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COMMENTARY
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sForschungszentrum Jülich, Institute of Bio- and Geosciences-2: Plant Sciences, 52425 Juelich, Germany
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Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical

support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil

environment. Therefore, understanding the development and architecture of roots holds potential for the manipulation of root

traits to improve the productivity and sustainability of agricultural systems and to better understand and manage natural

ecosystems. While lateral root development is a traceable process along the primary root and different stages can be found

along this longitudinal axis of time and development, root system architecture is complex and difficult to quantify. Here, we

comment on assays to describe lateral root phenotypes and propose ways to move forward regarding the description of root

system architecture, also considering crops and the environment.

Root system architecture is a key determi-

nant of nutrient and water use efficiency

and describes, on a macro scale, the organi-

zation of the primary root and root- and stem-

derived branches where they are present in

monocots and dicots (Hochholdinger et al.,

2004; De Smet et al., 2006; Hochholdinger

and Zimmermann, 2008; Péret et al., 2009;

Coudert et al., 2010). Overall root architecture

of dicots, such as Arabidopsis thaliana, and

monocots, such as maize (Zeamays) and rice

(Oryza sativa), differs. The dependence on the

1Address correspondence to Ive.De_Smet@nottingham.
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embryonically derived system of a primary

root and its lateral roots is a feature typical of

dicots (taproot system). Perennial dicot spe-

cies, for example, Brassica, usually have a

broadly similar root system in terms of

development and morphological layout to

Arabidopsis, though their comparatively

longer life cycles usually result in a larger

and denser root system. In maize and rice,

the postembryonic shoot-borne root sys-

tem with many different types of root

branches builds the majority of the root

system (fibrous root system). On a micro

scale, root system architecture includes

root hairs that increase the surface area

(Gilroy and Jones, 2000; Tominaga-Wada

et al., 2011). In addition, adaptive root

structures, such as cluster roots (Neumann

and Martinoia, 2002; Lambers et al., 2006),

nitrogen-fixing nodules (Crespi and Frugier,

2008; Oldroyd and Downie, 2008), and

mycorrhizae (Bonfante and Requena,

2011; Smith and Smith, 2011), can improve

water and nutrient uptake by the plant root

system. Here, we will focus on lateral roots.

In the past, various approaches have

been used for lateral root phenotyping,

ranging from total numbers of (emerged)

lateral roots, (emerged) lateral root density,

lateral root index, etc. (Dubrovsky et al.,

2009; Dubrovsky and Forde, 2011).

Dubrovsky and Forde (2011) suggested

a set of methods to analyze lateral root

development quantitatively in Arabidopsis.

While Dubrovsky and Forde (2011) offer

useful points for consideration to reduce

mistakes describing root branching pheno-

types, their solution is restricted in scope to

Arabidopsis grown on agar. In addition,

notwithstanding their parameters can have

value for in-depth analyses of Arabidopsis

root architecture, these approaches should

not become the sole standard in phenotyp-

ing root branching. Also, with the growing

importance of studying root system archi-

tecture in crops, including cereals, we re-

quire a wider portfolio of assays to address

different aspects of root systems. With

respect to (cereal) crop species, there are

other features, such as volume, surface

area, length distribution, etc., that are

straightforward to measure and can be

taken into account (Iyer-Pascuzzi et al.,

2010). Here, we further highlight novel and

original approaches that move from two- to

three-dimensional (2D to 3D) image analyses,

and we phrase the importance for wider

adoption of imaging approaches capturing

the dynamic nature of roots, such as root

branching kinetics and interactions with the

environment. Moreover, we stress the future

need to look at lateral root development in

more ecologically and agronomically realistic

contexts, such as when grown in soil or even

under field conditions. All these aspects are

important for both small-scale and high-

throughput approaches, with the latter also

being tackled in several phenotyping facilities.

WHAT MEASUREMENTS CAN WE USE?

