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Abstract—In this paper, we propose a geometric positioning
method for hybrid wireless networks, based on a set mem-
bership method. Three common types of radio observables
are considered for the position estimation: range, difference of
ranges and received power. This paper details how to build
geometric constraints from observables, and how to merge them
to estimate the position. Given a realistic scenario, Monte Carlo
simulation shows that the performance of the proposed method
in terms of root mean squared error and cumulative density
functions outperforms that of a numerically optimized maximum
likelihood.

Index Terms—Localization, set membership method, interval
analysis, hybrid wireless networks, range, difference of ranges,
received power, maximum Likelihood.

I. INTRODUCTION

Recently, the number of available radio access techniques

(RATs) on a single terminal has drastically increased and

thus simplified hybrid positioning. In the same time, the

emergence of mechanic sensors embedded in mobile devices

has provided a new source of exploitable information. One

challenge for positioning applications is to properly merge all

those information. In this situation, the standard algorithms

based on least square or maximization of a likelihood function

usually used to perform the position estimation have two major

drawbacks: They are not convenient for using both radio and

non-radio observables, and their linearization process makes

difficult to approach non convex regions. This last limitation is

especially an issue in positioning problems where non convex

regions are often encountered. To cope with this problem,

algorithms based on a geometric approach as set-membership

and interval analysis have recently brought a solution [1].

Contrary to classical algebraic methods, position estimation

based on geometric method don’t return a single position

estimate but a set of intervals which contain the sought

position. Recently used for addressing the problem of outdoor

positioning, the geometrical approach has allowed to merge

both GNSS observables and inertial sensors [2]. The achieved

positioning accuracy and the limited computation complexity

have demonstrated the great interest of the method. As well,

those geometric methods have advantageously show their

performance for positioning in wireless sensor networks using

range observables [3] or received power observables [4].

Previous examples show that geometric positioning algo-

rithms have always been envisaged with a single type of radio

observable where a non-radio information can be added. To

the best of our knowledge, this is the first attempt to apply a

geometric method for hybrid positioning.

In this paper, the proposed geometric positioning algorithm

for hybrid wireless networks is presented. The proposed

algorithm allows to include the three most common radio

observables: range, difference of ranges and observed power.

The positioning accuracy is evaluated using Monte Carlo

simulation and shows that the proposed method outperforms

numerically optimized ML functions, for a given realistic

scenario.

II. ASSUMED SCENARIO

The hybrid scenario of interest is described in Fig. 1. The

blind node estimates its position β with the help of anchors

providing three types of radio observables. The anchors at

positions {AP } provide received power observations {P},

the anchors at positions {AD} provide difference of ranges

observations {∆} and the anchors at positions {AR} provide

range observations {r}. These three types of anchors are drawn

on the edges of three different squares, thus : {AP } ∈ HP ,

{AD} ∈ HD, {AR} ∈ HR with HR ⊂ HD ⊂ HP . The blind

node is assumed to search its position in HR.

Fig. 1: A blind node at position β receives range observations {r}
from anchors at positions {AR}, difference of ranges observations
{∆} from anchors at positions {AD} and received power observa-
tions {P} from anchors at positions {AP }.

III. CONSTRAINTS DESCRIPTION

The proposed geometric algorithm resolves the positioning

problem by finding the region where all constraints are satis-

fied. In the following, a constraint designates both a simple

mathematical expression which bounds a finite or infinite

region of space, and its geometric representation. Note also

that a constraint can be obtained from observables from very

different nature such as a layout of a building [5], inertial



motion data [2], or radio observables. In the following only

radio observables are considered. Three types of constraint are

built: the range constraint, the difference of ranges constraint

and the power constraint.

A. Range Constraint

A range constraint is defined from a range observation r

evaluated between an anchor at position AR and the blind

node at position β as such:

r = ‖AR − β‖+ δr, (1)

where δr is the error in the range estimate. Given a probability

model for δr, it is possible to determine a confidence interval

for the range estimate r which yields a confidence region

shaped as an annulus in two dimensions (2D) or a shell in

three dimensions (3D), with center AR.

