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HIGHER ORDER SCHRÖDINGER EQUATIONS

RÉMI CARLES AND EMMANUEL MOULAY

Abstract. The purpose of this paper is to provide higher order Schrödinger
equations from a finite expansion approach. These equations converge toward
the semi-relativistic equation for particles whose norm of their velocity vector
is below c

√

2
and are able to take into account some relativistic effects with

a certain accuracy in a sense that we define. So, it is possible to take into
account some relativistic effects by using Schrödinger form equations, even if
they cannot be considered as relativistic wave equations.

1. Introduction

In quantummechanics, the Schrödinger equation is a fundamental non-relativistic
quantum equation that describes how the wave-function of a physical system evolves
over time. It was published in 1926 by Erwin Schrödinger [25]. This equation has
been widely studied [1]. Then, the Klein-Gordon equation, developed by Oskar
Klein and Walter Gordon [16, 9], was the first relativistic quantum equation. Unfor-
tunately, it cannot be straightforwardly interpreted as a Schrödinger type equation
for a quantum state, because it is of second order in time. It is possible to transform
the Klein-Gordon equation into a Schrödinger type equation of two coupled differ-
ential equations of first order in time [10], but it is not a couple of equations of the
wave-function. It was the Dirac equation, formulated by Paul Dirac [6], that gave
the fundamental relativistic equation of first order in time. It is a four dimensional
matrix partial differential equation.

In this paper, we provide Schrödinger form equations of first order in time coming
from the Einstein’s mass-energy equivalence and from a finite expansion approach,
giving rise to higher order Schrödinger equations. Contrary to the Dirac equation,
the proposed equations have a domain of validity related with a certain accuracy
in a sense that we define and cannot be used for all particles. They are valid for
norms of the velocity vector up to c√

2
with some constraints on the accuracy. Each

higher order Schrödinger equation is a Schrödinger form equation and a unique
equation, contrary to the Dirac equation which is a four dimensional matrix equa-
tion, having a higher order Schrödinger operator [5, 14]. It is not a relativistic
wave equation because it is not a Lorentz covariant equation and it cannot con-
sider particles with velocity close to the speed of light. However, the higher order
Schrödinger equations converge toward the semi-relativistic equation and are able
to take into account some relativistic effects in their domain of validity and their
accuracy can be tuned. They are interesting in some practical cases, when the so-
lutions can be defined as for instance with an additive bounded or linear potential,
due to the simplicity of the Schrödinger form equation. The proposed equations are
an interpolation between Schrödinger and semi-relativistic equations, valid in the
lower half of the scale between non-relativistic and ultra-relativistic extremes. The
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semi-relativistic equation is studied in [12, 13] by using optimized Schrödinger oper-
ator inequalities and concavity properties. Moreover, the second order Schrödinger
equation is mentioned in [19] and used in [15] for solitons with an additive nonlinear
term. In this paper, the problem of the square root of the semi-relativistic equation
is approximated by using a finite expansion leading to higher order Schrödinger
equations.

The paper is organized as follows. After some notations and definitions given in
Section 2, higher order Schrödinger equations are given and studied in Section 3.
Finally, a conclusion is addressed in Section 4.

2. Backgrounds

2.1. The Schrödinger and Klein-Gordon equations. The Einstein’s mass-
energy equivalence is the concept that the mass of a body is a measure of its energy
content and is given by the formula [8]

(2.1) E = γm · c2

where E is the total internal energy of the body,

γ =
1√

1− v2

c2

is the Lorentz factor with v2 = ‖~v‖2 the square norm of the velocity vector ~v of the
body, m the rest mass of the body and c the speed of light in the vacuum.

