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Abstract

Viability theory proposes geometric metaphors in addition to classical
ordinary differential equation analysis. This theory is applied on a vehicle
cornering. The issue is to determine if a state of the system is compatible
with a soft controls strategy which leads the car to the end of the corner.
The viability theory offers tools which enable to answer to this question
without computing in real time these controls. The issue resumes to verify
that this state belongs to a set called the viability kernel. The construction
and the use of the viability kernel for a vehicle system dynamic is proposed
by using Support Vector Machines algorithm. The applicability of this
theory is demonstrated through experimental tests. It is the first time
that the viability theory is applied to vehicle dynamics with road safety
concerns.
Keywords: viability theory, dynamic model, road safety, experimental
tests, calm driving.

1 Introduction

ESP and ABS system try to find optimal controls in order to track the desired
trajectory. These systems are triggered in dangerous situations. Before to reach
these dangerous situations, it would be interesting to warn the driver that it
will no longer be possible to follow the desired trajectory with “soft” controls
compatible with a calm driving.

It is difficult to compute in real time a control only to check if a “soft” control
can keep the car on the road. The challenge is : how to warn the driver that
there is no more soft control to maintain the car on the road without computing
in real time such a control ?

The viability theory offers a theoretical frame suitable to this challenge. The
viability kernel is precisely the set of vehicle states from which there exist a soft
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2 VIABILITY THEORY

trajectory. The viability kernel is determined a priori, i.e. before driving. To
warn the driver is equivalent to verify that the vehicle no longer belongs to the
viability kernel.

The first two sections set the scene by presenting the viability theory and
the vehicle dynamic modeling. The next section presents the link between these
two fields by describing the viability constrains for the vehicle system dynamics.
From these constrains, the computation and the use of the viability kernel for
the system are described in the section 5. In the last section of the paper, the
applicability of this theory is demonstrated through experimental tests.

2 Viability theory

In this section, some aspects of the viability theory are presented. The reader
can refer to the first book on viability [1] for a more detailed presentation and
to the last publication [2] for the last developments. This paper focuses on
concepts that will be used later.

Viability theory defines mathematical metaphors illustrating the evolution
of a system:

e Whose dynamics is not deterministic,
e Which obeys to the viability constrains,
e Which is controlled by feedback loops.

One of the goals of the theory is to find mechanisms for selecting regulons (or
controls) to regulate the system. One of the selection mechanisms is based on
the principle of inertia: the controls remain constant as the viability of system
is not involved.

This theory has reached a level of abstraction that allows it to offer metaphors
in very different fields, from economics to biology through Image Processing and
cognitive sciences. Rather than presenting the theory from a general but compli-
cated point of view, a didactic example is presented. This example will illustrate
the main concepts that will be used afterwards.

2.1 A didactic example

In the following,a classical example of a controlled system with constrains on
states and controls is presented.

[a—

&= flz(t),u(t)) (1)
e Uz(t), Vt>0
z(t) € K, Vt>0 (3)

~~
[\)
~—

with
u(t) is the control of the system.
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2.1 A didactic example 2 VIABILITY THEORY

U(z(t)) is the set of admissible controls. This set can depend on the state z(t).
K is the set on states which verify constrains (they are called viability con-
strains).

f(z,u) is the equation of the dynamic system.

Viability theory deals with set-valued map which means that the image of a
point is a set. Starting from this point on view, the following set-valued map is
defined :

Fle) = {f(z,u) | v e Ulz(t))} (4)

Then, the initial ordinary differential equation (1) becomes a differential
inclusion :

e F(x) (5)
Definition 2.1 A state xq is viable for the system F if a control u(t) € U(x(t)

exists such that the trajectory starting from xo controlled by u(t) through the
equation 3 remains in K.

Definition 2.2 K is viable for the system F if Vx € K, x is viable.