B. Difference of Ranges Constraint

Given a difference of ranges ∆ from anchors at position

AD and AD′ to the blind node at position β, a difference of

range constraint can be expressed as:

∆ = ‖AD − β‖ − ‖AD′ − β‖+ δ∆, (2)

where δ∆ is the error in the difference of ranges estimate.

Given a probability model for δ∆, it is possible to determine

a confidence interval for ∆ which yields a confidence region

contained between two hyperbolas in 2D or two hyperboloids

in 3D with their common focal point D̄:

D̄ =

{

D if∆ > 0

D′ if∆ < 0
(3)

C. Power Constraint

Building spatial constraints requires to formalize mathemat-

ically a distance information. Hence, to build the power con-

straint we propose to model the log received power observation

according to the standard path loss model :

P = P0 − 10np log10(d), (4)

where P0 is the power received at 1 meter and np is the path

loss exponent. Thus, according to [6], the distance can be

estimated as:

d = exp(M − S2) + δP (5)

with δP the error in distance estimate, and M = log(10)(P0−P )
10np

and S = − log(10)σX

10np
, where σ2

X is the variance of the

received power observation perturbation. Once this distance

is obtained and given a probability model for δP it is possible

to determine a confidence interval for the distance d which

yields a confidence region shaped as an annulus in 2D or a

shell in 3D with center AP . Practically, the log received power

information can be obtained from the received signal strength

indicators.

D. Confidence Interval Determination

Due to the error in the observations, the constraint is

associated to a limited region of the space. The extension of

this region is proportional to the confidence interval chosen

for the probability models of the considered observation.

Practically, the probability model chosen for δr, δ∆ and δP
assumed to be zero mean Gaussian with σ2

r , σ2
∆ and σ2

P their

variances respectively. Thus, we can build a constraint interval

[I], and in particular, [Ir], [I∆] [IP ], the constraint interval of

the range, of the difference of ranges constraint and of the

power constraint respectively:

[Ir] = [r − γσr, r + γσr] (6)

[I∆] = [∆− γσ∆,∆+ γσ∆] (7)

[IP ] = [d− γσP , d+ γσP ] (8)

(9)

with γ, an adjustment factor. Without prior information we

first set γ = 3 to ensure a 99% confidence interval for all the

constraints.

IV. GEOMETRIC ALGORITHM DESCRIPTION

Table I summarizes the 5 steps of the geometric algorithm.

The detailed operation of this algorithm is presented step by

step in this Section.

Table I: The Proposed Geometric Method: Algorithm Description

1) Build the constraints (Fig. 2),

2) Box the constraints (Fig. 3),

3) Merge the constraints to obtain a merged box (Fig. 4),

4) Approximate the merged box with a Kd-Tree algo-

rithm to obtain an approximated region (Fig. 5),

5) Estimate the position from the approximated region

(Fig. 6).

A. Build the Constraints

Fig. 2: The three constraints are built thanks to three different types
of radio observables.

Fig. 2 shows the three types of radio constraints built from

the radio observables as described in Section III.



B. Box the Constraints

Fig. 3: The three constraints are boxed.

Then, for the ease of computation, the constraints need to

be boxed as shown in Fig. 3. Boxing a constraint consists

in projecting the constraint interval on each axis in order to

obtain a box B defined as [7]:

B = [I] = [I1]× [I2]× . . .× [Ik], (10)

with [Ik] = projk([I]),

where k is the axis dimension, set at k = 2 for a 2D problem,

and projk([I]) returns the projection of the interval [I] on axis

k. In order to find the smallest constraints intersection Bm, the

adjustment factor value γ of each constraint is reduced until

minγ(Bm). Algorithm 1 describes the procedure.

Algorithm 1 iterative interval reduction

γ=3: to ensure a 99% confidence interval

Bm =
N
⋂

n

Bn : compute the box intersection of all con-

straints

while Bm 6= ∅ do

γ = γ − α : reducing γ and the confidence interval with

α ∈ R
+

Bms = Bm : save the previous value of Bm

Bm =

N
⋂

n

Bn : compute the box intersection of all

constraints

end while

Bm = Bms : keep the smallest non void intersection of

constraints.

