but less good
results for the total biomass production.

IV. DISCUSSION

This study is a first attempt to develop a benchmarking
approach in a research domain were a lot of models coexist.
In this paper, we compared five plant growth models for sugar
beet on their capacities to predict the total dry matter and
the dry matter of root. The five models shared a comparable
energetic production of biomass, but differed on complexity
level, modelling scale and handling of biomass repartition.
Models that relied on a harvest index for the repartition of
biomass to root and leaves provided good yield predictions,
and similar total dry matter predictions as the allocation
models. Indeed, the five models had similar performances,
regardless of their complexity, and there is not one model

that performed outstandingly better than the others. However,
the harvest index was deduced from 2010 measurements, and
was found to be lower than the recommended values found
in the literature for these models, and slightly lower than the
value measured in 2011, suggesting that this index might not
be very robust.

From an experimental point of view, i.e. with a need for a
compromise between the ease of calibration and the robustness
of the model, CERES can be seen as a good alternative to more
complex models like Greenlab, but individual leaf surfaces are
needed. In the same way, PILOTE is very easy to calibrate,
but gave less good results than CERES.

It should also be noted that for PILOTE, the LAI curve
used for model calibration in 2010 was constructed from mass
measurements, while it is normally based on Licor LAI-2000
measurements. This could probably improve its performance
regarding total dry matter production. For CERES, the max-
imal surfaces Sk,max were computed from individual blade
masses and specific blade mass, and may therefore be very
variable from one year to another. Moreover, the computation
of the thermal time of initiation was made on data from the
two years of experiment, whereas in view of prediction, this
variable should be estimated from calibration data only. This
point can be enhanced. Also, data needed for the calibration of
each model differ, which may affect the quality of the results.

The hydric stress was not taken into account in this study,
even though a small water deficit occurred from 1700◦Cd.
The introduction of water stress in the models could also en-
hance their performances, especially for models like PILOTE
which was specifically designed for the handling of crop-soil
interactions and water budget. A study of the capacity of the



SUCROS model to predict sugar beet yields can be found
in [29]. They computed the root mean squared error of final
yield predictions of the initial SUCROS model and a modified
version, in 20 field plots, taking into account hydric stress, and
found that the integration of hydric stress in the model reduced
the RMSEP by a half.

More generally, it would also be interesting to investigate
the robustness of the models and their ability to adapt to more
various situations, for example by evaluating their predictive
capacity in different environmental or site conditions, or by
considering other genotypes. Intuitively, we could imagine that
the parameters of more mechanistic models would be more
genotype-dependent than that of more empirical models [30]–
[32].
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genetic crop model for sugar-beet (Beta vulgaris L.),” in International
Symposium on Crop Modeling and Decision Support: ISCMDS, vol. 5.
Springer, 2008, pp. 19–22.
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