TK(.’E]) QF(I]) #@

flri,ur)  f(21,u2)

K T (23)

TK(IQ) N F(IZ) =

f(@2,u1)  fz2,u2)

Figure 1: viability constrains, contingent cones, viability domain

One of the issues of viability theory is to verify that K is viable without the
need to solve for each point x an ordinary differential equation. A geometric
intuition is that to check that K is viable, it seems sufficient to focus on the
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2.1 A didactic example 2 VIABILITY THEORY

boundary of K. In fact, while the trajectory is in the interior of K, there is
no problem of viability. A problem emerges when the trajectory reaches the
boundary of K. At this point, the viability is ensured if a control enabling the
system to return in K exists.

This intuition is illustrated in the figure 1 where viability constrains are
represented by an ellipse. In this figure, the green and red arrows indicate
the directions that can take the system starting from the origins of the arrows.
Green directions point from the border to the interior of K, so the starting point
is viable. In contrast, red directions do not return to K. If these directions are
all possible commands, point to the origin of these arrows is not viable.

This geometric intuition is formalized mathematically by defining the tan-
gent of a set. In viability, it is adopted the definition of Bouligand which intro-
duced the concept of contingent cone.

Definition 2.3 The contingent cone Tk (x) from K at x is defined by :

B .. edg(z+hv)
Tk(z) ={veX| I}Lrgél}f — = 0} (6)

e di(z) is the distance between the set K and the point xz. A deeper
mathematical analysis of this distance is out of the scope of this paper.

The brown cone on the figure 1 is a graphical example of the contingent
cone.
The regulatory function Rk (z) is defined as the set of viable controls, i.e. lead-
ing to a direction belonging to the contingent cone. This function is a set-valued
map (the image of a point is a set).

Definition 2.4 The Regulation map Rk (x) from K in x is defined by :
Rg(z) ={ueU(z) | f(z,u) € Tk (x)} (7)

K is a viability domain if for all z in K, the regulation map R (z) is not empty,
i.e. a control u exists such that f(z,u) belongs to Tk (z) .

Definition 2.5 K is a viability domain ifVz € K,3u € U(z) | f(z,u) € Tk(x)
or shortly : K is a wiability domain if Ty qp(r)(2) N F(z) # 0
Main theorems of viability are about the minimal assumptions for an equiv-
alence between :
e K is a viability domain,
e and K is viable.

The interest of these theorems is that they replace a property on the dynam-
ics, the viability of a system, by a geometrical property, the viability domain.

In many applications, the set K is not viable. Then, the viability kernel
Viab(K) is defined as the set of viable states.
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3 VEHICLE DYNAMIC MODELING

Definition 2.6 The viability kernel Viab(K) is defined by :
Viab(K) = {zg € K | Ju(t), z(t) € K, Vt} (8)

The “anatomy” of K is studied by breaking it down between the viability kernel
and the complement of its kernel.

In the section 5, an algorithm for building a viability kernel is proposed.

This algorithm is based on the property that a viability kernel is necessary a
viability domain.

3 Vehicle dynamic modeling

3.1 Modeling

Figure 2: Two-wheels vehicle model in a cornering maneuver

In this part, the model of vehicle used for the application of the viability
theory to road safety is presented. The application of this theory is not specific
to this model and can be adapted to others models as a more realistic 4 wheels
model.

A common model : the two-wheels vehicle model in a cornering maneuver
was chosen. A not symmetric braking system is added to study the instability.
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3.1 Modeling 3 VEHICLE DYNAMIC MODELING

The figure 2 presents a top view of the model’s geometry. This model comes
from [3, p. 27]) . The geometric variables are the following :

. 9_i>s the yaw angle. The angle between the X abscissa of the road frame
X, and the longitudinal axis of the vehicle X,,.

e « is the vehicle sideslip angle. The angle between the longitudinal axis
of the vehicle and the velocity vector of the centre of gravity V. In the
following, this angle is supposed to be small (for clarity’s sake, small angles
are exaggerated on the figure)

e 01 (resp. 02 ) is the front (resp. rear) wheel sideslip angle. tan(d;) is the
ratio of the lateral and the forward velocity of the front wheel. This angle
depends on the transversal elasticity of the tyre.

e (3 is the front steer angle. This angle is supposed to be the same for the
two front wheels. This angle is controlled by the driver.