C. Merge the Constraints

Once all constraint boxes have been obtained, they are

merged as illustrated in Fig. 4. This merging step allows to

obtain a box which, if one assumes the absence of biases,

necessarily encloses the blind node position. Practically, this

merged box Bm is obtained by finding the intersection of all

the boxed constraints Bn of constraint n:

Bm =

N
⋂

n

Bn (11)

where N is the total number of constraints.

Fig. 4: The three boxed constraints are merged. It results in a merged
box which contains the true blind node position.

D. Approximate the Merged Box

(a) First quadtree iter-
ation on merged box,

(b) Upper left box is
solely remained,

(c) Zoom on second
quadtree iteration. Doted
boxes are removed,

(d) Third quadtree itera-
tion,

(e) Final approximated
region is composed of a
cluster of boxes.

Fig. 5: The quadtree approximation allows to enclose the blind node
position.

Once the smallest merged box has been obtained, the blind

node position needs to be approximated as shown in Fig. 5.

For that purpose, this merged box is approximated by a

recursive Kd-Tree algorithm (a.k.a. quadtree algorithm in 2D,

or octree algorithm in 3D). The Kd-Tree algorithm puts a

single box at the input and returns 2n sets of boxes {B},

where n is the space dimension. Practically, this partitioning

method consists in splitting all intervals of a box into two

complementary intervals for each dimension of the box. Each

box returned by the Kd-Tree algorithm is intersected with each

boxed constraint. If the intersection is not void, the box is

candidate for a new Kd-Tree iteration, otherwise the box is

removed. This whole process is repeated until at least µ sets

of enclosed boxes {Be} are obtained, whereupon the process

is stopped. Algorithm 2 describes the complete procedure of

the implemented Kd-Tree algorithm.



Algorithm 2 interval approximation by boxes

{Be} = {Bm} : initialization with the merged box Bm

while card({B}) <= µ do

for b in {B} do

{Q} = KdTree(b) : for each box b from the merged

box Bm, apply a Kd-Tree

for q in {Q} do

if q ∩ ∀Bn then

{B} = {B} + q : the box q obtained from the

Kd-Tree is remained if q intersect all constraints

boxes

end if

end for

end for

end while

(a) Example of position esti-
mation in the approximated
region

(b) Screenshot from demonstrator of
the approximated region, the true po-
sition (green ball) and estimated po-
sition (black ball)

Fig. 6: The position is estimated by computing the center of mass of
all boxes.

E. Estimate the Position

Fig. 6 illustrates the position estimation step. It consists

in estimating the true position from the center of mass of

the set of enclosing boxes {Be}. Fig. 6b is a screenshot

of an estimated blind node position using our demonstrator.

Note that in case where the set of enclosing boxes {Be} are

disjoints, the position estimate would take advantage of an

advanced estimation procedure based on hypothesis testing

decision as described in [8].

V. RESULTS AND DISCUSSIONS

A. Simulation setup

The performance of the proposed geometric method is

compared to a ML approximation and to the Cramer-Rao

Table II: Parameters settings

Parameter Value

HP [−1, 1]× [−1, 1] km2

HD [−100, 100]× [−100, 100] m2

HR [−10, 10]× [−10, 10] m2

σr 2.97 m
σ∆ 3.55 m
σX 4.34 dB
np 2.64
P0 −40 dB

lower bound (CRLB) via Monte Carlo simulation based on

the realistic scenario described in Section II. The ML ap-

proximation uses a Nelder-Mead simplex optimizer initialized

with a weighted least square solution (ML-WLS) [9]. Mul-

tidimensional likelihood functions corresponding to the given

scenarios are described in [10]. As mentioned in Section III-D,

the perturbation of the observation of the range constraint, the

difference of range constraint and the power constraint are

supposed zero mean Gaussian, with their respective variances

σ2
r , σ2

∆ and σ2
P . The parameter settings in Table II have been

chosen compliant with the WHERE2 measurement campaign

[11]. Finally, the last version of the entire framework used

to perform those simulations can be obtained on the github

website https://github.com/niamiot/RGPA.