Let us recall that the non-relativistic equation for the energy of a particle is
given by

(2.2) E = V (~r, t) +
p2

2m

where V (~r, t) is its potential energy and p = γm~v its momentum. By using the
correspondence principle [2]

(2.3) E ↔ i~
∂

∂t
p ↔ −i~ ∂

∂~x
= −i~~∇

we obtain the Schrödinger equation for a particle

(2.4) i~
∂ψ(~r, t)

∂t
= V (~r, t)ψ(~r, t)− ~

2

2m
∆ψ(~r, t)

moving in a potential V (~r, t), where ∆ := ∇2 is the Laplace operator and ~ = h
2π

the reduced Planck constant. The wavefunction ψ : R3 ×R+ → C describes the
evolution in space and time of the quantum state. In the following ψ stands for
ψ(~r, t). A Schrödinger type equation is an equation

(2.5) i~
∂ψ(~r, t)

∂t
= Hψ(~r, t)

where H is the Hamiltonian of the system. If H = H(∆), then the equation (2.4)
is said to be a Schrödinger form equation.

By using the equality

(2.6) γ2 =
γ2v2

c2
+ 1
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and the Einstein’s mass-energy equivalence (2.1), we obtain

(2.7) E = γmc2 = mc2

√
γ2v2

c2
+ 1.

Then we have the following relation

(2.8) E2 = m2c4 + p2c2.

With the correspondence principle (2.3), we obtain the Klein-Gordon equation

(2.9) − ~
2 ∂

2ψ

∂t2
= m2c4 ψ − ~

2c2∆ψ.

As noted by Dirac, equation (2.9) is of second order in time contrary to the
Schrödinger equation (2.4). So, it cannot be interpreted as a Schrödinger type
equation for a quantum state.

2.2. Mathematical tools. To solve the Schrödinger equation in the absence of an
external potential, it is convenient to use the Fourier transform. It turns out that
the same approach can be used to solve the higher order Schrödinger equations
(3.9). For the content of this subsection, we refer for instance to [24].

Notation. For x ∈ Rd (with d an integer not necessarily equal to 3), and α =
(α1, . . . , αd) ∈ Nd, we denote by

xα = xα1

1 xα2

2 . . . xαd

d , |x| =
√
x21 + x22 + · · ·+ x2d.

For β ∈ Nd and f ∈ C∞(Rd;C), we denote by

∂βf =
∂β1

∂x
β1

1

∂β2

∂x
β2

2

. . .
∂βd

∂x
βd

d

f.

Introduce the Schwartz space

S(Rd) =

{
f ∈ C∞(Rd;C) | sup

x∈Rd

∣∣xα∂βf(x)
∣∣ <∞, ∀α, β ∈ Nd

}
.

For f ∈ S(Rd), the (semi-classical) Fourier transform of f , denoted by f̂ or F(f),
is defined by

f̂(p) =
1

(2π~)d/2

∫

x∈Rd

e−ix·p/~f(x)dx

where p is the Fourier variable. Then the function Rd ∋ p 7→ f̂(p) belongs to
S(Rd). The main properties that we will use concerning the Fourier transform are
listed in the following proposition. In particular, the normalizing factor (2π)−d/2

is chosen so that the Fourier Inversion Formula and the Plancherel formula below
are simple.

Proposition 2.1. Let f ∈ S(Rd).

• For any j ∈ {1, . . . , d},

(2.10) F
(
∂f

∂xj

)
(p) = i

pj

~
f̂(p).

• For any j ∈ {1, . . . , d},

(2.11)
∂f̂

∂pj
(p) = − i

~
F (xjf) (p).
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Fourier Inversion Formula: We have

(2.12) f(x) =
1

(2π~)d/2

∫

p∈Rd

e+ix·p/~f̂(p)dp.

The Fourier transform is uniquely continuously extended to the space of tempered
distributions, its dual space S ′(Rd). The properties (2.10) and (2.11) remain valid
in the sense of distributions, in S ′(Rd).
Plancherel formula: The Fourier transform is unitary on L2(Rd),

(2.13) ‖u‖L2(Rd) = ‖û‖L2(Rd), ∀u ∈ L2(Rd).

Recall that L2(Rd) is the space of square integrable functions, that is of mea-
surable functions u such that

∫

x∈Rd

|u(x)|2dx <∞.