The geometric parameters are :

e a; (resp. ag) is the distance from the front wheels (rear wheels) to the
centre of gravity G. L (= a1 + a2) is the wheelbase of the vehicle.

Model’s equations are given below. The complete explanation is given in [4].
The so-called “ small angle ” approximation is applied, i.e, sinus of small angle
are replaced by the angle itself, cosinus of small angle are approximated by 1.

MV(@+c¢) = —Di6) — Dby (9)
L6

b
7D1a151 + D2a252 - §ZM’)/ (10)
(11)
e M is the mass of the vehicle ;
e D; and D, are the cornering stiffness of tyres.

e V is the velocity, it is controlled by the driver according to the following
equation :

V=yq (12)
e 7 is controlled by the driver by the braking system.

e The expression %iM v is the irregularity momentum due to longitudinal
actions.

e b is the front track width.
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3.2 State space representation 3 VEHICLE DYNAMIC MODELING

e i, is the dissymmetrical coefficient. It represents the unbalance of the
baking system between the right wheels and the left wheels. In the case
of acceleration, this coefficient is set to zero.

For clarity’s sake, a simple model of tyre is presented. In fact, the corner-
ing stiffnesses Dy et Dy vary during braking, they cannot be supposed to be
constant. In the algorithm implementation (section 6), the transversal force
delivered by the Pacejka model ([5]) is used.

Cinematic considerations enable to compute §; and d5 from the geometric
variables a, 3, 6 and V :

a0

5 = oz—l—%—ﬁ (13)
6

5 = a—‘% (14)

3.2 State space representation

In control engineering, dynamic systems are commonly described according to
a state space representation. This representation is the following.

. Di1+D> Diai—Dsaz
o _ T MV -1+ MV?2 ) «
(9) - <_ Diai1—Dsas _Dla%‘i’DZU‘% é +

I.. VI,.

D18
MV
Difay | biMy
IZZ IZZ

Vo= - (15)

The controls of the driver are 3, the steering angle, 7, the acceleration (or
deceleration).
The previous representation is rewritten in order to emphasize the controls

u:
t=Ax) -2+ B-u (16)
The state x is :
\%
r=|a (1)
0
The matrix A is :
0 0 0
A=|0 B (14 gk (18)
O 7D1a17D2a2 7D101+D20,2
I.. VTI..

The matrix B is :
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4 CONSTRAINS

0 1
B=|-3 0 (19)
Dia;  _biM
Izz Izz

It is not a linear model. The matrix A vary according to the state z : some
coefficients of the matrix vary with V. Moreover, the cornering stiffnesses Dy

and Dy vary with z.
The controls of the driver are :
)
u = 20
® (20

4 Constrains

The vehicle dynamic equation 17 can be interpreted as the ordinary differential
equation 1 of the viability theory. Now, the different constrains on the vehicle
dynamic which defines a calm driving are explored. These constrains are directly
interpreted in the viability theory as :

e constrains on the states : the set K in the equation 3

e constrains on the controls : the set U(x) in the equation 2.

4.1 Constrains on the controls
4.1.1 Constrains on the steering velocity

Apart mechanically constrains on steering, a calm driving implies constrains on
steering velocity.