B. Comparison of Performances
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Fig. 7: CDFs of positioning error using the proposed geometric
method, ML-WLS, and CRLB applied on hybrid positioning tech-
nique.

We compare the performances of the three algorithms in

terms of cumulative density function (CDF), root mean square

error (RMSE) and computation speed for the hybrid cases for

four hybrid configurations:

• Powers + difference of ranges, using 4 received power

and 3 difference of ranges observables (Fig. 7a),

• Powers + ranges, using 4 received power and 4 ranges

observables (Fig. 7b),

• Ranges + difference of ranges, using 4 ranges and 3

difference of ranges observables (Fig. 7c),

• Full hybrid, using 4 received power, 4 ranges and 3

difference of ranges observables (Fig. 7d).

The non-hybrid cases using a unique type of observation

(only range, difference of ranges, or received power) are not

considered here. From the empirical CDF shown in Fig. 7 (a-

d) it appears that the proposed geometric method prevails on



Table III: RMSE vs Method

Hybrid mode Geometric ML-WLS CRLB
(m) (m) (m)

Power + diff. of ranges 2.46 2.91 2.23
Power + ranges 2.51 2.81 1.78
Ranges + diff. of ranges 1.68 1.93 0.96
Full Hybrid 1.65 1.92 0.95

ML-WLS. This increased accuracy of positioning is especially

significant on Fig.7a and Fig.7b. Those two cases using

received power observables allow a 1 m gain for all blind

nodes. Other cases based only on time based observables

as shown in Fig. 7c, or using all type of observables as

shown in Fig. 7d, also show a better accuracy in terms of

position estimation. Those results are confirmed by the RMSE

values shown in Table III. The most significant improvement

is observed for the hybrid scheme mixing powers and ranges.

In average, the proposed geometric method ensures a 30 cm
increase of positioning accuracy for blind nodes drawn in a

20× 20 m2 room.

Obviously these improvements come out at the cost of

extra computation complexity. In spite of providing a complete

complexity study, Fig. 8 shows some preliminary results based

on an average of computation speed for each method. On

those histograms, it can be observed that the proposed method

is generally slower than the ML-WLS excepted when the

received power observables and range observables are used.

It also shows that the difference of ranges constraint is the

worst in term of speed. A further investigation would be

to improve the speed of the difference of ranges constraint.

Moreover, the comparison between both methods is unfair,

because the ML-WLS numerical optimization is based on

an optimized compiled Fortran code, whereas the proposed

geometric method is based on an interpreted code in Python.

Considering that difference of implementation, a geometrical

method as fast as the ML-WLS could be feasible. Moreover,

the geometrical method is highly parallel and involves only

elementary operations and could probably be very efficiently

implemented in dedicated hardware.
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Fig. 8: Speed computation comparison between the proposed geo-
metric method and a ML-WLS using a numerical optimizer.

VI. CONCLUSION

This paper has presented and evaluated a geometrical

method for the positioning problem in case of hybrid observ-

ables. We have considered three cases of radio observables:

range, difference of ranges and received power. Those radio

observables are used to build constraints, which are merged to

obtain a position estimate. Monte Carlo simulation have been

computed in a realistic hybrid scenario. This simulation shows

that the performance of the proposed geometrical method in

terms of RMSE and CDF globally outperforms numerically

optimized ML functions. In average, a 30 cm improvement

of position accuracy has been observed for a blind node drawn

randomly in a 20 × 20 m2 room. As well, compared to

the Nelder-Mead simplex optimized ML, the method shows

promising results in term of computation speed, considering

the current stage of its development. Our current work consists

in the development of a dynamic and cooperative version of

the algorithm. We also investigate the impact of additional

non-radio constraints on the position estimation.
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