For s ∈ R, we define the Sobolev space Hs(Rd) by

(2.14) Hs(Rd) =

{
f ∈ L2(Rd) | ‖f‖2Hs :=

∫

p∈Rd

(
1 + |p|2

)s ∣∣∣f̂(p)
∣∣∣
2

dp <∞
}
.

If moreover s is a non-negative integer, then the Sobolev space Hs(Rd) can be
characterized as follows:

Hs(Rd) =
{
f ∈ L2(Rd) | ∂αf ∈ L2(Rd), |α| 6 s

}
.

3. The higher order Schrödinger equations

3.1. The semi-relativistic equation. In view of (2.8), we have

(3.1) E =
√
p2c2 +m2c4,

and then it leads to

(3.2) E = mc2

√
p2

m2c2
+ 1.

Equation (3.1) leads, with the correspondence principle (2.3), to the following semi-
relativistic equation

(3.3) i~
∂

∂t
ψ =

√
−c2~2∆+m2c4 ψ,

with the non local pseudo-differential operator
√
−c2~2∆+m2c4 studied in [18,

Chapter 7]; see also [4] for related studies. The semi-relativistic equation (3.3) with
an arbitrary coordinate-dependent static interaction potential V (~r) = V has been
studied in [12, 13, 21]. This wave equation describes the bound states of spin-zero
particles (scalar bosons) as well as the spin-averaged spectra of the bound states of
fermions [23, 22]. With an additive nonlinear part F (ψ), equation (3.3) is know as
the Hartree equation [17].

If we use the Taylor series expansion of (3.2) given by

(3.4) E = mc2

(
1 +

∞∑

n=1

(−1)n+1α(n)
p2n

m2nc2n

)
,
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and the correspondence principle (2.3), we obtain the following equation

(3.5) i~
∂ψ

∂t
= mc2 ψ −

∞∑

n=1

α(n)~2n

m2n−1c2n−2
∆nψ,

where

(3.6) α(n) =
(2n− 2)!

n!(n− 1)!22n−1
.

This decomposition is given for instance in [11, 20].

Proposition 3.1. Equations (3.4) and (3.5) hold for p
2

m2c2 < 1, which is equivalent

to 2v2 < c2.

Proof. p2

m2c2 < 1 is equivalent to γ2v2

c2 < 1. By using the definition of γ, it is also

equivalent to 1

1− v2

c2

v2

c2 < 1, which leads to the result. �

It means that equation (3.5) is equivalent to equation (3.3) for a norm ||~v|| of
the studied particle satisfying

(3.7) ||~v|| < c√
2
≈ 211 985 280m.s−1.

Equation (3.5) has an infinite number of terms. Thus, an infinite number of opera-
tors are required to specify the evolution of the wave-function ψ and it also leads to
a highly non local theory [27]. Nevertheless, Equation (3.5) is a Schrödinger form
equation with a restricted domain of validity.

3.2. The higher order Schrödinger equations as a finite expansion. The
main idea of what follows is to keep only the necessary terms of equation (3.5) for
a certain accuracy in a sense that we define, by using a finite expansion.

Let us consider the following approximation

(3.8) EN = mc2

(
1 +

N∑

n=1

(−1)n+1α(n)
p2n

m2nc2n

)

of the energy (3.4) with N > 1. By using the correspondence principle (2.3), we
obtain the following higher order Schrödinger equations

(3.9) i~
∂ψN

∂t
= mc2 ψN −

N∑

n=1

α(n)~2n

m2n−1c2n−2
∆nψN .

Equation (3.9) has the advantages of a Schrödinger form equation without the
drawbacks of equation (3.5).

3.3. Convergence of the energy approximation. The error eN = E − EN

between the full expression of the energy (3.4) and the approximation (3.8) is given
by

(3.10) eN = mc2

( ∞∑

n=N+1

(−1)n+1α(n)
p2n

m2nc2n

)
.

