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Kinematics of the most efficient cilium

Christophe Eloy∗ and Eric Lauga†
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9500 Gilman Drive, La Jolla CA 92093-0411, USA

(Dated: October 15, 2018)

In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although cilia have
a remarkably conserved internal molecular structure, experimental observations report very diverse
kinematics. To address this diversity, we determine numerically the kinematics and energetics of the
most efficient cilium. Specifically, we compute the time-periodic deformation of a wall-bound elastic
filament leading to transport of a surrounding fluid at minimum energetic cost, where the cost is
taken to be the positive work done by all internal molecular motors. The optimal kinematics are
found to strongly depend on the cilium bending rigidity through a single dimensionless number, the
Sperm number, and closely resemble the two-stroke ciliary beating pattern observed experimentally.

PACS numbers: 46.70.Hg, 47.15.G-, 87.16.Qp, 87.16.A-

Cilia are slender filaments, typically a few microns in
length, used by eukaryotic cells to transport or sense flows
[1, 2]. Familiar examples include those densely packed on
the surface of Paramecia enabling locomotion [1], cilia
covering our airways and helping expel mucus towards
the pharynx [3], or those responsible of the left-right sym-
metry breaking during embryonic development [4].

The cilium internal structure has been highly con-
served throughout evolution. It generally consists of a
central pair of microtubules surrounded by nine micro-
tubule doublets, forming the so-called ‘9+2’ structure [5].
The deformation of the cilium is achieved by the action
of ATP-fueled protein motors (dynein) able to generate
internal moments from the relative sliding of adjacent
microtubule doublets. Yet, the mechanisms that regu-
late dynein activity and thus ciliary deformation are not
well understood [6].

The beating cycle of a cilium typically consists of two
phases (Fig. 1, left): an effective stroke aimed at gener-
ating flow and during which the cilium is almost straight
while moving in a plane normal to the cell surface, fol-
lowed by a recovery stroke during which the cilium re-
turns to its initial position by exhibiting large curvatures
and possibly moving out of the normal plane. Past exper-
imental works have shown that cilia from different cells
can exhibit qualitatively different kinematics [1]. How-
ever, the parameters, physical or biological, that select
or constrain these kinematics are still unknown.

In this Letter, we address this open question by com-
puting the optimal kinematics of an elastic cilium at-
tached to a wall, i.e. the time-varying deformation that
minimizes the energetic cost for a given transport of the
surrounding fluid. Recent work focused on the optimal
deformation of flagellated cells [9] and cilia [10] by mini-
mizing the energy lost to viscous dissipation in the fluid.
Here we argue that one needs to rigorously consider the
internal structure of the cilia and measure the energetic
costs as the sum of the positive works done by the in-
ternal molecular moments, similarly to current models of

muscle energetics [11]. This modeling approach leads to
optimal ciliary kinematics displaying the experimentally-
observed two-stroke cycle and strongly dependent on the
cilium bending rigidity.

The cilium is modeled as an inextensible elastic fila-
ment of length L and radius a, clamped normally into
the plane Oxy (Fig. 1). The filament centerline is de-
scribed by the vector r(s, t), where s is the curvilinear
coordinate, and the material frame (d1,d2,d3) describes
the local orientation of the filament such that

d′i = Ω× di, ḋi = ω × di, for i = 1 · · · 3, (1)

where primes and dots note differentiation with respect
to s and t respectively, Ω is the Darboux vector [12, 13],
and ω the angular velocity.