18] < Bmas (21)

4.1.2 Constrains on the acceleration and jerk
Ymin <V < Ymaz (22)
31 < e (23)

4.2 Direct constrains on the state

The speed is, obviously, limited :

Vinin <V < Vinaa (24)
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4.3 Indirect constrains on the state 5 VIABILITY KERNEL

4.3 Indirect constrains on the state
4.3.1 Road

One obvious constrain is to avoid lane departure. This constrain is tackled
by computing the Cartesian coordinates, x1, y1, and orientation (the yaw) 6
from the Eulerian variables : «, the vehicle sideslip angle, and V, the velocity.
Then, the belonging of these Cartesian coordinates to the road is verified. For
the algorithm implementation, these Cartesian and orientation coordinates are
added to the state z.

4.3.2 Stability

Another constrain is that the grip needed by the car have to be compatible with
the grip offered by the road. These constrains are directly taken into account
in the Pacejka model in the sense that the car slips and does not stay on road.

A more subtle constrain is the stability of the system. According to [6], the
stability constrain when driver brakes cornering is :

L
e [ is the wheelbase ;

.K:Ml M2

3D; — m,the understeer gradient ;

e M1 (resp. M2) is the static mass on the front (resp. rear) axle ;

2 1
M, = Mai : M, Mai
al + a2 al + a2

(26)

4.3.3 Remarks

e The viability set K includes the following constrains : the car does not slip,
and the stability is ensured. These two conditions are also required for the
modeling. The proposed model is no more valid when these conditions are
violated. For example, the “small angle approximation ” is no more valid.
The viability constrains ensure that the model is still valid.

e Some constrains can be added, others can be modified or cancelled ac-
cording to the objectives of the application. The viability theory takes
naturally into account constrains on the state of the system.

5 Viability kernel

Starting from a state of the vehicle, i.e. the vector x of the equation 17, the issue
is : is-it possible to drive along the corner in a calm way or, in a more mathemat-
ical sense, does one smooth trajectory exists without computing explicitly this
trajectory 7 The viability theory assets that the existence of this trajectory is
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5.1 Discretization 5 VIABILITY KERNEL

equivalent to check that the state belongs to the viability kernel. This property
replaces the resolution of a differential equation with the belonging of a state
to a set.

This section presents algorithms in order to set up and to use a viability
kernel. Before this presentation, the system has to be discretized.

5.1 Discretization
5.1.1 In time

The discretization of the equation 16 gives :
Tnt1 = T + (A(zy) - T + B - uy) AT (27)

e AT is the sampling time.

5.1.2 In space

Every dimension of the state space are discretized. The state space is 3 (see
the length of z in equation 17), but 3 dimensions for the spatial localization are
added, and the two dimension of the control space are discretized too. Finally,
the dimension of the proper space is 8.

The implementation of the viability theory faces the dimensionality curse :
each additional variable, discretized in, for example, ten values, multiply by ten
the number of states to be evaluated. This point is one of the current limit of
this theory.

5.2 Algorithm Principle

The algorithm and the proof of its convergence were initially presented in [7].
It is a backward recurrence algorithm. It starts from the end of the trajectory
(called the “ target ”). The “target” of a viable trajectory corresponds to the car
at the end of the corner with an adapted speed, and a proper direction. The
states of this target belong to the viability kernel. Then, states belonging to K
from which, it is possible to reach the viability kernel with a constant control
during AT, are added to the viability kernel. This step is applied recursively.
This algorithm is based on the link between viability kernel and viability domain
which is described in the section 2.

The figure 3 illustrates this procedure in two dimension (the number of
dimension is 8 for the given application). Road limits are plotted by black arc
circles. Blue points belong to the viability kernel, red points do not belong to
it.

The red car does not belong to the viability kernel. Indeed, driver control
which leads the vehicle into the viability kernel does not exist :

e cither the control brings the car outside the road, so the constrains on the
state are violated,
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Figure 3: Algorithm principle
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5.3 Practical use : classification of a state 5 VIABILITY KERNEL

e or the control leads the car into a red point, or this point represents a
state which does not belong to the viability kernel.