Simple measurements of lateral root density

(lateral root primordia and/or lateral roots per

unit of total primary root length or of

branching zone) remain useful statistics

when interpreted appropriately and should

be sufficient to characterize root branching

phenotypes in the first instance. In addition,

the Arabidopsis model system can be used

to gain further insight into the developmental

basis for an altered number of emerged

lateral roots in given mutant backgrounds,

and the total number and distribution of

stages of lateral root primordia can be

determined in wild-type versus mutant roots

(Swarup et al., 2008). Nevertheless, such

analyses are commonly performed in a static

way (i.e., only taking one time point into

account). While single time point assays can

provide informative answers, the age of the

plant is important as emergence of lateral

roots varies considerably with time as

suggested by the variable densities reported

(Dubrovsky and Forde, 2011). InArabidopsis,

lateral root primordia emerge at ;7 d after

germination, soon after the first pairs of

leaves are visible as they represent the

source of auxin to promote root outgrowth

(Bhalerao et al., 2002). Hence, small delays

in (leaf) development can provoke major

temporal differences in lateral root density

that disappear in older plants. In addition,

a naturally heterogenous environment af-

fects root system architecture at a specific

point in time and space. As such, the root

system also reflects previous local environ-

mental situations (Füllner et al., 2011).

Therefore, we should be mindful that time

is an important parameter when considering

development of primordia and root systems.

In addition, the importance of events

occurring before the stage I primordia are

visible has lately become more apparent in

Arabidopsis (De Smet et al., 2007; Moreno-

Risueno et al., 2010). In this respect, the

production of prebranch sites and founder

cells are features that could also be taken

into account when describing lateral root

phenotypes. In Arabidopsis, this can be

addressed using available markers, such as

pDR5:LUCIFERASE (Moreno-Risueno et al.,

2010), pDR5:b-glucuronidase (De Smet

et al., 2007), pDR5rev:green fluorescent

protein (Dubrovsky et al., 2008), and pGA-

TA23:nuclear localization signal:green fluo-

rescent protein (De Rybel et al., 2010).

Besides how many lateral roots are being

produced, it is also important to determine

how fast they grow and how they are

positioned along the primary root axis.

As current approaches neglect the fact

that lateral root density changesasa function

of the rate of root growth (Dubrovsky and

Forde, 2011) and to avoid drawing incorrect

conclusions based on variation in lateral

root densities at one time point, we need

to monitor the dynamics of lateral root

development. To zoom in on a potential

alteration of the process of lateral develop-

ment and/or emergence, focused, reliable,

and reproducible quantitative phenotyping

based on manually curved roots (J-hooks)

(Laskowski et al., 2008) or the gravistimula-

tion of lateral roots in a well-defined zone

where the root apex has been reorientating

its growth toward the new gravity vector are

useful approaches (Lucas et al., 2008;

Guyomarc’h et al., 2012). In the latter

approach, subsequent stages of lateral root

development occur at regular time points

following gravistimulation, making this an

ideal system to record specific deviations

from the normal lateral root organogenesis

process and for analyzing the timing of gene

expression (De Smet et al., 2010).

WHICH GROWTH MEDIA AND

CONDITIONS TO STUDY ROOTS?

To study roots, we need ways to culture

and observe them in the lab. There is

16 The Plant Cell
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a large diversity of growth media reported

in the literature, and Dubrovsky and Forde

(2011) highlighted that this as a serious

limitation to the robustness and repeatabil-

ity of results across laboratories. However,

when significant differences are reported

on lateral root densities, and both mutants

and the wild type were properly compared

on the same medium, there should not be

a problem interpreting the data. In many

cases, the medium has little interaction

with root responses to experimental treat-

ments, and many mutants conserve their

phenotypes across a range of environmen-

tal conditions. It is difficult to imagine how

the scientific community could benefit from

a standardization of growth media that

would hinder our understanding of root

plasticity. Especially since growth condi-

tions are quite different between labs

(temperature, light intensity, photoperiod,

humidity, etc.) and since standardizing

media would not be sufficient to create

homogenous conditions. However, as also

suggested by Dubrovsky and Forde (2011),

a greater level of detail about growth

conditions employed in a research article

would certainly aid attempts to replicate

experiments.