The balance of forces and moments on a cross-section
are expressed by the Kirchhoff equations for a rod [13]

T′ − F = 0, M′ + d3 ×T + q = 0, (2)

where T and M are the internal tension and elastic mo-
ment respectively, q is the internally applied moment per
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FIG. 1. (color online) Typical two-dimensional (a) and three-
dimensional (b,c) cilium kinematics as observed for Pleuro-
brachia [7] and Mytilus edulis [8] respectively. Sketch of the
coordinates (d) and of the forces and moments that apply on
a filament element ds (e).
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unit length, and −F is the drag per unit length (the
opposite of the force F exerted by the filament on the
surrounding fluid). The internal moment q models the
discrete distribution of forces generated by the dynein
arms. Since these forces can only induce sliding of ad-
jacent microtubule doublets, the energy needed to pro-
duce torsion is of order L/a larger than that necessary
to produce bending [14]. In the slender limit, a/L � 1,
relevant to biology we can thus assume that there is no
twist and no tangential component of the internal mo-
ment, Ω · d3 = q · d3 = 0.

The Hookean constitutive relation relates the elastic
moment M to the Darboux vector Ω through a linear
relation. In the absence of torsion and for an axisym-
metric filament it simplifies to M = BΩ = B d3 × d′3,
with B the bending rigidity. Combining this constitu-
tive relation and Eq. (2), the internal moment q can be
expressed as a function of d3 and F alone

q = B d′′3 × d3 +

∫ L

s

F(ξ)dξ. (3)

Assuming the cilium kinematics known, we need to
evaluate the hydrodynamic forces F in order to fully de-
termine the internal moment q. Since cilia are few mi-
crons long, their Reynolds number is small and the sur-
rounding flow follows the Stokes equations. In this limit,
F(s) represents a distribution of stokeslets, which are the
Green functions (point forces) of the Stokes equations.

Taking advantage of the small filament aspect ratio,
we use slender-body theory [15, 16], which allows to re-
late F(s) to the instantaneous distribution of velocities,
ṙ(s), along the cilium centerline. To take into account
the presence of the no-slip wall to which the cilium is an-
chored, slender-body theory is supplemented with Blake’s
system of hydrodynamic images [17] allowing to write

ṙ(s) = LRFT · F + LSBT(F) + Limage(F), (4)

where LRFT is the local linear operator of so-called
resistive-force theory [2] given by LRFT = (1+d3d3)/ξ⊥,
with 1 the 3×3 identity matrix, ξ⊥ = 4πµ/ ln(L/a), and
µ the dynamic viscosity of the fluid. The linear integral
operators LSBT and Limage, which are of order ln(L/a)
smaller, account for the cilium–cilium and cilium–wall
hydrodynamic interactions. Their full expressions can
be found in Refs. [15] and [17]. Numerically, Eq. (4) is
regularized by using Legendre polynomials to diagonalize
the singular part of LSBT [16]. Once this regularization
is performed, the discretization and inversion of Eq. (4)
is straightforward. The resulting computational imple-
mentation of Eq. (4) is correct to order O(a/L).

Without loss of generality, the net flow transported by
the cilium is assumed to occur in the x-direction. This
transport is quantified by the flow rate, Q, across the
Oyz half-plane (Fig. 1), which is equal, by virtue of in-
compressibility, to the flow rate trough any parallel half-

plane, and can thus be evaluated in the far field for conve-
nience [10]. Far from the filament, the flow is dominated
by the contribution of the stokeslets along the cilium,
F(s), and their images, which consist of stokeslets, force
dipoles, and source dipoles [17]. Combined together,
these singularities are equivalent at leading order to a
symmetric combination of two force dipoles located in
O, known as a stresslet [18], leading to a flow rate given
by

Q =
1

πµ
〈
∫ L

0

Fxrz ds〉, (5)

where brackets denote time-averaging.
The power, P , expended internally to transport flow is

equal to the power consumed by the internal moments,
q, where only the positive works are accounted for [11]

P = 〈
∫ L

0

max (0,q · ω) ds〉. (6)

Distinguishing between positive and negative work means
that the dynein arms cannot harvest energy, which breaks
the conservative nature of elastic energy. It results that
the mean power spent by the internal moment is larger

than the power given to the fluid, i.e. P ≥ 〈
∫ L

0
F · ṙ ds〉.

From the definition of the flow rate, Q, and the mean
power, P , a dimensionless efficiency can be constructed
similarly to the one proposed in Ref. [10] as

ξ = Q2µ2/(P ξ⊥L
3). (7)

With this definition, the transport efficiency, ξ, does not
depend on the beat angular frequency, ω, nor on the
aspect ratio at first order, since the flow rate scales as
Q ∼ ωL3ξ⊥/µ and the power as P ∼ ξ⊥ω2L3.

