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Abstract—This paper deals with efficient optimization of cu-

mulant based contrast functions. Such a problem occurs in the
blind source separation framework, where contrast functions are
criteria to be maximized in order to retrieve the sources. More
precisely, we focus on the extraction of one source signal and
our method applies in deflation approaches, where the sources
are extracted one by one.

We propose new methods to maximize the kurtosis contrast
function. These methods are intermediate between a gradient
and an iterative ”fixed-point” optimization of so-called reference
contrasts. They rely on iterative updates of the parameterswhich
monotonically increase the contrast function value: we point out
the strong similarity with the EM (Expectation-Maximizati on)
method and with recent generalizations referred to as MM
(Minimization-Maximization). We also prove the global conver-
gence of the algorithm to a stationary point. Simulations confirm
the convergence of our methods to a separating solution. They
also show experimentally that our methods have a much lower
computational cost than former classical optimization methods.
Finally, simulations suggest that the methods remain validunder
weaker conditions than those required for proving convergence.

Index Terms—contrast function, reference system, quadratic
optimization, higher-order statistics, global convergence

I. I NTRODUCTION

A. Generalities

The general problem of signal restoration has been given
a constant interest in the signal processing literature. In
particular, the source separation problem has received a con-
siderable attention due to its wide range of applications such
as communications, biology, seismology, radar, . . . . In this
contribution, we assume that no information on the mixing
system is used for the separation, but only the observations
may be used: this context is referred to asblind. The problem
of (blind) equalization in digital communications is a tightly
connected one [1]. It is known that such techniques can be
used for throughput increase.

In a multi-input/multi-output (MIMO) convolutive context,
the problem of blind source separation has found interesting
solutions through the optimization of so-called contrast func-
tions [2]. Among the possible approaches, the source signals
can be either separated simultaneously [3]–[6] or extracted

1Copyright (c) 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

one by one by optimizing for each a multi-input/single-output
(MISO) separating criterion. In this paper, we consider the
latter approach, which is often combined with a deflation
procedure to extract all the sources [7]–[9].

Many separation criteria rely on higher-order statistics (e.g.
the kurtosis contrast [8], [9]) or can be linked to higher-
order statistics (e.g. the constant modulus contrast function
[10]). These criteria are known to provide good results. On
the other hand, contrast functions referred to as “reference-
based” have been recently proposed [11], [12]. They are par-
ticularly appealing because the corresponding maximization
problem is quadratic with respect to the searched parameters.
Taking advantage of this quadratic feature, a maximization
algorithm based on singular value decomposition (SVD) has
been proposed [11], [13] and was shown to be significantly
quicker than other maximization algorithms. In the case where
the “reference signal” is close to an actual source, the SVD
based method is very efficient for the extraction of this source.
However, the method generally requires an additional “fixed-
point” like iteration to improve the separation quality [11].
Also, the SVD based optimization is very sensitive to a rank
estimation and thus it is not appropriate to use it within a
deflation procedure. In this context, it should be replaced by
a gradient optimization [14].

In this paper, we propose a new family of algorithms to
maximize a kurtosis based contrast function. All optimization
methods derive from a basic algorithm which is first presented
and whose global convergence to a stationary point is proved.
Then, the necessity of a renormalization step is discussed,
which yields the first algorithm applicable in practice. Finally,
the method is extended by introducing two different number
of iteration parameters. Depending on these parameters, a
trade-off can be adjusted between performance and speed of
the optimization method. The proposed method is inspired
from the gradient optimization of a “reference-based” contrast
function, which has been proposed in [14]. On the other hand,
the gradient optimization of the kurtosis contrast function [8],
[9] has been used for long. Our method is different from both
gradient optimization methods, but it can be interpreted asbe-
ing intermediate between the two: indeed, a “reference-based”
iterative optimization is regularly interrupted and started again
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with the initialization point newly obtained. In this paper, the
main novelties which did not appear in [14], [15] are the
following ones:

• a detailed proof of the global convergence of the opti-
mization algorithms,

• a link with EM (Expectation-Maximization) and MM
(Minimization-Maximization) algorithms, which justifies
the convergence of the “fixed-point” method introduced
in [11],

• the possibility in the new method to adjust two parameters
for improved performance.

Section II describes the considered model and assumptions.
In Section III, the contrast function and the separating method
are given. The ideas on which the optimization method relies
are explained in Section IV whereas the technical details
and the complete proof are relegated to Appendices A and
B. Section IV-B also establishes the connection with other
optimization methods. Section V is devoted to improvements
and practical implementation details: the practical algorithms
(Alg.2) is described in this section. Finally, Section VI presents
simulations results and Section VII concludes the paper.

B. Notations

In the whole paper,n stands for a generic integer (n ∈
Z) and the cumulant of a set of random variables is denoted
Cum {.}. The signals can be complex- or real-valued.

For any jointly stationary signalsz(n) and y(n),
we set C{y} , Cum {y(n), y(n)∗, y(n), y(n)∗} and
Cz{y} , Cum {y(n), y(n)∗, z(n), z(n)∗}. For the
sources, we will adopt also the specific notation
κi , Cum {si(n), si(n)∗, si(n), si(n)∗}. Finally, brackets
{.} will be used as shorthand notations to denote linear time
invariant (LTI) filters and⋆ denotes filter convolution. The
output of any filter will be denoted such as in Equation (1)
in next Section to avoid writing the summation.

II. M ODEL AND ASSUMPTIONS

A. Convolutive mixture

We consider an observedQ-dimensional (Q ∈ N, Q ≥ 2)
discrete-time signal. Itsnth sample is denoted by the column
vectorx(n). Assuming a noise-free linear convolutive model,
the observationx(n) results from a linear time invariant (LTI)
multichannel system described by the input-output relation:

x(n) =
∑

p∈Z

M(p)s(n− p) , {M}s(n). (1)

In the above equation,M(n) represents aQ × N matrix
corresponding to the impulse response of the LTI mixing
system. For simplicity, we will use the shorthand notations
{M} to denote this MIMO LTI filter and{M}s(n) to denote
the above sum. The vector of source signals (orsources) s(n)
is an N -dimensional (N ∈ N

∗) unknown and unobserved
column vector. The objective is to restore the sourcesblindly,
that is from the only use of the observations.

We assume that the LTI mixing system admits a left LTI in-
verse{W} such thaty(n) , {W}x(n) ,

∑
p∈Z

W(p)x(n−

p) corresponds to the sources. In other words, the global sys-
tem{W ⋆M} is the identity up to some possible ambiguities
to be specified next.

