Local Generic Position for Root Isolation of Zero-dimensional Triangular Polynomial Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Local Generic Position for Root Isolation of Zero-dimensional Triangular Polynomial Systems

Jia Li
  • Fonction : Auteur
  • PersonId : 989099
Jinsan Cheng
  • Fonction : Auteur
  • PersonId : 935347
Elias Tsigaridas

Résumé

We present an algorithm based on local generic position (LGP) to isolate the complex or real roots and their multiplicities of a zero-dimensional triangular polynomial system. The Boolean complexity of the algorithm for computing the real roots is single exponential: $\tilde{\mathcal {O}}_B(N^{n^2})$, where $N=\max\{d,\tau\}$, $d$ and $\tau$, is the degree and the maximum coefficient bitsize of the polynomials, respectively, and $n$ is the number of variables.
Fichier principal
Vignette du fichier
lct-lgp.pdf (387.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00776212 , version 1 (15-01-2013)

Identifiants

Citer

Jia Li, Jinsan Cheng, Elias Tsigaridas. Local Generic Position for Root Isolation of Zero-dimensional Triangular Polynomial Systems. CASC 2012 - 14th International Workshop on Computer Algebra in Scientific Computing, Sep 2012, Maribor, Slovenia. pp.186-197, ⟨10.1007/978-3-642-32973-9_16⟩. ⟨hal-00776212⟩
218 Consultations
166 Téléchargements

Altmetric

Partager

More