For this car, “soft’controls, which drive the car to the end of the corner, do not
exist

On the contrary, a control drives the blue car to a blue point which belongs
to the viability kernel. Therefore, it exist controls which drive the car to the
target in a calm way. The blue car belongs to the viability kernel.

This paper focuses on the existence of at least one control to maintain the
car on the road in a way compatible with calm driving. It could be of interest to
count the number of different strategies of “soft” control. Higher is this number,
more robust will be the given state.

5.3 Practical use : classification of a state

Knowing a state xg belonging to K, the issue of this subsection is to determine if
xo belongs to the viability kernel of K : Viab(K). Viab(K) had been discretized
with the algorithm described in the previous subsection. The previous algorithm
gives two discretized sets. A set of states which belongs to the viability kernel
(blue points) and a set of states which do not belong to the viability kernel (red
points). To know if xg belongs to a set or to its complement is typically the
phase of generalization for the machine learning methods.

One of the most fruitful and, relatively new, technique is this field is the
Support Vector Machines (SVM). Support Vector Machines (SVM) were issued
from the Vapnik Chervonenkis theory (the initial article is [8]). Due to their
generalization performance on classification problems, SVM have obtained much
success in a variety of domain. Unlike other machine learning methods, gen-
eralization errors of SVMs are not related to the input dimensionality of the
problem, but to the margin with which a SVM separates data. The application
of SVM to build viability kernel had been initially carried out in the ecology
field ([9] and [10]). In the following, the principles of the method are recalled.

The viability kernel algorithm, described in the previous section, gives a set
of example (z;,y;) ; where z; is a state of K and y; = 1 if z; € Viab(K) and
y; = —1if z; ¢ Viab(K).

From this list, SVM define the decision function d(.) which separates the
given examples :

d(z) = Z aiyik(zs, ) + b (28)

e k(y,z) is a kernel function which defines a scalar product between the
projection of y and z in an other space than the initial space to which y
and z belongs ;

e b is a constant.

e (; is a scalar which is non null only for the vectors on the margins of the
set. These vectors are called the Support Vector.
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Figure 4: Controllability corner

The resolution of this problem introduces a regularization parameters C.
This parameter is used to tune the trade-off between the number of misclas-
sified examples and the number of examples defining the support vectors (i.e.
examples x; which are associated with non null a;).

According with this decision function, a new state xg belongs to the viability
kernel if d(z¢) > 0

6 Application

This section aims at proving the applicability of the viability theory to a real
example in road safety. The scenario is the following : a car is in cornering
maneuver at two different speeds. At the middle of the clothoid, the driver
turns suddenly the wheel in order to simulate an inappropriate reaction. At low
speed, this reaction is still compatible with a calm driving. At high speed, this
reaction is no more compatible and the driver will not be able to maintain the
car on the lane with soft controls.

In the following, the geometry of the infrastructure, the test vehicle,the
maneuver and the algorithm implementation are described. The last subsection
is devoted to the analysis of this maneuver with viability tool.

6.1 Infrastructure

The application is done on a real corner which is illustrated by the figure 4. This
corner, called the “controllability curb”, is a part of the Ifsttar experimental track
(located in Nantes, France). It is consisted of :

e a straight alignment (its length is 50m)
e a first clothoid (87m)

e an arc circle (Radius : 110m, its length is 134m)
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6.2 Vehicle 6 APPLICATION

M I, . b ai az Dio Dy
(kg) | (kg-m?) (m) | (m) | (m) | (N) (N)
1485 2570 | 0.1 | 1.46 | 1.09 | 1.49 | 131500 | 117000

Table 1: Vehicle parameters

e a second clothoid which is the symmetric of the first one,

e a second straight alignment (50m)

6.2 Vehicle

The vehicle used during our trials is a sedan. It is a front wheel drive car
equipped with a V12 engine coupled with a 5-speed automatic gear box. Ground
link is composed by a pseudo Mac Pherson at the front and a flexible H-form
torsion beam with trailing arms at the rear. The tires are classical summer tires.