More specifically, our approach is an iterative one and
we will focus on the extraction of a single source. The
extraction of all sources can then be performed through a
deflation procedure [8], [16], [17]. In this MISO context, the
considered problem consists in estimating one row of{W}.
The corresponding row is a1×Q LTI vector filter {w}, called
equalizer. Its impulse response isw(n) and the output of the
separation procedure is the scalar signal

y(n) =
∑

p∈Z

w(p)x(n − p). (2)

Ideally, y(n) should restore one of the componentssi(n), i ∈
{1, . . . , N}, of the source vector: in other words, under
successful separation,y(n) should be equal to a scalar filtering
of one of the scalar source signalssi(n), i ∈ {1, . . . , N}. It
is also well-known that the remaining scalar filtering ambi-
guity reduces to a delay and a scalar factor in the case of
i.i.d. sources (see [2], [8], [11] for more details). In order
to obtain tractable expressions, we define the corresponding
1 × N global LTI vector filter {g} by its impulse response
g(n) ,

∑
p∈Z

w(p)M(n− p). Then we have

y(n) =
∑

p∈Z

g(n− p)s(p) , {g}s(n) . (3)

The notations are summed up in Figure 1. Note that in
simulations, the filters{w} and {v} appearing in Figure 1
will be chosen as FIR of lengthD (see Section V-B).

-
y(n)

(1 × 1)
-

(N × 1)

s(n) {M}

mixing

{w}

(1 × Q)

separator

(1 × N)

{g} := {w ⋆ M}

{v}

(1 × Q)

reference

-

(1 × 1)

z(n)

(1 × N)

{t} := {v ⋆ M}

-

-

x(n)

(Q × 1)(Q × N)

Fig. 1. System and notations summary

B. Assumptions on the sources

To be able to carry out the estimation blindly, some assump-
tions about the source signals are required. In this paper, we
will adopt the following assumptions:

A1. For all i, the source sequencesi(n) is stationary, zero-
mean and with unit variance. In addition, the fourth-order
cumulantsκi , Cum {si(n), si(n)∗, si(n), si(n)∗} exist
and are assumed to be nonzero.

A2. The source vector processessi(n), i ∈ {1, . . . , N}
are statistically mutually independent.
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III. SEPARATION METHOD

A. Contrast function

It has been proved in [8], [9] that the criterion
∣∣∣ C{y}

E{|y|2}2

∣∣∣
is a contrast function: this means by definition that when
maximized with respect to the separating filter, this criterion
leads to the separation of one source signal. In this paper,
we propose new methods to maximize this kurtosis contrast
function.

Our approach is tightly related to the concept of “reference-
based” contrast functions [11]. We introduce a so-called “ref-
erence signal” which is the output of a1×Q LTI ”reference
filter” denoted by{v} (see Figure 1). The ”reference filter”
{v} is driven by the observationsx(n). Ideally, the ”reference
filter” should be as close as possible to a separating filter.
Similarly to Equations (2)-(3), we introduce the corresponding
1×N global LTI filter {t} = {v⋆M} and the reference signal
then reads:

z(n) = {t}s(n) =

N∑

i=1

∑

p∈Z

ti(p)si(n− p) or:

z(n) = {v}x(n) =

Q∑

i=1

∑

p∈Z

vi(p)xi(n− p) (4)

In our previous work [11] , we have given the conditions
required by the reference signal to obtain new contrast func-
tions. These conditions are very weak and practically always
satisfied. In our new point of view, the reference signal is artifi-
cially introduced in an algorithm for the purpose of facilitating
the maximization of the kurtosis contrast function. It hence
appears as an efficient way of exploiting the properties of the
criterion to be maximized. This is in contrast to our former
works, where the reference signal could be be interpreted as
a prior knowledge on the source to be extracted. Based on
the latter idea, we have proposed a “fixed-point” algorithm,
where the reference is successively updated by the new source
estimate. We will see how this method re-enters in our general
point of view. In particular, we prove the global convergence
of our algorithm to a stationary point, which implies that
conditions on the reference signal are no longer required. In
passing, we better understand the behavior and properties of
cumulant based contrast functions.

Let us introduce the following criteria:

J (w) =

∣∣∣∣
C{y}

E{|y(n)|2}2

∣∣∣∣
2

and:

I(w,v) =

∣∣∣∣
Cz{y}

E{|y(n)|2}E{|z(n)|2}

∣∣∣∣
2

(5)

The criterionJ is the well-known kurtosis contrast function
[8], [9] whereasI corresponds to so-called “reference con-
trasts” which have been introduced [11]. Obviously, we have
the symmetryI(w,v) = I(v,w) and both criteria are linked
by the relationJ (w) = I(w,w). Note in passing that the
criteria are normalized so as to satisfyI(λw,v) = I(w,v)
andJ (λw) = J (w).

We introduce a gradient operator∇ and partial gradient
operators∇1 (resp.∇2) with respect to the first (resp. second)

argument. More precisely,∇J (w) is the vector composed
of all partial derivatives ofJ (w), whereas∇1I(w,v) (resp.
∇2I(w,v)) is the vector of partial derivatives ofI(w,v) w.r.t.
w (resp.v). It follows from the symmetry ofI and from the
chain rule that:

∇1I(w,v) = ∇2I(v,w) and:

∇J (w) = 2∇1I(w,w) = 2∇2I(w,w) (6)

An algorithm is proposed in the next section, which takes
advantage of the properties ofI andJ in order to efficiently
maximize the kurtosis criterionJ . One should note in passing
that it is equivalent to maximize the square modulus or the
modulus of the criterion. In (5), the square modulus has been
introduced to ensure the differentiability ofI andJ .

B. Optimization algorithm

We now introduce our new algorithm for maximization of
the kurtosis based contrastJ . We first give the basic and
simplest version of the algorithm and give its convergence
properties. Further refinements and practical considerations
will be addressed in Sections IV-A and V.

Algorithm Alg.0
• Initialize v0 and the corresponding reference signal

z0(n) = {v0}x(n).
• For k = 0, 1, 2, . . . , kmax − 1, repeat(M0-U):

(M0) ∗ Setdk = ∇1I(vk,vk),
∗ One-dimensional optimization:

αk = arg maxα I(vk + αdk,vk).

(U) Update:vk+1 ← vk + αkdk.

The proposed algorithm shows strong similarities with a
steepest ascent algorithm. Indeed, according to (6), the algo-
rithm moves from one point to another following the gradient
direction of the criterionJ . The noticeable difference is
that during the one-dimensional optimization, the considered
criterion isI(w,vk) with vk fixed instead ofJ (w). The con-
vergence of the algorithm to a satisfying solution point hence
requires justification. The following assumption is required:

A3. For all i ∈ {1, . . . , N}, the sources processessi(n)
are i.i.d. and the fourth order cumulantsκi have the same
sign for all i ∈ {1, . . . , N}.

Now, we can state the following proposition which is proved
in Appendix A:

Proposition 1: Assume that the sequence(vk)k∈N is ob-
tained according to algorithmAlg.0 with kmax infinite and
that allvk, k ∈ N are contained in a compact set. Then, under
assumptionsA1-A3, any convergent sub-sequence of(vk)k∈N

converges to a pointv∗ such that∇J (v∗) = 0.

C. Comments

Proposition 1 asserts the global convergence of the al-
gorithm to a stationary point of the criterionJ . However,
similarly to the behavior of a steepest ascent algorithm, filters
corresponding to minima of the criterion should never be
obtained. Also, although the algorithm might always converge
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to a saddle-point in theory, such a point is unstable and we
did not observe any convergence to such a point in practice.
It hence follows that, practically, the algorithm yields a filter
v∗ which maximizesJ (v). Since it is known that any local
maximum of the criterion corresponds to a separating filter
[8], it follows that the filters obtained with our algorithm are
separating ones in practice, with only theoretical exceptions.
This justifies the importance of Proposition 1.

