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Abstract

In this work, we construct a risk estimator for hard thresholding which can be used as a basis to solve the difficult task of automatically
selecting the threshold. As hard thresholding is not even continuous, Stein’s lemma cannot be used to get an unbiased estimator of degrees of
freedom, hence of the risk. We prove that under a mild condition, our estimator of the degrees of freedom, although biased, is consistent. Numerical
evidence shows that our estimator outperforms another biased risk estimator proposed in [1].

I. INTRODUCTION

We observe a realisation y ∈ R
P of the normal random vector Y = x0 +W , W ∼ N (x0, σ

2IdP ). Given an estimator y 7→ x(y, λ) of

x0 evaluated at y and parameterized by λ, the associated Degree Of Freedom (DOF) is defined as [2]

df{x}(x0, λ) ,

P∑

i=1

cov(Yi, x(Yi, λ))

σ2
. (1)

The DOF plays an important role in model/parameter selection. For instance, define the criterion

‖Y − x(Y, λ))‖2−Pσ2+2σ2d̂f{x}(Y, λ) . (2)

In the rest, we denote div the divergence operator. If x(·, λ) is weakly differentiable w.r.t. its first argument with an essentially bounded

gradient, Stein’s lemma [3] implies that d̂f{x}(Y, λ) = div (x(Y, λ)) and (2) (the SURE in this case) are respectively unbiased estimates

of df{x}(x0, λ) and of the risk EW ‖x(Y, λ)− x0‖2. In practice, (2) relies solely on the realisation y which is useful for selecting λ
minimizing (2).

In this paper, we focus on Hard Thresholding (HT)

y 7→ HT(y, λ)i =

{
0 if |yi| < λ ,
yi otherwise .

(3)

HT is is not even continuous, and the Stein’s lemma does not apply, so that df{x}(x0, λ) and the risk cannot be unbiasedly estimated [1].

To overcome this difficulty, we build an estimator that, although biased, turns out to enjoy good asymptotic properties. In turn, this allows

efficient selection of the threshold λ.

II. STEIN CONSISTENT RISK ESTIMATOR (SCORE)

Remark that the HT can be written as

HT(y, λ) = ST(y, λ) +D(y, λ)

where ST(y, λ)i =






yi + λ if yi < −λ
0 if − λ 6 yi < +λ
yi − λ otherwise

and D(y, λ)i =






−λ if yi < −λ
0 if − λ 6 yi < +λ
+λ otherwise

,

where y 7→ ST(y, λ) is the soft thresholding operator. Soft thresholding is a Lipschitz continuous function of y with an essentially bounded

gradient, and therefore, appealing to Stein’s lemma, an unbiased estimator of its DOF is given by d̂f{ST}(Y, λ) = div ST(Y, λ). This

DOF estimate at a realization y is known to be equal to #{|y| > λ}, i.e., the number of entries of |y| greater than λ (see [4], [5]). The

mapping y 7→ D(y, λ) is piece-wise constant with discontinuities at ±λ so that Stein’s lemma does not apply to estimate the DOF of

hard thresholding. To circumvent this difficulty, we instead propose an estimator of the DOF of a smoothed version replacing D(·, λ) by

Gh ⋆ D(., λ) where Gh is a Gaussian kernel of bandwidth h > 0 and ⋆ is the convolution operator. In this case Gh ⋆ D(., λ) is obviously

C∞ whose DOF can be unbiasedly estimated as div (Gh ⋆ D(., λ)(Y )). To reduce bias (this will be made clear from the proof), we have

furthermore introduced a multiplicative constant,
√
σ2+h2/σ, leading to the following DOF formula

y 7→ d̂f{HT}(y, λ, h) = #{|y| > λ} +
λ
√

σ2+h2

√
2πσh

P∑

i=1

[
exp

(
− (yi+λ)

2

2h2

)
+exp

(
− (yi−λ)

2

2h2

)]
. (4)

We now give our two main results proved in Section IV.



Algorithm Risk estimation for Hard Thresholding

Inputs: observation y ∈ R
P , threshold λ > 0

Parameters: noise variance σ2 > 0
Output: solution x⋆

Initialize h← ĥ(P )
for all λ in the tested range do

Compute x← HT(y, λ) using (3)

Compute d̂f{HT}(y, λ, h) using (4)

Compute SCORE at y using (2)

end for

return x⋆ ← x that provides the smallest SCORE

Fig. 1. Pseudo-algorithm for HT with SCORE-based threshold optimization.
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Fig. 2. Risk and its SCORE estimate with respect to the threshold λ.