For p2 < m2c2, eN corresponds to the remainder of an alternate series, hence

(3.11) |eN | 6 mc2α(N + 1)
p2N+2

m2N+2c2N+2
= mc2α(N + 1)

(
1

c2

v2 − 1

)N+1

.
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With the assumption that 2v2 < c2, we have 0 < 1
c2

v2
−1

< 1. As 0 < mc2 < 1 for

particles, we infer |eN | 6 α(N + 1), hence we have the following result:

Proposition 3.2. We have

(3.12) lim
N→∞

|eN | = 0

and more precisely, Stirling formula yields

|eN | = O
(

1

N3/2

)
as N → ∞.

Let

(3.13) εN := mc2α(N + 1)
p2N+2

m2N+2c2N+2
= mc2α(N + 1)

(
1

c2

v2 − 1

)N+1

.

In the following εN is called the accuracy. This accuracy concerns the energy of
the studied particle and not the solutions ψ and ψN of equations (3.5) and (3.9).
The convergence of the wave functions is studied in Subsection 3.6.

Example 3.3. Let us consider a free particle of mass m. First of all, keep the two
first terms of equation (3.9) (i.e. N = 1). We obtain the following approximate
equation

(3.14) i~
∂ψ1

∂t
= mc2ψ1 −

~
2

2m
∆ψ1.

We recognize the Schrödinger equation (2.4) with an additive term mc2ψ1, where
mc2 is the rest energy of the studied particle. The relation between the semi-
relativistic equation (3.3) and (3.14) had been noticed already in [26]. Suppose
that the particle has a velocity satisfying ||~v|| = c

100 . The accuracy associated with
equation (3.14) is

(3.15) ε1 ≈ 1

8
·m · 9× 1016 · 10−8 ≈ 1.125× 108m.

Then, by using the three first terms of equation (3.9) (i.e. N = 2), we obtain the
following approximate equation

(3.16) i~
∂ψ2

∂t
=
(
mc2 + V

)
ψ2 −

~
2

2m
∆ψ2 −

~
4

8m3c2
∆2ψ2.

The accuracy associated with equation (3.14) is given by

(3.17) ε2 ≈ 1

16
·m · 9× 1016 · 10−12 ≈ 5.625× 103m.

Thus, the result is that by taking into account a supplementary term in equation
(3.9), we increase the accuracy (3.13) of five orders of magnitude for a particle
having a velocity of ||~v|| = c

100 . When the norm of the velocity vector reaches c√
2
,

it is necessary to take into account higher-order terms of equation (3.9) to provide
a sufficient accuracy. Thus, we can tune the accuracy by choosing an accurate
number N of terms in equation (3.9). If the norm of the velocity vector becomes
higher than c√

2
, then equation (3.9) fails to describe correctly the evolution of the

wave-function whatever the higher-order terms added to the equation. The Dirac
equation must be used.
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3.4. Solving a generalized Schrödinger equation. Let G : R+ → R be a
real-valued function, and consider the generalized Schrödinger equation

(3.18) i~
∂ψ

∂t
+G(−~

2∆)ψ = 0; ψ(x, 0) = ψ0(x).

The quantity G(−~
2∆)ψ is defined as a Fourier multiplier:

F
(
G(−~

2∆)ψ
)
(p) = G(|p|2)ψ̂(p).

The most important aspect is that we want to encompass the following three cases:

• Schrödinger equation: G(y) = − 1
2my.

• Semi-relativistic equation (3.3): G(y) = −
√
c2y +m2c4.

• Higher order Schrödinger equations (3.9):

G(y) = −mc2 +
N∑

n=1

α(n)

m2n−1c2n−2
(−y)n.

Applying the Fourier transform to (3.18) with respect to the space variable, we

obtain formally a first order ordinary differential equation in time for ψ̂, in view of
Proposition 2.1:

i~
∂ψ̂

∂t
+G(|p|2)ψ̂ = 0; ψ̂(0, p) = ψ̂0(p).

It is solved explicitly:

(3.19) ψ̂(p, t) = ψ̂0(p)e
−itG(|p|2).