The previous result can also be understood from a different
point of view: one can see that at each step, the algorithm
Alg.0 maximizesw 7→ I(w,vk) along a gradient direction.
This can be interpreted as a one-dimensional maximization of
a “reference-based” contrast along the gradient direction. The
proposed algorithm can thus be understood as an intermediate
method lying between the following two methods:

• a gradient ascent on the kurtosisJ (w): the difference is
that a “reference-based” criterion is considered inAlg.0
during each one-dimensional optimization.

• a gradient ascent on a “reference-based” contrastI(w,v)
with fixed “reference”v [14]. In [14] v is kept un-
changed during the whole optimization, whereas here on
the contrary,v is updated after each one-dimensional
optimization.

According to the latter point of view, the idea that the reference
signal may containa priori information on the separator re-
enters, since the original “reference” isv0 and corresponds to
the initialization point of algorithmAlg.0.

Note finally that for many sources, assumptionA3 is valid:
in the context of digital communications in particular, the
cumulants are generally negative and can also often be as-
sumed i.i.d. [18]. Consequently, Proposition 1 generally holds
for digital communication signals. Nevertheless some signals
such as those stemming from a continuous phase modulation
(CPM) may be non i.i.d. [7]. An interesting question thus con-
sists in knowing whether Proposition 1 remains true without
AssumptionA3. This issue will be addressed in simulations in
Section VI, from which it will appear that the answer is likely
to be positive. Another indication that Proposition 1 is likely
to be true without assumptionA3 is provided by the fact that
the different contrast functions (both ”reference-based”and
kurtosis) have been proved in the general context of non i.i.d.
signals with no condition on the signs of the cumulants.

IV. CONVERGENCE ISSUES

This section is concerned with convergence issues of the
proposed algorithms. First, we explain how a renormalization
step should be introduced and we justify the reasons why it
does not change the convergence properties of the algorithm.
Then, the basic ideas underlying the validity ofAlg.0 are dis-
cussed. Finally, a connection with other optimization methods
is made.

A. Renormalization

It is known that the separating property of a separator is
unaffected by a scaling factor, because of the unavoidable
scaling ambiguity in BSS. Therefore, it is common in BSS
to impose the unit-power constraintE{|y(n)|2} = 1. This can

be done by introducing a re-normalizing step in our algorithm,
which yields algorithmAlg.1:

Algorithm Alg.1
• Initialize v0 and the corresponding reference signal

z0(n) = {v0}x(n).
• For k = 0, 1, 2, . . . , kmax − 1, repeat(M0’-U):

(M0’) ∗ Setdk = ∇1I(vk,vk),
∗ One-dimensional optimization:

αk = arg maxα I(vk + αdk,vk).
∗ Set ṽk+1 ← vk + αkdk and renormalize:

ṽk+1 ←
ṽk+1

(E{|{ṽk+1}x(n)|2})1/2

(U) Update:vk+1 ← ṽk+1

It is known that the unit-power constraint is equivalent to
a unit-norm constraint on the separating or reference filter
v. Consequently, the points obtained after renormalizationby
Alg.1 belong to the unit-sphere. In addition, it must be stressed
that for λ 6= 0,

I(λw,v) = I(w,v) and:J (λw) = J (w). (7)

It hence follows that for anyλ 6= 0, the gradient directions at
vk or at λvk are the same and more precisely:

∇1I(λw,v) =
1

λ
∇1I(w,v) and:∇J (λw) =

1

λ
∇J (w).

(8)

Due to the scale invariance properties in Equations (7) and
(8), it follows that the points (i.e. the separators) generated by
algorithmsAlg.0 andAlg.1 correspond to each other up to a
scaling factor. This is illustrated in Figure 2 with a schematic
representation of the successive points generated byAlg.1 and
Alg.0. In this figure, the criterionJ has the same value all
along each line passing through the origin.

It follows from the previous paragraph, that both algorithms
Alg.0 and Alg.1 are theoretically equivalent and both are
convergent according to Proposition 1. However, one can
now understand from Figure 2 that a drift is observed when
performing Alg.0: the power of the separator’s output in-
creases and may diverge unacceptably leading to a numerical
overflow if a great number of iterationskmax is required
by the algorithm. This phenomenon is avoided with the re-
normalizing step ofAlg.1. This is also the reason why we
did not considerAlg.0 in simulations. Finally, it has been
assumed in Proposition 1 that the sequence of points(vk)k∈N

is contained in a compact set. This condition is required
in order to be able to state the convergence result, but it
causes no difficulty in practice since one often considers FIR
separators. In the latter case indeed, introducing a normalizing
step ensures that the compactness assumption of Proposition 1
is satisfied.

B. Validity of algorithmAlg.0 and Alg.1

The complete proof of the convergence ofAlg.0 (and hence
Alg.1) is provided in Appendix A. In this Section, we state
and discuss the main point on which all the results are based.
We systematically consider that the signals satisfy unit-power
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v0 = u0

v1 u1 = ṽ1

v2

ṽ2

u2

v3

ṽ3

u3

Fig. 2. Schematic comparison of the successive points obtained with Alg.0
and Alg.1. For k = 0, 1, 2, 3, uk is generated byAlg.0, ṽk is generated by
Alg.1 before renormalization, andvk is the sequence generated byAlg.1.

constraint and we hence discuss the convergence ofAlg.1.
However, all the properties implicitly apply toAlg.0.

1) Discussion and preliminary results:The results in this
paper mainly rely on the proposition which follows.

Proposition 2: We assume that assumptionA3 and the
constraintsE{|y(n)|2} = E{|z(n)|2} = 1 hold. Then, if
|C{z}| ≤ |Cz{y}|, either one of the following situation holds
(but not both):
(i) |Cz{y}| < |C{y}|
(ii) for all i andk, |gi(p)|2 = |ti(p)|2, wheregi(p) andti(p)

are defined in Equations (3)-(4).
As particular cases, we have the following implications:

|C{z}| ≤ |Cz{y}| ⇒ |Cz{y}| ≤ |C{y}| (9)

|C{z}| < |Cz{y}| ⇒ |Cz{y}| < |C{y}| (10)

The proof of the above result is relegated to Appendix B
since the technical details are not required for a global under-
standing. However, the important ideas can now be understood.
Remind that the ultimate goal is to extract one source and that,
in our contrast function approach, this will be achieved by
maximizing

∣∣∣ C{y}
E{|y|2}2

∣∣∣: due to scaling ambiguity, this amounts

to finding y(n) which maximizes|C{y}| under the constraint
E{|y(n)|2} = 1. The idea is to construct iteratively a signal
sequencey(k)(n), k = 0, 1, . . . of estimates of a source
such that|C{y(k)}| increases and converges to a maximum
value (while keeping the constraintE{|y(k)(n)|2} = 1).
For this purpose, AlgorithmAlg.1 replaces the original cri-
terion |C{y}| by the sequence of criteria|Cz{y}| where z
takes the successive valuesy(k), k = 0, 1, . . .. The novel
criteria are quadratic and can thus be efficiently optimized.
Algorithm Alg.1 finally constructs the sequence such that
|Cy(k−1){y(k)}| > |C{y(k−1)}|. Proposition 2 then asserts
that we have|C{y(k)}| > |Cy(k−1){y(k)}| > |C{y(k−1)}|

and hence we have indeed|C{y(k)}| > |C{y(k−1)}|: the
criterion hence monotonically increases, which is the basis
of our algorithm.