Theorem 1: Let Y = x0 +W for W ∼ N (x0, σ
2IdP ). Take ĥ(P ) such that limP→∞ ĥ(P ) = 0 and limP→∞ P−1ĥ(P )−1 = 0. Then

plimP→∞
1
P

(
d̂f{HT}(Y, λ, ĥ(P ))− df{HT}(x0, λ)

)
= 0. In particular

1. lim
P→∞

EW

[
1
P
d̂f{HT}(Y, λ, ĥ(P ))

]
= lim

P→∞

1
P
df{HT}(x0, λ), and

2. lim
P→∞

VW

[
1
P
d̂f{HT}(Y, λ, ĥ(P ))

]
= 0 ,

where VW is the variance w.r.t. W .

We now turn to a straightforward corollary of this theorem.

Corollary 1: Let Y = x0 + W for W ∼ N (x0, σ
2IdP ), and assume that ‖x0‖4 = o(P 1/2). Take ĥ(P ) such that limP→∞ ĥ(P ) = 0

and limP→∞ P−1ĥ(P )−1 = 0. Then, the Stein COnsistent Risk Estimator (SCORE) evaluated at a realization y of Y

SCORE{x}(y, λ, ĥ(P )) =
P∑

i=1

(
(y2

i − σ2) + I(|yi| > λ)(2σ2 − y2
i ) + 2σ

λ
√

σ2+̂h(P )2
√

2πĥ(P )

[
exp

(
− (yi+λ)

2

2ĥ(P )2

)
+exp

(
− (yi−λ)

2

2ĥ(P )2

)])

is such that plimP→∞
1
P

(
SCORE{x}(Y, λ, ĥ(P ))− EW ‖HT(Y, λ)− x0‖2

)
= 0.

Fig. 1 summarizes the pseudo-code when applying SCORE to automatically find the optimal threshold λ that minimizes SCORE in a

predefined (non-empty) range.

III. EXPERIMENTS AND CONCLUSIONS

Fig. 2 shows the evolution of the true risk, the SCORE and the risk estimator of [1] as a function of λ where x0 is a compressible vector

of length P = 2E5 whose sorted values in magnitude decay as |x0|(i) = 1/iγ for γ > 0, and we have chosen σ such that the SNR of y is

of about 5.65dB and ĥ(P ) = 6σ/P 1/3 ≈ σ/10. The optimal λ is found around the minimum of the true risk.

Future work will concern a deeper investigation of the choice of ĥ(P ), comparison with other biased risk estimators, and extensions to

other non-continuous estimators and inverse problems.

IV. PROOF

We first derive a closed-form expression for the DOF of HT.

Lemma 1: Let Y = x0 +W where W ∼ N (x0, σ
2IdP ). The DOF of HT is given by

df{HT}(x0, λ) =

(

P − 1

2

P∑

i=1

[
erf

(
(x0)i + λ√

2σ

)
− erf

(
(x0)i − λ√

2σ

)])

+
λ√
2πσ

P∑

i=1

[
exp

(
− ((x0)i+λ)2

2σ2

)
+exp

(
− ((x0)i−λ)2

2σ2

)]
.

(5)

Proof: According to [1], we have

df{HT}(x0, λ) = EW [#{|Y | > λ}] + λ/σ2
EW

[
P∑

i=1

sign(Yi)WiI(|Yi|>λ)

]



where sign(.) is the sign function and I(ω) is the indicator for an event ω. Integrating w.r.t. to the zero-mean Gaussian density of variance

σ2 yields the closed form of the expectation terms.

We now turn to the proof of our theorem.

Proof: The first part of (5) corresponds to EW [#{|Y | > λ}], and can then be obviously unbiasedly estimated from an observation y
by #{|y| > λ}. Let A be the function defined, for (t, a) ∈ R

2, by

A(t, a) =

√
σ2 + h2

h
exp

(
− (t− a)2

2h2

)
.

By classical convolution properties of Gaussians, we have

EWi
[A(Yi, a)] = exp

(
− ((x0)i − a)2

2(σ2 + h2)

)
, and

VWi
[A(Yi, a)] =

σ2+h2

h
√
2σ2+h2

exp

(
− ((x0)i−a)2

2σ2 + h2

)
−exp

(
− ((x0)i−a)2

σ2+h2

)
.