Parameters of the vehicle needed by the algorithm are given in the table 1.
D1y and D4y are the “nominal” tyre lateral stiffness. These figures are given in
order to have a physical understanding of the system.

6.3 Maneuvers

1. the first maneuver consist in driving along the controllability curb at a
constant speed of 60 km/h (37 mph) ;

2. the second maneuver is based on the first one, except that the driver turns
the wheel suddenly along the first clothoid ; after this action, he has to
maintain his vehicle in the lane ;

3. the third maneuver consist in driving along the controllability curb at a
constant speed of 80 km /h (50 mph);

4. the fourth maneuver is a repetition of the second one at a speed of 80
km/h. In particular, the driver has to turn the wheel with the same
angle.

The figure 5 illustrates the state of the test vehicle during these maneuvers.

6.4 Algorithm implementation

The code has been written with the Free and Open Source software scilab ([11]).

6.4.1 Viability kernel construction

The algorithm described in the subsection 5.2 has been applied to the “control-
lability ” curb. The direct constrains are the followings :

e the minimal velocity is 60 km/h, the maximal velocity is 90 km/h ;
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maneuver 2 : speed 60 km/h and sudden turn

maneuver 2 : speed 80 km/h maneuver 4 : speed 80 km/h and sudden turn

Figure 5: Photos of the different maneuvers

e the acceleration has to be included between —0.1 g and 0.1 g (it is the
frame of a smooth driving) ;

e the maximal steering velocity is +/- 3 deg/s ;
e the maximal jerk +/- 0.2 g/s .

The discretization is

e 4 m along the curvilinear abscissa ;

e 0.5 m for the transversal axis ;

e 0.2 s for the time

It takes 51 mn to build the viability kernel (the computer is a classical old PC
scoring a performance of 10.3 gigaflops according [12]) . 759 states belong to the
viability kernel and 291471 do not belong to the viability kernel. Thus, about
3 %o of the states belongs to the viability kernel. It includes small variation
around “nominal” trajectories, i.e. trajectories at constant speed in the middle
of the road. Every states with large deviation with these “nominal” trajectories
belong to K but not to Viab(K).

This application shows that applying Viability theory on real case needs
computing power. It has been one of the barriers for its application on a real
road until now.
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The algorithm can be parallelized. Therefore, by using Graphics Process-
ing Unit (GPU), this computing time could be dramatically reduced or the
addressed model could be more complex with the same computing time.

This computation has to be done a priori, i.e. before the practical use (i.e.
on board) of the viability kernel.

6.4.2 Viability kernel classification

Among the different available algorithms for SVM, the algorithm described in
[13] is chosen because it is suitable to large data set problem. The kernel func-
tion is the Gaussian function which is a classical choice when the problem is
nonlinear.

It takes 27 mn to get the decision function (the computer performance is
10.3 gigaflops). The regularization parameters C' is set up in order to get 19
examples which are misclassified (19 states of the viability kernel are considered
as not belonging to the viability kernel and all the states of the complementary
of the viability kernel are well classified), and to get 1482 support vectors.

It means that to know if a state belongs to the viability kernel, it is enough
to compute the equation 28 with n = 1482. The results is immediate with a
modern computer.

6.5 Results

According to the feeling of the driver, the maneuvers 1, 2 and 3 are compatibles
with calm driving but not the maneuver 4.

During the maneuver, the instant when the driver is turning the wheel is
considered.

These four situations are modeled by the states given in the table 2 for the
maneuvers at 60 km/h and table 3 for those corresponding to 80 km/h. The
interpretation of this table is the following.

e The first three columns : z, y, 6 are the Cartesian and orientation coor-
dinates.

e The difference between the two states of the same speed is, mainly, the
steering angle £.

e The last column is the value of the decision function which classes a state
according to the equation 28. The sign of the value indicates if the state
belongs or does not belong to the viability kernel.