2) Related optimization methods:The algorithmAlg.0 (or
Alg.1) can be seen as iterative estimation algorithm of a source

signal. Starting from an initial ”reference”v0 corresponding
to a rough estimate of one MISO separating filter, it iter-
atively produces a sequence of better estimatesvk for the
separating system. This point of view reveals the similarity
of our method with Expectation-Maximization (EM) or Gen-
eralized Expectation-Maximization (GEM) methods [19]. An
EM algorithm indeed maximizes a likelihood functionL(v)
by producing a set of successive estimatesvk obtained by
iteratively maximizing a so-called Q-function :

vk+1 = arg max
v
Q(v,vk) (11)

In EM methods, the Q-function is obtained by introducing
some hidden data in the model and taking the expectation of
the complete log-likelihood.

In many contexts and specifically in our situation, it is
difficult (or impossible) to identify any hidden variable. For-
tunately, there exist generalizations of EM methods, which,
depending on context, are referred to as Bound Optimization
Algorithms [20], Surrogate Objective Functions [21] or MM
(Maximization-Minimization or Minimization-Maximization)
methods [22], [23]. In contrast to EM methods, MM methods
do not require to identify a complete data set and take advan-
tage of convexity and inequalities satisfied by the objective
function.

The MM (and EM) methods, which are based on (11)
exhibit interesting convergence properties under the condition
that at each step, the Q-function satisfies:

∀v, L(v) ≥ Q(v,vk) and L(vk) = Q(vk,vk) (12)

Such a condition can be proved in the EM context using
Jensen’s inequality. It follows from this condition that:

L(vk+1) ≥ L(vk+1)−Q(vk+1,vk)︸ ︷︷ ︸
≥0

+Q(vk+1,vk)

≥ Q(vk+1,vk)

≥ Q(vk,vk) = L(vk)

where the last inequality follows from (11). Consequently,the
objective criterion monotonically increases, which results in
the convergence of the algorithm.

One can see that algorithmAlg.0 satisfies almost all proper-
ties of the MM maximization methods withL corresponding
to J andQ corresponding toI. However, there remain the
following differences betweenAlg.0 and the MM methods:

• Instead of (11),Alg.0 performs a one-dimensional op-
timization and we are only able to ensure the weaker
condition on vk+1: Q(vk+1,vk) ≥ Q(vk,vk). Such
algorithms are referred to GEM in [19].

• In our method, the inequality (12) holds only forv such
thatQ(v,vk) ≥ Q(vk,vk) (see Equations (9) and (10)).
However, since one maximizesQ(v,vk) with respect
to v, this does not alter the monotonic increase of the
criterion.

V. I MPROVEMENTS AND PRACTICAL IMPLEMENTATION

A. Reference-based contrast functions and reference update

A natural idea in order to improve algorithmAlg.0 or Alg.1
consists in replacing the step(M0) or (M0’) by a more efficient
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operation: for instance, one can replace the optimization along
a line in (M0) by a global optimization. The step(M0) would
then becomevk+1 ← argmaxv I(v,vk). One can see that
this algorithm corresponds to the ”fixed-point” like algorithm
proposed in [11], where the global optimization has been
performed using an SVD decomposition. Alternatively, it can
be seen from (11) that this corresponds to an EM (or MM)
like algorithm. Considering the sensitivity of such an SVD-
based optimization, it has been proposed to use a gradient
like optimization or to use algorithmAlg.1 [14], [15]. In the
following algorithm, we propose to perform a given number
of gradient optimization steps.

Algorithm Alg.2
• Initialize v0 and the corresponding reference signal

z0(n) = {v0}x(n).
• For k = 0, 1, . . . , kmax − 1, set ṽ0 = vk and repeat

(M1’-U):

(M1’) For l = 0, 1, 2, . . . , lmax − 1 repeat(M0’):

(M0’) · Set d̃l = ∇1I(ṽl,vk)
· One-dimensional optimization:

α̃ = arg maxα I(ṽl + αd̃l,vk).
· Set: ṽl+1 ← ṽl + α̃d̃l and renormalize:

ṽl+1 ←
ṽl+1

(E{|{ṽl+1}x(n)|2})1/2

(U) Update:vk+1 ← ṽlmax .

Note that a parameterlmax has been introduced in algorithm
Alg.2 in addition to kmax. Depending on these two param-
eter values,Alg.2 is intermediate between algorithmAlg.1
(lmax = 1) and a ”fixed-point” like algorithm as proposed
in [11] (lmax infinite). In addition, one can see that algorithm
Alg.2 belongs to the class of MM methods as described in
Section IV-B2. It follows thatAlg.2 monotonically increases
the criterion, which justifies its convergence. These arguments
also explain the convergence of the “fixed-point” algorithmin
[11].

B. Implementation

We now describe how the method of algorithmAlg.2 can
be implemented in practice2. We consider FIR separators of
given lengthD. The conditions under which such a separator
exists can be found in [7], [11]. The separating filterw is then
replaced by the following1×QD vector which concatenates
the vectors of the separator impulse response:

w , (w(0),w(1), . . . ,w(D − 1)) (13)

Similarly, we definev , (v(0),v(1), . . . ,v(D − 1)) and the
following QD × 1 column vector:

x(n) ,
(
x(n)T x(n− 1)T . . . x(n−D + 1)T

)T
.
(14)

Now, let R be the covariance matrix ofx(n)

R , E{x(n)x(n)H} (15)

2The Matlab code corresponding to our method is available at:
http://www-public.it-sudparis.eu/∼castella/toolbox/

and letC(v) be the cumulant matrix defined component-wise
by

(C(v))i,j , Cum{xi(n), x∗
j (n), z(n), z∗(n)} (16)

where xi(n), xj(n) are the componentsi and j of x(n)
respectively. Using these notations, it is shown in Appendix
C, that the criterionI reads:

I(w,v) = |Ĩ(w,v)|2 where:

Ĩ(w,v) =
wC(v)wH

(vRvH)(wRwH)
(17)

Then (see Appendix C), the gradient direction∇1I(v,w)
corresponds to the complex gradient vectord = ∂I

∂w∗ given
below:

∂I

∂w∗
=

(
2Ĩ(w,v)

∂Ĩ

∂w

)∗

with: (18)

∂Ĩ

∂w
=

1

vRvH

[
w∗C(v)

wRwH
− (w∗C(v)wH)

w∗R

(wRwH)2

]

(19)

At step (M0’) of algorithm Alg.1 (respectivelyAlg.2), the
vector dk (respectivelyd̃l) is given by the above equations
where v and w are set tow = v = vk (respectively
w = ṽl, v = vk). Because of the renormalization step,
the multiplicative termvRvH is equal to 1 and need not be
computed in the algorithm.