Since G is real-valued, |ψ̂(p, t)| = |ψ̂0(p)|, and we obtain, from Proposition 2.1:

Proposition 3.4. Let s ∈ R and ψ0 ∈ Hs(Rd). Then the Cauchy problem (3.18)
has a unique solution ψ ∈ C(R;Hs(Rd)), denoted by

ψ(t) = e−itG(−~
2∆)ψ0.

It is given by (3.19). Moreover, we have

‖ψ(·, t)‖Hs = ‖ψ0‖Hs , ∀t ∈ R.

In other words, the propagator e−itG(−~
2∆) is unitary on every Sobolev space Hs(Rd).

3.5. Higher order Schrödinger equations with an external potential. Con-
sider now (3.9) in the presence of an external potential. Dropping the index N to
ease notations leads to

(3.20) i~
∂ψ

∂t
= V ψ −

N∑

n=0

α(n)~2n

m2n−1c2n−2
∆nψ; ψ(x, 0) = ψ0(x),

where we use the convention α(0) = −1. The potential V is real-valued. At least
two cases can easily be concerned from the mathematical point of view: when V

is bounded, and when V is linear with respect to the position x. These cases
include for instance finite potential wells, neutrons in free fall in the gravity field
and electrons accelerated by an electric field.
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Bounded potential. By using perturbative arguments (based on Duhamel’s for-
mula), the following result can be proved by using Proposition 3.4.

Proposition 3.5. Suppose that V ∈ L∞(Rd). If ψ0 ∈ L2(Rd), then (3.20) has a
unique solution ψ ∈ C(R;L2(Rd)), and

‖ψ(·, t)‖L2 = ‖ψ0‖L2 ∀t ∈ R.

If in addition for some s ∈ N, ∂αV ∈ L∞(Rd) for all |α| 6 s, and ψ0 ∈ Hs(Rd),
then ψ ∈ C(R;Hs(Rd)).

Linear potential.

Proposition 3.6. Suppose that V is of the form

V (x, t) = E(t) · x = E1(t)x1 + · · ·+ Ed(t)xd,

for E ∈ L∞(R;Rd). If ψ0 ∈ L2(Rd), then (3.20) has a unique solution ψ ∈
C(R;L2(Rd)), and

‖ψ(·, t)‖L2 = ‖ψ0‖L2 ∀t ∈ R.

It is given by its Fourier transform (in space)
(3.21)

ψ̂(p, t) = ψ̂0 (p+ π(t)) exp

(
i

~

N∑

n=0

(−1)nα(n)

m2n−1c2n−2

∫ t

0

|p+ π(t)− π(s)|2n ds
)
,

where π(t) =
∫ t

0 E(τ)dτ .

Sketch of the proof. Taking the Fourier transform in space in (3.20) yields

i~
∂ψ̂

∂t
= E(t) · F (xψ)−

N∑

n=0

α(n)

m2n−1c2n−2
(−|p|2)nψ̂; ψ̂(p, 0) = ψ̂0(p).

Since F (xψ) = i~∇ψ̂, we infer

i~

(
∂

∂t
− E(t) · ∇

)
ψ̂ = −

N∑

n=0

α(n)

m2n−1c2n−2
(−|p|2)nψ̂; ψ̂(p, 0) = ψ̂0(p).

This is an inhomogeneous transport equation, which can be solved by the method of
characteristics: the above equation is treated like an ordinary differential equation

thanks to the change of unknown ψ̂(p, t) = w(p + π(t), t) (the equation for w is of
the form i~∂tw = A(t, p)w), and (3.21) follows. �

Remark 3.7. In the case of the Schrödinger equation, N = 1, and when E does
not depend on time, the Fourier Inversion Formula (2.12) applied to (3.21) leads to
the well-known Avron-Herbst formula (see e.g. [5, Chapter 7]). It was generalized
in the case where E depends on time in [3]. On the other hand, such an explicit
formula does not seem available as soon as N > 2, because (2.12) does not seem so

helpful then: it is easy to compute the Fourier transform of ei|p|
2

(it has the same

form), while the Fourier transform of ei|p|
4

is a special function.

