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I. INTRODUCTION

We observe a realisation y ∈ R P of the normal random vector Y = x0 + W , W ∼ N (x0, σ 2 IdP ). Given an estimator y → x(y, λ) of x0 evaluated at y and parameterized by λ, the associated Degree Of Freedom (DOF) is defined as [START_REF] Efron | How biased is the apparent error rate of a prediction rule?[END_REF] df {x}(x0, λ)

P i=1 cov(Yi, x(Yi, λ)) σ 2 . ( 1 
)
The DOF plays an important role in model/parameter selection. For instance, define the criterion

Y -x(Y, λ)) 2 -P σ 2 +2σ 2 df {x}(Y, λ) . (2) 
If x(•, λ) is weakly differentiable w.r.t. its first argument with an essentially bounded gradient, Stein's lemma [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF] implies that df {x}(Y, λ) = div (x(Y, λ)) and (2) (the SURE in this case) are respectively unbiased estimates of df {x}(x0, λ) and of the risk EW x(Y, λ) -x0 2 . In practice, (2) relies solely on the realisation y which is useful for selecting λ minimizing [START_REF] Efron | How biased is the apparent error rate of a prediction rule?[END_REF].

In this paper, we focus on Hard Thresholding (HT)

y → HT(y, λ)i = 0 if |yi| < λ , yi otherwise . ( 3 
)
HT is is not even continuous, and the Stein's lemma does not apply, so that df {x}(x0, λ) and the risk cannot be unbiasedly estimated [START_REF] Jansen | Information criteria for variable selection under sparsity[END_REF]. To overcome this difficulty, we build an estimator that, although biased, turns out to enjoy good asymptotic properties. In turn, this allows efficient selection of the threshold λ.

II. STEIN CONSISTENT RISK ESTIMATOR (SCORE)

We define, for h > 0, the following DOF formula

y → df {HT}(y, λ, h) = #{|y| > λ} + λ √ σ 2 +h 2 √ 2πσh P i=1 exp -(y i +λ) 2 2h 2 +exp -(y i -λ) 2 2h 2 (4) 
where #{|y| > λ} is the number of entries of |y| greater than λ.

Theorem 1:

Let Y = x0 + W for W ∼ N (x0, σ 2 
IdP ). Take h(P ) such that limP →∞ h(P ) = 0 and limP →∞ P -1 h(P ) -1 = 0. Then plim P →∞

1 P df {HT}(Y, λ, h(P )) -df {HT}(x0, λ) = 0.
In particular 1. lim where VW is the variance w.r.t. W . The proof is available in the extended version of this abstract [START_REF] Deledalle | Stein consistent risk estimator (SCORE) for hard thresholding[END_REF]. An immediate corollary of Theorem 1, also given in [START_REF] Deledalle | Stein consistent risk estimator (SCORE) for hard thresholding[END_REF], is that (4) and ( 2) provide together the Stein COnsistent Risk Estimator (SCORE) which is biased but consistent. Fig. 1 summarizes the pseudo-code when applying SCORE to automatically find the optimal threshold λ that minimizes SCORE in a predefined (non-empty) range.

III. EXPERIMENTS AND CONCLUSIONS

Fig. 2 shows the evolution of the true risk, the SCORE and the risk estimator of [START_REF] Jansen | Information criteria for variable selection under sparsity[END_REF] as a function of λ where x0 is a compressible vector of length P = 2E5 whose sorted values in magnitude decay as |x0| (i) = 1/i γ for γ > 0, and we have chosen σ such that the SNR of y is of about 5.65dB and h(P ) = 6σ/P 1/3 ≈ σ/10. The optimal λ is found around the minimum of the true risk.

Future work will concern a deeper investigation of the choice of h(P ), comparison with other biased risk estimators, and extensions to other non-continuous estimators and inverse problems.
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 12 Fig. 1. Pseudo-algorithm for HT with SCORE-based threshold optimization.