Finally, according to Appendix C, the step-size of the one-
dimensional optimization (that is the value ofαk in Alg.1 or
of α̃ in Alg.2) is a root of a second order polynomiala2α

2 +
a1α + a0. The coefficientsa2, a1, a0 are given in Appendix
in Equations (29), (30), (31), where one should setd = dk,
v = vk andw = vk in Alg.1 (or w = ṽl in Alg.2). Checking
which root yields the greatest value of the criterion yieldsthe
searched step-size.

One can notice that, similarly to “reference-based” contrasts
in [11], I(w,vk) depends quadratically onw. It follows that
the one-dimensional optimization step in algorithmsAlg.1 and
Alg.2 is easier to perform than in a classical gradient ascent
method.

VI. SIMULATIONS

A. Performance of the algorithms

1) Validity and separation quality:
a) Simulation settings:For different number of samples,

N = 3 complex valued i.i.d. QAM4 sources have been gen-
erated taking values in{eıπ/4, e−ıπ/4, e+ı3π/4, e−ı3π/4} with
equal probability1/4. They have been mixed by mixing filters
with randomly driven coefficients, lengthL = 3, andQ = 4
sensors. The separating FIR separator has been searched with
length D = N(L − 1) = 6. An inverse of lengthD exists
generically for the FIR randomly chosen mixing system (see
[7], [11] and references therein for details).

We tested the validity of algorithmsAlg.1 and Alg.2. A
comparison has also been made with a gradient maximization
of the criterionJ (kurtosis) as in [8]. The latter has been
programmed with an optimal step-size at each line-search. The
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corresponding optimal step is obtained as a root of a fourth
order polynomial, similarly to our algorithms. In additiona
comparison with a gradient optimization of a reference based
contrast function as in [14] is available through the the results
wherekmax = 1 in Alg.2. The initialization ofAlg.1/Alg.2
has been set tov = (0, . . . , 0, 1, 0, . . . , 0), where the value1
is situated at a center position of the vectorv (or next to the
center on the left ifv is of even length). With no additional
assumption, there is no other possibility than choosing an
arbitrary value for the initialization point. Due to the fact that
the mixing system is random, the effect of the initial value is
averaged in our experiment and similar average values should
be obtained with any other initialization of the algorithms.

b) Extraction of one source:The separation results are
reported in Table I where the average and median values of
the mean square error (MSE) on the reconstructed source are
given. The top row corresponds to a gradient maximization of
the criterionJ (kurtosis). The second row collects the results
provided byAlg.1, which is the algorithm closest to a gradient
on J , as explained in Section III-C. The successive rows
show the results provided byAlg.2 with different values of
the parameterskmax, lmax: a lower row indicates that the cor-
responding algorithm is farther from a gradient maximization
of J and closer to a “reference-based” approach of source
separation. Finally, last row gives the results for a gradient
optimization of a “reference-based” contrast function.

From the first two rows of Table I, it can be observed that a
gradient maximization of the kurtosis and algorithmAlg.1 both
yield similar values of the MSE. This confirms the validity of
the methodAlg.1 and its convergence to a separating point.
Additionally, an equally good (or even better) value of the
MSE can be obtained by using algorithmAlg.2, which proves
its validity.

c) Extraction of all sources:It has been illustrated that
reference-based contrasts may be unsatisfying in a deflation
scenario [14]. We hence tested here the behavior of our
optimization algorithms in a deflation scenario. The results
are provided in Table II and show thatAlg.2 behaves equally
well as a kurtosis maximization.

extracted source number 1st 2nd 3rd

average kurtosis 0.0029 0.0045 0.0079
Alg.2 0.0026 0.0043 0.0076

median
kurtosis 0.0007 0.0034 0.0060
Alg.2 0.0005 0.0033 0.0059

TABLE II
AVERAGE AND MEDIAN MSE FOR A DEFLATION EXTRACTION OFN = 3

QAM4 SOURCES. T = 5000 SAMPLES, Q = 4, L = 3.
kmax = 50, lmax = 20. NUMBER OF MONTE-CARLO RUNS = 1000.

2) Computational load:On the one hand, methods relying
on the kurtosis contrast function are known to provide good
results. On the other hand, it has been shown that reference-
based contrast functions yield methods which are significantly
quicker. However, the result quality depends on the closeness
of the reference to an actual source, and reference-based
contrast functions hence require to be used with a so called
”fixed-point” iteration [11].

We show here that algorithmAlg.2 combines the advantages
of both methods. It has been observed in the previous section
thatAlg.1 andAlg.2 yield a separation which is as good as the
separation provided by a kurtosis maximization. Now, the three
last columns in Table I clearly indicate that a good choice of
kmax, lmax leads to a significantly lower computational time.
This is particularly striking with large number of samples,
where the execution time is significantly reduced (see for
example the values in bold in Table I).

To ensure a fair comparison, we checked the influence of the
number of iterations: the number of iterations is given bykmax

in a kurtosis gradient optimization, whereas the total number
of iterations is given by the productkmaxlmax in the case of
Alg.2 (Alg.1 is a particular case ofAlg.2 where lmax = 1).
The results corresponding to a fixed number of iterations are
in Tables III, IV, V for respectively1000, 5000 and 10000
available samples. The results corresponding to 1000 iterations
have already been gathered in Table I. One can notice that
algorithmAlg.2 leaves a degree of freedom through the choice
of kmax and lmax. This is further investigated next.

3) Complexity analysis:The previous experimental results
can be explained by some elements concerning the complexity
of Alg.2. A careful inspection indeed reveals that the most time
consuming steps inAlg.2 are:

(i) the estimation ofC(v) defined in Equation (16),
(ii) the computation of the criterion valueI(ṽl,vk) and its

gradient∇1I(ṽl,vk),
(iii) the computation of the optimal step size, which is given

by the polynomial roots of the numerator in (28).

On the one hand, step (i) involves the estimation of the cu-
mulants in Equation (16). Its complexity is thus an increasing
function of both the number of samplesT and the number
of parameters provided byQ and D. On the other hand,
steps (ii) and (iii) do not involve any estimator from the set
of sample data. Indeed, the criterion and its derivative are
given by Equations (17)-(19) and the quantities necessary for
computing the optimal steps are given in Equations (28) to
(31): all these equations do not involve any estimator, but
only the matricesR andC(v) which are estimated and stored
previously. Consequently, the complexity of steps (ii) and
(iii) together consequently only depends on the number of
parameters, that is onQ and D. Let β(T, Q, D) denote the
complexity of step (i) andγ(Q, D) denote the complexity of
steps (ii) and (iii).