Adaptation of root system architecture to

variable environments is highly plastic, and

exploring the diversity of these develop-

mental adaptations is one of our key

challenges for the future. Root develop-

mental strategies strongly depend on both

local concentrations of nutrients as well as

on the nutrient status of the whole plant

(Gojon et al., 2009) and on soil tempera-

tures (Füllner et al., 2011). We believe that

the scientific community might not neces-

sarily profit from the general use of one

single growth medium, given that sub-

stantial progress has been realized using

different media and different growth con-

ditions, instead of one standardized me-

dium. We cannot understand roots without

knowing how they adapt to their environ-

ment. Experimental studies must therefore

expose roots to heterogeneous physical or

chemical environments. Split root systems

(Remans et al., 2006; Girin et al., 2010;

Ruffel et al., 2011) or artificial granular

media (Bengough et al., 2010) are exam-

ples of systems available to understand the

effects of environments on root develop-

ment. However, ensuring concentrations of

nutrients in growth media are within the

levels recorded in soil would help to guaran-

tee that root responses observed are phys-

iologically relevant.

HOW TO IMAGE ROOT SYSTEMS?

The 2D agar-based culture of Arabidopsis

discussed by Dubrovsky and Forde (2011)

is an appealing simple solution to obtain

descriptions of the root system at low

cost and high throughput. In this respect,

aspects of root system phenotypes (root

elongation, root angular spread, numbers

of root axes, etc.) measured for crop

seedlings in simplified 2D systems have

been shown to be closely correlated with

root properties in 3D and in 2D for mature

plants (Liao et al., 2001; Manschadi et al.,

2006; Hargreaves et al., 2009).

Nevertheless, several other valuable

methods have been developed for describ-

ing root architecture of crop species in 2D

and 3D. These include growth on moist-

ened germination paper rolls or pouches,

sand rhizotrons, rhizoboxes, in compost

followed by washing, soil columns and gel-

based systems where phenotypic effects

can be imaged using flatbed scanners,

digital cameras, lasers, or even x-ray

computed tomography (CT) (Hetz et al.,

1996; Whiting et al., 2000; Bengough et al.,

2004; Fang et al., 2009; French et al., 2009;

Gregory et al., 2009; Hammond et al., 2009;

Iyer-Pascuzzi et al., 2010; Trachsel et al.,

2010; Tracy et al., 2010, 2011; Chapman

et al., 2011; Lobet et al., 2011; Lucas et al.,

2011). Magnetic resonance imaging (for

noninvasive analysis of root structures) and

positron emission tomography (for analysis

of carbon transport and accumulation) can

be combined to study the dynamics of

structure-function relationships of roots in

real soils in a noninvasive manner (Jahnke

et al., 2009). In all these techniques,

a compromise must be made between

the disturbance required to allow observa-

tions and the resolution and throughput

provided by the imaging device. To obtain

relevant high-throughput phenotyping

data, new (automated) methods and com-

binations are still required to provide more

natural and nondestructive environmental

conditions (Nagel et al., 2009; Zhu et al.,

2011).

Rice root system architecture can be

imaged in gel columns in 3D using optical

projection tomography or laser scanning

(Fang et al., 2009; Iyer-Pascuzzi et al.,

2010). For plants grown in soil, x-ray CT

techniques and magnetic resonance imag-

ing (Heeraman et al., 1997; Nagel et al.,

2009; Tracy et al., 2010; Lucas et al., 2011;

Zhu et al., 2011) have recently increased our

capabilities to visualize root system archi-

tecture in situ nondestructively. For exam-

ple, the x-ray CT technique can be used to

study root architectures under varying nutri-

ent, moisture, temperature, and soil density

conditions in a physiologically relevant way

over time. Drawbacks of the system, such

as imaging time, imaging area, and a 3D

image reconstruction approach, are being

overcome with improvements in instrumen-

tation (scan time and image quality) and

development of new software (Mairhofer

et al., 2011; Mooney et al., 2011).

At present, there are various methods for

imaging root system architecture as de-

scribed above, and each approach has its

own merit. A transition from 2D to 3D is

essential to fully grasp how root system

architecture colonizes its environment, but

this involves a large increase in expense

and data analysis that needs to be taken

into account.

ROOT SYSTEM ARCHITECTURE IN

THE SOIL

Some biological questions can be suffi-

ciently addressed using agar-based ap-

proaches. However, with the importance of

the root system contributing to a new green

revolution (Lynch, 2007; Den Herder et al.,

2010), we should not neglect the key

ecological and agronomical aspects.