Note the following property, which stems from Proposition 2.1: for s > 0,

F
(
Hs(Rd)

)
=

{
f ∈ L2(Rd) |

∫

x∈Rd

|x|2s|f(x)|2dx <∞
}
.
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For k ∈ N, set

Σk
N = H(2N−1)k(Rd) ∩ F

(
Hs(Rd)

)
.

Then we infer the following result from (3.21).

Corollary 3.8. Let k,N ∈ N, and ψ0 ∈ Σk
N . Suppose that V is of the same form

as in Proposition 3.6. Then (3.20) has a unique solution ψ ∈ C(R; Σk
N ).

The case of the harmonic potential. Suppose that V (x) = |x|2. Taking the Fourier

transform in (3.20), we infer, from Proposition 2.1, that ψ̂ solves

(3.22) i~
∂ψ̂

∂t
= −∆ψ̂ −

N∑

n=0

α(n)

m2n−1c2n−2
(−|p|2)nψ̂; ψ̂(p, 0) = ψ̂0(p),

where now ∆ stands for the Laplacian with respect to the variable p. The above

equation is of the form i~∂tψ̂ = Hψ̂, where

H = −∆−
N∑

n=0

α(n)

m2n−1c2n−2
(−|p|2)n.

In the case N = 2, it becomes, in view of (3.6),

H = −∆+mc2 +
|p|2
2m

− |p|4
8m3c2

.

It is well-known that H is not essentially self-adjoint on C∞
0 (Rd) (see e.g. [7]). The

reason is that classical trajectories may have an infinite speed of propagation, so
there is a lack of uniqueness. Therefore, giving a rigorous meaning to the solution
of (3.20) when V is an harmonic potential seems to be a very delicate issue, which
we do not discuss further into details.

Remark 3.9 (Frequency localization). The issue described above could be avoided

by using a frequency localization, which consists in replacing
√
p2c2 +m2c4 in

(3.1) with
√
p2c21p2<m2c2 +m2c4, where the function 1p2<m2c2 is equal to 1 if

p2 < m2c2, and 0 otherwise. In that case, the Taylor expansion (3.4) is always
converging, thanks to the convergence of the entire series associated to y 7→ √

1 + y.
In the above example related to the harmonic potential, |p| has to be replaced by
|p|1|p|2<m2c2 , and the potential in H becomes bounded: there is no difficulty in
solving the analogue of (3.22). On the other hand, introducing the indicating
function makes the operator F−1(|p|21|p|2<m2c2) non-local, and the benefit of the
Taylor expansion is lost.

3.6. Convergence of the wave function approximation. We now study the
convergence of ψN , solution to (3.9), to ψ solving (3.3), as N tends to infinity.
We emphasize the fact that this study is performed in the absence of an external
potential, V = 0: adapting it to either of the cases dealt with in Subsection 3.5
seems to be rather delicate.

Theorem 3.10. Let ψ0 ∈ L2(Rd). Suppose that ψ̂0 is smooth and compactly

supported, ψ̂0 ∈ C∞
0 (Rd), with

ψ̂0(p) = 0 if
∣∣∣ p
mc

∣∣∣ > 1.
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Suppose that ψ|t=0 = ψN |t=0 = ψ0. Then ψN → ψ as N → ∞, in the following
sense: for all T > 0,

(3.23) sup
t∈[0,T ]

‖ψ(·, t)− ψN (·, t)‖L2(Rd) 6
2T

~
mc2α(N + 1)‖ψ0‖L2 −→

N→∞
0.

Remark 3.11. A more precise rate of convergence is available, in view of the estimate

α(N) = O
(

1

N3/2

)
as N → ∞,

which stems from the expression (3.6) and Stirling formula.

Proof. The functions ψ and ψN solve

i~
∂ψ

∂t
= −G(−~

2∆)ψ, with G(y) = −
√
c2y +m2c4.

i~
∂ψN

∂t
= −GN (−~

2∆)ψN , with GN (y) =

N∑

n=0

α(n)

m2n−1c2n−2
(−y)n.