Now, it can be seen from the description ofAlg.2 that
step (i) is repeatedkmax times through the algorithm because
the matrix C(v) changes only at each update step. The
overall complexity and computational load related to step
(i) is thus O(kmaxβ(T, Q, D)). On the contrary, steps (i)
and (ii) are repeatedkmaxlmax times through the algorithm,
which yields a complexity related to steps (ii) and (iii) of
orderO(kmaxlmaxγ(Q, D)). It follows that the order of the
complexity ofAlg.2 is:

O
(
kmaxβ(T, Q, D) + kmaxlmaxγ(Q, D)

)
(20)

whereβ and γ are increasing functions of their parameters.
It is out of the scope of the paper to specify furtherβ and
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average MSE median MSE average execution time (s)
separation method Number of samples Number of samples Number of samples

parameters kmax lmax 500 1000 5000 10000 500 1000 5000 10000 500 1000 5000 10000

kurtosis 1000 - 0.0489 0.0033 0.0028 0.0025 0.0007 0.0008 0.0006 0.0006 1.68 2.59 9.79 21.54
Alg.1 1000 1 0.0312 0.0034 0.0028 0.0025 0.0011 0.0009 0.0007 0.0006 1.29 2.48 15.98 26.02
Alg.2 200 5 0.0311 0.0033 0.0028 0.0025 0.0010 0.0009 0.0006 0.0006 0.52 0.78 3.48 5.40
Alg.2 100 10 0.0282 0.0025 0.0025 0.0024 0.0006 0.0005 0.0005 0.0006 0.42 0.56 1.92 2.82
Alg.2 50 20 0.0335 0.0027 0.0026 0.0025 0.0007 0.0006 0.0005 0.0006 0.37 0.45 1.13 1.54
Alg.2 25 40 0.0427 0.0029 0.0027 0.0025 0.0009 0.0007 0.0005 0.0006 0.34 0.39 0.74 0.90
Alg.2 10 100 0.0628 0.0054 0.0028 0.0026 0.0014 0.0010 0.0006 0.0006 0.32 0.35 0.50 0.51
Alg.2 8 125 0.0682 0.0063 0.0029 0.0026 0.0017 0.0011 0.0006 0.0007 0.32 0.34 0.47 0.46
Alg.2 5 200 0.1112 0.0100 0.0030 0.0027 0.0034 0.0014 0.0006 0.0006 0.31 0.34 0.42 0.38

reference 1 1000 0.5654 0.3567 0.1206 0.0870 0.5355 0.2764 0.0529 0.0297 0.31 0.33 0.36 0.28

TABLE I
MSE AND EXECUTION TIME FOR DIFFERENT SEPARATION METHODS. (QAM4 SOURCES, RANDOM MIXING FILTER WITH N=3 INPUTS, Q=4SENSORS,

AND LENGTH L=3. 1000 MONTE-CARLO REALIZATION )

iterations 12 50 100 500
method kurt kurt Alg.1 Alg.2 kurt Alg.1 Alg.2 kurt Alg.1 Alg.2

param
kmax 12 50 50 2 100 100 4 500 500 4
lmax - - 1 25 - 1 25 - 1 125

average MSE 0.279 0.0266 0.0267 0.0261 0.0194 0.0177 0.0154 0.0078 0.0065 0.0055
median MSE 0.0199 0.0195 0.0199 0.0182 0.0120 0.0119 0.0108 0.0022 0.0022 0.0016

average time (s) 0.14 0.15 0.13 0.09 0.27 0.25 0.11 1.33 1.29 0.47

TABLE III
AVERAGE AND MEDIAN MSE FOR DIFFERENT VALUES OFkmax, lmax . NUMBER OF SAMPLES= 1000,NUMBER OF MONTE-CARLO RUNS = 1000.

iterations 12 50 100 500
method kurt kurt Alg.1 Alg.2 kurt Alg.1 Alg.2 kurt Alg.1 Alg.2

param kmax 12 50 50 25 100 100 25 500 500 25
lmax - - 1 2 - 1 4 - 1 20

average MSE 0.0251 0.0245 0.0244 0.0242 0.0151 0.0151 0.0151 0.0051 0.0052 0.0049
median MSE 0.0181 0.0177 0.0177 0.0175 0.0098 0.0098 0.0097 0.0019 0.0019 0.0018

average time (s) 0.66 0.68 0.99 0.54 1.20 1.87 0.55 5.14 8.34 0.62

TABLE IV
AVERAGE AND MEDIAN MSE FOR DIFFERENT VALUES OFkmax, lmax . NUMBER OF SAMPLES= 5000,NUMBER OF MONTE-CARLO RUNS = 1000.

iterations 12 50 100 500
method kurt kurt Alg.1 Alg.2 kurt Alg.1 Alg.2 kurt Alg.1 Alg.2

param kmax 12 50 50 25 100 100 20 500 500 10
lmax - - 1 2 - 1 5 - 1 50

average MSE 0.0250 0.0243 0.0243 0.0244 0.0156 0.0156 0.0157 0.0053 0.0054 0.0052
median MSE 0.0188 0.0184 0.0183 0.0184 0.0104 0.0103 0.0103 0.0021 0.0021 0.0021

average time (s) 1.59 1.61 1.92 1.03 3.18 3.76 0.88 15.48 18.54 0.64

TABLE V
AVERAGE AND MEDIAN MSE FOR DIFFERENT VALUES OFkmax, lmax . NUMBER OF SAMPLES= 10000,NUMBER OF MONTE-CARLO RUNS = 1000.

γ, but in our experiments, we observed that the computational
load given byβ(T, Q, D) clearly increased withT and that
β(T, Q, D) became much bigger thanγ(Q, D) for T > 1000.

The complexity ofAlg.1 (or equivalentlyAlg.0) is given by
the above results withlmax = 1, that is:

O
(
kmax

(
β(T, Q, D) + γ(Q, D)

))
(21)

Finally, note that a gradient optimization of the kurtosis con-
trast function [8] has a complexity which is of the same order
of magnitude asAlg.1: indeed at each iteration, such an algo-
rithm performs steps which complexity roughly correspond to
the steps (i),(ii) and (iii) described above. It follows that the
execution time of a kurtosis maximization is proportional to
kmax and is close to the execution time ofAlg.1.

The above analysis confirms the experimental results and
the fact that the computational load ofAlg.2 highly depends
on the numberT of samples for large value ofkmax (see the
top four rows in Table I). On the contrary, whenlmax is great
and kmax small, the computational load is quite independent
of T (see the rows at bottom of Table I). Finally, for large
number of samples, the termβ(T, Q, D) dominates and the
complexity is directly proportional tokmax. The analysis can
be summed up by a few empirical rules to indicate howkmax

and lmax should be chosen:

• increasingkmax generally ensures a better convergence,
• for large number of samplesT (approximatelyT >

10000), increasingkmax leads to a prohibitive compu-
tational load.kmax should be as small as possible (say
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kmax < 10), whereas it is possible to increaselmax to
obtain better performance,

• for small number of samples (T ≈ 1000), kmax should be
great enough (approximatelykmax > 20) to avoid poor
separation quality.

The main advantage ofAlg.2 consists in the possibility of
adjusting the above parameters.

B. Experimental study without assumptionA3

In this Section, we provide experiments where Assumption
A3 is no longer satisfied. This issue may be important since
AssumptionA3 is not necessarily satisfied in some practical
applications.