The study of root architecture has always

been compromised by the inherent difficul-

ties in studying a system that necessarily

operates in an opaque belowground envi-

ronment. Some approaches cover Petri

dishes with foil, cloth, or wavelength selec-

tive filters; the latter allows infrared imaging
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of root growth (Wells et al., 2012). However,

the majority of the root phenotyping assays

at present are plate based and expose the

roots to light, implying artificial conditions in

any case. Nevertheless, this has allowed

substantial progress over the years. How-

ever, depending on the biological question,

we need to validate any apparent differ-

ences on the level of lateral root density, root

angle, etc., by studying root system pheno-

types not just in soil, but across a range of

varying soil types in terms of texture,

structure, and organic matter.

Root architecture is influenced by many

soil properties, including mechanical

strength and dry bulk density of the soil,

the presence and connectivity of air and

water-filled pores, soil pH and temperature,

and a variety of nutrient and biotic in-

teraction factors that cannot be easily

reproduced in highly artificial growth sys-

tems. Mechanical impedance in particular

is a major physical limitation to root growth

that is very difficult to simulate using a gel

system, even for the roots of rice (Clark

et al., 1998).

Extracting an entire root system from

soil, while maintaining its integrity and

avoiding damage to the finer elements of

the root system, is an almost impossible

challenge. Some promising results have

been generated via “shovelomics,” a semi-

quantitative method of excavating, wash-

ing, and phenotyping roots, but these have

focused mainly on crown root systems

(Trachsel et al., 2010; Lynch, 2011). In

addition, there are conventional soil coring

and underground observation chambers

(Neill, 1992; LeCain et al., 2006). As

mentioned above, this can be downscaled

using x-ray CT, although the low-through-

put and sample size:resolution trade-off

remain a constraint (Mooney et al., 2011).

Less extensively, magnetic resonance im-

aging has been used in a similar way to

study root architecture in situ, as has

neutron tomography (Heeraman et al.,

1997). In all these approaches, however,

cost, effort, the limited throughput, and

accessibility (e.g., limited availability of

synchrotron beam time for neutron tomog-

raphy) are still major drawbacks. However,

recent technical developments promise

increased throughput in the near future.

USING MATHEMATICAL SIMULATION

AND MODELING

Despite recent advances in imaging, there

are still many processes that cannot be

observed experimentally. For these reasons,

lateral root research is making increasing

use of simulation and mathematical models

to understand theway roots function (Lynch,

2007; Laskowski et al., 2008; Lucas et al.,

2008). Simple models are useful tools to

interpret experiments. Models can test and

validate biological hypotheses, and models

can be inverted to determine the hidden

parameters of a system (Dupuy et al., 2010).

Models can also integrate complex environ-

mental and developmental variables, in-

cluding, for example, response to water

and nutrient supply (Dunbabin et al., 2002;

Draye et al., 2010), various phosphorus

concentrations (Fang et al., 2009), root

adaptation to low nitrogen soil under carbon

fluxmodifications (Brun et al., 2010), and the

formation of root cortical aerenchyma in

response to soil nutrient status (Postma and

Lynch, 2011). Software packages are also

available to facilitate the (re)construction of

root systems, such as SimRoot (Lynch et al.,

1997). Recent progress in elucidating the

biological, chemical, and physical pro-

cesses affecting root growth in soil allows

models to be constructed that integrate

fundamental regulatory mechanisms into

powerful mathematical frameworks incor-

porating both variability and plasticity (de

Dorlodot et al., 2007; Draye et al., 2010).

Taken together, these tools will help un-

derstanding the system and knowledge

gaps and/or capture and predict the rele-

vant properties of a root system.

CONCLUSION

We agree with Dubrovsky and Forde (2011)

that the use of standardized definitions and

standard protocols can help to compare

data in the scientific community. However,

we also think it is important to avoid

uniform rules and growth conditions that

may be unnecessarily restrictive. To in-

vestigate root branching, we should take

advantage of the variation that provides

unexpected insights. In addition, the value

of a screening platform is completely

dependent on the trait of interest, and as

such, there is no single ideal platform for all

root characteristics. Using several ap-

proaches to uncover the hidden half of

plants is the best way to move forward.

These approaches, as described here and

by Dubrovsky and Forde (2011), will, when

put together, balance out the weaknesses

any single approach has.
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