The difference wN = ψ − ψN solves wN |t=0 = 0 and

i~
∂wN

∂t
= −G(−~

2∆)wN + rN , where rN =
(
GN (−~

2∆)−G(−~
2∆)

)
ψN .

Multiply the above equation by wN , integrate in space, and take the imaginary
part: the term involving G(−~

2∆)wN disappears (because it is real), and we infer

(3.24) ‖wN (t)‖L2 6
2

~

∫ t

0

‖rN (τ)‖L2dτ.

In view of Plancherel formula (2.13), and since G and GN are Fourier multipliers,

‖rN (τ)‖L2 = ‖r̂N(τ)‖L2 =
∥∥∥
(
GN (|p|2)−G(|p|2)

)
ψ̂N (τ)

∥∥∥
L2

.

We note that

GN (|p|2)−G(|p|2) = mc2
∞∑

n=N+1

(−1)nα(n)

( |p|
mc

)2n

.

Note that in view of the assumption on ψ̂0, (3.19) implies that for all τ > 0,

(3.25) ψ̂N (τ, p) = 0 if
∣∣∣ p
mc

∣∣∣ > 1.

Therefore,
(
GN (|p|2)−G(|p|2)

)
ψ̂N (τ) involves an alternate series, whose coeffi-

cients are decreasing, so

∣∣∣
(
GN (|p|2)−G(|p|2)

)
ψ̂N (τ, p)

∣∣∣ 6 mc2α(N + 1)

( |p|
mc

)2N+2 ∣∣∣ψ̂N (τ, p)
∣∣∣

6 mc2α(N + 1)
∣∣∣ψ̂0(p)

∣∣∣ ,

where we have used (3.25) and (3.19) to get the last inequality. The error estimate
(3.23) then follows from (3.24) and the above estimate. �
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It is worth noting that the assumption of Theorem 3.10 is the same condition
as the one in Proposition 3.1, due to the relations between the momentum p and
the Fourier variable p given by the correspondence principle (2.3) and the relation
(2.10). It means that the higher order Schrödinger equations converge toward the
semi-relativistic equation for the particles whose velocity vector satisfies (3.7).

Remark 3.12. Suppose that we have k particles of masses mj evolving such that
their velocities satisfy ‖~vj‖ < c√

2
for j = 1, . . . , k. The previous theory can be

generalized as follows. The approximation of the energy of the system is given by

(3.26) EN =

k∑

j=1

mjc
2

(
1 +

N∑

n=1

(−1)n+1α(n)
p2n
j

m2n
j c2n

)
,

and higher order Schrödinger equations of the system are given by

(3.27) i~
∂ψN

∂t
=

k∑

j=1

(
mjc

2ψN −
N∑

n=1

α(n)~2n

m2n−1
j c2n−2

∆n
j ψN

)
,

where ψN = ψN (~r1, . . . , ~rk, t) with ~rj the position vector associated with the particle
j.

4. Conclusion

This paper provides higher order Schrödinger equations, coming from a finite ex-
pansion approach. The sequence of equations converges toward the semi-relativistic
equation as the truncation index goes to infinity, and is then able to take into ac-
count some relativistic effects in a restricted relativistic domain of validity related to
a desired accuracy. It is an interpolation between Schrödinger and semi-relativistic
equations which takes into account higher-order terms.
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Xlim (UMR-CNRS 6172), Département SIC, Univ. Poitiers - Bât. SP2MI, 11 Bvd
Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

Email address: emmanuel.moulay@univ-poitiers.fr


	1. Introduction
	2. Backgrounds
	2.1. The Schrödinger and Klein-Gordon equations
	2.2. Mathematical tools

	3. The higher order Schrödinger equations
	3.1. The semi-relativistic equation
	3.2. The higher order Schrödinger equations as a finite expansion
	3.3. Convergence of the energy approximation
	3.4. Solving a generalized Schrödinger equation
	3.5. Higher order Schrödinger equations with an external potential
	3.6. Convergence of the wave function approximation

	4. Conclusion
	References