1) Different signs of the sources’ cumulants:In order to
study the influence of the cumulants sign, we generated two
zero-mean, unit variance, uniformly distributed, i.i.d. sources
(cumulant value -1.2) and one unit-variance Laplace i.i.d.
source (cumulant value +3). The successive sources have
been retrieved using a deflation approach. The separation
results and average MSE values are gathered in Table VI.
The values indicate that the method seems still valid, although
AssumptionA3 is violated in this experiment.

extracted source number 1st 2nd 3rd

average kurtosis 0.0253 0.0402 0.0694
Alg.2 0.0218 0.0385 0.0772

median kurtosis 0.0233 0.0162 0.0176
Alg.2 0.0193 0.0160 0.0183

TABLE VI
AVERAGE AND MEDIAN MSE FOR A DEFLATION EXTRACTION OFN = 3

SOURCES: 2 UNIFORM’ S, 1 DOUBLE-SIDED EXPONENTIAL. T = 5000

SAMPLES, Q = 4, L = 3. kmax = 5, lmax = 200. NUMBER OF
MONTE-CARLO RUNS = 1000.

2) Non i.i.d. sources: continuous phase modulation:We
considered Continuous Phase Modulation (CPM) source sig-
nals, which are of particular interest in a communication
application. These sources are non i.i.d. and hence do not
satisfy AssumptionA3. However, the general scalar filtering
ambiguity that generally remains when separating non i.i.d.
sources has been characterized in the case of a kurtosis-based
contrast function [7], [24], [25]. It is hence interesting to try
in simulation our optimization method with CPM sources.
A typical source separation result is given on Figure 3: it
illustrates that our method seems to perform similarly to
the kurtosis based method [7]. We performed simulations in
conditions similar to the ones in [7]: we considered three
CPM sources with modulation indices 0.75, 0.4 and 0.2 which
have been mixed with the MIMO channel3 in [7]. We also
performed the symbol decoding similarly to [7]. The bit
error rate (BER) is given in Table VII for different signal to
noise ratios (SNR). Table VIII provides similar results fora
randomly driven mixing filter. It appears that algorithmAlg.2
provides good results at a much lower computational cost than
with the method proposed in [7]. In passing, we can also
note that the separation quality degrades during the deflation

3The parameters and the impulse response of this filter are available at
http://www-public.it-sudparis.eu/∼castella/ChannelCPM.php

process. The separation quality of the third recovered source
is indeed worse than the quality of the second, which is worse
than the quality of the first one: this is due to accumulation
errors. This drawback of deflation methods is well-known and
can be compensated by solutions proposed previously, such as
reinitialization [7].
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Fig. 3. Typical separation result of two CPM sources (N=2, Q=3, L=5).

VII. C ONCLUSION

In this paper, new methods have been proposed for the
purpose of maximizing the kurtosis contrast function. They
take advantage of the specificity of the kurtosis criterion and
rely on the link between so-called “reference-based” contrast
functions and the kurtosis. More precisely, we can say that
our methods (Alg.0, 1 and 2) perform several incomplete
optimizations of a “reference-based” contrast: in other words,
the reference is regularly updated before convergence of the
optimization. As we showed, this establishes a connection with
the EM and MM iterative optimization methods.

The advantage of our methods is twofold. First, we can
theoretically prove the convergence to a stationary point:due
to the separation property of all global maxima of the kurtosis,
this implies in practice the convergence of the method to a
separating filter. In addition, the methodAlg.2 allows one to
adjust two iteration number parameters in order to improve the
performance. In practice, an appropriate tuning of the number
of iterations and reference updates allows one to signifi-
cantly reduce the computational load. Simulations have indeed
showed that algorithmAlg.2 is particularly appealing, as it
yields an impressive improvement in terms of computational
speed for large number of samples. Finally, our results provide
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method kurtosis Alg.2 (lmax = 125, kmax = 8)
execution time ≈ 6.8s ≈ 6.6s ≈ 6.5s ≈ 0.92s ≈ 0.91s ≈ 0.89s

SNR in dB ∞ 25 15 ∞ 25 15
1

st source:τ1 2.0e-6 4.2e-5 2.7e-3 3.0e-4 4.8e-5 1.7e-3
2nd source:τ2 7.5e-4 1.2e-3 9.9e-3 4.2e-4 4.3e-4 3.2e-3
3rd source:τ3 6.0e-3 6.2e-3 3.1e-2 4.3e-3 4.6e-3 1.7e-2

TABLE VII
ESTIMATION OF THE BER FOR A FIXED 4 × 3 MIXING FILTER AND FOR DIFFERENT VALUES OF THESNR. THE NUMBER OFMONTE-CARLO RUNS WAS

1000 (SEE [7] FOR A COMPARISON).

method kurtosis Alg.2 (lmax = 125, kmax = 8) Alg.2 (lmax = 40, kmax = 25)
execution time ≈ 5.0s ≈ 5.1s ≈ 8.8s ≈ 0.70s ≈ 0.72s ≈ 1.1s ≈ 0.77s ≈ 0.79s ≈ 1.2s

SNR in dB ∞ 25 15 ∞ 25 15 ∞ 25 15
1st source:τ1 6.8e-4 1.3e-3 1.7e-2 2.0e-3 2.5e-3 1.7e-2 5.9e-4 1.6e-3 1.8e-2
2nd source:τ2 2.4e-3 3.8e-3 3.4e-2 8.1e-3 7.9e-3 3.1e-2 3.9e-3 4.2e-3 3.2e-2
3

rd source:τ3 7.0e-3 9.6e-3 5.9e-2 1.3e-2 1.8e-2 5.5e-2 1.0e-2 1.4e-2 5.9e-2

TABLE VIII
ESTIMATION OF THE BER FOR A 4 × 3 MIXING FILTER WITH RANDOM COEFFICIENTS AND FOR DIFFERENT VALUES OF THESNR. THE NUMBER OF

MONTE-CARLO RUNS WAS1000 (SEE [7] FOR A COMPARISON).

a justification for the “fixed-point” iterations introducedin the
context of “reference” contrast functions.

APPENDIX A
PROOF OF PROPOSITION1

Proof: Let Γ = {v | ∇J (v) = 0} be the set of
stationary points ofJ . Following the general framework of
global convergence analysis [26], [27], we define the algorithm
Alg.0 as a point to set mapping denoted here byA0. The
sequence of points(vk)k∈N is generated such that it satisfies
vk+1 ∈ A0(vk). More precisely, the algorithmA0 can be
decomposed inA0 = S0G0. Here G0 : v 7→ (v,−d) with
d = ∇1I(v,v) and S0 is a line search along the direction
−d. It is proved in [26, p.210] that the line search is a closed
mapping at points whered 6= 0, from which follows the
closedness of the algorithmA0 outsideΓ.

Finally, −J is a descent function. Consider indeed a
separating filterv, setd = ∇1I(v,v) and definew = v+αd

whereα ≥ 0 maximizesI(v + αd,v). Then:

J (v) , I(v,v) ≤ max
α≥0
I(v + αd,v) = I(w,v) (22)

≤ I(w,w) , J (w) (23)

Inequality (23) follows from (9) where y(n) =
{w}x(n)

(E{|{w}x(n)|2})1/2 and z(n) = {v}x(n)
(E{|{v}x(n)|2})1/2 . The

definition of a descent function further requires that forv /∈ Γ,
the strict inequalityJ (v) < J (w) holds. Assume precisely
v /∈ Γ, that is∇J (v) 6= 0. Since∇1I(v, v) = 1

2∇I(v, v),
one can see thatd = ∇1I(v, v) 6= 0. Then, from the
definition of∇1, the functionα 7→ I(v + αd,v) is strictly
increasing in a neighborhood ofα = 0, which implies that
the inequality (22) is a strict one and thusJ (v) < J (w) as
required.