Dimensional analysis shows that the problem is en-
tirely governed by two dimensionless numbers. The first
is the aspect ratio of the cilium, L/a. The cilia cov-
ering the body of Paramecium have L ≈ 12µm and
a ≈ 0.12µm, so we will assume L/a = 100. Note that the
aspect ratio appearing only logarithmically in the prob-
lem through Eq. (4), its influence is essentially negligible.
The second dimensionless number is the Sperm number,
defined as

Sp = L (ωξ⊥/B)
1/4

, (8)
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FIG. 2. (color online) Two-dimensional optimal ciliary mo-
tions for Sp = 2 (a) and Sp = 4 (b). The stroboscopic views
show the cilium every 1/32th of period.
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FIG. 3. (color online) Three-dimensional optimal ciliary motions for Sp = 1 (a), Sp = 2 (b), and Sp = 4 (c).

which measures the ratio between the cilium length and
the elasto-viscous penetration length. The kinematics
of optimal ciliary motion depends strongly on the value
of Sp. For Paramecium, the angular frequency is ω ≈
200 rad s−1 [1], and with a bending rigidity estimated to
be B = 25 pNµm2 [19], one obtains Sp ≈ 4.6 in water.
Some cilia are shorter, such as the nodal cilia involved
in embryonic development with L ≈ 2.5µm for mice [20]
and L ≈ 5µm for humans [4], corresponding to Sp ≈ 1
and Sp ≈ 2 respectively. Other cilia can be much longer,
reaching hundreds of microns and thus Sp > 100, such
as the cilium of Pleurobrachia reproduced in Fig. 1(a).
In this Letter, we will focus on the range 1 ≤ Sp ≤
7, corresponding approximately to cilia of lengths 2.5 .
L . 18µm, for which the most drastic changes appear in
the optimal kinematics.

For given values of both L/a and Sp, the cilium kine-
matics maximizing the pumping efficiency, ξ, is computed
numerically. The elastic filament is first discretized as an
assembly of ns discrete rods connected by springs [21],
and the stokeslet distribution is evaluated nt times per
cycle [22]. The filament kinematics is parametrized by
imposing the curvatures at Ns points along the filament
centerline, Nt times per period. The curvatures on the
ns × nt points are then interpolated with a cubic spline
from those Ns × Nt points. Our results are obtained
with Ns = Nt = 6, giving 36 and 72 degrees of freedom
in two and three dimensions, and the optimal kinemat-
ics are computed using a sequential programming (SQP)
algorithm. Our numerical approach is validated by com-
paring with the results of Ref. [10] obtained with a bead
model and an energetic measure of the dissipation in
the fluid only. The transport efficiency in Ref. [10] is
ξ = 0.35%, corresponding here to large values of Sp and
comparing well with our optimum for Sp = 7, ξ = 0.33%.

The optimal two-dimensional kinematics are displayed
in Fig. 2 for Sp = 2 and 4. We see that our optimization
approach, which rigorously quantifies the internal work
expended by the molecular motors, leads to kinematics
with the experimentally-observed two-stroke cycle: an ef-
fective stroke during which the filament is rotating almost
rigidly around its anchor point, and a recovery stroke ex-
hibiting large curvatures. For small values of Sp (small,
or stiff, cilia), the curvature is essentially always of the

same sign (Fig. 2a), whereas for larger values of Sp (long,
or flexible, cilia), curvatures are larger and occasionally
change sign (Fig. 2b). In order to minimize the back
flow, Eq. (5), during the recovery stroke, the trajectory
has to be as close to the wall as possible, and in order to
achieve such a trajectory, large curvatures with high en-
ergetic costs are necessary; the resulting optimum is thus
a balance, tuned by the value of Sp, between distance to
the wall and curvature.