Taking h = ĥ(P ) and assuming limP→∞ ĥ(P ) = 0 shows that

lim
P→∞

EW

[
1

P

P∑

i=1

A(Yi, a)

]

= lim
P→∞

1

P

P∑

i=1

EW [A(Yi, a)] = lim
P→∞

1

P

P∑

i=1

exp

(
− ((x0)i−a)2

2σ2

)
.

Since from (4), we have

d̂f{HT}(Y, λ, h) = #{|Y | > λ}+ λ√
2πσ

P∑

i=1

[A(Yi, λ) +A(Yi,−λ)]

and using Lemma 1, statement 1. follows.

For statement 2., the Cauchy-Schwartz inequality implies that

VW

[
1

P
d̂f{HT}(Y, λ, h)

]1/2
6

VW [#{|Y | > λ}]1/2
P

+
λ2

2πP

P∑

i=1

[
VW [A(Yi, λ)]

1/2 + VW [A(Yi,−λ)]1/2
]

.

#{|Yi| > λ} ∼iid Bin(P, 1− p) whose variance is Pp(1− p), where p = 1
2

(
erf
(

(x0)i+λ
√
2σ

)
− erf

(
(x0)i−λ

√
2σ

))
. It follows that

lim
P→∞

VW

[
1

P
#{|Y | > λ}

]
= 0 .

Taking again h = ĥ(P ) with limP→∞ ĥ(P ) = 0 and limP→∞ P−1ĥ(P )−1 = 0, yields

lim
P→∞

VW

[
1

P

P∑

i=1

A(Yi, a)

]

= lim
P→∞

1

P 2

P∑

i=1

VW [A(Yi, a)] = 0 ,

where we used the fact that the random variables Yi are uncorrelated. This establishes 2.. Consistency (i.e. convergence in probability)

follows from traditional arguments by invoking Chebyshev inequality and using asymptotic unbiasedness and vanishing variance established

in 1. and 2..

Let us now prove the corollary.

Proof: By assumption, limP→∞ ĥ(P ) = 0. Thus by by virtue of statement 1. of Theorem 1 and specializing (2) to the case of HT

gives

lim
P→∞

EW

[
1

P
SCORE{HT}(y, λ, ĥ(P ))

]
= lim

P→∞

1

P
EW

[
‖Y − HT(Y, λ))‖2−Pσ2+2σ2d̂f{HT}(Y, λ, ĥ(P ))

]

= lim
P→∞

1

P
EW ‖Y − HT(Y, λ))‖2−σ2+2σ2 lim

P→∞

1

P
EW d̂f{HT}(Y, λ, ĥ(P ))

= lim
P→∞

1

P
EW ‖Y − HT(Y, λ))‖2−σ2+2σ2 lim

P→∞

1

P
df{HT}(x0, λ)

= lim
P→∞

1

P
EW ‖HT(y, λ)− x0‖2



where we used the fact that all the limits of the expectations are finite. The Cauchy-Schwartz inequality again yields

VW

[
1

P
SCORE{HT}(Y, λ, ĥ(P ))

]1/2
6 VW

[
1

P

(
‖Y − HT(Y, λ)‖2

)]1/2
+ 2σ2

VW

[
1

P
d̂f{HT}(Y, λ, ĥ(P ))

]1/2

=
1

P

(
P∑

i=1

VWi

[
|Yi|2I(|Yi| < λ)

]
)1/2

+ 2σ2
VW

[
1

P
d̂f{HT}(Y, λ, ĥ(P ))

]1/2

6
1

P

(
P∑

i=1

EWi
|Yi|4

)1/2

+ 2σ2
VW

[
1

P
d̂f{HT}(Y, λ, ĥ(P ))

]1/2

=

(
‖x0‖44
P 2

+ 6σ2 ‖x0‖2
P 2

+
3σ4

P

)1/2

+ 2σ2
VW

[
1

P
d̂f{HT}(Y, λ, ĥ(P ))

]1/2

6

((
‖x0‖24
P

)2

+ 6σ2 ‖x0‖24
P

+
3σ4

P

)1/2

+ 2σ2
VW

[
1

P
d̂f{HT}(Y, λ, ĥ(P ))

]1/2
.

As by assumption, limP→∞ P−1ĥ(P )−1 = 0 and ‖x0‖4 = o
(
P 1/2

)
, the variance of SCORE vanishes as P → ∞. We conclude using

the same convergence in probability arguments used at the end of the proof of Theorem 1.
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