Proposition 1 then follows from Zangwill’s global conver-
gence theorem [26, p.187].

APPENDIX B
PROOF OFPROPOSITION2

A. Lemma

For the sake of clarity, we first prove an independent
lemma in the real valued case. Here,x, y denote vectors
with respective componentsxi, yi. Let ℓ1 denote the set of
absolutely summable sequences and let(αi)i∈Z be a bounded
and positive sequence. Let us define〈x,y〉 =

∑
i∈Z

αixiyi

and‖x‖ =
√
〈x,x〉.

Lemma 1:Let x andy be vectors inℓ1 with non-negative
components (∀i ∈ Z, xi ≥ 0, yi ≥ 0). Assume in addition that∑

i∈Z
xi =

∑
i∈Z

yi = 1. If ‖x‖2 ≤ 〈x,y〉, then:

x = y ⇔ ‖y‖2 ≤ 〈x,y〉 (24)

Proof: First note that for any sequence inℓ1 the sums∑
i x2

i ,
∑

i αi|xi| and
∑

i αix
2
i converge and that〈., .〉 defines

a scalar product. Then, obviously,x = y implies ‖y‖2 ≤
〈x,y〉.

Conversely, assume that‖y‖2 ≤ 〈x,y〉. Noting that we have
also assumed‖x‖2 ≤ 〈x,y〉 and combining these assumptions
with the Cauchy-Schwarz inequality, we obtain〈x,y〉2 ≤
‖x‖2‖y‖2 ≤ 〈x,y〉2 and thus, because the components ofx

andy are non-negative,〈x,y〉 = ‖x‖‖y‖. The vectorsx andy

are hence collinear and the condition
∑

i∈Z
xi =

∑
i∈Z

yi = 1
shows that in factx = y.
The above lemma will be used in the following corollary form:

Corollary 1: Let x andy be vectors inℓ1 with non-negative
components (∀i ∈ Z, xi ≥ 0, yi ≥ 0). Assume in addition that∑

i∈Z
xi =

∑
i∈Z

yi = 1. If ‖x‖2 ≤ 〈x,y〉, then either one of
the following conditions holds (but not both simultaneously):
(i) 〈x,y〉 < ‖y‖2

(ii) x = y

B. Proof of Proposition 2

We are now in position to prove Proposition 2.
Proof: Let us define the following scalar product

〈x,y〉κ ,
∑N

i=1 |κi|
∑

p∈Z
xi(p)yi(p)∗ and denote byg2 and
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t2 the vectorsg2 , (|gi(p)|2)i,k and t2 , (|ti(p)|2)i,k.
Using the independence of the sources, the above notations,
the relations (2)-(3), and assumptionA3, we can write:

|Cz{y}| = 〈g
2, t2〉κ, |C{y}| = 〈g2,g2〉κ = ‖g2‖2κ,

and: |C{z}| = 〈t2, t2〉κ = ‖t2‖2κ

Now, since the components ofg2 and t2 are non-negative
and satisfy

∑N
i=1

∑
p∈Z
|gi(p)|2 =

∑N
i=1

∑
p∈Z
|ti(p)|2 = 1

because of the constraintE{|y(n)|2} = E{|z(n)|2} = 1,
the conditions of Corollary 1 hold. Hence, we deduce that
if |C{z}| ≤ |Cz{y}|, either 〈g2, t2〉κ < ‖g2‖2κ or g2 = t2

holds (but not both): these are respectively conditions (i)and
(ii) of Proposition 2.

(9) follows from the fact that|Cz{y}| ≤ |C{y}| holds in
both cases (i) and (ii) of the first part of the proposition.
(10) follows from the fact that if there is a strict inequality
|Cz{y}| < |C{y}|, (ii) cannot hold and we have (i) necessarily.

APPENDIX C
CRITERION DERIVATIVE AND OPTIMAL STEP

We here justify the results summed up in Section V-B.
Remind the definition ofw,v in Equation (13) and the
definition ofx(n) in Equation (14). It is then straightforward
to see that the processed output and the “reference” signal
defined in Equations (3) and (4) can be written as:

y(n) = wx(n) and: z(n) = v x(n).

Now, by construction, the matricesR andC(v) in Equations
(15), (16) are hermitian and we have:

Cz{y(n)} = wC(v)wH (25)

E{|y(n)|2} = wRwH and:E{|z(n)|2} = vRvH (26)

Equation (17) then easily follows from its definition in (5).
The complex derivative operator is defined by∂.

∂z ,

1
2

(
∂.

∂zℜ
− ı ∂.

∂zℑ

)
and the complex conjugate derivative opera-

tor by ∂.
∂z∗ , 1

2

(
∂.

∂zℜ
+ ı ∂.

∂zℑ

)
, wherezℜ, zℑ are the complex

and imaginary part ofz. For any real-valued quantity, we have
∂.

∂z∗ =
(

∂.
∂z

)∗
. It follows that the gradient direction in (18) is

indeedd , ∂I
∂w∗ =

(
∂I
∂w

)∗
=
(
2Ĩ(w,v) ∂Ĩ

∂w

)∗
. One can

then verify the following derivation rules (see [28] for more
details):

∂wRwH

∂w
= w∗R and:

∂wC(v)wH

∂w
= w∗C(v)

(27)

and Equation (19) then follows.
Now, to derive the optimal step size at each one-

dimensional optimization of the algorithms note that from
(17), ∂I(w+µd,v)

∂µ = 2Ĩ(w + µd,v)
∂Ĩ(w+µd,v)

∂µ . Since the
algorithms searches for a maximum point and sinceI is
positive, the optimal step should be such that∂Ĩ(w+µd,v)

∂µ = 0.

Now, we have:

Ĩ(w + µd,v) =
1

vRvH

[
(w + µd)C(v)(w + µd)H

((w + µd)R(w + µd)H)

]
=

1

vRvH

[
µ2(dC(v)dH) + 2µℜ[wC(v)dH ] + wC(v)wH

µ2(dRdH) + 2µℜ[wRdH ] + wRwH

]

and thus:

∂Ĩ(w + µd,v)

∂µ
=

2

vRvH

[
a2µ

2 + a1µ + a0

(µ2(dRdH) + 2µℜ[wRdH ] + wRwH)2

]
(28)

where:

a2 = dC(v)dHℜ[wRdH ]−ℜ[wC(v)dH ]dRdH (29)

a1 = dC(v)dHwRwH −wC(v)wHdRdH (30)

a0 = ℜ[wC(v)dH ]wRwH −wC(v)wHℜ[wRd
H ] (31)

If follows that the optimal step is such that the numerator of
(28) vanishes.
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