According to this last information, the maneuvers 1,2,3 are detected as viable
by the algorithm but not the maneuver 4. These results are coherent with the
driver’s feeling.

As expected, it means that the tolerance to an inappropriate control in the
steering angle is more important at a low speed than at a higher speed. It implies
that the frontiers of the viability kernel is nearer to the nominal trajectory at
high speed than at lower speed.
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7 CONCLUSION - PERSPECTIVE

T Y 0 a B 0 1% d()
m) | m) | ) | ed) | o) | D | ()|
viable | 74.9 | -1.7 | -0.14 0 | -0.017 | -0.10 60 0| 24E-6
viable | 74.9 | -1.7 | -0.14 0 0.01 | -0.10 60 0 4E-8

Rl =2

Table 2: Comparison of two states at 60 km/h

x y 0 «@ B 0 V
(m) | (m) | (rd) | (rd) | (rd) | (%) | (B | (

2J3 =2
s
)

viable 749 | -1.7 | -0.14 | 0.01 | -0.018 | -0.13 80 0 | 1.5E-6

not viable | 74.9 | -1.7 | -0.14 | 0.01 0.01 | -0.13 80 0| -7E-8

Table 3: Comparison of two states at 80 km/h

This first investigation of the viability kernel shows that the study of the
shape of the viability kernel is fruitful for analysing the road-driver-vehicle sys-
tem. Critical states belongs to parts of the viability kernel which are “narrow”
in a geometrical sense to the boundary. Viability theory replaces analysis of dif-
ferential equation by analysis of a set. It replaces differential equations analysis
by geometry analysis.

In this example, the value of the decision function d(.) ranks the situation
in a way coherent with our intuition. This suggests that this function can be
analyzed as a distance to the frontiers of the viability kernel so as a ranking
function. Thus, this function could be used to warn gradually the driver.

This algorithm can be implemented in roadside system camera. In this case,
the dynamic model has to be simplified because the system can not access to the
vehicle parameters, different viability kernels have to be computed according to
weather conditions and viability kernels have to evolve with the road in order
to take into account the road polishing.

It can also be implemented directly on the vehicle. In this case, the dynamic
model can be richer by using all available information on CAN-bus. However,
as the available grip between the tyre and the road cannot be known accurately
by classical embedded measurement ([14]), this model cannot be very accurate.

The most efficient solution is to mix the two systems. The car updates its
viability kernel thanks to information delivered by road systems.

7 Conclusion - Perspective

A viability kernel has been built for a road-car-driver system. This set includes
trajectories compatible with a calm driving style. The system is modelled as a
classical two-wheels model in a cornering maneuver including braking. A deci-
sion function is build by using the Support Vector Machine (SVM) technique.
This decision function indicates if a state of the vehicle belongs or not to the
viability kernel. The calculation of the viability kernel and the construction
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of the decision function are done before to drive. During driving, the decision
function verify if the state of the vehicle still belongs to the viability kernel.
This operation consumes little computing time and can be computed on board.
Experimental tests were carried out to prove the applicability of the proposed
method.

It is the first time that the viability theory is applied to vehicle dynamics
with road safety concern. This was possible through the evolution of compu-
tation power and recent progresses in classification techniques. Development
of computation with Graphics Processing Units will make applications of this
theory easier.

Beyond this immediate application, viability theory provides a new point of
view on road safety: the issue is not to calculate optimal or robust controls but
it is to know if theses controls exist, without calculating them in real time.

Perspectives are multiple. The decision function is used in a binary mode
but it could also be analyzed as a distance to the frontier of the viability kernel
and, thus, helps to deliver gradually warnings to the driver. The number of
driving strategy to maintain the car on the road can be computed, this defines
a system robustness. The most promising issue is the anatomy of the viability
kernel. The shape of the viability kernel would define the critical states.
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