The optimal three-dimensional ciliary kinematics have
also been determined. The results are illustrated in Fig. 3
for Sp = 1, 2 and 4. For small values of Sp, the cilium is
rotating around an axis inclined by an angle of approx-
imately 45 degrees with respect to the surface normal
(Fig. 3a). This optimal motion is similar to the observed
trajectories of nodal cilia [4]. For larger values of Sp,
the optimal cilium kinematics breaks the x → −x sym-
metry [23], and, as in two-dimensions, the motion can
be decomposed into an effective stroke in the vertical
plane and a recovery stroke with large curvatures. During
the recovery stroke, the filament takes advantage of the
third dimension to achieve a trajectory closer to the wall,
and therefore more efficient than in the two-dimensional
case. These three-dimensional optimal kinematics repro-
duce the experimental observations of real cilia motions,
as can be seen by comparing the kinematics of Mytilus
edulis (Fig. 1b and c) with Fig. 3c, for instance.

The influence of the value of Sp on the optimal pump-
ing efficiency is illustrated in Fig. 4, both for two and
three-dimensional motions. As expected, deformation in
three dimensions is more efficient for all Sp since the num-
ber of degrees of freedom is larger, although the two cases
converge to similar efficiencies for large Sp. In both cases,
the efficiency is a monotonically increasing function of the
Sperm number: increasing Sp is equivalent to reducing
the bending rigidity and thus allows larger curvatures for
a lower energetic cost [24]. In fact, the mean square cur-
vature of the motion appears to be almost an exponential
function of Sp in the range studied (inset of Fig. 4). Un-
less an artificial dissipative term is introduced, one thus
expects the problem to become mathematically ill-posed
in the limit of large Sp, which is equivalent to considering
only the energy dissipated in the fluid [10].

As discussed above, we assumed here that the active in-
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FIG. 4. (color online) Optimal pumping efficiency, ξ, as a
function of Sp, for two (2D) and three-dimensional (3D) cil-
ium kinematics. The inset show the variation of the mean
square curvature for the optimal kinematics (semilog scale).

ternal moments cannot produce torsion. But, even when
torsion is not present, the filament kinematics can give
the illusion of twist since its extremity rotates as shown
in Fig. 5. This is a classical result of differential geometry
[12, 13] and it could explain why some studies reported
the presence of twist on the cilia of Paramecium [25].

In summary, we have proposed in this Letter that, in
order to derive the appropriate efficiency of cilia-driven
fluid transport, the detailed internal structure of cilia has
to be considered, and energetic costs have to be calcu-
lated as the sum of the positive works done by the inter-
nal moments. Using this approach, we have developed a
numerical model that allows to compute the kinematics of
a wall-bound elastic cilium transporting the surrounding
fluid at minimum energetic cost. The optimal motions
of the cilium have been found to strongly depend on its
bending rigidity through a single dimensionless param-
eter, Sp. These optimal kinematics were found to dis-
play the experimentally-observed two-stroke cycle, both
in two and three dimensions. Although we have focused
our study on the case of a single filament, cilia in biology
are generally densely packed on surfaces, and as such are
strongly influenced by hydrodynamical interactions with
their neighbors. These interactions are an intriguing av-
enue for future work: they could affect flow transport and

y
z

x

FIG. 5. (color online) Illusion of twist for Sp=2. The three-
dimensional kinematics is plotted as if the filament was a rib-
bon to emphasize the orientation of d1.

be responsible for the different cilium velocities observed
during effective and recovery strokes [10].
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